
LogicLM: Robust Application of Large Language Models with
Logic Programming for Data Analytics

Evgeny Skvortsov
Google LLC

Kirkland, WA, USA
evgenys@google.com

Shayan Mirjafari
Google LLC

Kirkland, WA, USA
shayanmj@google.com

Ojaswa Garg
Google LLC

Kirkland, WA, USA
ojaswagarg@google.com

Yilin Xia
University of Illinois

Urbana-Champaign, IL, USA
yilinx2@illinois.edu

Shawn Bowers
Gonzaga University
Spokane, WA, USA

bowers@gonzaga.edu

Bertram Ludäscher
University of Illinois

Urbana-Champaign, IL, USA
ludaesch@illinois.edu

ABSTRACT

We present LogicLM, an OLAP-style interactive data analysis
system that leverages large language models (LLMs) and is con-
figured using Logica, an enhanced logic programming language
with aggregation support that compiles to SQL. LogicLM uses
an LLM to translate natural language queries by end users into
executable code for automatically generating data visualizations.
For each natural-language query, LogicLM provides a verifiable
OLAP-based configuration that users can view and modify to
help ensure results are reliable and accurate. This configura-
tion, with measures, dimensions, and filters defined as logical
predicates, offers a unified and user-friendly approach to natural-
language data exploration, while keeping end users in control of
the analysis process.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) are opening
new avenues for solving software engineering and data analysis
problems [3, 7, 8, 15]. One natural application of LLMs for data
analysis is to automatically generate SQL from natural-language
prompts (e.g., see [2, 4, 13]). Using LLMs in this way enables
analysts and data scientists to explore datasets more efficiently
by reducing manual coding effort (via low-code or no-code solu-
tions), thereby enabling faster iteration to data insights. However,
without transparency into the use of the underlying LLM and its
output, these opportunities come with the potential risk of erro-
neous results (or worse, poor decisions) due to mistakes made by
the LLM.

In this paper, we introduce LogicLM: a lightweight, open
source, and freely available natural-language data analytics plat-
form [10]. LogicLM is designed to address the challenges of
potential inaccuracies in LLM-generated queries and the need
for user control and transparency in the query generation pro-
cess. It employs predicate calculus as an intermediate represen-
tation between natural language and data retrieval, leveraging
the expressive power of logic programming to enhance query
reliability and efficiency. By utilizing Logica [11, 12], a free and
open-source logic programming language, LogicLM translates
natural-language user requests into structured query configura-
tions that are both human-readable and machine-interpretable.
This dual representation ensures that LLMs interpret requests
with high accuracy and that users remain in control of the query

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

generation process, with the ability to view and edit the generated
query configurations directly.

Figure 1, for example, shows two different LogicLM user ses-
sions. Users enter a natural language description of the informa-
tion they would like to visualize, as well as the type of visualiza-
tion to use, in the upper left-hand pane of the LogicLM interface.
After clicking the Run Analysis button, a simplified form based
on the underlying structured query configuration generated by
LogicLM is shown in the lower-left pane. Clicking Run Analysis
additionally generates the corresponding visualization from the
underlying data, as shown in the pane on the right of the UI.
Users can also interact with and modify the query configuration
in the bottom-left pane to generate a revised visualization.

In LogicLM, measures, dimensions, and filters are defined as
predicates, making the initial data setup and configuration pro-
cess simple and enabling robust queries for performing Online
Analytical Processing (OLAP) [6]. This predicate-based approach
streamlines the definition of analytical concepts and leads to
reusable and clear query construction. LogicLM also supports
multiple database back-ends through Logica, including SQLite,
DuckDB, and BigQuery. To interpret and translate natural lan-
guage queries, LogicLM integrates with LLMs, including Google
Gemini [14], OpenAI [1], and MistralAI [5].

By combining the principles of predicate calculus, logic pro-
gramming, and natural language processing, LogicLM offers a
novel approach to data analytics in natural language. It empowers
users with varying technical expertise to perform sophisticated
data analyses efficiently. LogicLM’s open-source nature and sup-
port for multiple back-ends make it a flexible and accessible tool
for addressing contemporary data analysis challenges. The rest
of this paper provides an overview of the LogicLM architecture,
a more detailed example of the use of Logica for modeling mea-
sures, dimensions, and filters, and an overview of the LogicLM
demonstration.

2 SYSTEM OVERVIEW

LogicLM leverages the power of LLMs to interpret and trans-
late natural-language requests into structured queries. However,
recognizing the potential for errors in direct LLM-generated
queries, LogicLM introduces an intermediary step: it represents
the user’s request as an OLAP-style query configuration. This
query configuration includes the core components of the analy-
sis, the measures to be calculated, the dimensions along which
to analyze the data, and the filters to apply for specific subsets.
These components are defined in the logic programming lan-
guage Logica.

Demonstration Paper

 

 

Series ISSN: 2367-2005 1086 10.48786/edbt.2025.95

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.95


Figure 1: The LogicLM user interface for two different (synthetic) dataset examples: on the left, a request for a map showing

the popularity of a specific baby name prior to 2000; and on the right a request for a stacked barchart showing the pilots in

space starting after a certain year.

Figure 2 shows the overall workflow and basic components
of LogicLM. To add a new dataset, a data engineer (Step 1 in
the figure) creates a Logica Cube Configuration script, which
includes the rules for defining OLAP-style dimension, measures,
and filters (cf. Section 3).Within the LogicLM interface (as shown
in Figure 1), an end user can select a configured dataset and (Step
2) specify a natural-language query via the Query Input Panel
(the top left of the LogicLM UI). The Query Input Panel (Step
3) combines the user’s natural language query and the Cube
Configuration script to generate a prompt that is given to the
LLM. The LLM then produces a Query Request (as a JSON file)
that is displayed in the Query Config Panel (the bottom left of
the LogicLM UI). Note that a visualization is also generated (the
right panel of the LogicLM UI). The end user (Steps 5 and 6) can
optionally modify the Query Request via the Query Config Panel.
The Query Request is then parsed using the LogicLM Query
Request Parser, which generates a Logica program for (Step 7)
querying the underlying SQL Engine and (Step 8) generating
the corresponding visualization. The result is then displayed in
the Visualization panel of the LogicLM UI. Users can iteratively
modify their natural language prompt and the resulting Query
Configuration.

A key strength of LogicLM lies in its transparency and user
control. Because the generated OLAP-style query configuration
(which acts as a blueprint for the underlying data query) is pre-
sented to the user for review and modification, regardless of a
user’s expertise in programming, they can easily verify that the
system has correctly understood their intent and can fine-tune
the analysis as needed.

3 LOGICAL OLAP

LogicLM’s key feature is its ability to dynamically define OLAP
structures using Logica scripts. With Logica, measures, dimen-
sions, and filters can all be treated as logic-based predicates.
Filters are represented using standard predicates, whereas di-
mensions and measures are expressed as special functional pred-
icates supported within Logica. This section further explains
how these predicates are constructed using an example synthetic
data source whose schema is shown in Figure 3.

Logica extends Datalog syntax to make logic programming
applicable to data analysis and its key features help with making
LogicLM configuration efficient and intuitive:

• Functional notation: Functions in Logica are simply
predicates with a column dedicated as the (returned) value.
We use functional predicates to define dimensions in
LogicLM.

• Aggregation: Logica extends Datalog with aggregation
and allows users to define custom aggregation operations.
These features are used in LogicLM to define measures.

• Named and positional arguments: Arguments of
Logica predicates can be used positionally or via a name.
LogicLM adopts the convention that measures, dimen-
sions, and filters use the first positional argument as the
treated fact, while named arguments represent parameters
of the query.

In LogicLM, Fact Tables serve as primary data sources1 that
are used as the foundation for defining dimensions, measures, and
filters. Leveraging Logica’s support for composite data types, fact
tables in LogicLM are typically stored as single-column tables,
where each fact represents a record, with the individual fields
corresponding to the columns of the record.

While LogicLM supports multiple fact tables, here we assume
that only one fact table is used, namely, the FoodOrder table
shown in Figure 3. Depending on the chosen database engine in
Logica, data engineers can configure a FoodOrderDataSource(fact)
predicate either using a local file address or by connecting to an
existing cloud database, such as Google BigQuery.

1 FoodOrderDataSource(fact) :- `path_to_datasource`(..fact);

Dimensions represent various perspectives or attributes by
which data can be analyzed. They are expressed as functional
predicates in LogicLM. For example, CustomerDistrictName is
a dimension that associates an order to the name of the district
where the customer is located. Data engineers can define the func-
tional predicate CustomerDistrictName(fact) in Logica, where
the value district_name is derived from the District table. In
this case, the district_id: shouldmatch fact.customer_district,
which refers to the customer_district from the table FoodOrder.

1 CustomerDistrictName(fact) = district_name :-

2 District(district_id: fact.customer_district,

3 name:district_name);

1For details of how data sources are defined in relation to the underlying database
backend, refer to the LogicLM open-source example code [10]

1087



Cube 
Configuration
(Logica Script)

Automatic 
prompt 

generation

LogicLM
Parser

Query 
request
(JSON)

Logica
Program

SQL Engine
(e.g., DuckDB)

Database Input 

Query Config PanelQuery Input Panel Visualization

LLM

Modified 
Config

Output 
Config

LogicLM
Execution Flow

Data Engineers

End Users

Nature Language 
Query

OLAP Config 
Modification

LogicLM 
Interface

HTML + JavaScript

Logica 
Output

LogicLM Config

Initial
Config

1

3

2

3

4 6

5

7

8

Figure 2: LogicLM Architecture and Overview. To configure the system, a data engineer uses Logica rules (1) to specify

an OLAP cube including dimensions, measures, and possible filters. The user enters a natural language query (2) in the

browser-based UI which is appended to the cube information (3) to generate an integrated prompt. From this, the given

LLM generates a query configuration (4) that the user can modify if needed (5, 6). The query configuration is translated into

a Logica program that is executed via compilation to SQL queries running on the underlying database system (7). The

results are visualized in the UI (8).

Figure 3: Schema of the synthetic dataset used in the demo

of the system. FoodOrder is a fact table and the rest are

dimension tables.

Using this functional predicate, we can leverage the District
dimension table to map food order facts, which lack the district
name, to the customer’s city. To create the CustomerCityName
dimension and associate an order with a city, we need to perform
a join. In Logica, this can be accomplished by simply combining
two predicates using a conjunction.

1 CustomerCityName(fact) = city_name :-

2 District(district_id: fact.customer_district,

3 city_id:city_id),

4 City(city_id:, city_name:);

Measures represent quantitative data that can be aggregated
for analysis. In LogicLM, they are represented as aggregating
operators, which are functional predicates that utilize built-in
aggregation functions. For instance, the measure OrderCount,
which calculates the total number of orders, can be defined in
Logica as below.
1 OrderCount(fact) = Count(fact.order_id);

Additionally, aggregations can be applied to expressions. For
example, DeliveryDuration is a measure that calculates the
sum of the differences between delivery and order dates:

1 DeliveryDuration(fact) =

2 Sum(fact.delivery_date - fact.order_date);

Filters in LogicLM are standard predicates for defining spe-
cific conditions. For instance, the filter OrdersToCities selects
orders from a set of cities in the city_names parameter. Because di-
mension CustomerCityName(fact) is defined as a functional pred-
icate, it can be directly reused as in the following example.

1 OrdersToCities(fact, city_names:):-

2 Constraint(CustomerCityName(fact) in city_names);

Metadata in LogicLM is defined using a dedicated predicate
that specifies the fact table, measures, dimensions, and filters,
and can configure UI elements like the header tagline and server
port. It also includes a suffix_lines: field, which allows custom
text to be appended to the LLM prompt. This enables users to
refine the LLM’s understanding by providing additional context
or instructions. The final prompt, formed by combining the meta-
data and user request, guides the LLM in constructing the query.
The metadata context significantly reduces the search space the
LLM must consider when identifying the appropriate measures,
dimensions, and filters. As a result, the LLM’s performance is
greatly enhanced, minimizing misinterpretations. For the full
definition of metadata, refer to the .l file in the repository [10].

1 LogicLM(title: "Delivery Statistics",

2 fact_tables:["FoodOrderDataSource"],

3 dimensions:["CustomerDistrictName","CustomerCityName"],

4 measures:["OrderCount", "DeliveryDuration"],

5 filters:["OrdersToCities"],

6 suffix_lines:[

1088



a

b

c

Figure 4: The LogicLM UI displays: (a) a Query Input Panel for user requests; (b) an OLAP Config Panel showing the

LLM-generated OLAP configurations, with options for interactive adjustments; and (c) a visualization of the query results.

7 "Try using linechart or barchart .",

8 "If unsure use table chart .",

9 "Good luck !"]);

4 DEMONSTRATION PLAN

The demonstration showcases LogicLM running with the con-
figuration detailed in Section 3. Attendees can interact with the
system by posing questions and observing the results. We high-
light the system’s feedback loop, emphasizing how users can
verify the LLM’s understanding through the OLAP Config Panel.
Figure 4 provides one of the examples used in the demonstra-
tion showing a natural language question posed in LogicLM, its
corresponding OLAP Config Panel, and its resulting chart.

In the example, the user asks “How many deliveries were done
to districts of Springfield.” The LLM, based on the LogicLM meta-
configuration, interprets the natural-language query into: OrderCount
as the measure, CustomerDistrictName as the dimension, and
OrderToCitieswith the argument of city_names:["Springfield"]
as the filter. This interpretation, formatted as a JSON object, is
parsed and results in the following Logica program, which is
then compiled to SQL2:

1 Report(

2 OrderCount? Aggr= OrderCount(fact),

3 CustomerDistrictName:CustomerDistrictName(fact)) distinct:-

4 FoodOrderDataSource(fact),

5 OrdersToCities(fact, city_names:["Springfield"]);

CONCLUSION

LogicLM provides a transparent approach to data analysis, con-
verting natural language requests into readable Logica scripts
representing OLAP queries. LogicLM allows users to verify the
system’s interpretation and enables engineers to extend the con-
figuration, reusing its definitions for custom analyses. LogicLM
supports diverse database backends such as SQLite and BigQuery,
making it adaptable to various data sizes and analytical scenarios,
from ad-hoc exploration to large-scale warehousing. It combines

2The SQL compilation is done via conventional programming. For more information
about the compilation process, see the Logica open-source code [9, 12]

LLMs for natural language processing with logic programming
for accuracy and accessibility in interactive data analysis.

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023.

[2] CopilotPowerBI. Overview of Copilot for Power BI. https://learn.
microsoft.com/en-us/power-bi/create-reports/copilot-introduction. Accessed:
12/10/2024.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv, 2018. URL https://arxiv.org/abs/1810.04805.

[4] GeminiLooker. Introducing Gemini in Looker to bring intelligent AI-powered
BI to everyone. https://cloud.google.com/blog/products/data-analytics/
introducing-gemini-in-looker-at-next24. Accessed: 12/10/2024.

[5] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

[6] Ralph Kimball and Margy Ross. The Data Warehouse Woolkit: The Complete
Guide to Dimensional Modeling, 3rd Edition. J. Wiley & Sons, 2013.

[7] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep Contextualized Word Rep-
resentations. In Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 2227–2237, June 2018.

[8] Mohammed Saeed, Nicola De Cao, and Paolo Papotti. Querying large language
models with SQL. In International Conference on Extending Database Technol-
ogy, EDBT, pages 365–372, 2024. URL https://doi.org/10.48786/edbt.2024.32.

[9] Evgeny Skvortsov. Logica Source Repository, December 2023. URL https:
//github.com/EvgSkv/logica.

[10] Evgeny Skvortsov, ShayanMirjafari, Kevin Prewitt, andOjaswaGarg. LogicLM
Source Repository, December 2024. URL https://github.com/google/LogicLM.

[11] Evgeny S. Skvortsov, Yilin Xia, Shawn Bowers, and Bertram Ludäscher. The
Logica System: Elevating SQL Databases to Declarative Data Science Engines.
In International Workshop on the Resurgence of Datalog in Academia and Indus-
try (Datalog-2.0), volume 3801 of CEUR Workshop Proceedings, pages 69–73,
2024. URL https://ceur-ws.org/Vol-3801/short5.pdf.

[12] Evgeny S. Skvortsov, Yilin Xia, and Bertram Ludäscher. Logica: Declarative
Data Science for Mere Mortals. In International Conference on Extending
Database Technology (EDBT), pages 842–845, 2024.

[13] TableauAI. AI in Tableau Accelerate your data culture with AI-powered
insights. https://www.tableau.com/products/artificial-intelligence. Accessed:
12/10/2024.

[14] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, AndrewMDai, Anja Hauth, Katie Millican,
et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In Advances in Neural Information Processing Systems, volume 30, 2017.

1089


