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ABSTRACT
We demonstrate LADYBUG, an interactive tool designed for trac-
ing and debugging the outputs of large language model (LLM)
agents in data-driven applications. LADYBUG enables users to
trace the steps executed by an agent, intervene at arbitrary steps,
and efficiently re-execute affected steps. To help debug important
but inconspicuous issues, we implement an LLM-aided debug-
ger that leverages self-reflection to identify incorrect steps and
propose efficient interventions.

1 INTRODUCTION
Motivation. Advances in large language models (LLMs) have
transformed natural language into a powerful mode for program-
ming. LLMs are prone to critical lapses, however, with halluci-
nations and mathematical inaccuracies. These can be difficult
to debug [4]. To mitigate these issues, data scientists are now
building LLM agents which solve complex multi-step problems
by coordinating calls to LLMs, tools, and other operators. While
these agents alleviate some of the weaknesses of individual LLMs,
debugging them is further complicated by the introduction of pro-
grammatic constructs, such as control flow and tool invocations,
whose errors can compound across steps. That is, LLM agents
have evolved to mirror traditional software programs, with a
clear need for specialized debugging tools akin to traditional
software debuggers.

Debugging these LLM agents presents challenges similar to
those encountered in conventional software development. Like
software programs, agents execute sequences of operations with
arbitrary inputs and outputs [1]. Each step may affect those that
follow. Software debuggers often enable stepwise reenactment
of an execution trace, allowing users to backtrack through previ-
ous steps, identify errors, modify state, and test potential fixes.
LLM agents lack any analogous tool that enables inspection and
intervention at intermediate steps. Thus, users are only left with
the inefficient option of repeatedly modifying and re-executing
the entire agent.

LLM agents can be debugged using existing software debug-
gers, but fundamental differences in their design necessitate dedi-
cated tooling. Software debuggers operate at a low-level: stepping
through individual lines of code and modifying in-memory vari-
ables. The atomic units of computation in an agent—i.e., their
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steps and their inputs / outputs—are higher-level constructs, how-
ever. In this sense, debugging an agent is more akin to debugging
a data pipeline [2], as the atomic units of computation are often
black-box modules rather than atomic instructions. Thus, observ-
ing execution traces, backtracking, or intervening on an LLM
agent is cumbersome and inefficient using a regular software
debugger. Furthermore, agent steps are fundamentally more com-
plex than individual lines in a software program, as they define
sequences of potentially expensive operations (e.g., LLM calls
and data retrieval) [6]. It is therefore important for agents to
avoid unnecessary re-execution. However, traditional software
debuggers do not facilitate “random access” intervention at ar-
bitrary agent steps, nor do they spot issues or suggest efficient
interventions to fix them.
Contributions.To enable these capabilities andmore, we demon-
strate LADYBUG,1 a novel framework for tracing and debugging
the outputs of LLM agents,2 such as those built with LlamaIndex,
LangChain, and CrewAI. We implement a novel debugging tool
that enables users to trace, modify, and efficiently re-execute the
intermediate steps of an LLM agent, facilitating diagnosis and
repair of hallucinations and other issues. We note that, intrigu-
ingly, LLMs hold the potential to address issues in their own
output or that of other LLMs. By leveraging self-reflection, LLMs
can be guided to critique and refine their outputs, mitigating
the very hallucinations they produce. We therefore implement a
novel LLM-aided agent debugger, which helps identify incorrect
agent steps and propose interventions that avoid unnecessary
re-execution.

To illustrate, consider an LLM agent that helps teachers grade
student essays, formalized in Section 3.3 as Use Case #3. This
data-driven agent performs several steps, starting by ingesting
the essays, assessing writing quality, computing grades, and sum-
marizing the class grade distribution. As illustrated in Figure
1, the user can click the “play” button in the navigation bar of
our tool to execute the agent, which, upon completion, renders
a chronological trace of executed steps (left) under the “Agent
Timeline” tab. Suppose that the success alert (callout #1) indicates
that an anomalous class average was returned. After reviewing
the input and output of each step (the code views to the right
of the trace), however, the user cannot find any issues (#2). The
user clicks the “assist” button in the navigation bar (#3) to enlist
the help of the LLM-aided debugger, which prompts an LLM to
identify and correct an LLM hallucination occurring in a late
step. The interface updates to show the corrected step in the

1A video is available at https://vimeo.com/1036113298.
2The tool is available at http://lg-research-2.uwaterloo.ca:8091/ladybug.
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Figure 1: Using LADYBUG to debug an agent that helps teachers grade essays but which returned an anomalous class
average.

timeline (denoted by the red “fork” icon in #4) and its substituted
output (denoted by green highlighter in #5), then re-executes the
subsequent steps to obtain a new class average (#6).

Our main contributions are as follows.
• LLM Agent Debugging Tool.We introduce a novel debug-
ging tool that enables dedicated tracing and manipulation of
LLM agents. This tool allows users to observe and intervene
at arbitrary agent steps, facilitating efficient backtracking and
debugging of complex multi-step processes.

• LLM-Aided Debugger.We develop an LLM-aided debugger
that leverages self-reflection to identify and fix incorrect steps.
This feature enhances debugging by automating the pinpoint-
ing and correction of errors, keeping the human in the loop to
mitigate further hallucination.

• Use Cases. We demonstrate the utility of our tool by show-
casing three practical use cases involving modern agents for
data-driven applications: tracing data provenance; personal-
ized recommendation; and debugging data quality. These il-
lustrate the debugger’s versatility in supporting varied and
complex agent tasks.

2 SYSTEM DESCRIPTION
To facilitate interactive debugging, LADYBUG allows users to
step through and intervene on the state of an agent in a manner
similar to software debuggers. Software debuggers often facilitate
real-time intervention by allowing users to suspend execution
of the software program, interpret and modify its current state,
then resume execution. We adopt an alternative post-hoc strategy
that allows users to review the evolution of an agent’s state,
enqueue state modifications, then re-execute only the affected
operations. In this sense, our debugger works in a declarative
fashion, requiring users to declare all modifications upfront, while
software debuggers work in an imperative fashion, requiring
users to apply each modification individually in real-time. This
declarative approach is better suited for the potentially lengthy
traces of LLM agents. We additionally propose an LLM-aided
debugger, to further support debugging at interactive speeds.

2.1 Preliminaries
We focus on an emerging class of LLM agents that model the
completion of tasks dynamically in a declarative, event-driven
workflow (e.g., workflows in LlamaIndex, flows in CrewAI, and
state graphs in LangGraph). Let an agent 𝐴 be defined by a set of
step functions 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑘 }, the atomic units of computation
in an agent. A step function is invoked by some input event,
executes some predefined instructions (i.e., a program), then
returns some output event. We assume that step functions are
invoked serially, such that each output event triggers—is passed
as an input event to—one or more step functions. We assume that
these events constitute snapshots of the agent’s entire state; we
do not model any other state or memory constructs that agents
may choose to maintain.

Agents follow some internal policy (i.e., control flow) to co-
ordinate invocation of step functions in 𝐹 . We do not explicitly
model this policy, but note that nondeterministic control flow
could confound the debugging process. An agent invokes step
functions in some order according to its control-flow policy, be-
ginning with a predefined 𝑓start and ending with some predefined
𝑓end. We define a trace 𝑇 = (𝑒1, 𝑒2, . . . , 𝑒𝑛) as a sequence of 𝑛
step-function invocations in the order they were performed by𝐴.
Each 𝑒𝑖 = (𝑝𝑖 , 𝑓𝑖 , 𝑜𝑖 ) records the output event 𝑜𝑖 returned by step
function 𝑓𝑖 invoked with input event 𝑝𝑖 , as dictated by 𝑜𝑖 = 𝑓𝑖 (𝑝𝑖 ).

2.2 Agent Debugger
In our demo, we present a full-stack software tool for debug-
ging LLM agents, written in Python and TypeScript. LADYBUG
allows users to run and debug LLM agents built with the Lla-
maIndex Python framework. Both LlamaIndex agent abstractions
are supported: FunctionCallingAgents and Workflows. Agent and
instrumentation-related capabilities are facilitated via the Lla-
maIndex framework, and all agents use the gpt-4o LLM via the
OpenAI API. In concept, the LADYBUG framework is compatible
with many event-driven agent frameworks; for the purposes of
this demonstration, however, our debugging tool only supports
LlamaIndex agents.

LADYBUG consists of three main components, as seen in Fig-
ure 2: a database (callout C); a backend (B); and a frontend (A).
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Figure 2: The architecture of LADYBUG.

The database is a local MongoDB instance, used by the back-
end to persist instrumentation data. The backend is a FastAPI
server, which hosts the user’s agent and defines API endpoints
to facilitate debugging. The frontend is a React web application
built with the React Material UI library. Users interact with this
frontend to define inputs, run the agent, observe its trace, apply
changes, and re-execute.

Assume that a user defines a LlamaIndex agent𝐴, then launches
our debugging tool for this agent. Assuming 𝑓start is defined by the
agent, the tool accepts a start input 𝑝start from the user, triggers
execution 𝑓𝑠𝑡𝑎𝑟𝑡 (𝑝start), then awaits a final output 𝑜𝑛 . LADYBUG
hooks into 𝐴 to record step-function invocations, which enables
the construction of a completed trace𝑇 . The trace𝑇 is presented
to the user in an interactive timeline view (callout #2 in Figure
1), allowing the user to inspect the chronology of step-function
invocations and their input and output events (callout #5). By
allowing users to run an agent, view outputs, and inspect internal
state, our debugger facilitates observability for LLM agents.

To facilitate debugging of a completed trace 𝑇 , users create a
set of “mocked” invocations (mocks)𝑀𝑇 = {𝑚1,𝑚2, . . . ,𝑚 𝑗 } that
preempt step-function invocations during re-execution (callouts
E and F in Figure 2). Each mock𝑚𝑖 = (𝑝′

𝑖
, 𝑓 ′
𝑖
, 𝑜′

𝑖
) declares that,

when re-executing 𝐴, any invocation of a step function 𝑓 ′
𝑖
with

input event 𝑝′
𝑖
should simply return the mocked output event

𝑜′
𝑖
instead of actually invoking 𝑓 ′

𝑖
(𝑝′

𝑖
). This flexible design en-

ables sophisticated interventions, where only certain invocations
(i.e., a proper subset of 𝑇 ) are modified and re-executed, while
supporting (and subsuming) the simpler case of a single inter-
vention, where the intervention and all prior invocations would
be included in𝑀𝑇 .

Since steps are the atomic units in our agent formulation,
LADYBUG does not support intervention at any finer level of
granularity. We argue that any instruction within a step can be
easily mocked by decoupling it into a dedicated step, avoiding
any need thereafter to recompile the agent. Ultimately, the user is
free to choose which steps are mocked or re-executed, regardless
of their position within the trace. This allows users to mock
steps that are inconsequential or nondeterministic. We argue
that this freedom is imperative when debugging LLM agents, as
their control flow and steps (which will utilize nondeterministic
LLMs) are not necessarily deterministic.

Beyond the ability to observe and debug LLM agent steps,
LADYBUG tracks a variety of low-level events and metrics. We
leverage the LlamaIndex instrumentation framework to monitor
fine-grained statistics, namely system and user-defined events
and time spans. Instrumentation events and spans are metadata
objects corresponding to discrete moments and periods of time,
respectively, and can be used to monitor various properties (e.g.,
frequency or length) of operations performed within agent steps
(e.g., LLM calls). These primitives form a chronological hierarchy;

Instructions:
You are debugging a user's interaction with an AI agent, which completes a
task given by the user. The interaction is denoted as a sequence of steps,
each drawn from a list of valid step functions. Your task is to analyze the
interaction and assess whether or not the output is correct. If it is incorrect,
please trace the issue back to the first chronological incorrect step, and
revise this step by proposing a corrected step function invocation. Output
exactly 1 line, and absolutely nothing else. If you assess the output as being
correct, simply output "N/A". Otherwise, output "Step N: C", where N is the
step number of your revised step and C is the revised function invocation.

Valid Step Functions:
- preprocess_essay(ev: StartEvent) → RetrievalEvent
- retrieve_similar_essays(ev: RetrievalEvent) → SimilaritiesEvent
- identify_similarities(ev: SimilaritiesEvent) → PlagiarismEvent
- compute_plagiarism(ev: PlagiarismEvent) → SummarizeEvent
- summarize_plagiarism(ev: SummarizeEvent) → StopEvent

User Interaction:
- Input: StartEvent(essay=Essay(author="...", content="..."))
- Step 1: preprocess_essay(ev=StartEvent(...))
- Step 2: retrieve_similar_essays(ev=RetrievalEvent(...))
- Step 3: identify_similarities(ev=SimilaritiesEvent(...))
- Step 4: compute_plagiarism(ev=PlagiarismEvent(...))
- Step 5: summarize_plagiarism(ev=SummarizeEvent(...))
- Output: StopEvent(result="The probability of plagiarism is 82%")

Figure 3: The prompt used by the LLM-Aided Agent Debug-
ger.

each event belongs to zero or one span, and each span has zero
or one parent spans. Our tool records and persists any instru-
mentation events and spans emitted during execution, which are
then extracted and reorganized into an interactive hierarchical
timeline.

2.3 LLM-Aided Agent Debugging
When using LLM agents, users may encounter difficult debugging
situations. For example, agents may produce lengthy traces, mak-
ing the process of identifying mistakes difficult, and re-executing
expensive. To help in these situations, LADYBUG offers an auto-
mated debugger aided by an LLM, in lieu of a user applying their
own intuition. Finding the first anomaly in any data pipeline is
critical to ensure that bad data is not passed downstream [3].
Therefore, we leverage the LLM to pinpoint the first incorrect
invocation and predict a modified invocation that corrects the
incorrect output 𝑜𝑛 . This strategy exploits LLMs’ surprising and
well-documented ability to reflect upon previous responses and
suggest corrections [5]. Our use of a separate LLM avoids any
obligation for self -explanation. This modular design allows en-
gineers to use a relatively expensive (i.e., more capable) LLM to
debug agents that use cheaper LLMs.

To facilitate this strategy, we design a custom LLM prompt that
describes the agent 𝐴, summarizes the trace 𝑇 , and instructs the
LLM to debug𝑇 . Figure 3 illustrates an example of such a prompt,
tailored for debugging the plagiarism agent described in Section
3.1. In popular Python-based agent frameworks like LlamaIndex,
step functions are defined as Python functions, therefore we can
extract a variety of step function metadata (i.e., purpose, behavior,
and possible return values) from the signature and docstring of
these Python functions. We append the signature and docstring
for each step function 𝑓 ∈ 𝐹 to the prompt, then append each step-
function invocation 𝑒 ∈ 𝑇 in chronological order. When asking
the LLM to debug 𝑇 , we instruct it to first decide if the agent’s
output is incorrect, and if so, to trace the issue back to the first
incorrect invocation (suppose this is at index 𝑘 in𝑇 ) and propose
a correct invocation 𝑒′

𝑘
. A set of mocks 𝑀𝑇 = {𝑒1, . . . , 𝑒𝑘−1, 𝑒′𝑘 }
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is constructed (callout E in Figure 2) by appending 𝑒′
𝑘
(callout

D) to the set of invocations preceding it in 𝑇 , then re-execution
commences in the same fashion as the manual debugging method
(callout F).

3 DEMONSTRATION PLAN
Conference participants will explore strategies for tracing and
debugging agent responses. They will then use these strategies to
explore their own corrections and those suggested by LADYBUG.

3.1 Use Case #1: Tracing Data Provenance
The user has built an agent to detect and measure plagiarism
in student essays by leveraging information retrieval (IR) tech-
niques. The agent defines several step functions to complete this
task, including a step for retrieving similar essays from a database
of previous submissions, a step for identifying textual similari-
ties between a pair of essays, and a final step that computes a
plagiarism score based on these findings. When the user submits
an input essay to the agent, the agent returns a plagiarism likeli-
hood score of 82%, which appears unexpectedly high, given the
essay’s seemingly original content. The user seeks more context
to understand how this conclusion was reached, and employs LA-
DYBUG to trace the agent’s sequence of operations and inspect
intermediate outputs.

Using the execution trace provided by LADYBUG, the user
verifies that the first step successfully retrieved similar essays,
confirming that the retrieval techniques worked as expected.
Reviewing the content of the retrieved essays, the user notices
no glaring signs of plagiarism, prompting further investigation.
Inspecting the output of the similarity-identification step, the user
discovers that several inconspicuous sentences from one of the
retrieved essays are repeated word-for-word in the input essay.
Upon examining the metadata of the retrieved essays, the user
finds that the matching essay was submitted by a person sharing
the same family name as the input essay author, raising concerns
about academic dishonesty. By exposing a detailed execution
trace, LADYBUG has enabled the user to validate IR processes and
trace data provenance in the agent, thereby instilling confidence
in the original plagiarism score.

3.2 Use Case #2: Personalized Recommendation
The user is building an agent to assist students in exploring po-
tential universities, by offering personalized recommendations
based on diverse criteria. The agent defines a series of steps
that mirror common IR techniques used in personalized search
and recommendation systems. These steps include identifying
prospective universities, several costly steps to scrape web data
and commentary about each university, a step to generate ranking
criteria based on student preferences, a step to rank universities
according to these criteria, and a final step to synthesize a person-
alized summary of the best-matched university. The user initially
queries the agent for recommendations for a computer-science
degree, emphasizing criteria related to industry and research
impact. After executing, the user receives a recommendation for
the University of Toronto, which is justified by the university’s
reputation for producing high-quality AI research.

This recommendation aligns with the user’s preferences; how-
ever, the user questions why the University of Waterloo, known
for its strong co-operative education program and industrial con-
nections, was not recommended. Through the trace provided
by LADYBUG, the user examines the criteria generated by the

agent, which emphasized traits such as “number of research pub-
lications” and “industry impact.” Curious to explore a different
outcome, the user leverages the interactive debugging capabilities
of LADYBUG to adjust the criteria without re-running the expen-
sive web scraping steps. By selectively mocking the criteria to
include “industry connections” and “employment opportunities,”
the user re-executes the agent and discovers that it now recom-
mends the University of Waterloo. This exploration helps the
user understand the agent’s recommendations, and shows how
interactive debugging can facilitate personalization and query
expansion.

3.3 Use Case #3: Debugging Data Quality
As introduced in Section 1, suppose the user is building an agent
that grades student essays, coordinating various steps to assess
and process student submissions. The user loads the agent into
LADYBUG and runs it on a large collection of student essays.
Upon completion, the agent produces a grade distribution that
reports an impossible class average of 1222.92% (callout #1 in
Figure 1). In LADYBUG, the user begins by reviewing the initial
“setup” step, and finds that the rubric’s grading criteria weighting
is non-uniform, which may have skewed the average. To verify
this hypothesis, the user creates a mock for this step, modifying
the output to prescribe uniform weighting. Upon re-executing,
the user finds that the class average reduced slightly; however, it
is still anomalous.

After thorough review, the user is unable to identify any fur-
ther issues (#2). Due to the lengthy nature of the execution trace,
however, the user suspects that there may be inconspicuous data
quality or control flow issues. The user turns to the LLM-aided
debugger (#3), which identifies an inconsistency in the lengthy
trace: in a late “assess quality” step (#4), the LLM inadvertently
hallucinated integer rubric scores instead of float scores, which
skewed distribution calculations in subsequent steps. As shown
in Figure 1, the debugger suggests a revision to this “assess qual-
ity” step that replaces the integer scores with their corresponding
float scores (#5). The debugger executes this revision, which re-
executes only the five steps that follow the revised step, and
displays the new average of 67.92% in the interface (#6). Through
self-reflection, the LLM-based debugger has enabled the user to
identify, trace, and correct data quality issues within this complex
agent workflow.
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