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ABSTRACT
In the big data era, real-time tracking and evaluation of stream-
ing information are essential for delivering prompt insights. The
schemaless nature of streaming data introduces substantial ana-
lytical challenges: since schemas are constantly changing in an
unpredictable way, a continuous query issued over the stream
can quickly become obsolete, losing purpose and effectiveness.
In this demonstration, we present ASSO (Automated Schema-
less Stream Overseer), a solution for dynamic monitoring and
analysis of schemaless streams. ASSO considers the overlapping
sliding window paradigm, interpreting data streams and offering
an intentional view of their schemas, while dynamically adjusting
continuous queries to accommodate schema evolution.

1 INTRODUCTION
Continuous monitoring and analysis of streaming data have be-
come crucial in the big data era, where decision-makers need
timely insights. Streaming data poses unique challenges, particu-
larly in its often schemaless nature: each record comes with its
own schema definition, which may differ significantly from the
others [4, 14, 16]. This lack of structure leaves users unaware of
the data flowing over time, making real-time analyses challeng-
ing. Stream data analysis typically operates within a specified
time window, with the overlapping sliding window being one of
the most widely used types [1]. A sliding window is a dynamic
time interval of fixed duration subdivided into panes where, with
each slide, the oldest pane is replaced with the most recent one.
In this context, a concept of state is essential to store information
from previous panes, enabling continuous calculations as the
window slides forward.

Extracting information from a sliding window with schema-
less data is challenging [13], particularly in streaming contexts
where automating analysis of heterogeneous data (well-studied
for static datasets [7, 10]) remains underexplored. First, it is diffi-
cult to gain a clear understanding of the data present in a window,
as schemas can change over time. Therefore, it is essential to ac-
count for the unbounded nature of the input domain. Second, a
continuous query that always targets the same attributes could
lead to inaccurate and outdated results, as schema changes would
not be reflected. Therefore, the query must dynamically adapt
to the changes in the data over time. Ultimately, due to space
and time constraints in processing the data within a window, it
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Figure 1: Architecture of ASSO.

is not feasible to retain all data across the window. Instead, pro-
cessing must rely on pre-aggregated data to produce outcomes
representing the entire window.

In this demo paper, we proposeASSO as theAutomated Schema-
less Stream Overseer, a tool that enables the continuous monitor-
ing and analysis of schemaless data streams. Given the dynamic
nature of data schemas, ASSO interprets the data streams from
an intentional perspective, providing a conceptual view of the
schemas in the window. Additionally, ASSO executes a contin-
uous dynamic query that adapts to the evolving data streams,
delivering an extensional result while considering the functional
dependencies between the data within the window. Both of these
operations are performed while respecting the constraints of
the streaming environment. In the demonstration, the user will
have the opportunity to explore ASSO’s functionalities from both
intentional and extensional perspectives, experiencing how the
system interprets and processes data in real-time while adapting
to schema changes. A demonstration video and public access to
the system are available at http://big.csr.unibo.it/asso.

2 THE ASSO SYSTEM
Figure 1 presents the architecture of ASSO, illustrating how data
flows throughout the system. Data from the input stream is con-
tinuously processed by the data ingestion component, which
serves as a data collector for ASSO’s two main components: the
profiler and the analyzer. In both cases, additive data structures
are exploited to pre-aggregate the data in the stream to comply
with the time and space constraints inherent to stream processing
[18].
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Figure 2: Intuition of schema profiling; squares represent
data messages, colors are indicative of schema similarities.

• The profiler is responsible for providing intensional in-
formation to the dashboard. It processes the schemas from
each pane, aggregates them in the schema aggregator us-
ing an additive data structure called coreset, and then
passes the result to the profile manager to generate the
current profile. The profile is a representation providing
key insights about the schema of data in a high-variety
context by grouping similar schemas together [9].

• The analyzer delivers extensional insights by processing
records from each pane. It dynamically adapts a contin-
uous query [3] to the current stream data and delivers
results to the dashboard. The analyzer builds the state by
selecting and executing relevant queries based on statistics
collected by the statistics calculator. Finally, it outputs the
best query result by aggregating all partial results.

• The dashboard ultimately provides the end user with a
visual overview of the results generated by the profiler
and analyzer components.

In ASSO’s implementation, the profiler and analyzer are devel-
oped in Scala, using Kafka streams for efficient data processing;
ingestion and output are managed through dedicated Kafka top-
ics. The dashboard is a web page that connects to the output
topic to deliver real-time visualizations. It also provides users
with the ability to define input streams with varying frequencies
and sources, as well as configure key parameters for the pro-
filer and the analyzer, including the window size (duration and
slide interval), state capacity (i.e., the percentage of input records
that can be stored in the state), and the size of the group-by set
considered by the analyzer.

2.1 Profiler
Figure 2 provides an intuition of the profiling process, where
the schema profile of the heterogeneous stream is updated along
three consecutive sliding windows. Profiles are produced by clus-
tering the schemas extracted from the data (where a schema is
the set of attributes in a record) according to the k-means al-
gorithm. As we are considering schemaless data, the similarity
between schemas is calculated with the Jaccard distance [15],
which enables the comparison of two sets independently of their
dimensionality. Given two schemas 𝐴𝑖 and 𝐴 𝑗 , the Jaccard sim-
ilarity is defined as 𝑠𝑖𝑚 𝐽 (𝐴𝑖 , 𝐴 𝑗 ) =

|𝐴𝑖∩𝐴 𝑗 |
|𝐴𝑖∪𝐴 𝑗 | , and the distance is

derived as 𝑑 𝐽 (𝐴𝑖 , 𝐴 𝑗 ) = 1 − 𝑠𝑖𝑚 𝐽 (𝐴𝑖 , 𝐴 𝑗 ). In the sliding window
paradigm, running the clustering algorithm every time the win-
dow slides would be clearly inefficient (if not unfeasible) and
would lack continuity (because the provided profiles would be
hardly comparable across different windows). In ASSO, this is
addressed with a two-phase approach [19].

City PlantSpecies Count
Bologna Kiwi 1023
Parma Orange 1231
Girona Orange 2361
GranadaOrange 231
... ... ...

City PlantSpecies Count
Bologna Kiwi 1020
Parma Orange 1201
Girona Orange 5276
Granada Orange 2131
... ... ...

Country PlantSpecies Count
Italy Kiwi 10320
Italy Orange 23201
Spain Orange 55403
... ... ...

CreationDate PlantSpecies Count
2024-02-05 Kiwi 55
2023-01-08 Kiwi 105
2023-12-08 Orange 423
2023-01-08 Orange 385
... ... ...

Figure 3: Examples of representativeness and continuity
for possible queries in window𝑤𝑖 .

(1) First, the input data’s volume is reduced by the schema ag-
gregator in Figure 1, which pre-aggregates similar schemas
into coresets, i.e., data structures providing compact rep-
resentations of similar schemas that are grouped together.
Coresets are updated dynamically by incorporating new
data and removing expired elements.

(2) Second, rather than clustering the coreset from scratch for
each window, the profilemanager incrementally updates
the clustering result (i.e., the profile) to reflect changes in
the coreset. This enables the algorithm to adapt to evolving
clusters dynamically, including adjustments to the number
of clusters (also supporting merges or splits of clusters).

Since a cluster represents a set of schemas, the cluster repre-
sentative consists of a schema where each attribute is associated
with its support, defined as the percentage of schemas in the
cluster in which each attribute is present. Therefore, the out-
come of this module includes all the clusters that compose the
profile, along with their similarity (calculated as the Weighted
Jaccard similarity [6]) and the support of each attribute within
the window.

2.2 Analyzer
The intrinsic variability in a schemaless stream requires constant
adaptation of the continuous query to the intensional features of
data in the current window. This entails two challenges: under-
standing when and how the query should change, and ensuring
that new queries can be immediately executed over the whole
window. Let us consider here multidimensional queries iden-
tified by a group-by set of 𝑘 categorical attributes, where 𝑘 is
user-defined.

To address the first challenge, in every iteration the analyzer
ranks the

(𝑛
𝑘

)
possible queries (where 𝑛 is the number of available

categorical attributes) based on the following desiderata.
(1) Representativeness: the query should cover as much data

as possible within a window.
(2) Continuity: the query should ensure consistent results

across consecutive windows, helping users track the evo-
lution of the data over time.

The representativeness of a query 𝑞, 𝜙𝑟 (𝑞) ∈ [0, 1], is calcu-
lated as its support, i.e., the percentage of data in which at least
one attribute of the group-by set is non-null. The continuity of a
query 𝑞, 𝜙𝑐 (𝑞) ∈ [0, 1], is calculated as the average strength of
approximate functional dependencies (AFDs) between its group-by
set attributes and those in the query executed in the previous
iteration [11]. The AFD from attribute 𝑎𝑖 to 𝑎 𝑗 in a recordset 𝑅
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is measured as 𝑐𝑎𝑟𝑑 (𝑅, {𝑎𝑖 })/𝑐𝑎𝑟𝑑 (𝑅, {𝑎𝑖 , 𝑎 𝑗 }), where 𝑐𝑎𝑟𝑑 (𝑅,𝐴)
denotes the number of distinct values of the set of attributes 𝐴
in 𝑅 (values closer to 1 indicate strong dependencies) [2].

Figure 3 gives an example of representativeness and conti-
nuity values for three possible queries for window𝑤𝑖 : 𝑞1 is the
same as the one executed in𝑤𝑖−1, thus continuity is maximum,
but representativeness has dropped (assuming the City attribute
is losing support); 𝑞2 and 𝑞3 replace City with attributes with
higher support (Country and CreationDate, respectively), with
the first one achieving higher continuity thanks to the geographi-
cal functional dependency. Representativeness and continuity are
uniformed into a single score, 𝑠𝑐𝑜𝑟𝑒 (𝑞) = 𝛼 ·𝜙𝑟 (𝑞)+(1−𝛼) ·𝜙𝑐 (𝑞),
where 𝛼 ∈ [0, 1] is a parameter enabling user-based customized
balancing of the two desiderata. The score is finally used to rank
the set of possible queries and select the best one.

The second challenge is due to the fact that a new query with a
different group-by set can be computed over the previous panes of
the window only if partial results of the query have already been
computed and saved in the state (given that saving the raw stream
data into the state is not feasible in most streaming scenarios [5]).
Computing and saving all possible queries is clearly inconvenient;
thus, a strategy is needed to anticipate query evolution by finding
the most promising queries among the possible alternatives, so
that the state can be filled with the respective partial results.
To this end, we employ a multidimensional knapsack approach
[12] that builds on the above-discussed score to identify the ideal
subset of queries that can be executed, given the space constraints
of the state and the limited available time. Indeed, by maximizing
the score of the pre-computed queries, we increase the chance
that the new best queries can provide results over the whole
window.

The process is outlined in Figure 1, where for each new pane,
the statistics calculator module computes AFDs and attribute
support using sampling-based techniques applied to the pane’s
records [17]. The query selector uses these statistics to calculate
the score of potential queries and implements the multidimen-
sional knapsack. At the end of each window, the query executor
runs the selected queries, saves the results into the state (discard-
ing those belonging to the expired pane), and returns the results
of the best query. Notice that, when the analyzer is first started,
the query initially selected and run is the one maximizing repre-
sentativeness (as continuity cannot be computed in the absence
of a previously executed query).

2.3 Dashboard
The dashboard presents the outcomes of the profiler and analyzer
described above, providing a comprehensive view of the results;
a snapshot is shown in Figure 4.

The output of the profiler is displayed on the left, showing at-
tribute support in the current window and highlighting changes
from the previous window to quickly identify variations in at-
tribute occurrence. Moreover, the dashboard shows the current
profile, providing a continuous view of the schemas within the
window. It allows users to observe active schemas and their simi-
larities, and with a click on a schema, it links the schema to the
attributes it comprises, while also tracking structural schema
changes over time.

The output related to the extensional information provided
by the analyzer is in the central part, starting from the graph of
approximate functional dependencies that illustrates the relation-
ships between categorical attributes. This helps users identify

dependencies within the data and enhances exploratory analysis.
The feature allows users to adjust the level of approximation in
the dependencies, offering a flexible view of attribute relation-
ships tailored to their specific analysis needs. Additionally, the
dashboard displays the outcome of the best query for the current
window, aligning real-time data insights with the desiderata and
user-defined preferences selected from the attribute’s view. This
ensures that the displayed query results are relevant to the user’s
analytical goals.

The dashboard is completed by two additional modules. One
is the stream statistics display, which shows the frequency of
records within each window pane, providing users with prelim-
inary statistics to quickly assess the stream’s volume and pace.
The second module is the timeline, offering a graphical represen-
tation of the current window. Users can click on the timeline to
navigate to previous panes, and the results in other modules will
reflect that historical view. A second click returns the dashboard
to real-time mode, resuming continuous monitoring.

3 DEMO PROPOSAL
In this demonstration, we examine real-world sensor data streams
from a project in the precision agriculture domain, where the
objective is to create a digital twin of the plants within orchards
[8]; the system is designed to work with JSON data, but can be
easily adapted to any other form of semi-structured data. In par-
ticular, we focus on three continuously monitored data streams:
soil properties, plant health, and atmospheric conditions, which
together generate an accurate digital representation of the or-
chard’s plants. Variability arises within and across these sources
due to differences in data collection methods and environmental
conditions.

The first scenario provides an introductory experience, helping
the user gain an initial understanding of the data flowing through
the system. The three data sources exhibit varying degrees of
similarity in their schemas over time, and the user can visually
explore these variations. By analyzing the current window, the
user can identify the schema profile, assess the degree of similar-
ity between schemas, observe the appearance or disappearance
of attributes, and track shifts in the functional dependencies be-
tween them. This scenario allows users to intuitively engage with
the system and build a foundational understanding of the data.

The second scenario provides a more interactive and analytical
experience, supporting the user in gaining deeper insights from
an extensional perspective. The user is taskedwith understanding
and interacting with the results of the continuous query that best
represents the data at any given moment. The user can observe
how this query evolves and is encouraged to actively engage
with ASSO. Users can suggest adjustments such as hiding certain
attributes in the next window or marking others as mandatory.
This interactive feedback loop offers users greater control over
the analysis process, enhancing their ability to guide the system’s
behavior.

Both scenarios are designed to be dynamic, allowing users
to adjust various parameters related to the input streams. Users
can selectively enable specific data streams to focus on particular
subsets of the data, as well as modify the frequency at which
the data is received. The window size and state capacity can
also be adjusted enabling the exploration of different temporal
spans and governing the spatial constraint on both the analyzer
and profiler, thus opening the possibility of varying analytical
outcomes (as different parameter values influence the selection
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Figure 4: A snapshot of ASSO’s dashboard.

of feasible queries). Finally, varying the parameter 𝛼 allows users
to influence the choice of the best query, prioritizing either rep-
resentativeness or continuity.
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