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ABSTRACT
Retrieval-Augmented Generation (RAG) has become ubiquitous
as a powerful approach to augment Large Language Models with
external information, mitigating well-known limitations such
as knowledge cut-off and hallucinations. The literature offers
a plethora of contributions describing experiments to employ
RAG in specific knowledge domains. However, the successful
implementation and deployment of end-to-end RAG systems in
real-world enterprise settings is way less explored. We present
UniAsk, a RAG-based search system designed, developed and
fully deployed for the employees of a European bank. We exten-
sively evaluate the performance of our system with real users.
Post-launch analysis reports that UniAsk has improved the effi-
ciency of internal banking processes.

1 INTRODUCTION
Large Language Models (LLMs) showcase impressive natural
language understanding and generation capabilities, but they
still face significant limitations that affect their suitability for
many domain-specific or knowledge-intensive tasks in natural
language processing (NLP). Notable limitations of LLMs include
their relying on static and outdated training knowledge, which
may produce hallucinations [12, 34] in response to queries beyond
their training knowledge or requiring up-to-date information, as
well as the lack of transparency of their reasoning processes.

Solving these challenges is critical to ensure a widespread
adoption of LLM-based applications by real-world enterprises.
Hallucinated, outdated, overly-generic answers can clearly com-
promise the reliability of LLM-based chatbots, and therefore their
large-scale use. For any real-world industry or sector that nowa-
days wishes to leverage the power of AI to make a better usage
of their data, to provide more accurate predictions, to fasten the
automatization of their processes or to offer better services to
their clients, it is essential to be able to trust AI systems with the
capability to produce factually correct and up-to-date information.

The fast-paced nature of many real-world industrial sectors
exacerbates the challenges posed by the hallucination and knowl-
edge cut-off limitations of LLMs, increasing the threats to the
accuracy and the currency of the advice they may provide. Mod-
ern professional sectors are characterized by a rapid evolution,
with regulations and trends changing continuously. Thus, AI
systems must be capable of providing timely and accurate advice.

Retrieval-Augmented Generation (RAG) [17] has emerged as a
promising solution to overcome the limitations of LLMs. RAG
enhances an LLM by employing a retrieval module to gather rel-
evant information from external knowledge bases, and using the
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retrieved information to enrich the prompt with contextual knowl-
edge that the LLM can use to ground the content to be generated.
By referencing authoritative and verifiable sources such as up-to-
date regulations or organization insights, RAG effectively reduces
the problem of generating factually incorrect content [7, 29]. In
addition to mitigating hallucinations, RAG also ensures enhanced
timeliness, alignment with domain experts, and improved con-
trollability and explainability of generated responses [35]. Hence,
the integration of RAG with LLMs has proven to be a transforma-
tive opportunity to foster the adoption of LLMs into real-world
applications requiring AI-generated responses that are accurate,
up-to-date, and trustworthy.

RAGhas recently attracted great attention from both researchers
and industry practitioners. Researchers have worked on improv-
ing RAG from different angles, especially after the pivotal arrival
of OpenAI’s ChatGPT, which led to a flourishing of proposals to
enhance the in-context learning capabilities of LLMs.

At the same time, developers from different enterprise sectors
have worked on building effective RAG-based tools for domain-
specific use cases. Modern cloud technology providers such as
AWS or Azure have played a crucial role in enabling the integra-
tion of the RAG paradigm into AI-driven enterprise applications.

The recent literature offers many contributions describing ex-
periments and attempts to employ RAG in specific knowledge
domains. Examples include healthcare [13], administration [16],
telecommunications [5], driving assistance [11], biomedicine [22],
agriculture [2], law [23, 31]. However, we are not aware of works
presenting end-to-end RAG systems deployed in a real-world en-
terprise setting. Furthermore, most of the existing contributions
work with English data, for which resources are more abundant.

In this paper we present UniAsk, a RAG-based search sys-
tem designed, developed and fully deployed for the employees
of UniCredit, a pan-European bank headquartered in Italy.

UniAsk aims at providing UniCredit employees with a mod-
ern search experience, empowered with generative answering
capabilities, over an internal knowledge base (available in multi-
ple languages) that contains information on a variety of topics,
such as banking applications, governance, general processes, and
technical topics (software tools, mobile devices, online platforms).

UniAsk has been deployed for the Italian employees of Uni-
Credit. We have worked with a knowledge base of 59 308 docu-
ments in Italian, and released the system to 30𝐾 employees.

Prior to the deployment of UniAsk, the UniCredit employees
could access the knowledge base through an existing tool that
only supported keyword searches, resulting in a very limited
experience, which was often unsatisfactory for the users. UniAsk
supports a more modern and powerful search experience, as it
provides (𝑖) better retrieval algorithms, which combine keyword
search with vector search and semantic reranking, and (𝑖𝑖) a
novel generative answering capability that produces answers in
natural language.
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We have assessed the retrieval and generation performance
of UniAsk conducting (𝑖) an automatic evaluation on 3 500
questions with ground-truth relevant documents and answers
(provided by domain experts), and (𝑖𝑖) two large pilot phases
with real users. The former pilot involved 200 subject matter
experts for 2 months, and collected 3 000 feedbacks. The latter
involved 500 employees from retail branches for 1 month, and
gathered 11 000 feedbacks.

Post-launch analysis shows that UniAsk allows to reduce the
number of tickets opened to report unsuccessful searches by
around 20%. This translates into a faster retrieval of information,
and more time for the employees to focus on higher-value ac-
tivities. We plan to capitalize on the success of UniAsk, and the
lessons learned, to adapt our system to other languages and other
use cases, so that we can to improve the efficiency of our internal
processes and the quality of the services that UniCredit offers to
her customers.

To the best of our knowledge, our work offers a novel contribu-
tion to the literature, presenting an end-to-end, fully-deployed
RAG system, working on Italian documents, and providing a
practical, demonstrated benefit to a real-world use case.

The remainder of this paper is organized as follows. Section 2
introduces our application scenario. Section 3 details the architec-
ture of UniAsk. Section 4 and 5 respectively describe the retrieval
and the generation module of UniAsk. Section 6 details our work
on guardrails, while Sections 7 and 8 present our experimental
evaluation (automatic and with real users). Section 9 describes
the steps made to deploy UniAsk to production and Section 10
discusses the related literature. Finally, Section 11 offers our con-
clusive remarks.

2 PROBLEM SCENARIO
UniCredit is a pan-European banking group with more than 75K
employees in different countries. Every employee who has an
enquiry on Technology, Products and Business, or Legal processes
can access to an internal search engine to retrieve information
from a large knowledge base containing hundreds of thousands
of webpages in multiple languages. In this work we focus on the
Italian knowledge base, which contains 59 308 documents.

On average, employees submit thousands of queries per day
to the search engine. Whenever an employee is unable to obtain
a satisfactory answer for an enquiry of hers, she usually opens a
ticket to require the correct information. Every year, thousands
of tickets are opened due to search-engine failures, increasing
the overall operational cost of handling those tickets.

The existing search engine only performs an exact keyword
matching on the documents in the knowledge base. It cannot
handle complex questions in natural language. Employees know
that an elaborated question will obtain no results, and query
the system with one or few keywords. Moreover, the system is
uncapable to return answers in natural language. It outputs a
ranked list of documents, which the user has to check.

We design UniAsk with a two-fold objective in mind. From
one side, we intend to provide the users with a more powerful
search experience over internal knowledge bases, allowing them
to obtain self-contained natural-language responses for complex
questions in natural language, not supported by the existing
system. By building a more performant search system, we also
aim to reduce the number of tickets opened for unsatisfactory
responses, and therefore reduce the overall cost of the related
operational process.

3 ARCHITECTURE
We now describe the overall architecture of UniAsk, depicted in
Figure 1. We deployed UniAsk as a hybrid architecture consisting
of microservices and serverless components. Microservices are
loosely coupled, fine-grained services, communicating through
HTTPS protocol, each performing few tasks. Each microservice
is encapsulated within Docker containers that can be deployed
differently serving multiple tasks. The Ingestion and Indexing
flow follow a serverless deployment while for the User Query
flow we choose a Kubernetes1 deployment workload. To ensure
scalability, reliability, deployability and interoperability of our
solution, we deployed the services using Microsoft Azure2.

The Ingestion service extracts information from each HTML
document in the Knowledge Base (KB). Given that the KB is
edited on daily basis, this service is also in charge to keep data
updated by polling modifications every 15 minutes. It is deployed
on a serverless infrastructure component, triggered by a cron-job
mechanism.

The Indexing service communicates with the Ingestion ser-
vice by means of a message queue. Using an event-based trigger,
it reads messages posted by the ingester and it feeds the index.
The Indexing service parses, chunks and populates metadata for
each document of the KB. Notice that we keep a limited chunk
size due to the limited LLM prompt length (see Section 5).

Every chunk contains the title of the document, the text content
and domain, section and topic tags provided by the KB editors.
We augment the metadata generating via LLM a summary of the
whole document and a list of keywords. The User query flow is
detailed in Section 4 (Retrieval) and in Section 5 (Generation).

The FrontEnd service provides an interface users can interact
with. It exposes a search box to query the engine and a feedback
form where the user can provide information about the answer
quality. The BackEnd service is a REST layer exposing endpoints
to be called by the frontend. It contains the logic responsible for
login and the requests to the Retrieval and Generation services.
It stores feedbacks and user actions.

Figure 1: The architecture of UniAsk

4 RETRIEVAL
The retrieval component of UniAsk is a proper search module
that we build and employ to retrieve relevant information from
the knowledge base. We build a search index over the document
collection, and then we employ retrieval algorithms to retrieve
from the index the (fragments of) documents that are most rele-
vant to a user’s query.

1https://kubernetes.io/
2https://azure.microsoft.com/
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Knowledge Base. The KB contains 59 308 HTML documents
in Italian. Documents span different topics such as banking ap-
plications, governance, general processes and technical topics and
tend to be very short: half of them contain just a few sentences.
There is a significant amount of content replication, especially
among the documents describing procedures or errors, where
we may find almost identical content except for specific error or
procedure codes. The documents are written by employees for
other employees. They are mostly short, containing, on average,
248 words and 7.6 paragraphs. They are characterized by a fre-
quent usage of domain-specific jargon, for which comprehensive
vocabularies are not available.
Index Design and Creation.We build our index using Azure
AI Search3. Building the index requires to split long documents
into chunks. We set chunk length to 512 tokens, as the embedding
model that we employ for vector search, text-embedding-ada-002,
is known4 to perform well on chunks of that size. In our KB,
25% of the documents contain more than 600 tokens. We exper-
imented with two chunk splitting strategies. First, we tested
Langchain’s RecursiveCharacterTextSplitter5, a generic text split-
ter, which splits a text based on a customizable list of characters,
until small-enough chunks are produced. In our experiments,
this splitter produced noisy chunks. Therefore, we devised an
ad-hoc HTML-based strategy, which extracts non-overlapping
text chunks from a document by using the start offsets of html
paragraphs as splitting points. This ensures that we split a docu-
ment into coherent fragments, as designed by the human editors
who created the page. We recursively merge consecutive small
chunks until a desired length is obtained.

In Azure AI Search, index fields can be marked with attributes
that determine how a field is used, such as whether it’s used
in full-text search, faceted navigation, sort operations, and so
forth. String fields are by default searchable and retrievable; the
latter means that the field can be returned in a search result. We
mark document title, chunk content, and summary as retrievable.
Domain, topic, section and keywords are marked as filterable, to
be used for exact matching only. An inverted index is built for
each searchable field.

Our index includes separate vector embeddings of the docu-
ment title and the chunk content fields (marked as retrievable).
The vector embeddings are obtained by using the text-embedding-
ada-002 from Azure OpenAI.
Search Algorithm. To retrieve relevant documents for a query,
we employ the hybrid search6 algorithm implemented in Azure
AI Search, which combines full-text and vector search queries.

The full-text searchmodule segments an input query into terms
using the it-analyzer-lucene-full analyzer, which performs stop-
word removal, sentence splitting, and lower-casing of words. It
then retrieves relevant documents for the query by ranking the
documents according to the Okapi BM25 [27] ranking function.

The vector-searchmodule retrieves documents that are relevant
for the query by generating a query embedding and finding the
chunks whose title and/or content vectors are closest to the
query embedding. For this, we employ the Hierarchical Navigable
Small World (HNSW) algorithm [21], an Approximate k-Nearest
Neighbor algorithm. In our experiments, HNSW and exhaustive
k-Nearest Neighbors (𝑘-nn) yield similar retrieval performance.

3https://learn.microsoft.com/en-us/azure/search/
search-what-is-azure-search

4https://www.pinecone.io/learn/chunking-strategies/
5https://python.langchain.com/v0.2/docs/how_to/recursive_text_splitter/
6https://learn.microsoft.com/en-us/azure/search/hybrid-search-overview

We empirically find the best value for𝑘 , i.e., the number of nearest
neighbors returned by HNSW, with dedicated experiments (see
Section 7).

The rankings produced by text search (a single ranking) and
vector search (one ranking for each vector field) are merged by
the Reciprocal Rank Fusion (RRF)7 algorithm, which takes
the search results from multiple rankings, assigning to each doc-
ument/ranking pair a reciprocal-rank score that is calculated as
1/(𝑟𝑎𝑛𝑘 + 𝑐), where rank is the position of the document in the
list, and 𝑐 ≥ 1 is a constant (we use the default value from Azure
AI Search, i.e., 𝑐 = 60). The final relevance score assigned to each
search result is obtained as the sum of the various reciprocal
rank scores plus a semantic reranking8 score, obtained with a
proprietary multi-lingual, deep-learning model8 from Bing and
Microsoft Research, based on multi-task learning [20], which is
integrated into Azure AI Search.

5 GENERATION
Once the search module has retrieved the top𝑚 relevant docu-
ment chunks for a given question, the question and the chunks
are passed to the generation module, which is responsible for
generating a proper answer in natural language. The answer
must respond to the query based on the relevant documents, which
serve as context. UniAsk performs the answer generation task by
querying an LLM, leveraging its capability to learn new tasks
on the fly, with no explicit retraining or parameter updates. In
UniAsk, we leverage gpt3.5-turbo9 as the LLM along with its chat
completion API.

We use prompt engineering to provide the LLM with task-
specific instructions and with the context needed.

We start our prompt by providing the LLM with general
background context, i.e., by explaining the general scenario
and the task the LLM has to deal with. We tell the LLM that it has
to serve as a virtual assistant for the UniCredit employees, and
that its task is to answer a user’s question based on the context
(a list of relevant documents retrieved from a domain-specific
knowledge base), which is fed to the LLM as input together with
the question.

We incorporate the specific context, i.e., the top 𝑚 (with
𝑚 = 4 in the current deployment) document chunks that the
search module has retrieved for the user’s query, together with
input-format instructions that help the LLM understand how
the input context is formatted. The chosen context format is a
JSON list where each document is represented as a dictionary,
containing a key identifier, the title and the content of each
document chunk.

Next, we provide a sequence of recommendations that the
LLM must closely follow to provide a valid answer. We instruct
the LLM that a valid answer must consist of sentences that al-
ways cite the relevant chunks from the context that were used
as sources, and we give instructions about how to format the
citations to reduce variability and increase the likelihood that
the LLM uses the context properly. We ask the LLM to always
respond in Italian, given that the current UniAsk is intended to
be used by Italian employees. We tell the LLM to reply that it
does not know the answer to the user’s question, when it cannot
produce an answer that is clearly based on the provided context.
We repeat the instructions about ensuring that at least one
citation is included, and about how to format the citations,more

7https://learn.microsoft.com/en-us/azure/search/hybrid-search-ranking
8https://learn.microsoft.com/en-us/azure/search/semantic-search-overview
9https://platform.openai.com/docs/models/o1#gpt-3-5-turbo
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than once. In our experiments, we have observed that repeti-
tion of important instructions helps the LLM not to forget the
requirements that a valid answer must satisfy.

6 GUARDRAILS
We now describe the guardrails that we have designed and
implemented in UniAsk to ensure that the system is used for its
intended purpose, and that it minimizes risks that may arise from
either inappropriate user behavior, or the usage of an LLM.

A primary risk is hallucination [12, 34], i.e., the fact that
the system may return answers that are not factually correct.
For a RAG system, hallucination is a generated answer that is
nonsensical or unfaithful to the retrieved context.

Another risk is that the generated response contains inappro-
priate language, possibly causing reputation or legal issues.

Furthermore, we want to avoid any attempt from the users to
employ UniAsk beyond its intended purpose, to ask questions that
are out of scope, or to purse a whatsoever malicious intent.

Tomitigate these risks, we enrich UniAskwith guardrails [10],
a technology that has recently attracted great research effort to
enhance LLM-based applications. A guardrail is a shield that we
add to instruct our system against specific behaviors or topics.

We implemented topical guardrails to prevent UniAsk from
generating answers addressing topics that are unrelated to the use
case at hand. Our primary guardrail works as follows. Once
the generation module has returned the answer produced in
response to a user’s question, the guardrail computes a measure
of similarity between the generated answer and the reference
context (i.e., the top𝑚 chunks returned by the retrieval module).
The similarity is computed between the answer and each chunk in
the context, returning the maximum score yielded for a chunk as
the final score. If the similarity score falls below a predetermined
threshold, the guardrail invalidates the answer and the system
returns an apology message to inform the user that the system
was unable to generate a reliable answer for her question. We
adopt a syntactic similarity measure, specifically, ROUGE-L [19].
The threshold on ROUGE-L was heuristically set to 0.15 after
conducting exploratory experiments on real user questions.

We also put in place a secondary guardrail that invalidates
generated answers that contain no citations to the context.
This idea was suggested by preliminary experiments, in which
we noticed that whenever the generated answer did not contain
at least one valid citation to the context, the answer was indeed
hallucinated.

For both guardrails, we further add a special handling of the
generated answers that end with a request for further details,
because UniAsk is intended to return a self-contained answer to
any input question. When this happens, we raise a clarification
requirement guardrail, which invalidates the answer and invites
the user to reformulate her question with more details.

We also run the Azure Content Filter 10 to detect and block
harmful content, such as inappropriate language, in the question.

Whenever a guardrail invalidates a generated answer, the
system still displays the whole document list for the user to
check. We consider the triggering of a guardrail as a failure of
the generation module, not of the whole system. The document
list might still be relevant, thus we leave the user the chance to
check it out.

10https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/
content-filter

We tested the guardrails on real questions, assessing multiple
runs to account for the non-determinism of the LLM, and asking
human experts to review blocked answers (see Section 8).

7 AUTOMATIC EXPERIMENTAL
EVALUATION

Deploying a system in a real-world industrial setting requires a
careful pre-go-live evaluation. We tested UniAsk conducting (𝑖)
an automatic evaluation on real datasets of questions posed by
employees, and (𝑖𝑖) a live evaluation with real users. This section
presents the former, while the latter is reported in Section 8.

For automatic evaluation we built two datasets mimicking
different querying behaviors: the human dataset and the key-
word dataset. Due to legal constraints, the datasets cannot be
made publicly available.

The human dataset contains 2700 real-world questions, com-
piled by human experts from the team responsible for the pre-
existing search engine. The domain experts were asked to provide
real and relevant questions pertinent to the different topics in the
knowledge base, leveraging their understanding of the matters
that are known to attract a strong interest and are frequently
asked by the employees. For each authored question, the expert
was asked to provide a ground-truth answer in natural language,
and one or more links to the documents in the knowledge base
that contain the information required to answer the question.

The keyword dataset was collected to evaluate how UniAsk
performs when asked the typical questions that are presented to
the pre-existing system. It contains 800 keyword-style questions
that were randomly sampled among the frequent queries in the
log of the previous system. We used a log spanning one year of
data between 2023 and 2024. For each keyword query, we asked
our domain experts to provide one or more links to ground-truth
documents containing the required information. A ground-truth
answer in natural language was not collected for these queries,
since they just aim at finding a document in the knowledge base.

We split both datasets in two parts: validation (2/3 of queries)
and test (1/3 of queries). We used the validation datasets to tune
our approach during the development phase, which was carried
out in agile mode, and the test datasets for pre-deployment eval-
uation. We report below our assessment of the performance of
UniAsk with respect to (𝑖) retrieval of documents relevant to
a user’s question. and (𝑖𝑖) generation of a natural-language
answer for the question.

Retrieval. As we stated in Section 4, our retrieval module uses
Azure AI’s Hybrid Search with Semantic Reranking (HSS) as
the algorithm of choice to retrieve documents that are rele-
vant for a user’s query. The text search component retrieves
𝑛 = 50 documents that are most similar to the input query. For
vector search, we set 𝐾 = 15 as the number of most similar doc-
uments returned by the Approximate Nearest Neighbor (ANN)
algorithm. The value of 𝐾 was set after exploring several choices
(𝐾 ∈ {3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}) on both our validation
datasets. HSS merges the 50 documents returned by text search
with the 15 returned by vector search, employing Reciprocal Rank
Fusion (RRF), and producing a final ranking of 50 documents.

We evaluate the retrieval performance of UniAsk by using
standard information retrieval metrics such as: precision@n,
recall@n, binary hit rate @n, and MRR. For a given question,
the binary hit rate@n is = 1 if the top 𝑛 results returned by the
retrieval module contain at least 1 relevant result, 0 otherwise.
The average binary hit rate@n over a query dataset represents
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Metric Human Test Dataset Keyword Test Dataset
Prev. UniAsk % Var Prev. UniAsk % Var

p@1 0.3557 0.3840 8.0 ↑ 0.5490 0.5099 −7.1 ↓
p@4 0.1195 0.1979 65.6 ↑ 0.3006 0.3291 9.5 ↑
p@50 0.0104 0.0312 200.0 ↑ 0.0350 0.0683 95.1 ↑
r@1 0.0665 0.3753 464.4 ↑ 0.3393 0.3316 −2.3 ↓
r@4 0.0886 0.5764 550.6 ↑ 0.6332 0.5432 −14.2 ↓
r@50 0.0969 0.7899 715.2 ↑ 0.8275 0.7885 −4.7 ↓
hit@1 0.3556 0.3840 8.0 ↑ 0.5490 0.5099 −7.1 ↓
hit@4 0.4693 0.5889 25.5 ↑ 0.7895 0.7352 −6.9 ↓
hit@50 0.5102 0.7967 56.2 ↑ 0.8977 0.8792 −2.1 ↓
MRR 0.0795 0.4892 515.3 ↑ 0.6504 0.6236 −4.1 ↓

Table 1: Retrieval performance of UniAsk and of the pre-
existing search system (dubbed Prev.), on the test datasets.

the fraction of queries for which at least one relevant document is
retrieved, providing an overview of the system’s ability to return
relevant results across all queries. It is easy to understand for
business experts.

Table 1 reports the retrieval performance on UniAsk on the
human test dataset and the keyword test dataset, compared
to the pre-existing search engine, which serves as our internal
baseline. The reported results are averages on the questions for
which a non-empty document list was obtained. UniAsk was able
to retrieve non-empty results for all queries in both datasets. The
baseline was capable to serve 98.6% of the keyword questions,
as expected, since those queries were extracted from its own
log. However, the previous system performed very poorly on the
human questions: it retrieved non-empty results for just 19.1%
of those questions, failing to return anything for the remaining
81.9%. This is a first testament of the superiority of UniAsk. Our
system discloses the possibility to formulate complex natural-
language questions, which the pre-existing system is unable to
serve in most of cases.

Metric Human Test Dataset Keyword Test Dataset
% var Text Vector Text Vector
wrt HSS Search Search Search Search
p@1 −50.8 −39.1 −11.7 −21.3
r@1 −51.2 −39.5 −10.3 −18.6
r@4 −41.6 −30.1 −10.5 −17.4
r@50 −43.6 −9.9 −4.7 −3.2
hit@1 −50.8 −39.1 −11.7 −21.3
hit@4 −41.3 −30.0 −10.8 −15.8
hit@50 −42.8 −9.6 −2.7 −2.5
MRR −44.5 −30.6 5.5 −0.6

Table 2: Ablation study on the components of Hybrid
Search

Further evidence of the superiority of UniAsk can be found in
the results reported in Table 1. For each metric/dataset pair, the
table reports the percentage improvement of UniAsk over the
baseline system. The two search systems perform almost compa-
rably on the keyword dataset, with UniAsk actually achieving
slightly worse results with respect to several of the reported
metrics. However, in most of cases the percentage loss is below
10%, and our business experts considered this result acceptable in
light of the way superior performance that the new system yields
on natural-language questions. Not only the baseline could only
retrieve results for 19.1% of the human queries: even when the
baseline did retrieve results, UniAsk outperformed it with respect
to all metrics, and with improvements that are way more signifi-
cant in magnitude than those obtained on the keyword dataset.

In particular, the improvement in recall and MRR is impressively
in the order of +500%.

We have validated the choice of HSS by checking how the two
components of Hybrid Search, i.e., Text Search and Vector Search
perform separately. Table 2 reports the results of this ablation
study. For each dataset/algorithm combination, the table reports
the percentage variation with respect to HSS for each retrieval
metric. Both algorithms perform worse than HSS when employed
alone. On the human dataset, the loss is more significant when
Text search is used: the questions drafted by human editors have
a more complex structure, and require the contribution of Vector
Search to better handle semantic similarities. Conversely, Text
Search yields lower loss on all metrics for the keyword queries,
where syntactic matching contributes more to the final ranking.

In the attempt to further improve the performance of our
retrieval module, we have experimented with several ideas. We
have tested 3 query-expansion variants: (𝑖) 𝑄𝐺𝐴, which asks
the LLM to generate an answer for the input query, with no
relevant context, and then performs the retrieval step on the
query expanded with the generated answer; (𝑖𝑖) 𝑀𝑄1, which
asks the LLM to generate multiple queries related to the input
query, and then performs a multi-query hybrid search; (𝑖𝑖𝑖) 𝑀𝑄2,
which also asks the LLM to generate multiple related queries for
the initial question, but then performs a standard hybrid search on
the text concatenation and the average embedding of all queries.
We have attempted to boost term matches on the titles of
documents with a multiplicative weight (𝑇 = {5, 50, 500}). We
also tried to enrich the index with keywords extracted by the
LLM from the title of documents (HSS-KT ), or from title and
content (HSS-KTC).

% var Query Expansion Boosting match on title
wrt HSS QGA MQ1 MQ2 T5 T50 T500
p@1 −15.3 −4.9 −3.4 2.0 0.4 0.3
r@1 −15.4 −1.4 3.6 1.7 0.0 0.0
r@4 −15.0 −4.0 −3.4 0.7 −1.8 −1.5
r@50 −15.5 −9.2 −5.8 −1.0 −5.0 −5.0
hit@1 −15.3 −4.9 −3.4 2.0 0.4 0.3
hit@4 −15.0 −3.9 −3.4 0.8 −0.9 −1.2
hit@50 −14.9 −8.8 −5.3 −1.1 −4.3 −4.8
MRR −14.5 −5.0 −3.2 0.9 −0.9 −1.2

Table 3: (A) query expansion (B) Tuning scoring profiles to
boot a text match in title. (Dataset: Human Test Dataset)

Tables 3 and 4 summarize the results of these experiments,
reporting the percentage variation that the mentioned variants
yield on the retrieval metrics with respect to the HSS algorithm.
Surprisingly, none of these variants yielded significant improve-
ments, thus we did not include them in the final retrieval module.

Generation and guardrails. Evaluating the quality of generated
answers is crucial in a RAG framework. We thoroughly inves-
tigate which metrics can be used to assess how well an answer
generated by the LLM replies to a given question. We assume that
for an input question, a ground-truth answer is available, in addi-
tion to the top𝑚 = 4 document fragments that are retrieved by
the searchmodule as the most relevant to the question. One of the
most used metrics in the literature is groundedness [18], which
evaluates whether an answer is stating facts that are present in a
given context. It also leverages an LLM, which is fed a question
and the contexts retrieved from the search module, and returns a
score representing the extent to which the answer is coherent
with the contexts. In our automatic evaluation, groundedness
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failed to return meaningful results in the large majority of cases.
For this reason, we deferred the assessment of generation per-
fomance to the tests with real users (Section 8). In Table 5 we
report the accuracy of guardrails on the human test dataset, i.e.,
the percentage of questions improperly blocked by the guardrails
and the Azure Content Filter. Less than the 6% of the questions
were incorrectly blocked by the guardrails.

% var Human Test Dataset Keyword Test Dataset
wrt HSS HSS-KT HSS-KTC HSS-KT HSS-KTC
p@1 0.2 −1.6 0.5 0.0
p@4 −0.6 0.5 0.0 2.1
p@50 0.0 −0.8 1.4 0.3
r@1 0.2 −1.7 0.4 −1.2
r@4 −0.7 0.3 −0.3 1.4
r@50 −1.0 −0.7 −1.0 −0.2
hit@1 0.2 −1.6 0.5 0.0
hit@4 −0.7 0.3 0.4 1.7
hit@50 −1.0 −0.7 −0.3 0.0
MRR −0.2 −0.9 0.2 0.3

Table 4: Enriching the index with keywords

Guardrail Type # Answers
Generated answers (no guardrails) 94.8%
Citation guardrail 3.5%
Rouge guardrail 1.1%
Require clarification guardrail 0.2%
Azure OpenAI Content Filter 0.5%

Table 5: Answer generation rate on theHuman Test Dataset

8 EVALUATIONWITH REAL USERS
Testing with real users, i.e., actual employees, played a crucial
role for the success of UniAsk. Before the official deployment, we
carried out three test phases: Pilot Phase 1, Pilot Phase 2, and UAT
Phase. Each phase had different timings, users and objectives.
Granular Feedback.The goal of our tests was to improve the
overall performance of our system, in terms of accuracy of the
generated answers, as well as user satisfaction. With this aim in
mind, we added a pop-up modal to the frontend of UniAsk, to
gather granular feedbacks from users.

We asked the following questions:
(1) Was the answer helpful?
(2) Did the system retrieve relevant documents for your ques-

tion?
(3) Rating experience (1 to 5) : We marked 1 and 2 as negative

scores and 3, 4 and 5 as positive scores;
(4) Links to relevant documents: We gave our users the chance

to provide links to the document(s) containing the answer
to the question;

(5) Additional comments: We gave our users the possibility to
provide further comments about the quality of the search
experience.

We found the last two fields extremely useful to gather ground-
truth documents and answers for questions on which the system
had failed, as well as to collect helpful insights that could lever-
aged to better understand the reasons of such failures.
Corner Cases. In addition to granular feedbacks, we asked our
subject matter experts (SMEs) to compile a catalogue of 500 corner-
case questions for which a wrong answer would be deemed unac-
ceptable, as it could trigger an operative or reputation risk for the
bank. We thoroughly analyzed this dataset to get insights about

error patterns in the generated answers. The continuous itera-
tion with SMEs resulted in several releases of newly fine-tuned
versions of UniAsk. For each release, new tests were performed
on the corner cases, to check that all known edge cases were
properly tackled.

We now provide details about the three testing phases.
Phase 1: Pilot with Subject Matter Experts. Our first test
phase lasted 2 months and involved 200 SMEs, who were asked to
extensively test UniAsk with questions regarding topics in their
area of expertise. The intuition for starting with SMEs, was, as
imaginable, that they would be more capable to leverage domain
knowledge to provide constructive feedback for unsatisfactory
answers, as well as useful insights to improve the system. Dur-
ing this phase, we received and reviewed SMEs’ feedback on a
weekly basis. In the very first round of reviewing, we realized
that the domain experts were still mostly querying the system
with keyword-style questions, instead of asking questions in nat-
ural language. This was due to their longstanding practice with
the previous search engine, which they knew to fully function
only with keyword requests. We promptly reacted to this issue
by preparing guidelines about how to properly use UniAsk. We
used those to train the SMEs.

During Phase 1, two different releases of UniAsk were de-
ployed, mostly improving the search index. For the first release,
we collected 3000 feedbacks for 6000 prompted questions. For 75%
of such questions, UniAsk generated a proper answer with ci-
tations to documents in the KB, while 25% triggered guardrails.
77% of the proper answers received a positive evaluation. The
number of triggered guardrails was higher than we expected
based on automatic evaluation. This was due to a bug that we
fixed for the second release. The second release delivered a proper
answer with citations for 90% of the questions, of which 78% got
a positive evaluation.
Phase 2: Pilot with Branch Users. The second pilot lasted 1
month, and involved 500 branch users, i.e., employees working
in the retail branches of the bank, who offer face-to-face and
automated services to customers. We selected branch employees
with different job roles, and geographically spread across all Italy.
Branch users for this pilot were picked among the most active
in using internal tools, assuming they would be more willing
to leave feedbacks. Capitalizing on the experience with SMEs,
we trained in advance our branch users to test the system with
questions in natural language.

During phase 2, we deployed two further releases, improving
the search index and the guardrails. We interacted with branch
users on a daily basis, collecting more than 11000 feedbacks. The
percentage of answers with proper citations to documents in
the KB kept the same pace (91% overall), while positive feed-
backs touched a peak 84%. We analyzed a sample of the negative
feedbacks, finding that unsatisfactory answers could mostly be
mapped onto two cases: (𝑖) the question was too generic and the
LLM was unable to provide an answer with citations to docu-
ments in the KB (causing the citation guardrail to rise), or (𝑖𝑖)
the cited documents had strong overlap with other documents,
which caused confusion and led the LLM to overlook aspects that
were important for the answer.
Phase 3: User Acceptance Test (UAT) In the UAT phase, we
compiled a uat dataset of 210 questions to be tested for the
very last pre-deployment approval. The dataset was composed as
follows:
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• 70 questions in natural language, sampled from the hu-
man dataset among those that were more similar (as per
Jaccard similarity of non-stop terms) to frequent queries
in the log of the previous system, to ensure we were in-
cluding relevant questions;

• 50 questions in natural language, chosen by SMEs: 30 were
formulated from scratch, and 20 were picked from feed-
back logs (4 questions for each possible value score in the
range [1 − 5]);

• 50 keywords queries: selected from the keyword validation
dataset, as themost frequent in the 2023 log of the previous
system;

• 10 queries not relevant to the topics in the KB, selected
from the catalogue of corner cases, to test the triggering
of guardrails;

• 20 error-code queries, randomly picked from the SMEs’ list;
• 10 special cases (lower/upper case, missing words, and
duplicates).

The results of UAT were manually reviewed by SMEs. UniAsk
achieved 87% of correct answers, 89% of guardrails triggered
successfully, and a 3% of guardrails improperly triggered.

The main take-away of our tests with real users is that to
promote a widespread adoption of UniAsk, we need to educate
the employees to a radical change in the way they query search
systems. In our bank, employees have used a keyword-based
search engine for 20 years. Now, we need to train them so that
they can appreciate the possibilities disclosed by a system that
can be queried in natural language. We are building tutorials to
help our users understand how to effectively use the system.

9 DEPLOYMENT TO PRODUCTION
This section illustrates the path that we have followed to success-
fully deploy UniAsk to production, detailing our choices and our
work on aspects such as infrastructural resources and application
environments, security, devops, scalability and monitoring.
Infrastructure, Resources & Environments. UniAsk is fully
deployed in a cloud infrastructure, interacting with our inter-
nal on-premise components. The application components can be
grouped into four distinct environments:Workbench,DEV (Devel-
opment), QA (Quality), and PROD (Production). The Workbench
provides all the needed tools for preliminary experiments and
data exploration. It includes Storage, Hybrid Search Database,
LLM Hosting Service, Ops Services for experiment tracking, and
metrics and notebooks for seamless data exploration. The other
three environments act as standard promotion environments for
application deployment. They are equipped with all the resources
listed in the UniAsk architecture, including a dedicated name-
space in an AI-specific Kubernetes cluster with dedicated nodes,
Storage, Hybrid Search Database and LLM Hosting Service. The
application environments differ in the tiering and sizing of re-
sources: DEV is equipped with minimal resources, whereas QA
and PROD are exactly equivalent.
Security. The cloud infrastructure is secured according to inter-
nal cloud standards, which include private network integration
and no internet access for the resources. We apply in-transit and
at-rest encryption, which is managed with an internal key man-
agement system. The development team is granted access to the
cloud infrastructure with a least-privilege approach. A dedicated
role-based access-control system segregates accesses and roles. At
application level, prior to production deployment, we perform

vulnerability assessments on the code base and penetration tests
on the exposed APIs to highlight vulnerabilities.
DevOps. Application development and deployment adhere to
the internal DevOps best practices. Continuous-Integration (CI)
components are triggered via an on-prem DevOps tool at every
commit, providing standard interfaces for package build, test, se-
curity checks and container build. For Continuous-Deployment
(CD) components a dedicated code base is implemented, lever-
aging on a mixture of Infrastructure-as-code and Kubernetes
deployment tools, depending on the target deployment resource
and infrastructure.
Scalability. To assess scalability, we perform load tests picking
the LLM service as the rate limiter for the overall application,
given that the LLM inference is the computationally heaviest and
most expensive step of our application flow. We treat UniAsk as
an open system, where there is no control over the number of
concurrent users. Users keep arriving, regardless of the number
of concurrent users already in the system. If the system starts
slowing down at any point, users who are already in the system
will take more time to complete their journey. Figure 2 shows

Figure 2: Report for a load test on the LLM service of Uni-
Ask.

the results of a load test on the LLM service of UniAsk. The test
consists in continuously hitting the LLM resource with requests
during a 60-minute interval, with an initial user amount rate of 1
per second and a target user amount rate of 3 per second. Each
request has 7200 tokens in total. The test yields 267 failed queries
out of a total of 7200 requests. We use simple calculations based
on the load test results to empirically set the token rate limit for
the LLM resource.
Monitoring. In order to allow a proper monitoring of the health,
performance, and usage of UniAsk, we have created a dashboard
that directly queries the logs of the various microservices, and
collects all the statistics that we need for monitoring purposes.

Figure 3 shows a page of our dashboard, reporting the number
of users, the number of feedbacks provided, the average response
time, and the number of failed requests and triggered guardrails.

10 RELATEDWORK
This paper introduces a real-world, end-to-end, fully-deployed
RAG system, working on Italian documents. To the best of our
knowledge, the recent literature does not yet include any con-
tribution describing a system like ours. Our literature review
surveys RAG frameworks for specific domains, LLMs built for
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Figure 3: An example page of the monitoring dashboard.

the Italian language, as well as recent discussions about limita-
tions and/or possible improvements for RAG systems.
RAG frameworks and case studies for specific domains. The
recent literature offers a plethora of contributions attempting to
adapt RAG to specific knowledge domains. Kawashima et al. [16]
introduce a RAG system for administrative documents. Jiang et
al. [13] describe a case study for the medical domain. Bornea
et al. [5] introduce Telco-RAG, an open-source RAG framework
designed for the telecommunications sector. Hernandez-Salinas
et al. [11] propose IDAS, a RAG-based driving assistant that helps
reading a car manual. Matsumoto et al. [22] have developed Kra-
gen, an open-source RAG framework enhanced with knowledge
graphs for question answering in the biomedical domain. Bal-
aguer et al. [2] present a pipeline for RAG and fine-tuning of
LLMs, with a case study on an agricultural dataset. Wiratunga et
al. [31] and Moreira et al. [23] have designed rag-based methods
for the legal domain. Xu et al. [32] design a knowledge-graph
enhanced RAG based on historical tickets. However, to the best
of our knowledge, we are not aware of works presenting end-
to-end RAG systems that have been successfully deployed in a
real-world enterprise setting.
LLMs andGenerativeApplications for the Italian Language.
The last few years have witnessed increased research and devel-
opment efforts around the Italian language, producing Italian
LLMs such as LLamantino [4], Fauno [1], Camoscio [28], and
LLaMAntino-3-ANITA-8B-Inst-DPO-ITA [25]. RAG systems are
being increasingly built to deal with Italian data. For example,
Siragusa et al. [30] have created Unipa-GPT, a chatbot that assists
students in choosing a bachelor/master degree course at the Uni-
versity of Palermo. Nevertheless, the recent literature does not
yet include end-to-end enterprise RAG applications fully working
on Italian, like ours.
Limitations and possible improvements of RAG systems.
Nguyen et al. [24] investigate the impact of domain-specificmodel
fine-tuning and reasoning mechanisms on the performance of
Q&A and RAG systems powered by LLMs. They find that com-
bining a fine-tuned embedding model with a fine-tuned LLM
achieves better accuracy than generic models. Baldazzi et al. [3]
propose an approach to fine tune LLMs for financial markets
through ontological reasoning on enterprise knowledge graphs.
Cuconasu et al. [8] conduct a systematic analysis of the retrieval
strategy of RAG systems, reporting that the highest-scoring re-
trieved documents that are not directly relevant to the query
negatively impact the effectiveness of the LLM, while adding
random documents in the prompt improves accuracy. Raina and

Gales [26] propose a zero-shot adaptation of standard dense re-
trieval steps for more accurate chunk recall. Dong et al. [9] intro-
duce G-RAG, a graph-based context-informed reranker for RAG,
which combines connections between documents and semantic
information. Zeng et al. [33] present an empirical evaluation of
the robustness of RAG systems to novel privacy attack methods.
Bruckhaus [6] discusses the challenges of implementing RAG in
enterprises, and proposes an evaluation framework for enterprise
RAG. Finally, recent works [14, 15] investigate how to properly
leverage the increasing capacity of LLMs to process longer input,
proposing approaches to optimize Long-RAG frameworks.

11 CONCLUSION AND FUTUREWORK
We have presented UniAsk, a RAG-based search system designed,
developed and deployed for the employees of UniCredit, a pan-
European bank. To the best of our knowledge, this is the first
real-world, end-to-end, fully-deployed enterprise RAG system,
working on Italian documents, being presented to the literature.
We have described real-world deployment challenges and re-
ported extensive experiments with real questions and real users,
which demonstrate the performance of our system. Post-launch
analysis confirms that UniAsk improves the efficiency of internal
operational processes.

We plan to enhance our system under many different direc-
tions. We will test further improvements for the retrieval module,
e.g., fine tuning the embedding model with internal data, or by
using embedding adapters. For the generation module, we will
assess the benefit of using longer context and the impact that
multi-modal LLMs may bring to better interpret the information
enclosed in documents, including embedded images. We will
strengthen our guardrails with more sophisticated approaches
for hallucination detection andmitigation.Wewill consider build-
ing a knowledge graph to support guiding the generation via
ontological reasoning.
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