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ABSTRACT
In e-commerce, incomplete product data presents a signifi-
cant challenge, particularly in online marketplaces where
small businesses and individual sellers often lack the re-
sources to provide full product details. Missing data in prod-
uct items—whether structured fields like feature-value pairs
or unstructured text such as titles and descriptions—can
hinder product search, recommendations, and overall mar-
ketplace functionality. Addressing these data gaps is es-
sential for enhancing the efficiency and user experience of
e-commerce platforms.

This paper introduces low-cost machine learning ap-
proaches for completing missing textual features in such
items, offering an alternative to computationally expensive
large language models (LLMs). We propose two cost effec-
tive methods: the first extracts data from unstructured fields
like item titles or descriptions, while the second employs a
Nearest Neighbors method to impute missing values based
on similar items. Both methods are evaluated on real-world
datasets across diverse product categories, including sports
trading cards, motor parts, and computers. Our experiments
demonstrate that these low-cost approaches can achieve
performance comparable to LLMs, often at a fraction of
the computational cost, making them a viable option for
large-scale e-commerce platforms. We also demonstrate that
completing missing data not only improves data quality but
also enhances key tasks such as search optimization and
matching items to catalog products, which are critical for
e-commerce platforms.

1 INTRODUCTION
Data plays a critical role in e-commerce, where vast amounts
of product information, customer data, and transaction records
must be organized for efficient processing [1]. Structur-
ing this data into constructs such as tables allows efficient
queries on various product features such as price, category,
brand and color, e-commerce platforms can facilitate faster
product retrieval, personalized recommendations, and better
inventory management. This organized structure reduces
duplication, improves accuracy in customer orders, sup-
ports data-driven decision-making, ultimately contributing
to business growth and customer satisfaction [2, 3]. When
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organizations supply data, it is typically structured and fol-
lows predefined schemas, simplifying processing, analysis,
and integration. Enforcing structured data is feasible when
a few players generate large datasets through automated
processes, adhering to strict protocols.

However, there are applications where many small pieces
of data are created and uploaded by numerous small players,
who may not have the motivation or capabilities to provide
all the neededmeta data. Consider for example the case of an
online marketplace, such as eBay1, where small businesses
and individuals sell items. An individual is expected to sell
only a handful of items, and small businesses do not have
the resources to develop automated processes for uploading
new items. The marketplace, on the other hand, desires to
lower the burden on sellers that upload items, in order to
avoid discouraging them from using the platform due to
significant efforts for selling low profit items. Hence, many
sellers in such online marketplaces often upload partial
information about the item that they sell.

In this paper we focus on the problem of processing items
that sellers upload in such online marketplaces, attempting
to fill in some of the missing data that the seller did not pro-
vide. Completing missing data in e-commerce is essential
for ensuring the efficient operation of online marketplaces,
as it directly impacts critical processes such as search, rec-
ommendations, and catalog management. Addressing these
data gaps enables more effective search optimization, cata-
log matching, personalized recommendations, etc. . In this
work, we demonstrate the importance of data completion by
focusing on the use case of catalog matching, a fundamental
task for linking seller-provided item listings with structured
catalog entries, thereby improving search accuracy and user
experience.

The listed item is the core unit of an online marketplace.
It is a particular physical instance of product that a seller
offers for sale on the marketplace. Each item is multi-modal,
comprised of, e.g., product images, a title (short unstructured
text), a description (long unstructured text), and feature-
value pairs (structured text data).

We suggest two low-cost approaches to complete empty
features values thus increasing the quality of the uploaded
items, focusing only on textual features. Several papers have
suggested using large language models (LLMs) for complet-
ing missing data [5, 7]. Such models encompass, in a way,
all the data that exists online, and can hence already have
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encoded in their structure all the missing information. How-
ever, the computational effort required for using such mod-
els is huge, which may translate to a significant financial
cost for the online marketplace. We therefore focus on low
cost machine learning approaches for data completion, com-
paring them to the quality of data completion of an LLM.We
suggest 2 approaches, and within each approach implement
a wide set of variants.

The first approach is based on data extraction [11, 13, 22].
In many cases sellers upload the required information in
an unstructured manner, in the item title or description,
but not in the designated structured fields. This approach
analyzes the unstructured data in an effort to identify and
extract the missing values. We create a statistical model
based on a large set of items, that associates terms from the
unstructured data provided by sellers to features. Variants
of this approach contain extracting data from either the title
or item description.

The second approach is based on similar items. In a huge
marketplace such as eBay instances of a given product are
often sold by many sellers. One can use the information in
identical products, or in similar products, to complete the
missing values [17]. The challenge is to properly identify
the most similar products based on the given partial infor-
mation. We suggest a Nearest Neighbors approach that uses
embedding — a numeric vector representation of an item.
We use a pre-trained text model, such as CLIP [14], to create
an embedding for an item based on its unstructured content.
For a new item, we compute its embedding and find a set of
Nearest Neighbors among the previous items in the embed-
ding space. We then use the feature values of the neighbors
to complete the missing values in this new item. Variants
of this approach include computing the embedding either
in the title of the item or on the item description. Another
variant is to fill the missing values with the most dominant
values from the closest neighbors.

We provide a set of experiments that compare the meth-
ods from the above approaches and an LLM-based data
imputation method. We used 3 datasets from different di-
verse categories – sports trading cards, motor parts, and
computers. We collected in each category almost 1 million
real items uploaded by sellers. We ran a wide set of variants
from each approach on the datasets and compare their per-
formance. Our results show that while LLMs provide strong
performance, in many cases our methods produce similar,
and sometimes better results, with a fraction of the needed
cost. This provides a strong incentive for organizations to
prefer low-cost approaches in their production systems.

The contribution of this paper is the introduction of a
novel, low-cost machine learning approach for completing
missing feature values in e-commerce, utilizing data extrac-
tion and nearest-neighbor techniques as scalable and effi-
cient alternatives to large language models (LLMs). While
embedding-based similarity is a well-established concept, its
application to structured feature completion in e-commerce
listings is largely unexplored. Our approach demonstrates
performance comparable to LLMs while significantly re-
ducing computational costs, offering a practical and acces-
sible solution for large-scale e-commerce platforms. From
an industry perspective, we demonstrate that leveraging

embedding similarity for missing data completion improves
candidate retrieval—the critical first phase inmatching items
to catalog products. This advancement directly enhances
search relevance, optimizing product discovery and the over-
all user experience in e-commerce buying sessions.

2 RELATEDWORK
In e-commerce, noisy data is a common issue stemming from
incomplete inputs, inconsistent descriptions, and diverse
customer behaviors [1, 8]. Approaches to address missing
data range from basic statistical imputation to advanced
machine learning. Simple methods, such as mean, median,
or mode imputation, are computationally efficient for large
datasets but often introduce bias, underestimate variabil-
ity, and fail to capture complex relationships between vari-
ables [10]. These methods are particularly limited for non-
numeric data, which is prevalent in e-commerce. Advanced
methods, like Multiple Imputation by Chained Equations
(MICE) [19], model each missing feature through sequential
regressions. While effective for structured data, MICE strug-
gles with text data due to its reliance on simpler predictive
models. Similarly, K-Nearest Neighbors (KNN) imputation
leverages similarities between records but becomes compu-
tationally expensive with large datasets [17].

Hameed and Ali [6] compared imputation techniques,
finding that mean imputation underperforms, while KNN of-
fers moderate improvements. MICE outperformed both, but
faced scalability and execution time challenges with large
datasets. Recently, machine learning models have gained
traction for data imputation. Unlike traditional methods,
machine learning models can capture complex relationships
between features, making them more effective in datasets
with non-random missing patterns. Random Forest Imputa-
tion, introduced by Stekhoven and Bühlmann [15], uses an
ensemble of decision trees to predict missing values based
on the observed data. Stekhoven and Bühlmann [15] em-
ploys decision tree ensembles to predict missing values,
offering robust handling of complex feature interactions
and improved scalability for large datasets.

Deep learning models have also been explored for im-
putation. Generative Adversarial Networks (GANs), have
been used to generate synthetic data to fill missing values
[21]. GAN-based approaches have demonstrated superior
performance, particularly in datasets with complex feature
interactions, offering a compelling alternative to traditional
imputation methods. We decided not to use GANs due to
their complexity and limited scalability in industrial settings.
Large Language Models (LLMs) have shown promise as gen-
erative tools for imputing missing data in various fields
[9, 14, 18]. In e-commerce, LLMs are emerging as tools to
fill missing product attributes, such as descriptions or spec-
ifications, by generating contextually relevant text. Their
ability to produce semantically consistent data provides a
significant advantage over traditional methods, although
high computational costs remain a challenge [5, 7]. Wang
et al. [20] compared traditional methods such as MICE and
CART with modern deep learning approaches like GAIN
and MIDA, finding that while deep learning models offered
faster computation, MICE-CART consistently outperformed
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in terms of bias, mean squared error, and coverage. Similarly,
Sun et al. [16] evaluated these methods across various data
types, missing mechanisms, and correlation levels, reveal-
ing that conventional methods still excel in scenarios with
limited sample sizes. Lastly, Osman et al. [12] proposed a
"top-down bottom-up" approach to select imputation tech-
niques, combining analysis with selection to suit specific
domains.

3 FEATURE VALUE COMPLETION
APPROACHES

In this section, we outline our proposed methods for fill-
ing missing product feature values. Our aim is to eliminate
reliance on costly human-labeled data, enabling low-cost
scalability across diverse e-commerce categories. No labeled
data was used in the filling process; it was used only for
evaluation.

Problem definition: An item describes an e-commerce
item for purchase. A category 𝐶 is a set of items that are re-
lated in some sense. Each item 𝑙 belongs to a single category
𝐶 (𝑙). Items in a category are described by a set of features
𝐹 (𝐶), categorical, numeric, or textual. That is, each item
𝑙 ∈ 𝐶 is described by assigning a value to features in 𝐹 (𝐶).
A complete assignment of values to the features of a cate-
gory uniquely identifies an item. That is, given two items
with identical feature values, buyers should be indifferent
as to whether they receive any of them.

We denote by 𝑙𝑓 the value that item 𝑙 assigns to feature
𝑓 . The value for 𝑙𝑓 may be empty (missing), that is, there
is a correct value for 𝑙𝑓 , but that value is unknown. We
differentiate here between a null value, denoting that the
item should not have a value for a specific feature, and a
missing value. The goal is to complete such missing values,
i.e., compute a value 𝑙𝑓 , such that 𝑙𝑓 ≡ 𝑙𝑓 , that is, 𝑙𝑓 may
not be identical to 𝑙𝑓 , but it has equivalent meaning. We
focus on completing missing values only for categorical
and numerical features, excluding textual data like product
descriptions.

(a) (b)

Figure 1: Two items with similar titles. Goal: complete
the values in features ’team’ and ’season’ in (a).

3.1 Extracting Data from Free Text
We now present a set of unsupervised learning methods for
extracting feature values from free text available in the item.
Such free text may exist in the item features such as the title,
or the description. Indeed, in many cases sellers attempt to
make the item title as descriptive as possible, adding many
feature values into it, such as the item brand, model, color
or even more specific values such as shoe size.

The methods suggested here utilize the information avail-
able in the items, without incorporating any external data.
Our methods contain an offline computation phase, where
we pre-compute a model that is later used online, as new
items are uploaded, to complete the missing feature values.

Offline phase. For this family of methods, we compute
offline a probability distribution 𝑝𝑟 (𝑓 |𝑣,𝐶) where 𝑣 is a
value, 𝐶 is a category, and 𝑓 is a feature. That is, given
a value 𝑣 extracted from some textual description, we can
use 𝑝𝑟 (𝑓 |𝑣,𝐶) to identify to which feature it should belong.
This method is category dependent, as features and values
can have different meaning in different categories.

Value-Feature Probability Distribution: The probability
distribution is computed over a large set of items. In the
set, each feature contains values that were uploaded by the
sellers. To assign a value to a feature, we first compute for
each feature the relative frequency for each value in the
items in a given category. Then, after computing for each
value its relative frequency within a feature, we normalize to
obtain 𝑝𝑟 (𝑓 |𝑣,𝐶). Here, our methods use only the maximal
feature: 𝑓𝑚𝑎𝑥 (𝑣) = argmax𝑓 𝑝𝑟 (𝑓 |𝑣,𝐶).

That is, for each value 𝑣 we map it only to its most likely
feature 𝑓𝑚𝑎𝑥 (𝑣). However, one can envision extensions that
leverage the probability distribution. For example, if the
most likely feature already has a value, and it is different
than 𝑣 , we can consider the second most likely feature, and
so forth. we leave such extensions to future research.

Terms Extraction: To identify potential feature values in
the textual item features, we identify terms in the unstruc-
tured text in the items (e.g., title, description) using the
Phrases method from the Gensim2 package. The Phrases
method in Gensim is based on identifying collocations or
frequently co-occurring words in a corpus. The method
primarily extracts bigrams (two-word phrases) or n-grams
(n-word phrases) that are more meaningful when consid-
ered together than as individual words. (e.g., "New York" or
"machine learning"). Gensim’s Phrases method focuses on
finding these collocations by analyzing the co-occurrence
statistics of words in a text corpus. In our experiments we
report separately the extraction of terms from (1) the title,
and (2) the description. In the online phase we only consider
terms that were identified in the offline phase.

Online phase. Given an item 𝑙 , we extract terms from
its textual features, using the list of terms from the offline
phase. For each such potential value 𝑣 , we find its most likely
feature 𝑓𝑚𝑎𝑥 (𝑣) calculated during the offline phase. If the
value of 𝑓𝑚𝑎𝑥 (𝑣) is missing, we assign 𝑣 to 𝑓𝑚𝑎𝑥 (𝑣).

There are two variations to this approach: the extraction
of terms can be from (1) the title, (2) the description, that is,
the distribution 𝑝𝑟 (𝑓 |𝑣,𝐶) is based only on terms extracted
from titles or descriptions during the offline and the online
phases. Hence, this data extraction approach creates four
different variations. Figure 1a presents an example of an item
with a title and structured features, where two of its features
(Team and Season) have no values. In order to complete
these features values using data extraction, the following
terms are extracted from the title: ’2020’, ’panini’, ’randy

2https://pypi.org/project/gensim/
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moss’, and ’vikings’. Using the Value-Feature probability
distribution created in the offline phase, the term ’2020’ is
associated with the feature Season and the term ’vikings’ is
associated with the feature ’Team’.

Limitations.Aprimary limitation of this approach arises
when a term from the test items does not exist in the pre-
computed model making it impossible to infer the most
likely feature it belongs to.

3.2 Nearest Neighbors
Offline Phase. We compute and store an embedding for
a representing text of each item in the unlabeled dataset.
These embeddings are generated based on pre-trained mod-
els and represent each item in a vector space. We embed the
available representing text of the title or the description.

The pre-trained models we used in the experiments in
this paper are : CLIP Radford et al. [14] and two other models
based on BERT [4] that were fine-tuned on eBay’s data.

Online Phase. When a new item is encountered, we
compute the embedding of the representing text (title or
item description) using the same pre-trained models. This
embedding is then used to find the set of Nearest Neighbors
from the embeddings calculated during the offline phase.
The Nearest Neighbors are determined using the cosine sim-
ilarity of embeddings, under the assumption that similar
items possess similar feature values. For each missing fea-
ture value in the item, we assign a value derived from the
Nearest Neighbors using one of the following two varia-
tions: the most similar nearest neighbor (above a similarity
threshold), or the majority from the nearest 𝑘 neighbors.
This approach is justified by the assumption that the existing
data in the database have already undergone a refinement
or improvement process, making the neighborhood feature
values reliable indicators. Assume that the item in Figure 1b
is the closest match to the item in 1a based on their embed-
ded titles. From the item in Figure 1b, we take the missing
feature values for 1a.

Limitations. As with any embedding-based method, the
accuracy of feature values prediction is contingent on the
quality of the pre-trained models and the assumption that
similar products, as measured by their embeddings, share
similar feature values. Thus, the method will not work well
in cases where the test item has no sufficiently similar coun-
terparts in the dataset, or if the embeddings fail to capture
key semantic differences.

3.3 Large Language Model (LLM)-Based
feature values Generation

This method leverages a pre-trained Large Language Model
(LLM), such as GPT-4 or GPT-3.5-turbo, to generate feature
values for all items in the test set based on input text (e.g.,
titles, item descriptions), in a zero-shot form.

However, in future work, we can explore the use of few-
shot inference, where a small number of examples per fea-
ture are provided to the LLM. This approach could further
improve the accuracy and relevance of the generated fea-
ture values by offering the model more task-specific context
and guidance. Such enhancements may also help the model

better handle domain-specific variations. While this explo-
ration of LLM improvements is reserved for future work,
our primary focus here was to assess the value of using
simple, low-cost methods in comparison to LLMs. These
methods are often more efficient, easier to implement, and
easier to scale in production environments and, in many
cases, provide a good-enough solution that significantly im-
proves upon the current situation, even if it does not achieve
the best possible outcome. This approach has only an online
phase (unlike the previous two approaches). Using a custom-
designed prompt, we instruct the model to predict relevant
features’ values for each item. Figure 2 is an example of the
prompt used for the sports category, and an input-output
example. The input title is equal to the title in Figure 1a.
In this example, the model’s output includes details not ex-
plicitly stated in the input title, such as the sport and type,
inferred from context and internal knowledge.

Figure 2: Prompt for generating sport related features

Limitations. Running LLMs at scale can be resource-
intensive in terms of computation and memory, particularly
for large product catalogs with many missing values. The
cost of generating values with LLMs can be prohibitive for
large-scale applications.

4 EXPERIMENTS
4.1 Datasets
In order to evaluate our approaches to complete missing
feature values in e-commerce items we collected data from
eBay, one of the world’s largest e-commerce platforms. The
data was collected across three high-level vertical categories
of e-commerce.

These categories form three different datasets. Each of
these high-level categories contains an assortment of prod-
uct types. The first category, Sports, contains items such
as trading cards and other collectibles as well as sports re-
lated apparel such as team jerseys. The second category
Motors, contains items for automobiles and automobile com-
ponents. The third category, Computers, contains items for
personal computers, computer parts, and other computer
related items. For each of the above categories we identified
a small set of domain-specific high-priority features that we
include in our evaluation. These features were chosen by
domain experts based on their prevalence in the category
and their importance to the buyer. For example, in the Sports
category, many items, most notably collectible trading cards
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are associated with a particulate Player and Team as well
as a particular Sport. If any of these features are missing
or incorrectly specified the item may be harder to find or
less appealing to a potential buyer. Table 2 enumerates the
features associated with each category along with relevant
information about their values, the number of unique values
for each feature and their missing information ratio.

4.2 Data Collection
For each of the focus categories described above we col-
lected both labeled (test set) and unlabeled data. The labeled
data consists of a set of items for which the correct values
for high-priority features have been manually annotated
by trained human annotators. These high-priority features
were chosen based on frequently searched features within a
category and on domain knowledge. The annotators were
given guidelines that they should write the feature values
(can be more than one correct value. For example, a shirt
can have more than one color) and in which signal (title,
image, etc.) the value was found. For example, if the item is
for a baseball card, the annotator should provide the team
name as "New York Yankees" rather than "Yankees" or "NY
Yankees". In addition, Annotators were instructed to pro-
vide all values that exist for each feature in the item they
were annotating, as multiple values may be associated with
a single feature. We used the labeled dataset as our test-set.

The unlabeled dataset contains a much larger set of items
for which the correct values for the high-priority features
are not known. The unlabeled dataset was used by our meth-
ods to assign values to missing data.

For both labeled and unlabeled datasets we collected all
seller specified signals including the item title, description,
and seller specified feature values. For each category, we
used the unlabeled dataset for predicting values for items
with missing values and the labeled dataset for testing our
predicted value against ground truth, ensuring a comprehen-
sive evaluation across different product categories. Table
1 shows the dataset statistics for Motors, Computers, and
sports.

Table 1: Dataset Statistics for Motors, Computers, and
Sports

Domain Split Total Listings

motors Unlabeled data 846,340
motors Labeled data 3,241
sports Unlabeled data 885,641
sports Labeled data 6,305

computers Unlabeled data 997,474
computers Labeled data 12,919

Sports Dataset. The sports dataset consists of 885,641
items in the unlabeled data set. The test set contains 6,305
items. The high-priority features that were chosen in this
category are:Manufacturer, Player, Season, Sport, Team, Type
where Type is the type of the item. For example, Sports
trading card, shirt, hat, etc. In this category there are features
with 11-36% missing values in the test set.

Motors Dataset. The Motors dataset includes product
items related to the automotive category. The unlabeled
set consists of 846,340 items, and the test set, significantly

smaller, contains 3,241 items. The high-priority features
that were chosen in this category are: Compatible make,
Compatible model, Compatible year, make, type. The features
’compatible make’, ’compatible model’, or ’compatible year’
specify the make, models and years that the item is com-
patible with. For example, if a motor works with multiple
car makes, models, or production years, all relevant makes,
models, or years will be listed under these features. In this
category there are features with 31-97% missing values in
the test set.

Computers Dataset. This dataset comprises items of
various computer-related products. The unlabeled set in-
cludes 997,474 items, and the test set has 12,919 items.The
high-priority features that were chosen in this category
are: Brand, Color, Model, MPN (manufacturer part number),
and Type - which indicates what type (i.e. computer part)
of item is it - such as : motherboard, monitor, mouse, etc..
’Compatible model’, as in the Motors category have a very
high percentage of missing values 88.4%. The other features
have between almost no missing values to 48%. Some of the
features have a lot of distinct values. The diversity of cate-
gories and the size of our datasets allow for robust testing
of our methods, ensuring that the proposed techniques are
applicable across various industries and product categories.

4.3 Metrics
We evaluate our methods on items with missing feature
values from labeled datasets, where human annotators pro-
vide the correct values. Each feature is evaluated separately
within its category, and for items with multiple missing
features, each prediction is assessed individually as a suc-
cess or failure. Since features may have multiple correct
values, a prediction is considered correct if at least one pre-
dicted value matches an entry in the labeled list. During
evaluation, for each missing feature, we generate a list of
predicted values, 𝑙𝑓 , using each approach and compare it to
the ground truth list, 𝑙𝑓 . A prediction is correct if at least
one predicted value appears in the labeled list. To measure
the performance of the different approaches, we use the
following list-based metrics: Precision measures how accu-
rately models can assign the correct values, while Recall
reflects how many relevant values the models can retrieve.
There is often a tradeoff between these two metrics, but
the best-performing models tend to balance them. Coverage
measures the amount of retrieved values (without examin-
ing if they are correct). Furthermore, in our experiments
precision and recall follow a "loose" definition. In this case,
a prediction is considered correct if one of the predicted
values is a subset of a label, or vice versa. For example, if
the true label is "trading cards" and the predicted value is
"sports trading cards," it would be counted as correct under
the loose metric definition. Another metric is the F-score,
calculated based on loose precision and recall. From all the
variations we have for each approach, we report the best
variation for each feature in each approach according to the
highest F-score.
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Table 2: Metadata about the categories, including main features, value example, number of unique values, per-
centage of missing features values in the unlabeled and test sets.

Domain Feature Value example Unique feature values test Unique values relative to
test size

Missing feature val-
ues unlabeled data (%)

Missing feature val-
ues test (%)

Sports

Manufacturer Topps 225 0.036 63.95 30.26
Player Michael Jordan 2360 0.374 64.03 27.58
Season 2020 155 0.025 65.7 30.90
Sport Baseball 87 0.014 51.96 11.74
Team New York Yankees 622 0.099 63.08 36.15
Type Sport trading card 24 0.004 57.73 19.59

Motors

Compatible make Toyota 522 0.161 21.47 31.75
Compatible model MR2 Spyder 8075 2.492 21.96 32.55
Compatible year 2000 142 0.044 21.45 32.12
Make Toyota 51 0.016 83.77 97.13
Type Engine 1130 0.349 34.28 31.78

Computers

Brand Dell 1591 0.123 0.57 0.84
Color Blue 424 0.033 51.04 48.59
Compatible model 13 R2 2265 0.175 84.7 88.40
Model Inspiron 4897 0.379 52.07 45.32
MPN TXYDJ 7452 0.577 29.57 29.17
Type Motherboard 1567 0.121 15.7 24.48

Table 3: Comparison of approaches across features and metrics in the sports category.

Feature Approach Precision Recall Loose
Precision

Loose Recall Loose F1
Score

Coverage
Improvement

Manufacturer
LLM 0.65 0.60 0.74 0.69 0.71 0.7/0.93
Nearest Neighbors 0.75 0.72 0.78 0.75 0.76 0.7/0.95
Extraction 0.52 0.47 0.60 0.55 0.57 0.7/0.93

Player
LLM 0.80 0.79 0.86 0.86 0.86 0.72/0.92
Nearest Neighbors 0.68 0.69 0.74 0.74 0.74 0.72/0.94
Extraction 0.57 0.60 0.66 0.70 0.68 0.72/0.93

Season
LLM 0.81 0.83 0.85 0.88 0.86 0.69/0.92
Nearest Neighbors 0.63 0.61 0.70 0.68 0.69 0.69/0.94
Extraction 0.84 0.83 0.89 0.87 0.88 0.69/0.91

Sport
LLM 0.79 0.75 0.89 0.84 0.86 0.88/0.99
Nearest Neighbors 0.91 0.91 0.95 0.95 0.95 0.88/0.98
Extraction 0.44 0.16 0.47 0.17 0.24 0.88/0.92

Team
LLM 0.54 0.41 0.73 0.55 0.63 0.64/0.82
Nearest Neighbors 0.59 0.68 0.63 0.73 0.67 0.64/0.95
Extraction 0.11 0.08 0.45 0.34 0.39 0.64/0.82

Type
LLM 0.08 0.08 0.43 0.43 0.43 0.8/1.0
Nearest Neighbors 0.75 0.71 0.90 0.85 0.87 0.8/0.92
Extraction 0.38 0.24 0.53 0.35 0.42 0.8/0.93

4.4 Results
Tables 3, 4, and 5 present the performance of three models
families — LLM, Nearest Neighbors, and Data extraction
across multiple metrics. The best results in each feature
and metric are highlighted in bold. Coverage improvement
measures how much the coverage of feature values was in-
creased comparing to the values uploaded by the sellers (The
number in the left side is the coverage of values uploaded by
the sellers and the number in the right side is the coverage
after completing missing values using our approaches).

General Trends. Across all categories, features with
high distinct values and significantmissing data (e.g., "Make"
in Motors, "Compatible Model" and "MPN" in Computers)
are harder for models to predict accurately, leading to lower
performance in metrics like precision, recall, and cover-
age improvement. In contrast, features with fewer distinct
values and moderate missing data benefit more from cover-
age improvements. LLMs generally provide better coverage
for complex features like "MPN" and "Model" in Computers
but often sacrifice precision. Nearest Neighbors maintains
higher precision despite covering fewer data points, partic-
ularly for features like "Type" in sports.

Category-Specific Results. In sports, Nearest Neighbors
outperforms other models in precision and recall for "Type"
and "Sport," while LLM achieves the best results for "Player,"
a feature with many distinct values. Nearest Neighbors also
shows high coverage improvement for "Sport" (0.88/0.99)
and "Player" (0.72/0.94), while LLM struggles with features

like "Team" and "Type." In theMotors category, high missing
data (e.g., "Make" with 97.13% missing values) presents chal-
lenges. LLMs outperform in "Make" due to external knowl-
edge, while Nearest Neighbors achieves better precision
for "Compatible Make" and "Compatible Model," correlat-
ing with their moderate missing data and higher coverage
improvement (e.g., 0.68/0.86 for "Compatible Make"). In the
Computers category, LLMs excel in high-distinct-value fea-
tures like "MPN" and "Model," achieving higher precision.
Nearest Neighbors performs best for simpler features like
"Brand" and "Color" but struggles with "MPN," where simi-
lar items may differ in this specific feature. The Extraction
approach underperforms across all features.

4.4.1 Error analysis. To better understand the limita-
tions of our proposed methods for completing missing val-
ues, we conducted an error analysis across the categories.
The results, visualized in Figure 3, reveal important insights
into the patterns and sources of errors. Our analysis indi-
cates that the vast majority of mistakes made by our meth-
ods can be attributed to cases where the correct values were
entirely absent from the unlabeled data, which our meth-
ods are based on. When a value is not represented in this
data, it becomes impossible for the model to predict it ac-
curately. A smaller proportion of the errors occurred for
values that were present in the unlabeled data but had fewer
than ten occurences. This reflects the challenge of learning
robust associations when data is sparse. Encouragingly, the
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Table 4: Comparison of approaches across features and metrics in theMotors category.

Feature Approach Precision Recall Loose
Precision

Loose Recall Loose F1
Score

Coverage
Improvement

Compatible make
LLM 0.44 0.44 0.56 0.57 0.56 0.68/0.83
Nearest Neighbors 0.46 0.53 0.68 0.79 0.73 0.68/0.86
Extraction 0.36 0.46 0.50 0.63 0.56 0.68/0.86

Compatible model
LLM 0.22 0.21 0.39 0.38 0.38 0.67/0.8
Nearest Neighbors 0.17 0.21 0.42 0.52 0.47 0.67/0.86
Extraction 0.09 0.18 0.28 0.52 0.36 0.67/0.91

Compatible year
LLM 0.37 0.37 0.41 0.41 0.41 0.68/0.78
Nearest Neighbors 0.02 0.02 0.37 0.49 0.42 0.68/0.86
Extraction 0.26 0.10 0.50 0.20 0.28 0.68/0.72

Make
LLM 0.32 0.26 0.37 0.30 0.33 0.03/0.73
Nearest Neighbors 0.21 0.06 0.26 0.08 0.12 0.03/0.26
Extraction 0.11 0.01 0.21 0.02 0.04 0.03/0.12

Type
LLM 0.18 0.19 0.65 0.67 0.66 0.68/1.0
Nearest Neighbors 0.23 0.22 0.47 0.45 0.46 0.68/0.93
Extraction 0.10 0.10 0.58 0.58 0.58 0.68/0.99

Table 5: Comparison of approaches across features and metrics in the computers category.

Feature Approach Precision Recall Loose
Precision

Loose Recall Loose F1
Score

Coverage
Improvement

Brand
LLM 0.72 0.72 0.79 0.80 0.79 0.99/1.0
Nearest Neighbors 0.73 0.74 0.77 0.79 0.78 0.99/1.0
Extraction 0.48 0.49 0.55 0.57 0.56 0.99/1.0

Color
LLM 0.53 0.09 0.69 0.11 0.19 0.52/0.54
Nearest Neighbors 0.55 0.51 0.60 0.55 0.57 0.52/0.75
Extraction 0.04 0.03 0.22 0.17 0.20 0.52/0.75

Compatible model
LLM 0.03 0.04 0.09 0.13 0.11 0.12/0.49
Nearest Neighbors 0.01 0.01 0.09 0.06 0.07 0.12/0.25
Extraction 0.00 0.00 0.04 0.04 0.04 0.12/0.38

Model
LLM 0.18 0.24 0.48 0.61 0.53 0.55/0.97
Nearest Neighbors 0.13 0.14 0.34 0.35 0.34 0.55/0.82
Extraction 0.02 0.03 0.25 0.30 0.27 0.55/0.9

MPN
LLM 0.37 0.22 0.45 0.27 0.34 0.71/0.77
Nearest Neighbors 0.09 0.16 0.12 0.20 0.15 0.71/0.97
Extraction 0.05 0.10 0.09 0.19 0.12 0.71/0.85

Type
LLM 0.35 0.36 0.68 0.70 0.69 0.76/1.0
Nearest Neighbors 0.26 0.23 0.53 0.47 0.50 0.76/0.86
Extraction 0.17 0.16 0.48 0.45 0.46 0.76/0.98

methods performed well whenever sufficient data was avail-
able. For values that appeared frequently (e.g., more than
50 times), the models consistently completed the missing
values accurately. This emphasizes the effectiveness of the
proposed methods in leveraging information when it exists
in a substantial amount. These observations highlight the
dependency of data completion methods on the availability
and distribution of the unlabeled data. They also underscore
the importance of enhancing the training datasets, either by
augmenting them with additional sources of information or
by employing models capable of extrapolating knowledge
to unseen values, such as LLM’s.

4.4.2 Computational considerations. The computational
costs of the three methods vary significantly, presenting a
clear trade-off between efficiency and accuracy. The data
extraction approach is the least computationally demand-
ing, as it relies on statistical models to extract missing val-
ues from unstructured text, making it a fast and resource-
efficient solution. However, its effectiveness depends on the
quality and coverage of extracted terms, struggling with
ambiguous or novel data. The nearest-neighbor approach
using embedding similarity requires a moderate computa-
tional cost, as it leverages pre-trained models like CLIP to
generate item embeddings and perform similarity searches.
While this method provides improved accuracy over data
extraction and does not require extensive retraining, it is
computationally intensive due to embedding generation
and nearest-neighbor computations. In contrast, LLMs offer

Figure 3: Error analysis for sports, Motors and Com-
puters. Most of the errors in the completed values did
not appear in the unlabeled data.

the highest accuracy and contextual understanding but at a
significantly higher computational cost. They require sub-
stantial resources for training and inference, making them
less scalable for large e-commerce platforms. Ultimately,
the choice of method depends on the trade-off between
computational efficiency and the need for accurate feature
completion.
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Figure 4: Missing Values vs. Distinct Feature Values by
approach in the unlabeled dataset.

4.5 Case study
To demonstrate the value of completing missing values in e-
commerce, we conducted a case study focusing on candidate
retrieval and catalog matching in the sports category. Using
a dataset of 5000 items, we retrieved similar items from the
catalog for each listed item based on the title and feature val-
ues, both before and after completing missing values using
our Nearest Neighbors approach. We compared the posi-
tion of the correct catalog match within the retrieved list
of candidates. While the position of the correct candidate
remained unchanged for most items, in nearly 80% of the
cases where a change occurred, the correct candidate was
positioned higher in the list when the missing ’sport’ fea-
ture—chosen for its high F-score in our experiments—was
completed. This result highlights the impact of completing
missing values on improving candidate retrieval accuracy,
particularly for features with high predictive performance.

5 DISCUSSION
This paper makes several key contributions to the field of
data completion in e-commerce. First, it presents and eval-
uates low-cost machine learning methods as effective al-
ternatives to expensive large language models (LLMs) for
completing missing values in product items. Second, it com-
pares the performance of different approaches across vari-
ous e-commerce categories, providing insights into when
these low-cost methods are most effective. Lastly, the paper
demonstrates that these low-cost methods can often achieve
results comparable to LLMs, making them a practical solu-
tion for large-scale e-commerce platforms.

Figure 4 visually summarizes the results, showing the
best-performing approach per feature, categorized by the
number of distinct values and the percentage of missing data.
The figure highlights that while LLMs are highly effective
for handling features with a large number of distinct values,
nearest neighbor approaches can achieve superior precision
at a much lower computational cost for structured features
with moderate distinct values. An exception is the red point
in the left side of the graph, that represents a feature with
very high precentage of missing values that causes the Near-
est Neighbors approach to achieve lower performance than
the LLM. This result underscores that low-cost methods
can be a strong alternative to LLMs in many cases, particu-
larly when dealing with repetitive, structured data. While

LLMs excel in some scenarios, their legal, computational,
and financial constraints often limit practical deployment.
Fine-tuning or few-shot learning enhances domain knowl-
edge but remains inferior to training on domain-specific
data, which better captures platform-specific nuances. low-
cost approaches are more scalable and cost-efficient in e-
commerce.

Here are some guidelines when approaching a new cate-
gory for choosing which group of methods to use: (1) Use
Nearest Neighbors for features that are structured and have
repeating values across items, such as manufacturer names,
teams, or brands. This method effectively captures the simi-
larity between items based on embeddings and yields strong
performance in both precision and recall. (2) Opt for LLMs
when dealing with features that are less structured and have
diverse values, such as player names or specific productmod-
els. (3) When dealing with features that have high levels
of missing data, LLMs appear to be a better approach than
Nearest Neighbors, as they can leverage external knowl-
edge not present in the dataset. (4) Fine-tune a model on
the category’s data to generate better embeddings, improv-
ing the accuracy of nearest neighbor methods for specific
e-commerce categories.

6 SUMMARY AND FUTUREWORK
In this paper, we addressed the critical challenge of missing
data in e-commerce items, focusing on low-cost machine
learning approaches to complete missing feature values in
comparison to large language model (LLM)-based meth-
ods. E-commerce platforms rely heavily on structured data.
However, items from small sellers often lack complete data,
making it harder to utilize these items effectively. To tackle
this, we explored two primary approaches: Data extraction
from unstructured text and the use of similar items through
Nearest Neighbor methods based on embeddings.

We conducted extensive experiments using three diverse
datasets — sports trading cards, motors, and computers - each
with unique characteristics, ensuring that our methods were
tested in different contexts. While this study shows promis-
ing results for low-cost machine learning methods in feature
value completion, there are several avenues for further ex-
ploration: (1) Explore combining low-cost machine learning
methods with LLMs to leverage the strengths of both. For ex-
ample, LLMs could be used to enhance precision in specific
features where traditional methods struggle, while lower-
cost approaches can maintain efficiency. (2) Combining data
sources to enrich the data (3) Scaling to Multimodal Data:
Incorporating other modalities such as images could further
improve missing data completion. (4) Improvements in Sim-
ilarity Detection: Fine-tuning models to get embeddings for
specific e-commerce categories may yield higher precision.

By addressing these areas, future research could not only
improve the accuracy of feature completion methods but
also enhance the practical applicability of these approaches
in real-world e-commerce platforms.
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