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ABSTRACT
Textual-Attributed Graphs (TAGs) are gaining attention for their
ability to structurally represent scientific and technological infor-
mation, enabling diverse applications such as classification and
recommendation systems. However, existing TAGs and Graph
Neural Networks (GNNs) face significant challenges in integrat-
ing heterogeneous data sources and handling complex, real-world
scenarios. To address these limitations, we propose a K-GIST
(KISTI Graph for the Integrated Scientific and Technological Do-
main), a comprehensive graph that unifies academic papers,
patents, and research projects to effectively represent diverse sci-
entific and technological domains. We present a GRAIL (Graph
Retrieval-Augmented In-context Learning), a framework that en-
hances node classification in K-GIST by integrating graph repre-
sentation learning with Large Language Models (LLMs). GRAIL
employs a two-phase process: embedding nodes with a graph neu-
ral network and retrieving the top-𝑘 relevant nodes for in-context
learning. Experimental results demonstrate that GRAIL signifi-
cantly improves multi-label classification accuracy by an average
F1-score of 0.311, particularly in fine-grained and complex sce-
narios, outperforming baseline models. This study highlights
the significant advancements achieved by integrating structural
graph data with semantic inference, paving the way for inno-
vative applications in scientific and technological information
analysis.

1 INTRODUCTION
Graphs play a pivotal role in representing vast amounts of in-
terconnected data, enabling a wide range of applications. In many
real-world scenarios, these graphs include textual attributes—often
referred to as Textual-Attributed Graphs (TAGs)—which com-
bine structural graph information with semantic insights from
language models. Consequently, TAGs are useful in diverse do-
mains, including patent knowledge graphs, academic paper ci-
tations, social networks, e-commerce, and recommendation sys-
tems [22]. In the scientific and technological domain, researchers
have constructed TAGs from scientific papers and patents [4, 8,
16, 23, 30, 31, 31, 32, 40, 43], with patent-focused graphs espe-
cially useful for search and recommendation tasks [27, 39, 47].

∗Corresponding author.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

By incorporating textual semantics, these TAGs capture more
intricate relationships, thereby linking patents and other enti-
ties in more meaningful ways. In parallel, recent Graph Neural
Networks (GNNs) are designed to learn graph representations
by combining text features extracted from each node of TAGs
with structural information. Advancements in language models
have further enhanced the performance of these GNN-based ap-
proaches [41, 42, 44, 46], demonstrating notable improvements
in key tasks such as node classification [7, 37, 45].

Despite this widespread impact on the industry, existing TAGs
and GNNs have two limitations. First, while real-world scien-
tific and technological information include various contents such
as academic papers, patents, reports, and R&D projects, exist-
ing TAGs do not integrate this diverse information into a cohe-
sive graph. In other words, existing TAGs focus on constructing
graphs using mainly homogeneous content without integrating
such heterogeneous information. Table 1 provides a comparison
of existing graphs within the scientific and technological domain.
Despite considerable efforts to model literature, projects, authors,
and other components as entities and to establish connections
among them, the range of relationships used to link these enti-
ties remains limited. The simplicity of these graphs often limits
their ability to capture the complexity and nuance of real-world
relationships and data.

Moreover, in complex graphs reflecting the real world, GNNs
face limitations in node classification performance. In the real
world, document categorization is hierarchical and exhibits char-
acteristics of multi-class, multi-label classification. For instance,
the International Patent Classification (IPC) system categorizes
patents into detailed levels such as sections, classes, and sub-
classes, with a single patent potentially assigned multiple IPC
codes. However, the existing graphs in Table 1 are not designed
to take these characteristics into account. Classifying numerous
labels becomes a highly challenging problem for models, espe-
cially as the semantic similarity between labels increases [21].
For example, when patent examiners review a new patent, they
must examine similar patents and related academic literature,
and technical reports to assess its novelty and inventive step.
Existing graph-based approaches, however, fail to provide mean-
ingful support for this process. Their inability to integrate het-
erogeneous data sources and represent the intricate relationships
between patents, academic literature, and technical documents
renders them ineffective in aiding such tasks. Without significant
improvements in graph construction and classification, these
approaches remain unsuitable for addressing the complex re-
quirements of real-world patent examination.
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Figure 1: The proposed GRAIL model. Node embeddings
are stored in a vector database, and the top-𝑘 similar em-
beddings are retrieved as context to enable the LLM to infer
node labels via in-context learning, enhancing classifica-
tion in K-GIST.

To address these issues, we propose new TAGs and a node clas-
sification method specifically for the scientific and technological
domain. Our contributions are as follows:

(i) We propose a ScienceONGraph System for constructing aK-GIST
(KISTI Graph for the Integrated Scientific and Technological Do-
main), a type of TAGs, designed to build a comprehensive and
systematic graph to tackle the challenges of data-driven analysis
within real-world scientific and technological domain. Notably,
the data fueling this system is supported by the government
and curated by the Korea Institute of Science and Technology
Information (KISTI), offering a wealth of knowledge spanning
all scientific and technological fields. Additionally, the system
includes an automated pipeline for the seamless update and ex-
pansion of scientific and technological information.

(ii) To improve node classification in the proposed real-world TAGs,
we introduce a GRAIL (Graph Retrieval-Augmented In-context
Learning) model. We utilize a graph embedding model as a re-
triever to extract 𝑘 nodes similar to the target node and feed
the textual information of these nodes to Large Language Mod-
els (LLMs). This method has the advantage of simultaneously
leveraging the graph representation capabilities of the graph em-
bedding model and the semantic inference capabilities of LLMs.
GRAIL addresses the challenges of computational inefficiency
and high label cardinality in multi-class, multi-label classification
by first retrieving candidate nodes through graph embeddings
and then leveraging LLMs’ linguistic inference capabilities to
enhance node classification performance.

(iii) We present various applications of K-GIST, providing evidence
for integrated analysis of scientific and technological information
that existing TAGs could not achieve. Furthermore, we conduct
various experiments to analyze the proposed GRAIL model. Ex-
perimental results demonstrate that GRAIL outperforms baseline
models, achieving an average F1-score improvement of 0.311.

2 MOTIVATION AND BACKGROUND
The scattered distribution of scientific and technological informa-
tion across disparate systems and repositories poses significant
challenges. KISTI, under Article 40, CHAPTER V, of the Enforce-
ment Decree of the Framework Act on Science and Technology,
plays a crucial role in the comprehensive collection of domes-
tic and international scientific and technological information,
supported by government funding. This enables the systematic
construction of a wide array of scientific and technological infor-
mation and continuous efforts in data discovery. The scientific
and technological information used in this study is collected un-
der national policies and forms the foundation of our research,
with KISTI collaborating with domestic and international in-
stitutions—acquiring academic data through various academic
organizations and patent data via the Korea Institute of Patent In-
formation (KIPI)—and retaining the rights to replicate, distribute,
and transmit the collected data.

At KISTI, the metadata collected from academic and R&D
projects undergo a manual verification process. In addition, when
service users submit feedback regarding any data issues, system
operators proceed to review the data. Most importantly, as public
data, they must adhere to government database standardization
guidelines to ensure standardization across databases and are val-
idated by external independent audits. This verification process
enables the data constructed by KISTI to serve as a gold standard
in the field of science and technology.

ScienceON6 is KISTI’s flagship service, offering open data
through Web and REST APIs for students, researchers, and pol-
icymakers, and promoting effective information delivery and
technological collaboration. It serves as a data ecosystem that
integrates data collected by KISTI, employing an ETL process to
continuously aggregate large volumes of data from both internal
and external sources. As shown in Table 2, ScienceON has col-
lected 170 million records related to scientific and technological
information (as of November 2024). As shown in Table 3, the sci-
entific and technological information provided by KISTI through
ScienceON has steadily increased, starting from 100 million calls
in 2020 and surpassing 200 million calls by 2023.

In summary, given the data accumulated over several decades
and recent user trends, its importance becomes evident. More-
over, constructing graphs based on this data can significantly
enhance existing systems and unlock substantial potential for fur-
ther applications. Recognizing these opportunities, K-GIST and
GRAIL were developed in alignment with national R&D policies
to address real-world needs, such as bibliographic data classifica-
tion, document search, expert identification, and collaborative
network analysis.

3 RELATEDWORK
3.1 Graphs in scientific and technological

domain
Research on constructing and refining graphs in the scientific and
technological domain has been active, leading to numerous appli-
cations. Microsoft Academic Graph (MAG) [31] and Aminer [32]

1https://relational.fit.cvut.cz/dataset/CORA
2https://relational.fit.cvut.cz/dataset/citeseer
3https://snap.stanford.edu/data/cit-Patents.html
4https://www.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/
datasets/patent-dataset
5https://www.microsoft.com/en-us/research/project/open-academic-graph/
6https://scienceon.kisti.re.kr/
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Table 1: Comparison of Graphs in the Scientific and Technological Domain.

Graph Entity Type Relationship Type

Cora1[28] Paper(P) P-P
CiteSeer2[28] Paper(P) P-P
cit-Patents Graph (SNAP)3 Patent(P) P-P
Unified Database Management Systems(UDBMS)4 Patent(P), Inventor(I), Assignee(A), Class(C), Category(T) P-P, P-A, P-C, P-I, C-T
PubMed KG[40] Article(A), Author(Au), Affiliation(Af), Funding(F), Project(P) A-A, A-P, A-Au, Au-Af, Au-F, F-P
Open Academic Graph(OAG)5 Paper(P), Author(A), Affiliation(Af), Venue(V) P-P, P-A, P-Af, A-Af, P-V

AIDA[2]
Paper(P), Author(A), Affiliation(Af), industrialSector(S),
DBpediaCategory(C), Topic(T), Patent(Pt)

P-A, A-Af, P-Af, P-S, P-C, Af-S, Af-C,
P-T, Pt-T, Pt-S, Pt-C

K-GIST
Top-Project(T), Sub-Project(S), Author(A), Organization(O),
Paper(P), Journal(J), PaperCategory(PC), Patent(Pt), IPC(I),
Report(R), ReportCategory(RC), Keyword(K)

T-S, S-P, S-R, S-Pt, P-J, P-P, P-A, P-PC
R-P, R-R, R-RC, R-A, Pt-Pt, Pt-I, Pt-A
A-O, P-K, R-K

Table 2: Record Counts in Various Categories of Scientific and Technological Information.

Category Description Number of Records

Domestic Papers Searchable papers published in domestic journals and confer-
ences.

Journal Articles: 3,661,247
Conference Papers: 401,853
Thesis: 1,352,910

International Papers Searchable papers published in international journals and pro-
ceedings.

Journal Articles: 113,501,156
Conference Papers: 12,711,259

Patents Patent information for patents registered and disclosed in var-
ious countries, including Korea, the U.S., Europe, and Japan.

Korea: 6,749,003, U.S.: 16,905,092, Europe: 5,317,913
Japan: 11,573,913, PCT : 5,863,505

Reports Analytical reports produced through national R&D projects
and various institutes.

National R&D Report: 359,785
Various Analysis Reports: 68,990

Trends Provides the latest trends and issues in major scientific and
technological fields globally.

Various Trends Reports: 67,908

Researchers Lists of researchers identified in domestic papers, reports, and
patents.

Researchers: 917,425

Table 3: User Calls Statistics of Scientific and Technological
Information on ScienceON.

Category 2020 2021 2022 2023
Papers 47,993,208 100,773,457 99,981,733 159,659,715
Patents 45,965,731 15,114,090 23,250,042 41,735,819
Reports 3,620,827 12,685,573 7,517,101 24,789,015
Trends 3,647,181 3,999,092 3,026,813 13,255,091
Researchers 2,711,490 1,224,326 1,681,298 236,392
Total 103,938,437 133,796,538 135,456,987 239,676,032

are prominent examples, integrating heterogeneous entities like
papers, patents, authors, and affiliations to create comprehen-
sive scholarly graphs. Open Academic Graph (OAG) [43] further
combines MAG and Aminer to build a large-scale linked en-
tity graph. Non-profit organizations like OpenCitations [23] and
OpenAIRE [19] provide open scholarly information and infras-
tructure, utilizing semantic web technologies and hosting various
scientific outputs. Analyzing documents from both academic and
industrial sectors together offers deeper insights than evaluating
them individually [1, 3, 11, 14, 17, 20, 26]. Studies have examined
academy-industry relationships and their influence on higher
education [1], complementary knowledge transfers [11], collabo-
ration trends [14], shifts in basic research [17], and the outcomes
of academic-industrial collaborations [3]. Methods combining
semantic technologies with machine learning have been pro-
posed to quantify research trends in both spheres [26], and the

influence of non-academic and industrial publications has been
assessed [20].

3.2 Graph Representation
Graph representation aims to structure information so computers
can comprehend and utilize real-world knowledge for complex
problem-solving within computational limitations. Graph Neural
Networks (GNNs) have emerged as powerful tools for learning
graph representations, surpassing traditional models [38]. GNNs
use propagation modules involving aggregation and update func-
tions to learn representations of nodes, edges, and graphs by
integrating feature vectors from neighbors. They aim to convert
graphs into low-dimensional vectors for downstream tasks at
node, edge, and graph levels. GNNs with convolution operators
are categorized into spectral-based and spatial-based methods [5].
Spectral-based GNNs, like Spectral GCNs [6], define convolution
in the Fourier domain but are limited to transductive settings.
Spatial-based GNNs, such as GraphSAGE [12], address this by ag-
gregating features from local neighborhoods in the graph domain.
Attention mechanisms have also been incorporated, with models
like GAT [35] applying self-attention to assign different weights
to neighbors [34]. However, these methods focus on homoge-
neous graphs and cannot capture the complexity of real-world
heterogeneous graphs. To model different types of nodes and
edges, frameworks like HAN [36] and HGT [13] have been de-
veloped; HAN leverages meta-path-based neighbors, while HGT
introduces heterogeneous mutual attention and message passing
to learn type-dependent representations.
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4 DEVELOPMENT OF K-GIST: KISTI GRAPH
FOR INTEGRATED SCIENTIFIC AND
TECHNOLOGICAL DOMAIN

4.1 Data Collection and Integration in the
ScienceON Graph System for K-GIST

We present the ScienceON Graph System for K-GIST, which
is depicted in Figure 2, a comprehensive data ecosystem that
integrates scientific and technological information from vari-
ous legacy systems, with capabilities to collect a wide range of
data types, including papers, journals, authors, organizations,
patents, research reports, and R&D projects. It aggregates exten-
sive scientific and technological information frommultiple legacy
systems and web sources. This comprehensive approach allows
ScienceON to serve as a pivotal resource, enabling researchers
and practitioners to access a rich repository of scientific and tech-
nological information, thereby facilitating advanced research and
development activities across various domains.

KISTI provides data files covering papers, journals, authors,
affiliations, and more. Journal/Conference article has a unique
ID and attributes like title, authors, affiliations, journal, publi-
cation date, DOI, and abstract. Citation relationships link refer-
encing and referenced papers through unique IDs. Author &
Organization includes author and affiliation details for papers,
patents, and reports. Identifying authors and affiliations is chal-
lenging due to homonyms. Seol et al. [29] proposed a method
for this issue. Each author and affiliation has a unique ID, with
names as attributes, and authors are linked to ISNI and ORCID
for better extensibility.

NTIS 7 provides information on National R&D projects and
reports, including attributes such as project title, abstract, and
duration. Crucially, the metadata concerning R&D projects from
NTIS forms the backbone of the graph, enabling the intercon-
nection of disparate scientific and technological information.
Researchers produce various R&D deliverables, including papers,
patents, and reports. These deliverables, submitted by the re-
searchers, are manually correlated by operators with the unique
IDs of scientific literature previously assigned by KISTI, ensuring
accurate mapping with the corresponding research projects. This
hands-on approach guarantees that each output such as papers,
patents, and reports is meticulously linked to its relevant project,
enhancing the integrity and utility of the graph.

Patent data from KIPRIS 8, provided by the KIPI includes ex-
tensive patent records. Each patent record is uniquely identified
and detailed with information such as the patent title, inventor(s),
affiliations, and abstract. Additionally, patents are categorized
according to the International Patent Classification (IPC) sys-
tem, allowing for the organization of patents into specific fields
of invention. With an approximate count of 47 million patents,
KIPRIS serves as a vital resource for accessing a wide range of
patents filed or registered worldwide, thereby supporting inno-
vation and research by offering insights into existing patents and
their classifications.

Document classifications, including those for papers and
patents, are acquired through web crawling. The academic paper
data compiled in ScienceON are invariably linked to a journal.
However, these journals lack a taxonomy of scientific concepts.
To address this, we perform web crawling on Google Scholar’s

7https://www.ntis.go.kr/
8http://www.kipris.or.kr/
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Figure 2: The ScienceON Graph System’s architecture de-
picts the integration and processing of scientific and tech-
nological information. From multiple data sources to the
utilization of an ETL pipeline for data aggregation and
the building of K-GIST via RDF, SPARQL, and language
models, this system facilitates the structured dissemina-
tion and in-depth analysis of scientific and technological
information.

journal categories 9. The patent data from KIPRIS is mapped to
IPC but lacks descriptive information, which we supplement by
crawling explanatory details from theWorld Intellectual Property
Organization (WIPO) 10. Similarly, National R&D data are catego-
rized using the Korea National Science and Technology Standards
Classification Codes by KISTEP11. The categories are designed
in a way that allows an article to correspond to multiple cate-
gories, enabling a one-to-many (1:n) mapping. Furthermore, the
categories follow a two-level hierarchical structure, effectively
mirroring the complexity of the real world.

4.2 Construction of K-GIST Ontology
K-GIST is meticulously engineered to elucidate the complex in-
terconnections among various scientific and technological infor-
mation. It achieves this by defining a comprehensive network of
entities and their interrelations, as depicted in Figure 3. In this
model, entities are not isolated data points but are intricately
connected to represent comprehensive knowledge in science and
technology. The ontology covers a variety of entities, including
R&D projects, papers, journals, patents, reports, authors, institu-
tions, keywords, and categories. Each node is assigned a unique
ID that has been verified by human experts, and nodes are linked
according to their relationships within the network.

To construct this ontology, we utilize Protégé 12, a premier tool
for ontology modeling that facilitates complex designs. Based
on the developed ontology, the graph’s structure is explicitly
modeled using the Resource Description Framework (RDF), a
World Wide Web Consortium (W3C) standard. To ensure data
integrity, we validate the RDF data using the W3C Shapes Con-
straint Language (SHACL) 13, thereby enhancing the credibility

9https://scholar.google.com/citations?view_op=top_venues&hl=en
10https://www.wipo.int/classifications/ipc/en/
11https://www.kistep.re.kr/
12https://protege.stanford.edu/
13https://www.w3.org/TR/shacl/
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Figure 3: K-GIST ontology illustrating the intricate net-
work of entities and their interrelationships representing
scientific and technological information.

of the information. Additionally, we transform relational data-
base content into RDF format using R2RML mappings, enabling
precise alignment with the ontology. This step is crucial for con-
verting structured relational data into RDF triples that populate
the graph. Once validated through SHACL, K-GIST is stored
in a triple store, enabling sophisticated query capabilities via
SPARQL 14. For this purpose, we selected GraphDB for its ex-
emplary performance as both a SPARQL engine and triple store.
This approach semantically links stored data, enabling advanced
analyses to uncover hidden patterns and drive innovation across
scientific and technological domains.

5 DEVELOPMENT OF GRAIL: GRAPH
RETRIEVAL-AUGMENTED IN-CONTEXT
LEARNING

We propose a GRAIL model to enhance node classification, ad-
dressing the limitations of existing graph embedding models in
performing node classification on TAGs that reflect real-world
scenarios. This model combines the graph structural information
provided by the graph representation learning model with the
semantic reasoning capabilities of the LLM, as illustrated in Fig-
ure 1. The proposed method consists of a two-phase approach:
(i) A graph embedding model converts all nodes into embedding
vectors, which are then stored in a vector store. (ii) When a
query for a node classification task is made, the graph retriever
calculates the similarity of embedding vectors stored in the vec-
tor store, extracts the top-k results, and uses them as context,

14https://www.w3.org/TR/sparql11-query/

enabling the LLM to infer the node’s label using an in-context
learning approach.

Phase 1.We employ the GNNs framework, which has recently
demonstrated superior performance among various graph repre-
sentation learning models, to learn K-GIST. A graph, denoted as
G = (V, E), consists of a set of nodesV and a set of edges E with
node feature vector X𝑣 for 𝑣 ∈ V . A general GNN framework
composes two operations of the aggregation function and the
update function to learn a node representation vector, denoted
as ℎ𝑣 .

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 : 𝑎 (ℓ )𝑣 = Aggregate(ℓ ) (ℎ (ℓ−1)𝑢 ,∀𝑢 ∈ N𝑣), (1)

𝑈𝑝𝑑𝑎𝑡𝑒 : ℎ (ℓ )𝑣 = Update(ℓ ) (ℎ (ℓ−1)𝑣 , 𝑎ℓ𝑣), (2)

whereN𝑣 is the neighborhood of the node 𝑣 , ℎ
(ℓ−1)
𝑢 is the feature

vector of node 𝑣 at the ℓ-th layer of a GNN.
K-GIST is designed to realistically reflect the scientific and

technological domain, resulting in nodes having multiple la-
bels. Since most existing GNN frameworks use loss functions for
single-label problems, we need to define a loss function to solve
multi-class and multi-label problems. For graph representation
learning with multi-class, multi-label, we can optimize the GNN
model by binary cross entropy loss with combing a sigmoid layer.

𝐿(𝑥) = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log𝜎 (ℎ𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝜎 (ℎ𝑖 )), (3)

where 𝑁 is the number of training nodes, ℎ is an embedding
vector of training nodes, 𝜎 is a sigmoid function and 𝑦 is a la-
bel vector of training nodes. Once the GNN model training is
complete, it generates embedding vectors for all nodes. These
vectors, along with metadata such as each node’s ID, title, and
abstract, are stored in a vector database for retrieving in Phase 2.

Phase 2. First, when a query q is provided as input, it is
transformed into an embedding vector v𝑞 by the GNN model
𝐺𝑁𝑁 trained in Phase 1.

v𝑞 = 𝐺𝑁𝑁embed (𝑞) (4)

Specifically, 𝐺𝑁𝑁embed is the embedding function of the GNN
model 𝐺 , mapping the query q into the vector space v𝑞 .

In the retrieval phase, the similarity between the query em-
bedding v𝑞 and the graph embeddings v𝑑𝑖 stored in the vector
store during Phase 1 is calculated. The similarity between the
query embedding v𝑞 and the graph embeddings v𝑑𝑖 is calculated
using the dot product. The graph embeddings v𝑑𝑖 stored in the
vector store are indexed using HNSW (Hierarchical Navigable
Small World) [18], which improves retrieval speed by enabling
efficient nearest neighbor search in high-dimensional spaces.

Using this retriever, the top-𝑘 nodes most relevant to the query
q are retrieved as D = {𝑑1, 𝑑2, . . . , 𝑑𝑘 }.

D = Retriever𝑘 (v𝑞, {v𝑑𝑖 }) (5)

Here, {v𝑑𝑖 } denotes the set of all node embedding vectors in
the database, and D represents the set of top-𝑘 documents most
similar to the query embedding v𝑞 .

Retrieving the top-𝑘 nodes ensures that the system focuses on
the most relevant candidates, balancing computational efficiency
and response quality. By limiting the retrieval to a fixed number
𝑘 , the computational overhead in the subsequent generator is
reduced, while still maintaining a high likelihood of including
the most relevant information.
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Using the retrieved node set D, the generative model LLM
generates a response a for the query q.

𝑎 = LLM(v𝑞,D) (6)

Each query corresponds to a graph node with associated meta-
data, and the prompt consists of the query along with the top-
𝑘 retrieved nodes. By incorporating the retrieved node set D
into the generation process, the model LLM can leverage both
the query embedding v𝑞 and structural information from the
retrieved graph embeddings D to generate a more precise and
information-rich response. This combination mitigates the lim-
itation of standalone generative models, which rely solely on
pre-trained knowledge and may lack domain-specific context.

The generative model LLM probabilistically infers the answer
based on the query q and the retrieval results.

𝑃 (𝑎 |v𝑞) =
∑︁
𝑑∈D

𝑃 (𝑎 |v𝑞, 𝑑) · 𝑃 (𝑑 |v𝑞) (7)

Here, 𝑃 (𝑎 |v𝑞, 𝑑) denotes the probability of generating the re-
sponse 𝑎 given the selected document 𝑑 and the query embed-
ding v𝑞 , and 𝑃 (𝑑 |v𝑞) represents the probability of selecting the
document 𝑑 given the query embedding v𝑞 .

In conclusion, the proposed framework effectively balances
computational efficiency and response quality by retrieving a
fixed number of top-𝑘 nodes. This approach reduces computa-
tional overhead while maintaining high relevance and provides
a foundation for integrating the retrieved node set D into the
generative process. By leveraging contextual accuracy from the
query embeddings and structural insights from the retrieved
graph embeddings, the framework ensures responses are both
semantically meaningful and aligned with the underlying graph
structure. Additionally, the probabilistic formulation 𝑃 (𝑎 |v𝑞) en-
hances robustness by addressing uncertainty in retrieval and
generation, improving system reliability and adaptability.

6 EXPERIMENTS
We present experiments to qualitatively and quantitatively verify
the benefits of K-GIST, which reflects real-world contexts in the
scientific and technological domain. Furthermore, we evaluate
whether the GRAIL model contributes to performance improve-
ment in the node classification task. Our investigation addresses
the following five research questions:

• Q1. Does K-GIST, by leveraging relationships among het-
erogeneous data, provide value to users?

• Q2. Does the structural information in K-GIST enhance
performance in the node classification task?

• Q3. Are existing graph representations suitable for the
node classification task within K-GIST?

• Q4. Does the GRAIL model improve performance in the
node classification task?

6.1 Experimental Setup
In our investigation of K-GIST, we selectively extracted data
to train graph representation learning models and conduct ex-
periments on various tasks. To ensure a well-structured and
meaningful graph, we first removed irrelevant nodes, such as un-
connected or small, disconnected components. We then applied
extraction criteria focused on national R&D projects conducted
between 2011 and 2020, prioritizing those with high research im-
pact and strong alignment with our study objectives. The number
of primary entities extracted is presented in Table 4.

Table 4: Extracted Entity Counts for K-GIST.

Entity Type Count Notes

Top-Projects 36,230 Unique projects for multi-year R&D initiatives
Sub-Projects 64,883 Annual project IDs associated with Top-Projects
Papers 360,612 International & domestic journal
Patents 102,703 International & domestic published patent application
Reports 21,487 Outputs of national R&D projects
Researchers 70,435 -
Affiliations 2,460 -

Table 5: Category Distribution of Entities.

Entity Type 1st-Level Categories 2nd-Level Categories Remarks

Paper 8 100 Multi-label
Patent 54 139 Multi-label
Report 17 88 Multi-class

To enable a nuanced classification aligned with the intricate
structure of scientific research, we categorized our entities into
primary and secondary categories based on their thematic and
technical relevance. The distribution of these categories is pre-
sented in Table 5.

We utilized the following graph representation learning mod-
els: GCN [15], GraphSAGE [12], GAT [35] for homogeneous
graphs, and Metapath2vec [9], HAN [36], HGT [13] for heteroge-
neous graphs. Most hyperparameters were adopted from existing
GNN literature to ensure consistency and comparability. We uti-
lize trained graph representation learning to transform all nodes
into embedding vectors, which are then stored in a vector store
implemented using Chroma 15. For vector similarity search, we
employ the HNSW [18] index and calculate distances using the
squared L2 norm. For in-context learning, we utilized state-of-
the-art large language models (LLMs), such as GPT-4o. These
models were chosen to evaluate the complementary capabilities
of graph representation learning and large language models in
handling complex and large-scale datasets, particularly in tasks
requiring both structured and unstructured data integration. All
graph representation learning models models were implemented
using the PyTorch Geometric (PyG) package [10].

6.2 Q1. Value of Heterogeneous Relationships
We developed K-GIST to infer relationships among heteroge-
neous content that traditional graphs cannot capture, supporting
tasks like helping patent examiners classify journals related to
specific patents. By analyzing co-occurrence frequencies between
node types (e.g., IPC and journal nodes), we measured how often
a target node (e.g., a journal) appears alongside a source node
(e.g., an IPC). Higher co-occurrence frequencies indicate stronger
relational closeness, as illustrated in Figure 4a, where link thick-
ness represents the degree of proximity. For example, the IPC
"Image data processing or generation" (G06T) strongly connects
to journals such as “Sensors,” “Electronics Letters,” and “IEEE
Access,” highlighting thematic commonalities between patents
and academic papers.

Additionally, through K-GIST, we leverage relationships be-
tween entities and classify content using node classification to
develop applications that provide access to heterogeneous sci-
entific and technological literature. These applications are made
available to the public via the ScienceON web service. For exam-
ple, one functionality retrieves national R&D projects by year
15https://github.com/chroma-core/chroma
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(a)

R&D Sub-Project deliverables
ALL / Paper / Patent / Report

Literature Title

R&D Sub-Project Series (2014~2016)

(b)

PREFIX skg: <http://scienceon.kisti.re.kr/ontologies/skg#>
SELECT ?topProjectTitle ?subProjectTitle ?projectYear

?paper ?paperTitle ?paperKeyword
?report ?reportTitle ?reportKeyword
?patent ?patentTitle

WHERE {
skg:TopProject/<TopProjectID> skg:title ?topProjectTitle.
skg:TopProject/1 skg:includes ?subProject.
?subProject skg:title ?subProjectTitle.
?subProject skg:projectYr ?projectYear.
OPTIONAL {

?subProject skg:paperOutcome ?paper.
?paper skg:title ?paperTitle.
?paper skg:isRepresentedBy ?paperKeyword.

}
OPTIONAL {

?subProject skg:reportOutcome ?report.
?report skg:title ?reportTitle.
?report skg:isRepresentedBy ?reportKeyword.

}
OPTIONAL {

?subProject skg:paperOutcome ?patent.
?patent skg:title ?patentTitle.

}
}
ORDER BY ?projectYear

(c)

Figure 4: Various applications based on K-GIST: (a) Frequency of co-occurrence, (b) Timeline visualization service of
national R&D projects on ScienceON, (c) Example SPARQL query for the service.
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Figure 5: Comparison of document classification perfor-
mance with and without K-GIST on the 1st-level categories
of papers.
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Figure 6: Node classification performance on the 1st-level
categories of papers.

and displays their resulting outputs. Figure 4b illustrates projects
from 2014 to 2016, along with their annually published papers,
patents, and reports in a timeline format. Another feature, de-
picted in Figure 4c, uses a SPARQL query to locate all Sub-Projects
under a Top-Project and retrieve the research outputs produced
by these Sub-Projects.

6.3 Q2. Impact of Structural Information
To assess K-GIST’s contribution to node classification tasks, we
evaluated its impact on document classification efficacy. The com-
parison of paper classification performance, both with and with-
out K-GIST integration, is illustrated in Figure 5. We employed
two distinct models for this experiment: the baseline sentence-
BERT [24, 25], and HGT [13], which utilizes sentenceBERT’s text
embeddings as input features. The baseline sentenceBERT model
relies solely on abstract text for embedding and uses logistic

(a) (b)

Figure 7: Visualization of graph embeddings: (a) Embed-
dings labeled with the paper’s 1st-level categories, (b) Em-
beddings labeled with the paper’s 2nd-level categories.

regression for classification. In contrast, HGT enhances this ap-
proach by incorporating graph-structured data as an additional
feature set alongside the textual information.

The evaluation, depicted in Figure 5, benchmarks the F1 score
across different test sizes. Across all test sizes, HGT consistently
outperforms sentenceBERT, with a particularly significant per-
formance gap observed in the paper 2nd-level category, where
classification granularity is higher. This demonstrates that the
integration of graph information provides a substantial perfor-
mance advantage, highlighting the value of incorporating K-GIST
into the model. These results underscore the advantage of inte-
grating graph-structured data through K-GIST, enabling HGT to
achieve superior predictive accuracy over the text-only baseline.

6.4 Q3. Suitability of Existing Graph
Representations

We report the F1 scores across classification tasks. HGT consis-
tently outperforms other baselines in all node classification tasks.
The results, detailed in Figure 6, illustrate the node classification
performance when categorizing paper nodes into their 1st-level
categories. We present experimental results only for node clas-
sification in the paper’s 1st-level categories, as the F1 scores of
methods other than HGT converge to nearly 0 in more com-
plex node classification tasks, making meaningful comparisons
infeasible.

For an intuitive understanding of the embedding generated
by HGT, we employed t-distributed Stochastic Neighbor Embed-
ding (t-SNE) [33]. Figure 7a shows the node embeddings labeled
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Figure 8: Node classification performance on all tasks.

with the paper 1st-level categories. Since the paper 1st-level task
involves only eight labels, it is relatively simple, and the embed-
ding visualization shows clearly separated regions for each label.
In contrast, Figure 7b also presents node embeddings labeled
with paper 2nd-level categories, where the number of labels is
significantly larger and the classification task is more complex.
Consequently, overlapping regions between labels are more fre-
quently observed in the visualization, reflecting the challenges
of distinguishing between a significantly larger number of cate-
gories in a more complex classification task.

In conclusion, existing graph embedding models perform well
on relatively simple node classification tasks but struggle to per-
form effectively in real-world TAGs. This highlights the need for
more advanced node classification techniques capable of handling
the complexity and diversity inherent in real-world scenarios.
Therefore, we confirm the limitations of relying solely on graph
structure for node classification performance.

6.5 Q4. Effectiveness of the GRAIL
We present the performance of GRAIL and GNNs across all node
classification tasks. The F1 score is measured for classifying the
1st-level and 2nd-level categories of all entities (papers, patents,
and reports). As shown in Figure 8, GRAIL, enhanced with LLM,
consistently achieves higher performance compared to traditional
GNNs. The average F1 score of GRAIL (Top-3) is 0.698, while
the average F1 score of HGT is 0.387, demonstrating an improve-
ment of 0.311. This improvement is particularly notable in the
patent classification task, where GRAIL shows a distinct advan-
tage by effectively utilizing the textual features of the target node
and the detailed IPC descriptions to enhance node classification
performance.

Moreover, the improvement in classification performance for
2nd-level categories is more significant than for 1st-level cate-
gories. The 2nd-level categories, such as "Artificial Intelligence"
or "Signal Processing" under "Engineering & Computer Science,"
involve finer-grained distinctions that rely heavily on contextual
and descriptive textual information. As a result, text features

contribute more significantly to classification performance than
graph structure in these detailed categories. However, we still
observed challenges in classifying nodes with sparse labels, likely
due to the limited availability of training data.

Additionally, we examined the effect of top-𝑘 retrieval set-
tings on performance when using a graph retriever to identify
classification candidates and reasoning with the LLM. As shown
in the Figure 8, the highest performance is observed with top-3
retrieval, but the difference between top-3 and top-10 is minimal,
at approximately 0.02. This indicates that while top-3 is optimal,
expanding to top-10 does not significantly degrade performance.

7 CONCLUSION
In this paper, we constructed K-GIST, a TAG that reflects real-
world scenarios in the scientific and technological domain, and
proposed GRAIL, a novel method for improving node classifica-
tion performance on the graph. K-GIST integrates diverse sci-
entific and technological information from KISTI, incorporating
multiple stages of validation and standardization to ensure fu-
ture usability. GRAIL significantly improves node classification
on K-GIST by leveraging GNNs as retrievers to enhance the
efficiency and inference capabilities of LLMs. Extensive exper-
iments identified limitations in existing graph representation
learning models and demonstrated that our method outperforms
state-of-the-art baselines. By providing integrated information
services for stakeholders—including students, researchers, and
policymakers—our method facilitates more efficient knowledge
discovery and decision-making. Furthermore, GRAIL is expected
to be effective for context-based, complex classification in other
domains.
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