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ABSTRACT

Relational databases are foundational in managing and storing
business-critical data across industries. However, accessing this
data often requires specialized SQL knowledge, creating a barrier
for non-technical users. To address this, research and industry
have focused on developing text-2-SQL or natural language-to-
SQL systems, allowing users to retrieve data with conversational
inputs. While promising, these systems are prone to errors caused
by ambiguities in user queries—especially with the unique vocab-
ularies of closed-domain enterprise customers or vague phras-
ing from non-technical users. Such ambiguities, whether from
domain-specific jargon or insufficient detail, make accurately
interpreting user intent challenging.

Current NL2SQL systems often lack robust mechanisms for
users to provide corrective input when their queries are misun-
derstood, resulting in a frustrating interaction. To bridge this
gap, We present FISQL (Feedback-Infused SQL generation tool),
an interactive framework designed to refine SQL query genera-
tion through user-provided natural language feedback and visual
highlights. FISQL empowers users to iteratively correct, refine,
or enhance SQL queries by offering intuitive ways to express
feedback, which is then incorporated into the model’s outputs.

FISQL dynamically updates SQL queries to align with user
feedback, ensuring that subsequent generations are consistent
with user expectations. Our evaluation demonstrates that FISQL
significantly outperforms traditional query-rewrite mechanisms,
achieving a 2× improvement in query correction accuracy on the
SPIDER benchmark dataset.

1 INTRODUCTION

Developing natural language interfaces to databases (NLIDBs)
has been a longstanding goal in the fields of natural language
processing, human-computer interaction, and database research
community[3, 9]. The allure of such systems lies in their ability
to democratize access to information in databases by replacing
knowledge requirements for database query languages with in-
tuitive natural language dialogue.

Recent advancements have focused on text-to-SQL or natural
language-to-SQL systems(In the rest of the paper, we use the
∗Work done when interning at Adobe
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term NL2SQL interchangeably to refer to both text-to-SQL and
natural language-to-SQL) [12, 21, 22, 24], which enable users to
query databases using conversational inputs. The emergence of
large language models (LLMs)[1, 4, 15] in recent times has fur-
ther revolutionized the field by reducing training requirements.
With LLMs, few-shot in-context demonstrations are sufficient
to provide supervision for models to excel on public NL2SQL
benchmarks [7, 13, 20]. Additionally, the use of general-purpose
LLMs, such as GPT-3.5, offers key benefits for enterprise pro-
duction environments: no dedicated model training is required,
and infrastructure maintenance can be minimized, significantly
lowering operational overhead. While such systems have demon-
strated strong performance on public datasets [26, 27], they face
significant challenges in real-world, industry-specific use cases,
where domain constraints and user behavior differ substantially
from the public benchmarks.

One major challenge in enterprise use cases is the prevalence
of closed-domain vocabularies and vague phrasing used by non-
technical users. Unlike public NL2SQL benchmarks like SPIDER
[26], which contain tables and columns with common-sense se-
mantics, enterprise databases often include highly specialized
schemas and domain-specific terminology. For instance, terms
that have straightforward meanings in open domains may have
entirely different or overloaded interpretations in closed domains.
Similarly, non-technical users in enterprise environments fre-
quently submit queries with incomplete or ambiguous phrasing,
which further complicates SQL generation. These issues make
it difficult for general-purpose LLMs, such as GPT-3.5, to gener-
ate accurate SQL queries for enterprise applications, even when
leveraging Retrieval-Augmented Generation (RAG)-based [8]
few-shot prompting techniques.

To empirically highlight the inherent difficulty of closed-domain
use cases, we conducted experiments comparing NL2SQL perfor-
mance of GPT-3.5-turbo (1106 subversion) model from OpenAI
on SPIDER and an internal dataset derived from our Adobe Expe-
rience Platform (AEP) question traffic. We used simple, generic
instructions in a zero-shot setting for GPT-3.5-turbo to perform
NL2SQL tasks on both datasets. As shown in Figure 1, we pro-
vided general SQL generation instructions along with full schema
definitions, but did not include relevant NL2SQL examples for
in-context learning.

Figure 2 presents the accuracy results for both scenarios. On
the SPIDER dataset, the LLM achieved an accuracy of 68.6%, while
the accuracy dropped to 24% on the AEP dataset. The SPIDER
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You are a Nl2SQL agent designed to write an accurate SQL query
given a question in natural language.

Please follow these instruction carefully:
- Given an input question, create a syntactically correct SQL query to
run, and return the query.
- Never generate or include anyDML (e.g., DELETE, INSERT, UPDATE)
or DDL (e.g., CREATE, DROP, ALTER) SQL commands.
- You can order the results by a relevant column to return the most
interesting examples in the database.
- Never query for all the columns from a specific table, only ask for
the relevant columns given the question.
- DO NOT generate any other text apart from a SQL query.

The SQL database consists of several tables. Here is an overview of
the tables and their columns: {schema}

Consider these rules to add LIMIT to the generated SQL Query: -
Never add ’LIMIT’ to queries which use aggregate functions like
COUNT, AVG, etc. to return final output as an aggregate result.

Here is the question you need to answer:
Question: {query}
Query:

Figure 1: Zero-shot prompt skeleton used for AEP and

SPIDER NL2SQL comparison.

Figure 2: Accuracy comparison between SPIDER and AEP

(Ours) datasets using zero-shot LLM prompts.

dataset features more common-sense schemas that are less am-
biguous, and it is likely that the training data for SPIDER has
been encountered or exposed to GPT models. As a result, general-
purpose LLMs can generate correct SQL queries with relative
ease, even without few-shot NL2SQL demonstrations. In con-
trast, the AEP case represents a more challenging, closed-domain
scenario, where general-purpose LLMs like GPT-3.5-turbo often
require additional clarifications and instructions to generate ac-
curate SQL queries. For instance, consider the following AEP
question

which destinations is the ’ABC’ segment activated to?.

Here, the term ‘activated’ is ambiguous. It could refer to a seg-
ment being in an active state, or, in the context of destinations,
it could imply that the segment is connected to certain desti-
nations. This connection can be determined by verifying that
the inner joins between the segment table and the destination
tables yield non-empty results. In fact, for this type of query, even
with specific instructions and few-shot demonstrations, LLMs
often struggle to generate semantically correct SQLs. This issue
becomes more pronounced when customers rephrase the query,

as the variations in phrasing can still lead to confusion and errors
in interpretation by the LLMs.

To deal with these challenges, recent work has focused on the
development of interactive systems that elicit feedback fromusers
to guide SQL generations from NL2SQL systems. The format of
the feedback elicited varies widely among different approaches,
ranging from multiple choice questions [25] to natural language
responses [5, 6]. However, in evaluations, these systems make
a critical assumption of users possessing complete knowledge
about the schema, and the ground-truth SQL command. In the
real-world, there exists limited mechanisms for interaction due
to the chat interface of an NLIDB and users that interact with an
NLIDB often lack knowledge about the ground-truth SQL query
and the underlying schema.

In this work, we introduce FISQL (pronounced “physical” )
(Feedback-Infused SQL), an interactive tool for human-in-the-

loop NL2SQL correction with natural language as the main mode
of interaction between the user and the system. Our tool features
an intuitive interface, built on top of the Adobe Experience Plat-
form [2], that leverages a custom-designed NL2SQL system to
help customers access their information on a marketing analytics
platform. Users on the platform can further provide feedback
on the generated SQL in the form of natural language text to
articulate any corrections or adjustments to the SQL query. Our
tool incorporates this feedback in the context of the current chat
to perform updates to the SQL queries, ensuring they match user
intentions. Empirically, we validate the effectiveness of our tool
by annotating errors in SQL generations made by an LLM-based
NL2SQL model1 on an in-house dataset featuring queries for
the Adobe Experience Platform and SPIDER [26], and providing
natural language feedback.2

For examples where natural language feedback can be pro-
vided by users, we observe that FISQL is able to incorporate the
feedback effectively and generate correct SQL queries in 40-70%
of the cases over multiple interaction rounds across datasets.
Compared to a query-rewrite mechanism, that reformulates the
user query to incorporate information available in the feedback,
we observe that FISQL is able to correct nearly 2× the number
of queries using the LLM-based approach. This highlights the
efficacy of our tool in utilizing rich natural language feedback
from users to guide NL2SQL systems.

2 RELATEDWORK

Natural Language to SQL. Generating SQL queries from natu-
ral language questions provided by users has been studied exten-
sively in the past few decades [18, 19]. However, these systems
introduced in these works made strong assumptions on the SQL
query structure limiting generations to specific SQL operations
or required questions to follow specific syntax rules. With ad-
vancements in deep learning, systems that utilize sequence-to-
sequence models trained on large-scale datasets, such as SPIDER
[26] orWikiSQL [27], has become commonplace [21, 22, 24]. How-
ever, the limited availability of annotated datasets, particularly
in industry settings, limited their widespread adoption. In recent
years, the emergence of LLMs has ameliorated data requirements
and reduced barriers for adoption of NLP systems in production.
LLMs, prompted with a few in-context demonstrations, achieve
state-of-the-art performance on public benchmarks [7, 13, 20].

1We use gpt-3.5-turbo-1106 model from OpenAI.
2We are going through an internal process to open-source the feedback annotations
for the SPIDER dataset to facilitate further research.
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Nonetheless, these models frequently make errors caused by
question misunderstanding, or hallucinations and struggle to
answer complex questions in a single attempt. Feedback is there-
fore necessary to improve system performance. In this work, we
focus on systems that incorporate feedback into their pipeline to
improve SQL generations and match user expectations.

Utilizing feedback to improve NL2SQL. Recent years have wit-
nessed an increased traction towards techniques that interact
with users and incorporate feedback to improve NL2SQL gener-
ations. The ways in which systems interact and elicit feedback
from users can take multiple forms: through feedback buttons,
like as thumbs up-thumbs down [10], selection of alternative
sub-queries [16], or multiple-choice questions [25]. However, the
constrained feedback format leads to limited opportunities to
improve model generations.

More recent works propose to utilize natural language feed-
back from users to guide SQL generations from NL2SQL mod-
els [6, 23]. However, all of these approaches assume that the
user, who provides feedback, has complete knowledge of the
ground-truth [SPLASH, 5] and perhaps more inconspicuously,
an assumption that users are experts at SQL and hence can pro-
vide directed feedback. In this work, we address methods that
can handle feedback of this form effectively through different
prompt-based approaches.

3 FISQL

In this section, we describe our tool FISQL, short for Feedback-
Infused SQL generation tool. Our tool is designed for incorporat-
ing user feedback provided in the form of natural language text to
align SQL generations with user intentions. In the next few sub-
sections, we provide an overview of our tool and the techniques
employed in the backend to incorporate user feedback.

3.1 Interface

We build our tool on top of the Adobe Experience Platform (AEP)
Assistant [2]. AEP is a powerful, open, and flexible system de-
signed to build and manage complete solutions that drive ex-
periences of marketing organizations. The platform is built on
RESTful APIs supporting easy integration of enterprise solutions
using familiar tools. It helps brands reimagine their marketing
strategy, accelerate transformation efforts, and deliver consistent
personalization at scale. By logging customer interactions and
customer experience challenges, AEP empowers organizations
to exceed customer expectations and deliver fully-personalized
experiences drawn from a 360-degree view of the customer and
their individual preferences.

In Figure 3, we depict the entry point into the platform and
the associated AI assistant that can be accessed to interact with
organizational data. As shown here, users of the platform can
integrate data across sources to fuel personalized campaigns
and customer journeys using Real-Time Customer Data Platform
(Real-Time CDP) and Adobe Journey Optimizer, enhancing cus-
tomer engagement and loyalty. A brand can also merge data with
sources like Adobe Audience Manager and Adobe Campaign to
enrich customer profiles, create cross-channel campaigns, and
deliver AI-powered personalization. On the left side of Figure
3, users can access information uploaded into the Experience
Platform. On the right side of Figure 3, the platform also provides
access to an AI assistant3 (accessible through button near Figure

3hitherto referred to as “Assistant” [14].

3A) that can aid with more directed information access with re-
spect to available organizational data and provide operational
insights over the available data.

3.2 Generating Operational Insights Using

Assistant in FISQL

Given the recent success of LLMs in achieving state-of-the-art
performance on text-to-SQL generation benchmarks [7], the As-
sistant in our tool employs gpt-3.5-turbo as the base NL2SQL
model with an in-house developed prompt. More concretely, the
NL2SQL model utilizes a retrieval-augmented generation [RAG,
11] approach to adaptively draw user query-relevant SQL demon-
strations to aid the model in generation of the SQL command.
In Figure 3, users can ask queries in the dialogue box (shown
in Figure 3B). In response, the Assistant in our tool, generates
a SQL query, executes the command against internal databases,
and returns four text-based outputs: (a) the execution result, (b)
a reformulation of the user query – indicating the Assistant’s un-
derstanding of the question, (c) a natural language explanations
of the steps undertaken to answer the user query, and finally
(d) the SQL output itself – accessible via a ‘Show Source’ button
(shown in Figure 3C).

3.3 Feedback Incorporation

To provide a lightweight extension of the existingNL2SQL pipeline
that employs LLMs, our feedback strategy utilizes prompting
techniques to guide the SQL generations, which we describe in
more detail. This occurs through a two-step prompting procedure.
First, we utilize a prompt-based approach to identify the type of
update requested by the users and retrieve examples that demon-
strate how to perform necessary updates. Second, we prompt the
NL2SQL model with the examples from the previous step and
the feedback provided by the user to regenerate the SQL query.

Feedback-type Identification. To perform precise revisions to
SQL generations based on user feedback, LLMs require demon-
strations that illustrate how to perform necessary updates to SQL
queries. For example, consider the chat between a user and As-
sistant on FISQL, shown in Figure 4. Given an incorrect response
from the Assistant due to query misunderstanding, a user can
prompt the Assistant with feedback of the form ‘we are in 2024’

to indicate the incorrect segment of the SQL generation in the
Assistant’s response. In an ideal interactive system, a feedback
of the form we are in 2024’ should exclusively edit the year 2023
operation to 2024.

To instruct LLMs with pertinent demonstrations, we first cat-
egorize the kind of user feedback into three categories based on
the kind of operation suggested by the feedback. Here, we divide
user feedback into three types: (i) Add, (ii) Remove, and (iii)
Edit. An example of each type of feedback is shown in Table 1.
Here, theAdd/Remove type correspond to feedback that suggest
the addition/removal of SQL operations in a query. Edit refers to
feedback that updates arguments of SQL operations. To identify
the feedback type, we prompt a gpt-3.5-turbo model with a
few demonstrations that illustrate how to perform the feedback
categorization. Once the operation type is identified, we retrieve
a fixed set of examples that illustrate how to revise SQL queries
based on the predicted feedback type. We then append these ex-
amples to the in-context demonstrations for the NL2SQL model.
Note that these demonstrations are in addition to the examples
retrieved by the RAG pipeline. An example of the demonstration
for the Edit operation has been shown in Figure 5.
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User Query

Execution Result
Reformulated 

Query

NL Explanation 
of SQL

NL2SQL generation

A

B

Assistant 
Access

User Dialogue Input

C
SQL 
Query 
Access 

Figure 3: Adobe Experience Platform (AEP) interface provides various options for a brand to interact with its customer

data and offer data-driven personalized insights thus transforming their marketing strategies. Users of the platform can

(A) access the onboard AI assistant to (B) ask questions about various marketing insights. In addition to the execution

results and step-by-step explanations of procedures employed by the AI Assistant, users also (C) have access to in-line

commented SQL queries generated by in-house NL2SQL models.

User Query

Query 
Misunderstanding 

Error

User Feedback

Correct Execution

Figure 4: Using our feedback mechanism, users can con-

verse with the AI Assistant on the AEP platform to correct

ambiguities, underspecifications, or model misunderstand-

ing errors.

Question: How many audiences were created in January?

Query: SELECT COUNT(*) AS segmentCount FROM
hkg_dim_segment WHERE createdTime >= ’2023-01-01’
and createdTime < ’2023-02-01’

The SQL query you have generated has received the following
feedback: we are in 2024

Taking into account the feedback, please rewrite the SQL query.
Query: SELECT COUNT(*) AS segmentCount FROM
hkg_dim_segment WHERE createdTime >= ’2024-01-01’
and createdTime < ’2024-02-01’

Figure 5: An example that demonstrates how to perform

an Edit-type operation based on the user feedback. Each

feedback example is structured similarly when passed to

the NL2SQL model.

Feedback Type Feedback Text

Add order the names in ascending order.

Remove do not give descriptions

Edit increase the limit to 10

Table 1: Examples illustrating different feedback types con-

sidered in this work. The feedback sentences correspond

to feedback generated for the SPIDER dataset [26].

NL2SQL prompting. In regeneration of SQL queries based on
user feedback, we minimally update the prompt for standard
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{Instructions on how to perform the NL2SQL task.}

{In-context demonstrations from RAG + Feedback demonstrations}

Here is the question you need to answer:
Question: {question}
Query: {initial_predicted_query}
The SQL query you have generated has received the following feedback:

{feedback}

Taking into account the feedback, please rewrite the SQL query.

Query:

Figure 6: Minimal illustration of the prompt to make the

NL2SQL model account for user feedback while generating

SQL command. Changes made to the NL2SQL prompt have

been put in italics.

NL2SQL execution. This has been illustrated in Figure 6, where
we pass in the SQL query generated in the previous turn along
with the corresponding feedback provided by the user.

4 EVALUATION

To evaluate the efficacy of NL2SQL systems with corrective feed-
back, we perform evaluations over two datasets: (a) an in-house
dataset comprising of Adobe Experience Platform queries where
the Assistant fails to answer in one-shot, and (b) a dataset with
annotated feedback for errors made by an Assistant on SPIDER
[26]. While some recent works study the errors made by GPT-
level models in an interactive setup [17], they do not open-source
annotations for feedback provided by users. Furthermore, as dis-
cussed in Section ??, interactive NL2SQL systems, that ingest
natural language feedback, typically assume that users providing
feedback have knowledge about the ground-truth SQL and ask
them to suggest minimal edits that would correct the SQL queries
to match the intention of the original question. However, this is
an unrealistic assumption in the real-world, where AI assistants
receive feedback from users who have varied levels of knowl-
edge about SQL without clear access to the ground-truth SQL
query. Further, companies may want to limit user access to un-
derlying schema to protect intellectual property. To account for
these factors, we perform a feedback collection for errors made
by the NL2SQL model employed in Assistant. Next, we describe
the experimental setup and discuss preliminary results using the
curated dataset.

4.1 Experiment Setup

Here, we describe the process of feedback collection used for
the public dataset, SPIDER, as well as in-house dataset used for
evaluating the utility of the tool for the Assistant. Further, we
provide information about the baselines and metrics used in our
evaluation.

SPIDER Feedback Collection. In the SPIDER dataset, there are
about 200 databaseswith 5-20 tables per database and 5-10 columns
per table. We utilize all available schemas and introduce a new
dataset based on errors made by a gpt-3.5-turbo model on the
SPIDER validation set [26]. The feedback annotations are pro-
vided by authors of this work exclusively based on information
available from the tool, i.e., question, the SQL query, natural
language explanation of the SQL query, and the SQL evaluation

Evaluation:

Question: Show the name and the release 
year of the song by the youngest singer.

Name Release Year

Tribal King 2016

Schema:
stadium(Stadium_ID, Location, Name, Capacity, 
Highest, Lowest, Average)
singer(Singer_ID, Name, Country, Song_Name, 
Song_release_year, Age, Is_male)
Concert(concert_ID, concert_Name, Theme, 
Stadium_ID, Year)
singer_in_concert(concert_ID, Singer_ID)

SQL Explanation:
- We selected the name and release year 

of the song from singer table
- We filtered the results to only include 

the singer with the minimum age.

Feedback:
Provide song name instead of singer name

Evaluation:

Question: Show the name and the release 
year of the song by the youngest singer.

Name Release Year

Tribal King 2016

SQL Explanation:
- We selected the name and release year 

of the song from singer table
- We filtered the results to only include 

the singer with the minimum age.

Feedback:
Provide song name instead of singer name

SQL Query:
SELECT Name, Song_release_year 
FROM singer 
WHERE Age = (SELECT min(Age) FROM singer)

Figure 7: An example of the information available during

the feedback collection from users for SPIDER.

against the database when available. Figure 7 shows an example
of the data available during the annotation procedure for SPIDER.

In our setup, gpt-3.5-turbomakes 243 errors out of the 1034
available datapoints in the validation set for SPIDER. Of these, we
annotate feedback for 101 examples (∼ 41% of the errors) using
the available information for the user. We use the collected feed-
back in order to evaluate the efficacy of our tool in incorporating
corrective information.

Experience Platform Dataset. Our primary evaluation, however,
is based on queries made on the Adobe Experience Platform. This
is an internally developed dataset, designed to capture and ana-
lyze instances in which users were unable to attain their desired
outcomes when interacting with the Assistant. By examining
these specific cases, we aim to gain insights into the challenges
and limitations faced by real-world users. The in-house dataset
(tagged Experience Platform in the results), contains 54 examples
of queries that Assistant fails to respond to correctly in the one-
shot given the user query.4 The authors of this work undertake
the task of providing feedback for these errors to match user
intent.

Baselines and Metrics. For comparison, we evaluate an addi-
tional query reformulation baseline (Query Rewrite) – where
given the initial user query and the feedback from the user, a
paraphrasing model (instantiated using gpt-3.5-turbo with
few-shot examples) resolves the feedback and generates a new
query that captures information from both user inputs, Finally,
for our metric, we measure the percentage of instances where
providing feedback helped the model achieve the correct SQL
execution result.

4We avoided semantic enrichment to maintain consistency with SPIDER settings.
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Method

% Instances

Corrected

(Experience

Platform)

% Instances

Corrected

(SPIDER)

Query Rewrite 35.85 16.83
FISQL
(- Routing) - 43.56

FISQL 67.92 44.55

Table 2: Percentage of instances corrected by using natural

language feedback for errors made by Assistant.

FiSQL
(-routing)
[Round-1]

FiSQL
(-routing)
[Round-2]

FiSQL
[Round-1]

FiSQL
[Round-2]

0.0

0.2

0.4

0.6

0.8

Fraction Corrected
 (where feedback provided)

Figure 8: Improving performance of the NL2SQL models

through additional feedback rounds using FISQL and FISQL

(- Routing) on SPIDER errors.

4.2 Results

In Table 2, we summarize the results using the different feedback
incorporation techniques across the Experience Platform and
SPIDER datasets. We note that Query Rewrite performs signifi-
cantly worse compared to FISQL on both datasets. Quantitatively,
FISQL is able to correct nearly 2× the number of examples using
user feedback, underscoring its enhanced efficiency.

To measure the value of routing, we explore an additional
baseline by ablating the routing mechanism (FISQL (- Routing))
for the SPIDER dataset errors. Here, we observe that routing
to identify feedback operation types offers an advantage over
naively incorporating feedback. On closer observation, we notice
the improvement emerges as a result of the precise revisions
performed by FISQL as opposed to the ablated version without
routing.

Finally, we observe that none of the approaches are close to
achieving 100% error correction. While performing an error anal-
ysis, we observed that this is caused by the examples either: (a)
having SQL queries with multiple errors and hence needing mul-
tiple feedback rounds, (b) inability of the approaches to interpret
user feedback and make edits to the SQL query, and (c) user feed-
back being misaligned with the correction required for the SQL
query (note that users do not have access to the ground-truth
SQL query or its execution result in this settings).

FISQL improves with further feedback. We incorporate an addi-
tional feedback round to correct the errors made by FISQL and
FISQL (-routing) approaches on the Assistant’s errors in the SPI-
DER dataset. Specifically, we conduct one additional feedback
round to correct examples, through which we were able to im-
prove performance of the model by nearly 15% for each of the two

approaches (illustrated in Figure 8). After two feedback rounds,
we observe that the FISQL (- Routing) approach has corrected the
same errors as FISQL. This further demonstrates how our tool
can be utilized by users to correct multiple errors sequentially.

Question: How many audiences were created in January?

Query: SELECT COUNT(*) AS segmentCount FROM
hkg_dim_segment WHERE createdTime >= ’2023-01-01’
and createdTime < ’2023-02-01’

User Feedback: change to 2024.

Figure 9: An example that demonstrates how to users can

highlight portions of the SQL query to ground suggestions

for SQL improvement. The highlight is shown using un-

derline in the text.

Additional feedback through highlights enhances performance

of FISQL.. As noted in the error analysis, some of the remain-
ing errors after applying the approach in FISQL arise from the
models’ inability to effectively ground user feedback to the SQL
query, thereby hindering their capacity to provide appropriate
corrections. To alleviate this issue, we allow users ground their
language feedback by highlighting segments of the SQL query
(or its natural language explanation). An example is shown in
Figure 9 where the user can highlight the segment corresponding
to the WHERE clause to ground the suggestion ‘change to 2024’.

Method

% Instances

Corrected

(Experience

Platform)

% Instances

Corrected

(SPIDER)

FISQL 67.92 44.55
FISQL
(+ Highlighting) 69.81 44.55

Table 3: Percentage of instances corrected with highlights

and natural language feedback for errors made by Assis-

tant.

In Table 3, we demonstrate the empirical value of highlights on
the Experience Platform and SPIDER datasets. Here, we observe
that the additional use of highlights results in a performance
improvement on the Experience Platform while maintaing the
same error reduction rate for the SPIDER dataset. Hence, through
addition of highlighting, we can drive enhance user experience
and drive more engagement with interactive NL2SQL systems.

5 CONCLUDING REMARKS

We presented FISQL, a tool designed to foster interactive con-
versations between users and NL2SQL systems. This tool has
been implemented as been tested as a part our product and we
aim to continually improve the feedback integration capabilities
of our tool as usage evolves. Currently, our empirical studies
evaluate the performance of our tool for scenarios where users
perform error corrections to complex SQL queries. There are
multiple avenues of future work that can be studied with our
tool. First, this tool could be adapted to allow users to build up
complex SQL queries by asking simple questions first. Second,
our routing mechanism can be enhanced with dynamic exam-
ple selection based on query structure and feedback. We plan to
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evaluate these extensions through a user study, which will be
reported in subsequent work.

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Anjul Bhambhri. 2024. New ai integrations in adobe experi-
ence platform. https://business.adobe.com/blog/the-latest/
new-ai-assistant-in-adobe-experience-platform

[3] E. F. Codd. 1974. Seven Steps to Rendezvous with the Casual User. In IFIP

Working Conference Data Base Management. https://api.semanticscholar.org/
CorpusID:28690513

[4] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, An-
gela Fan, et al. 2024. The llama 3 herd ofmodels. arXiv preprint arXiv:2407.21783
(2024).

[5] Ahmed Elgohary, Saghar Hosseini, and AhmedHassan Awadallah. 2020. Speak
to your Parser: Interactive Text-to-SQL with Natural Language Feedback. In
Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(Eds.). Association for Computational Linguistics, Online, 2065–2077. https:
//doi.org/10.18653/v1/2020.acl-main.187

[6] Ahmed Elgohary, Christopher Meek, Matthew Richardson, Adam Fourney,
Gonzalo Ramos, and Ahmed Hassan Awadallah. 2021. NL-EDIT: Correcting
Semantic Parse Errors through Natural Language Interaction. In Proceed-

ings of the 2021 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Belt-
agy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(Eds.). Association for Computational Linguistics, Online, 5599–5610. https:
//doi.org/10.18653/v1/2021.naacl-main.444

[7] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding,
and Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models:
A Benchmark Evaluation. Proceedings of the VLDB Endowment 17, 5 (2024),
1132–1145.

[8] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi
Dai, Jiawei Sun, Meng Wang, and Haofen Wang. 2024. Retrieval-Augmented
Generation for Large Language Models: A Survey. arXiv:cs.CL/2312.10997
https://arxiv.org/abs/2312.10997

[9] Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum.
1977. Developing a natural language interface to complex data. In TODS.
https://api.semanticscholar.org/CorpusID:15391397

[10] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and
Luke Zettlemoyer. 2017. Learning a Neural Semantic Parser from User Feed-
back. In Proceedings of the 55th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), Regina Barzilay and Min-Yen
Kan (Eds.). Association for Computational Linguistics, Vancouver, Canada,
963–973. https://doi.org/10.18653/v1/P17-1089

[11] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, et al. 2020. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems 33
(2020), 9459–9474.

[12] Yunyao Li, Dragomir R. Radev, and Davood Rafiei. 2023. Natural Language
Interfaces to Databases. Springer Nature.

[13] Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S Yu. 2023. A comprehensive
evaluation of ChatGPT’s zero-shot Text-to-SQL capability. arXiv preprint

arXiv:2303.13547 (2023).
[14] Akash Maharaj, Kun Qian, Uttaran Bhattacharya, Sally Fang, Horia Gala-

tanu, Manas Garg, Rachel Hanessian, Nishant Kapoor, Ken Russell, Shiv-
akumar Vaithyanathan, and Yunyao Li. 2024. Evaluation and Continual
Improvement for an Enterprise AI Assistant. In Proceedings of the Fifth

Workshop on Data Science with Human-in-the-Loop (DaSH 2024), Eduard
Dragut, Yunyao Li, Lucian Popa, Slobodan Vucetic, and Shashank Srivas-
tava (Eds.). Association for Computational Linguistics, Mexico City, Mexico,
17–24. https://doi.org/10.18653/v1/2024.dash-1.3

[15] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain, and Jianfeng Gao. 2024. Large language models: A
survey. arXiv preprint arXiv:2402.06196 (2024).

[16] Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos. 2021.
DIY: Assessing the Correctness of Natural Language to SQL Systems. In
Proceedings of the 26th International Conference on Intelligent User Interfaces

(IUI ’21). Association for Computing Machinery, New York, NY, USA, 597–607.
https://doi.org/10.1145/3397481.3450667

[17] Zheng Ning, Yuan Tian, Zheng Zhang, Tianyi Zhang, and Toby Jia-Jun Li.
2024. Insights into Natural Language Database Query Errors: From Attention
Misalignment to User Handling Strategies. ACM Trans. Interact. Intell. Syst.

(mar 2024). https://doi.org/10.1145/3650114 Just Accepted.
[18] Hoifung Poon. 2013. Grounded Unsupervised Semantic Parsing. In Proceedings

of the 51st Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), Hinrich Schuetze, Pascale Fung, and Massimo Poesio

(Eds.). Association for Computational Linguistics, Sofia, Bulgaria, 933–943.
https://aclanthology.org/P13-1092

[19] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory of
natural language interfaces to databases. In Proceedings of the 8th International

Conference on Intelligent User Interfaces (IUI ’03). Association for Computing
Machinery, New York, NY, USA, 149–157. https://doi.org/10.1145/604045.
604070

[20] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluat-
ing the text-to-sql capabilities of large language models. arXiv preprint

arXiv:2204.00498 (2022).
[21] Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-autoregressive Bottom-

up Semantic Parsing. In Proceedings of the 2021 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (Eds.). Association for Computational Linguistics, Online,
311–324. https://doi.org/10.18653/v1/2021.naacl-main.29

[22] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Lan-
guage Models. In Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Lin-
guistics, Online and Punta Cana, Dominican Republic, 9895–9901. https:
//doi.org/10.18653/v1/2021.emnlp-main.779

[23] Yuan Tian, Zheng Zhang, Zheng Ning, Toby Li, Jonathan K. Kummerfeld, and
Tianyi Zhang. 2023. Interactive Text-to-SQL Generation via Editable Step-by-
Step Explanations. In Proceedings of the 2023 Conference on Empirical Methods

in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali
(Eds.). Association for Computational Linguistics, Singapore, 16149–16166.
https://doi.org/10.18653/v1/2023.emnlp-main.1004

[24] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking
for Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7567–7578. https://doi.org/10.18653/v1/2020.acl-main.677

[25] Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019. Model-based Interactive
Semantic Parsing: A Unified Framework and A Text-to-SQL Case Study. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan (Eds.). Association for Computational Linguistics, Hong Kong, China,
5447–5458. https://doi.org/10.18653/v1/D19-1547

[26] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association
for Computational Linguistics, Brussels, Belgium, 3911–3921. https://doi.org/
10.18653/v1/D18-1425

[27] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

1038


