
Virtual: Compressing Data Lake Files
Mihail Stoian

University of Technology
Nuremberg

mihail.stoian@utn.de

Alexander van Renen
University of Technology

Nuremberg
alexander.van.renen@utn.de

Jan Kobiolka
University of Technology

Nuremberg
jan.kobiolka@utn.de

Ping-Lin Kuo
University of Technology

Nuremberg
ping-lin.kuo@utn.de

Andreas Zimmerer
University of Technology

Nuremberg
andreas.zimmerer@utn.de

Josif Grabocka
University of Technology

Nuremberg
josif.grabocka@utn.de

Andreas Kipf
University of Technology

Nuremberg
andreas.kipf@utn.de

ABSTRACT

Virtual is an open-source add-on for open storage formats, such
as Apache Parquet, that substantially reduces file sizes of rela-
tional tables while still ensuring efficient column scans. Virtual
learns sparse functions within the data and uses them for com-
pression. Our demonstration features an interactive dashboard
that allows users to discover these functions in their data and
understand how Virtual uses them for compression and during
query execution.

1 INTRODUCTION

With the rise of data lakes, open storage formats such as Apache
Parquet [4] and ORC [3] have established themselves as solutions
that seem to offer good enough file sizes. For instance, Hugging-
Face [5], which stores large datasets for training and fine-tuning
ML models, has started using Parquet as an alternative storage
format. Parquet uses lightweight columnar encoding schemes,
such as FOR, DICT, and DELTA, to enable fast scans. Although its
decompression is fast, this choice of encoding schemes results in
unsatisfactory compression ratios. It is therefore not uncommon
to see Parquet combined with a general-purpose compression
algorithm such as Snappy [6] or Zstd [7] to further reduce file
sizes. However, these general-purpose compression algorithms
often have slower decompression times than FOR for integers [19]
or FSST for strings [9]. To this end, recent research [8, 13] has
pushed for more efficient formats that aim to preserve high scan
throughput while trying to offer competitive compression ratios;
even so, a general-purpose compression algorithm such as Zstd
may still perform better in terms of file size [13].
“The Hidden Treasure”: Functions. On a philosophical note,
this plateau observed in the current file formats and research
proposals such as BtrBlocks [13] and FastLanes [8] is due to
what we call data agnosticity. Specifically, traditional encoding
schemes do not take advantage of the inherent dependencies
between columns. To understand the situation, let us consider
the following example.

Example 1.1. Due to a sudden increase in AWS S3 [2] prices,
a data engineer is tasked with reducing the storage cost of the

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

company’s data stored in Parquet format. The company runs
analytical queries to understand country-wide employee satisfac-
tion. For simplicity, consider the following dataset of employee
earnings [1]:

Regular Earnings Overtime Earnings Total Earnings

32,000 300 32,300
60,000 0 60,000
10,000 500 10,500

The engineer realizes that the “Total Earnings” column is sim-
ply the sum of the other two columns and therefore does not need
to be stored explicitly. The engineer thus goes ahead and tries to
remove this column from all queries and datasets. The column
can then be computed on the fly, e.g., by using non-materialized
views. However, this necessitates a lot of work, especially as
other systems may also depend on it. Virtual performs these
two steps automatically.

ProblemComplexity. This “negligence” of the presence of func-
tions in data gave rise to a new research line on correlation-aware
table compression. The key idea is to exploit these (hidden) func-
tions during compression [10–12, 14–17, 20]. Notably, while our
engineer’s hand-crafted solution may work for the simple ex-
ample above, functions within real-world tables are often more
complex. Virtual, our open-source compression framework, au-
tomates both tasks: function discovery and query rewriting.
System. Virtual [20] offers a novel approach to further reducing
Parquet file sizes by leveraging dependencies between columns
while preserving efficient column scans. In fact, it acts as an
add-on for any open storage format. Behind the scenes, Virtual
searches for sparse functions, i.e., functions that depend on as
few columns as possible, which ensures efficient column scans.
As of now, Virtual automatically finds sparse linear functions.
Beyond the theoretical guarantees [20], dealing with real data
always incurs several other issues: missing values, change of for-
mats within the same column, type-preserving expressions, etc.
Supporting all these aspects necessitates a careful engineering
effort. This paper showcases Virtual as a ready-to-use add-on
for Apache Parquet [4], along with an interactive dashboard that
helps the user understand how the system virtualizes the table
and rewrites the queries.

Demonstration Paper

 

 

Series ISSN: 2367-2005 1066 10.48786/edbt.2025.90

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.90


1 FunctionDriller

𝑓

2 Optimizer

Function Saving
d = a + b + c −9 MB
a = d − b − c −8 MB
b = d − a − c −4 MB
c = d − a − b −4 MB

3 Compressor

a b c d

4 QueryRewriter

SELECT AVG(d) FROM R;

SELECT AVG(a + b + c) FROM R;

Rewrite

Figure 1: The fourmain components of Virtual: The FunctionDriller discovers the underlying functions in the table. The

Optimizer selects a subset of these to minimize the file size and the Compressor virtualizes the corresponding column(s).

Finally, theQueryRewriter ensures that queries are translated into the equivalent form w.r.t. the functions.

Contribution. In summary, we demonstrate Virtual’s
(1) dashboard where users can upload their datasets to virtu-

alize them and write analytical SQL queries as usual,
(2) interactive game that allows users to find the functions

themselves and better understand the complexity of the
underlying problem,

(3) easy-to-use API that users can adopt in their data pipelines.

2 SYSTEM OVERVIEW

Virtual is composed of four independent components:
1 FunctionDriller,
2 Optimizer,
3 Compressor,
4 QueryRewriter,

visualized in Fig. 1. Let us see their intertwining in Virtual.
Workflow. The FunctionDriller is responsible for finding the
hidden functions in the dataset. In Virtual, we discover sparse
functions, i.e., functions that do not depend on too many refer-
ence columns [20]. Currently, we support automatic detection of
sparse linear functions and a novel 𝑘-regression that aims to fit
the data with multiple linear regression lines.

Next, the Optimizer estimates the compression benefits of
each function using a sample of the data and selects a subset of
the discovered functions that minimizes the storage space. To
understandwhy this is necessary, consider our initial Example 1.1.
There are three functions present in the data:

Total Earnings = Regular Earnings + Overtime Earnings

Regular Earnings = Total Earnings − Overtime Earnings

Overtime Earnings = Total Earnings − Regular Earnings

First, note that only a single function from this set can be used;
otherwise, we risk creating a cyclic dependency between func-
tions. Second, depending on the actual values in the columns, they
might come with different compression gains. The Optimizer
tries to select the optimal subset of non-conflicting functions;
this takes exponential time in the number of functions. If this
number is too large, the optimizer resorts to a greedy strategy.

The Compressor takes the chosen subset of functions and
compresses the table. At a high level, it applies the identified
functions, attempts to resolve any inconsistencies with the origi-
nal values, and drops the columns that are computed by these
functions. This is probably the most engineering-heavy part of
our system since we have to deal with precision issues, the pres-
ence of NULLs, etc. In particular, note that we aim for a lossless
reconstruction, which is guaranteed by several auxiliary columns:

(a) offset accounts for the possible errors in the function
(we minimize via the L2-error),

(b) is_null marks whether the original value was NULL,
(c) outlier stores the original value in case a reference col-

umn had a NULL-value on the respective row,
(d) and switch stores the index of the regression line to use;

only used if 𝑘-regression is used.

Note that the auxiliary columns themselves are guaranteed to
be either small (is_null, and offset due to L2-minimization)
or sparse (outlier), and can thus be compressed well. Next, we
show how these components are mirrored in Virtual’s interac-
tive dashboard.

2.1 Dashboard

The dashboard captures and exhibits Virtual’s main functional-
ity. In Fig. 2, we show the dashboard when virtualizing the full
dataset from Example 1.1 [1]; the header of the dashboard offers
two virtualizable tables, one of them being TPC-H lineitem.

For ease of explanation, the dashboard is split into four ar-
eas A - D and partitioned along two parts: table preview and
statistics A - B , and an interactive SQL query interface C - D .

Preview and Statistics. The user can preview the table (area A )
and even how Virtual stores it internally via a toggle switch
“Virtual view”. On the right, one can analyze the functions drilled
from the table and how Virtual compares to CSV and Parquet
in terms of file size (area B ).
Query Interface.We expose Virtual’s query support via a ver-
bose query interface (area C ). The user can ask arbitrary SQL
queries in a console. Alternatively, a click on one of the functions
from area B – in our case “Total Earnings= Regular Earnings
+ Overtime Earnings” – generates a sample SQL query on the
corresponding virtualized column (Total Earnings). To under-
stand how the QueryRewriter modifies the query, one can
toggle “Show rewrite”, which splits the original console into two
and shows on the right the query that will be actually run by
Virtual. In our example, the rewriter replaced column Total
Earnings by its functional representation. To understand the
slowdown over Parquet1 – since we now read two columns in-
stead of a single one – one can also run the query from a vanilla
Parquet file, i.e., on the unvirtualized table. The query time, i.e.,
the time taken to perform the rewrite and execute the rewritten
query, and the query result are shown on the right (area D ).

In the next section, we introduce Virtual’s API, which powers
our dashboard.

1We use DuckDB [18] as the execution engine.

1067



A B

C D

Figure 2: Dashboard: Users can upload their datasets and see how Virtual uses functions for column compression and

during query execution.

2.2 API

Virtual is designed with an easy-to-use API so that it can act
as an add-on for any open storage format. We exemplify it for
Parquet, due to its first-class support in DuckDB [18] and Pandas:

• to_format: Takes as input a table (pd.DataFrame, CSV
or any supported file format), virtualizes it, and saves it to
a file of the specified file format.

• query: Rewrites and executes the SQL query on the file.

Let us exemplify them, as used in our dashboard (Sec. 2.1).
Instant Virtualization. In this use-case, the user reads a data-
frame, operates on it, and finally stores it as Parquet via Virtual.

import pandas as pd
import virtual

% Read data.
df = pd.read_csv('file.csv')

% User operations.
df = ...

% Virtualize + save to Parquet.
virtual.to_format(df, 'file_virtual.parquet')

Query. The virtualized Parquet file can be queried via SQL, using
the given execution engine (in this example, DuckDB [18]). This
function performs the necessary rewrites while preserving the
semantic of the original query, i.e., the output yields the data
types and column namings from the original query.

import virtual

% Query the file.
virtual.query(

'''select avg(price)
from read_parquet("file_virtual.parquet")
where year >= 2024''',
engine = 'duckdb'

)

Other Features. Optionally, users can drill the functions on
their own and export them to a JSON file via virtual.train.
We also provide a handy from_format method that converts the
virtualized parquet file back into a pd.DataFrame.

3 DEMONSTRATION

Our live demo is structured in two phases. The first part consists
of a game featuring a leaderboard where session participants
are invited to interactively explore the main challenge behind

1068



Figure 3: Game: The demo session participant has to dis-

cover the functions hidden in the data. The results are

displayed in a leaderboard.

Virtual: finding functions in the data. In the second phase, visi-
tors can interact with the main dashboard and virtualize datasets.
Game with Leaderboard. First, session participants are invited
to play an interactive game to grasp the complexity of the problem
of finding suitable functions. We will show five small tables of
varying difficulty, and the participant has to input the function(s)
that could be hidden in the table. A leaderboard will rank the
participants by the number of points accumulated and the time
taken to complete the game. This will be the first webpage that
the participants will interact with. A screenshot of this game for
a sample table is shown in Fig. 3.
Dashboard. The main entry into the dashboard is a drag-and-
drop / choose-file page where the participant can upload their
favorite CSV file and have it virtualized; we even provide a way
to enter a custom pd.DataFrame. If no specific file is wished
for, we will have prepared two datasets of different difficulty, to
also show the table layout in the case where Virtual finds a
𝑘-regressor [20]. We will let them write arbitrary queries and
interact with the query rewriter.

REFERENCES

[1] 2020. Broome County Annual Employee Earnings: Beginning 2009.
https://catalog.data.gov/dataset/broome-county-annual-employee-earnings-
beginning-2009.

[2] 2024. Amazon Simple Storage Service (Amazon S3). https://aws.amazon.
com/s3/

[3] 2024. Apache ORC. Apache Software Foundation. https://orc.apache.org/
[4] 2024. Apache Parquet. Apache Software Foundation. https://parquet.apache.

org/
[5] 2024. Hugging Face. https://huggingface.co/
[6] 2024. Snappy. https://github.com/google/snappy.
[7] 2024. Zstandard. https://github.com/facebook/zstd.
[8] Azim Afroozeh and Peter A. Boncz. 2023. The FastLanes Compression Layout:

Decoding >100 Billion Integers per Second with Scalar Code. Proc. VLDB
Endow. 16, 9 (2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[9] Peter A. Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random
Access String Compression. Proc. VLDB Endow. 13, 11 (2020), 2649–2661.
http://www.vldb.org/pvldb/vol13/p2649-boncz.pdf

[10] Bogdan Ghita, Diego G. Tomé, and Peter A. Boncz. 2020. White-box Com-
pression: Learning and Exploiting Compact Table Representations. In 10th
Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam,
The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2020/papers/p4-ghita-cidr20.pdf

[11] Thomas Glas. 2023. Exploiting Column Correlations for Compression. https:
//homepages.cwi.nl/~boncz/.

[12] Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran
Shi, and Ugur Çetintemel. 2020. DeepSqueeze: Deep Semantic Compression

for Tabular Data. In Proceedings of the 2020 International Conference on Man-
agement of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1733–1746.
https://doi.org/10.1145/3318464.3389734

[13] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2 (2023), 118:1–118:26. https://doi.org/10.1145/3589263

[14] Hao Liu, Yudian Ji, Jiang Xiao, Haoyu Tan, Qiong Luo, and Lionel M. Ni. 2017.
TICC: Transparent Inter-Column Compression for Column-Oriented Database
Systems. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017, Ee-
Peng Lim, MarianneWinslett, Mark Sanderson, AdaWai-Chee Fu, Jimeng Sun,
J. Shane Culpepper, Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal,
Yu Zheng, Carlos Castillo, Aixin Sun, Vincent S. Tseng, and Chenliang Li
(Eds.). ACM, 2171–2174. https://doi.org/10.1145/3132847.3133077

[15] Hanwen Liu, Mihail Stoian, Alexander van Renen, and Andreas Kipf. 2024.
Corra: Correlation-Aware Column Compression. In Proceedings of Workshops
at the 50th International Conference on Very Large Data Bases, VLDB 2024,
Guangzhou, China, August 26-30, 2024. VLDB.org. https://vldb.org/workshops/
2024/proceedings/CloudDB/clouddb-2.pdf

[16] Hao Liu, Jiang Xiao, Xianjun Guo, Haoyu Tan, Qiong Luo, and Lionel M. Ni.
2017. Cuttle: Enabling Cross-Column Compression in Distributed Column
Stores. In Web and Big Data - First International Joint Conference, APWeb-
WAIM 2017, Beijing, China, July 7-9, 2017, Proceedings, Part II (Lecture Notes in
Computer Science, Vol. 10367), Lei Chen, Christian S. Jensen, Cyrus Shahabi,
Xiaochun Yang, and Xiang Lian (Eds.). Springer, 219–226. https://doi.org/10.
1007/978-3-319-63564-4_18

[17] Xi Lyu, Andreas Kipf, Pascal Pfeil, Dominik Horn, Jana Giceva, and TimKraska.
2023. CorBit: Leveraging Correlations for Compressing Bitmap Indexes. In
VLDB Workshops (CEUR Workshop Proceedings, Vol. 3462). CEUR-WS.org.

[18] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable
Analytical Database. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Nether-
lands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anasta-
sia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 1981–1984.
https://doi.org/10.1145/3299869.3320212

[19] Julia Spindler, Philipp Fent, Adrian Riedl, and Thomas Neumann. [n. d.]. Can
Delta Compete with Frame-of-Reference for Lightweight Integer Compres-
sion? Proceedings of the VLDB Endowment. ISSN 2150 ([n. d.]), 8097.

[20] Mihail Stoian, Alexander van Renen, Jan Kobiolka, Ping-Lin Kuo, Josif
Grabocka, and Andreas Kipf. 2024. Lightweight Correlation-Aware Table
Compression. In NeurIPS 2024 Third Table Representation Learning Workshop.
https://openreview.net/forum?id=z7eIn3aShi

1069


