
ComCrawler: General Crawling Solution for Article Comments
Zhijia Chen

Meta
Menlo Park, CA, USA
zhijia@meta.com

Weiyi Meng
Binghamton University
Binghamton, NY, USA
meng@binghamton.edu

Eduard Dragut
Temple University

Philadelphia, PA, USA
edragut@temple.edu

ABSTRACT
Commenting is a prominent feature to enhance user engagement
on websites. User comments have powered many applications,
such as opinion mining, fake news detection, and LLM training.
However, comments are difficult to collect at scale from diverse
websites, as they are often hidden until triggered by specific user
interaction, such as clicking on a designated page element. More-
over, comments may contain rich formatted contents and nesting
structures, making them difficult to detect and extract from the
target Web page. This study presents ComCrawler, an end-to-
end comment crawling solution that leverages neural network
models and Web record extraction algorithms to automate the
process of triggering, extracting, and classifying comments. The
system achieves a high end-to-end comment detection F1 score
of 0.95 in offline evaluations, with ideal conditions. However,
the system’s performance degrades significantly in real-world
online tests, prompting further exploration in deployment. To
address practical challenges like comment scarcity during visits,
a principled re-visiting framework based on queuing theory is
proposed, which helps ComCrawler to achieve a high 0.90 F1
score in practice.

1 INTRODUCTION
Manywebsites take full advantage ofWeb 2.0 technologies to host
multimedia postings and comments, transforming their audiences
into active content contributors on their websites. User comments
are a standard feature at many websites and are considered one of
the most popular forms of public online participation [46]. Social
scientists argue that commenting platforms increase user-to-user
interactions and contribute to shaping a democratically valuable
and vivid interpersonal discourse on topics of public interest
[34, 42, 54]. Take news websites as an example, there are over 50K
news websites in the world [48], and a large fraction of them have
over 100K subscribers who actively comment [23, 24]; together,
they amass tens of millions of users who produce vast volumes
of messages every day. User comments power a broad range of
applications, like opinion mining [30, 47], fake news detection
[3, 39, 49], user engagement and behavior analysis [4, 41, 45, 53],
which attract relentless attention from industry and academia
alike. Such data is also used to generate conversational systems
[21] and to enrich LLMs [22].

The problemwe aim to solve in this work is: Given a (random)
Web page, determine if the page hosts a commenting section and,
if it does, locate it and retrieve the comments.

One solution is to build crawlers tailored to specific websites;
this is labor-intensive and does not scale to thousands of web-
sites. The issue may be alleviated by applying wrapper induc-
tion/program synthesis techniques to infer wrapper programs
using labeled examples from the target websites [28, 52]. But

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

still, labeling thousands of websites is not a trivial task, let alone
the wrapper maintenance challenges imposed by the changes in
website templates that can break the wrappers [29, 37]. A more
scalable solution is to infer the Web API of the comment sys-
tem and request comments directly from the comment system’s
server [10], which is much more efficient than composing/gener-
ating wrapper rules for each website. However, such a solution
has limited coverage as it is only applicable when the target web-
sites adopt commenting systems in the knowledge base and the
Web API is correctly inferred. Thus, a more general solution is
valuable for broader comment crawling.

The problem is further complicated by the fact that user com-
ments tend to be dynamically loaded on the modern Web by
specific triggering events, and websites employ various means
to trigger and display user comments. For illustration, we show
three examples in Figure 1. The user comments on Fox News
are loaded when the window is scrolled down to the comment
section (Figure 1a). The New York Times and Tencent News load
comments at the click of a comment button, but the former gen-
erates a modal popup (Figure 1b), whereas the latter presents the
comments in a new page (Figures 1c and 1d). Such diversity in
loading and displaying user comments requires a comprehensive
crawling solution that it is able to trigger the comment loading
event (i.e, entry point detection), extract Web records from a
page, and detect the comment section.

We present ComCrawler, a general comment crawling frame-
work for dynamically loaded comments. As illustrated in Figure
2, ComCrawler consists of the following key steps:
Entry point discovery. The first component of ComCrawler ad-
dresses the problem of finding the entry point to dynamic com-
ment sections, i.e., the HTML event that triggers comment load-
ing. This is generally a user event, such as scrolling the comment
section into the browser window or clicking an HTML element,
e.g., a button. While the scrolling case can be solved by instruct-
ing the browser to scroll over the entire target page without
knowing the exact location of comments, the clicking event is
much more challenging because a Web page may have thousands
of clickable elements and an exhaustive enumeration of these
elements will not only slow down the crawling process but also
incur an unreasonable resource drain on a website’s server. Thus
at this step, we aim to detect and trigger the comment loading
event in a polite manner.
Web record extraction.The second component of ComCrawler aims
to detect and extract the comments on the result webpage af-
ter triggering a comment-loading event. As shown in Figure 1,
comments are generally organized as a structured record-like
section on a webpage where each comment may be treated as a
data record. Thus we can treat the comment extraction problem
as a Web record extraction problem [14, 31]. A key challenge
here is that the page may contain multiple sections with Web
records, e.g., records of ads. Existing unsupervised Web record
extraction techniques largely try to find repeating patterns in
the target DOM tree, assuming that records in the same group
have very similar subtree structures [13, 15, 19, 43] and that Web

Industrial & Applications Paper

Series ISSN: 2367-2005 1023 10.48786/edbt.2025.85

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.85

(a) Fox News (b) New York Times (c) Tencent News (article) (d) Tencent News (comments)

Figure 1: Typical ways of loading comments dynamically.

1

2
3

article page

scroll

click

…

Entry Point Discovery

Comment Section Detection

yes no

result page

Web Records Extraction

records
section N

records
section 1 …

Clickable Objects

element 1 element K

Clickable Element
Classification

User Comments

Related Articles

Web Records Sections

1

2

3

Figure 2: Comment crawling workflow.

records are organized in a flat list-like manner (i.e., records are
linearly listed one after another). This assumption is often not
true for comments because their DOM subtree structures tend to
be more complex, with less regularity due to nesting replies (as
shown in Figure 1a) and rich formatted contents (Figure 1d). We
propose a new Web record extraction algorithm that exploits the
common structural components among Web records to address
this unique challenge of comments extraction.
Comment Section Detection. While the Web record extraction
method addresses the unique challenges of comments, it is likely
to extract many other Web records on the target page as well,
such as the list of related articles or ads; thus the last step of
ComCrawler is comment section detection which aims to detect
the comment section from the Web record extraction output.

The above steps try to solve the problem in an ideal environ-
ment, where triggering the right entry point always loads the
comments, and the target page have received enough number

of comments so that the common structural signal is detectable.
However, these are hard to guarantee in practice. We found that
the page loading may failed due to many external factors such
as network failure; and as comments are accumulated over time,
visiting too early may cause the framework to give up on a pre-
maturely. We address these issues with principled (re)visiting
protocol and endow ComCrawler with a queuing system whose
policy is informed by the observed comments accumulation sta-
tistics. This helps ComCrawler achieve an F1 score of 0.90 in
deployment, which is only slightly off from the 0.95 F1 score that
we observed in theoretical offline evaluation.

We make the following contributions in this work:
• We introduce the problem of crawling dynamically loaded
comments on the Web.

• We propose an end-to-end system, ComCrawler, that is
effective in retrieving comments while being polite to the
server, and it works well across different website designs
and languages.

• We conduct experiments to assess the performance of
ComCrawler in offline and online settings. It achieves an
F1 score of 0.95 in the former and 0.90 in the latter.

2 RELATEDWORK
While there is a rich literature on data mining leveraging user-
generated content (UGC), such as comments and reviews, limited
work discusses the process of crawling the data sources. Most
of the works devoted to this topic focus on extracting UGC on
specific platforms or specific types of Web pages such as Web
fora and blogs. We discuss some typical research works below.

Popular online social networks, such as Facebook and Twit-
ter, have received intense interest for effectively and efficiently
crawling their user posts. Many crawling tools leverage the offi-
cial APIs offered by these social networks. For example, [1, 18]
give Facebook crawlers based on the Facebook Graph API1 and
[7, 17, 36] crawl Twitter using its REST API. While this type of
crawler has excellent performance, they focus on specific social
platforms and cannot be applied to other social media platforms.

Since the goal is to get UGC from Web pages that support
commenting, research efforts in this direction treat this problem
as an HTML content extraction problem. They tend to target
specific types of Web pages such as blogs and Web fora.

1https://developers.facebook.com/docs/graph-api

1024

[8, 12, 27] introduce blog comment extraction strategies based
on the comments’ HTML structure and visual appearance; [27,
35] use the text feature such as HTML tags and comment key-
words to train comment/non-comment classifiers, which is sim-
ilar to our approach in regard to finding the comment section.
Apart from the structure and text features, [12] tries to under-
stand the structure and layout of a blog page by utilizing the
Functional Semantic Units (FSUs) that help users understand a
Web page. It uses FSUs to build a frequent-based mining approach
for extracting comment areas and then extract comments from
the comment area, which is identified by the frequent presence
of FSUs in a comment.

Forum threads can also be treated as user comments. [6] pro-
poses a two-step crawling solution to collect forum thread pages,
where the first step is an inter-site crawler that locates forum
sites on the Web and the second is an intra-site crawler that finds
thread pages by learning the context of links that lead to thread
pages. [25] treats the thread crawling problem as a URL-type
recognition problem [2]. [5, 40] focus on identifying thread com-
ments by detecting comments based on posting structure, and
the latter also uses certain domain constraints (e.g., post-date) to
design better similarity function to circumvent the influence of
free-format comment contents.

Theworksmost related to oursmake two key assumptions that
our work addresses: (1) assume that user postings are loaded with
the web page (i.e., static case) and (2) assume that an oracle gives
the comment section. In the modern Web (1) is easily violated in
practice as more and more websites load comments dynamically
to relieve server resources and (2) is a strong assumption – we
show that it is not easy to identify the comment section in general,
particularly, when a page has few comments. Our contribution
in this paper is that we address (1) and (2); to our knowledge, no
other work addresses these problems.

3 PRELIMINARIES
An HTML element is the basic unit of an HTML document. It
consists of a start tag, text content and an end tag; an element
may have nesting elements between the start and end tags. The
start tag may carry several pairs of attribute names and values
which are not visible to the user, but together they dictate how
the browser formats and displays the content to the user.

A DOM tree is a tree structure representation of an HTML
document wherein each node represents an element in the docu-
ment. The DOM tree structure is commonly exploited for Web
Records extraction [16, 19, 40, 51]. A comment is a subtree of
a DOM tree that represents a piece of User Generated Content
(UGC). As shown by the examples in Figure 1a, a comment may
have nesting replies where each reply is another subtree of com-
ment under the root comment, and a reply may also have replies.
A group of continuous subtrees of comments forms a comment
section.

Clickable Element. For a crawler to automatically locate the
HTML element that loads the comments, the first step is to find
all the clickable elements in the DOM tree. While modern Web
browsers allow any element in a DOM tree to be clickable by
adding an event listener, the <button> tag and <a> tag are two
standard tags that expect click events. For the sake of simplicity,
we will only consider the <a> and <button> tag as clickable
elements in this work.

AWeb Record Section is a page section that contains continu-
ous list-like Web records from the same underlying data schema

(SQL or non-SQL) and serves the same consumption purpose.
On the underlying DOM tree, a Web record section is composed
of a cluster of sibling subtrees with a similar subtree structure.
As we will discuss later, the subtree similarity may be measured
using the whole subtree of a Web record, or using some common
components of Web records such as the user avatar of a comment.

4 COMMENT DISCOVERY AND DETECTION
We present the entry point discovery and comment section de-
tection components first and leave the Web record extraction
component to the next section, as these two components use
similar methods and both leverage the text features of HTML
source code.

4.1 Entry Point Discovery
One critical policy for effective Web crawling is politeness [9],
that is, avoiding overloading target websites with unnecessary
requests. So instead of traversing every <button> and <a>
elements on a page, we build a clickable element classifier to
reduce the unfruitful clicks. We observe that the text content and
the attribute values of a clickable element are likely to present
strong hints about its purpose. Specifically, the text content of
a clickable element indicates its functionality to users, e.g., “log
in”, “share”, and “comment”, while the element attributes such
as id, name and class are popular places for programmers to
include hints about the functional purpose of an object.

Listing 1: The HTML source codes of clickable elements
for login, share to Facebook and comment.
<button data-testid="login-button" >Log In</button>
<a href="https://www.facebook.com/..." aria-label="

Share on
Facebook">

<button id="comments-speech-bubble-top"></button>

For example, Listing 1 shows snippets of HTML source code
for clickable elements that, when clicked, will open a login box,
share to Facebook, and go to a comment section, respectively.
One notices that the attribute values include meaningful key-
words, such as “log in”, “Facebook” and “comment” that indicate
the functionality of the clickable elements. It is thus tempting to
construct text features for the classifier by manually selecting
keywords such as “comment” or related words. Such features
are not comprehensive enough and may miss misspellings, ab-
breviations, or keywords in other languages. Examples include
“commenst”, “cmt”, and the German “kommentar” for “comment”.
We use character-based 3-gram [20] to extract text features. Be-
fore generating the 3-gram features, we pre-process the HTML
source code of each clickable element by extracting the text and
attribute values and discarding all non-alphabetic characters. For
illustration, in Listing 1, we only keep characters in bold.

We use the fastText2 library to train the comment element
classifier in our framework. Under the hood, fastText learns a lin-
ear model with rank constraint and a fast loss approximation [26].
We choose the library for its fast inference speed and light mem-
ory consumption, which is vital for the crawler considering our
ambition of global-scale crawling. We carefully modularize our
framework so the classifier can be easily swapped with other
more recent but heavier neural network models.

The classifier gives us a subset of clickable elements as com-
ment loading candidates. The next step is to click each of the
candidates and analyze the content of the result page.

2https://fasttext.cc

1025

2

1

<div>
class=“thread”
3

<div>
class=“avatar”
4

<button>
User 1

5

src=“user1.jpg”

6

<HTML tag>
attribute name 1=“value of attribute 1”

…
attribute name 𝑛=“value of attribute 𝑛”

node text

node index

<div>
id=“content1”
7

<p>
Comment 1

8

10

<div>
class=“thread”
11

<div>
class =“avatar”
12 <div>

id=“content2”
15

18

<div>
class=“thread”
19

<div>
class =“avatar”
20 <div>

id=“content3”
23

<p>
Comment 2

16<button>
User 2

13 <button>
User 3

21

src=“user2.jpg”
14

<p>24

<div>
class =“avatar”
30

<button>
User 4

31

28

<div>
class=“thread”
29

<div>
class=“ad”

44

<button> 45

src=“ad.jpg”

46
<div>

id=“content4”
33 35

36
<p>

Comment 4
34

src=“user3.jpg”
22

src=“user4.jpg”
32

<div>
class =“avatar”
38

<div>
class=“thread”
37

<div>
id=“content5”
41

<button>
User 5

39 <p>
Comment 5

42

src=“user5.jpg”
40

9 17 27

43

src=“smile.jpg”
26

Comment 3.
25

Invariant
Subtree

Invariant PathComment
Container Node

Figure 3: Examples of comment DOM subtrees.

4.2 Comment Section Detection
The comment section detection module takes the HTML source
codes of a Web record section as input, which is provided by the
Web records extraction component (Section 5), and it predicts if
the Web record section is a comment section or not. In the exam-
ple of Web record sections shown in Figure 2, one notices that
the page containing user comments may have other Web record
sections, such as a list of articles. Those record sections will also
be detected by our Web record extraction module, and we apply
the comment section detection module to determine the right
one. One may wonder why not work on a Web record extraction
algorithm that will only extract comments, and there are several
important reasons behind our design choice. First, it is difficult
to separate comments from other Web records solely based on
structure features. Although the structure features of nesting
replies and rich format texts can help distinguish comments from
other regular Web records, there is still a significant number of
websites rendering comments in a simple way, like regular Web
records. Second, incorporating multi-modal features – i.e., the
structure features used by the Web record extraction module, the
text feature used by the comment section detection module, and
potentially image features used by existing Web record extrac-
tion works [40, 43, 51] – inevitably leads to a complex and heavy
model that we try to avoid in the first place. Finally, decoupling
the task into two independent steps enables us to improve each
one of them separately.

Similar to the comment button classifier, we build the comment
detection module using the fastText model that takes the n-gram
features of the HTML source codes as input. Our initial attempt
used both text contents and the attribute values, the same as
the comment element classifier based on the observation that
the text contents in a comment section contain many keyword
hints, such as “comment”, “thread” and “reply”. However, our
experiments showed that this method performed poorly across
languages. The issue is that apart from those desirable terms, the
majority of the text contents are UGCs (including non-English),
which introduce noise to the classifier. In addition, unlike the
attribute values in the HTML source code that are mostly written
in English (English is the lingua franca of programming [32]), the
text contents are not, because they are for user consumption and
follow the website’s language. Thus, we only generate n-gram

features from HTML attribute values for the comment section
dection module.

5 WEB RECORD EXTRACTION
After each click of a comment entry point candidate, we search
for potential comment sections in the result page. As shown
in Figure 1, comments are generally well structured contents
arranged in a list-like manner. Hence, we may treat comments as
a type of Web record with the following properties: a comment
may contain (i) rich format texts and multimedia content, and
(ii) one or more nested replies.

These unique features introduce significant structure irregu-
larities to the underlying DOM tree structure leveraged by the
existingWeb record extraction methods, leading to unpredictable
performance. For illustration, we make a synthetic running ex-
ample containing five simplified comments (and an ad as noise)
as shown in Figure 3, where the left part shows the rendered
presentation in the browser and the right part shows the cor-
responding HTML DOM tree.We use E to denote the DOM tree
of this example for the rest of this paper. Each node of E stands
for an HTML element, with the tag enclosed in angle brackets,
the attribute specified using an equal sign, and the text content
placed at the bottom (if it exists). Each node is associated with
an index in the left or top left, and we use E[𝑖] to refer to the 𝑖𝑡ℎ
node and E(𝑖) to refer to the subtree under E[𝑖]. Our goal is to
identify the root node of the subtree of each individual comment
so we may extract the UGCs correctly. We call the root node of a
comment as Comment Container Node, which is colored in
orange.

We attempted to solve this step with several existing repre-
sentative Web record extraction methods [40, 51] (Section 6.2).
However, even though these methods were designed to over-
come structure variations among Web records, we still found
their performance highly sensitive to the dynamic structure of
comments. Specifically, these methods tend to focus on the DOM
tree structure and try to align similar subtrees of Web records,
which fails when there are complex comment contents or nested
replies.

We identify that the main cause of errors is that these methods
generally do not consider the nesting behavior of Web records,
and the rich formatted contents of comments easily introduce
too much structural noise that break down the algorithms. We

1026

index tag path tag path code
i1 ul 1
i2 ul/li 2
i3 ul/li/div 3
… … …
i28 ul/li 2
… … …
i46 ul/div/button/img 20

ta
g

pa
th

 c
od

e

node index

Figure 4: Tag path code sequence of E (Figure 3).

0 250 500 750
tag path code

0

10

20

no
de

 in
de

x

related articles

0 500 1000 1500
tag path code

0

50

100

no
de

 in
de

x

comments

Figure 5: Tag path code sequence of related articles (left)
and user comments (right) on a Web page.

observed that we can no longer enforce record level structural
similarity among comments, however, they do contain similar
sub-record components, which may be leveraged to locate and
extract the comments. Based on that observation, we create a
new Web record extraction method by searching Web records in
a bottom-up manner using those common components, which
we name record invariants. For a self-contained presentation of
ComCrawler, we give here an overview of the extraction method
[11].

5.1 Signal of Web Records
Inspired by existing works that perceive Web records as repeat-
ing tag sequences [19, 33, 44], we transform an HTML doc into
a one-dimensional signal and study how Web records may be
represented as a signal. More specifically, we take the DOM tree
of a Web page and flatten it into a sequence of nodes, and then
we represent each node by the identifier of its tag path, which is
the concatenation of the HTML tags of the ancestor nodes and
itself. For example, Figure 4 shows the tag paths of the nodes of
E. We can assign a code for each unique tag path, and then we
get a sequence of tag path codes for the tree, as shown at the
bottom of Figure 4. Details of the process can be found in [44].

We compare the sequential signals of regular Web records
against those from comments. Figure 5 shows the signal plots of
a related article section (left) and a comment section (right) that
we found in the same page.We notice that the signal of the related
articles section is periodic with minimal irregular variations. In
contrast, there is no apparent repeating period in the signal of
the comment section. Nonetheless, we observe that there are still
some (sub)patterns repeating throughout the signal and wonder
what contributes to these patterns and whether we can leverage
them to extract complex Web records such as comments.

5.2 Web Record Invariants
We map the frequent patterns of the signal of comments back to
the original DOM tree, and we find they generally correspond to
some common components among the comments, such as avatars,
likes/dislikes, and posting dates. We observe that compared to
the whole record-level similarity, common components of Web
records that represented by identical DOM tree structure – i.e.,
the sub-record-level similarity – is a more general and stable
feature of complex Web records like user comments. We define
two types of common structures among Web records named
record invariants.
Invariant Subtree: a common subtree structure that appears
in every record, representing the same component. Invariant
subtrees may come from data attributes of Web records that are
rendered by the same template, like the Posting Date of a user
post on a social media platform. They may also be parts of the
Web record template that is not sensitive to the individual data
record, such as the Add to Cart button that is commonly seen on
e-commerce Web sites. We use invariant subtrees as landmarks
to locate potential Web records. In our running example (Figure
3), the subtrees in gray color that carry user avatar are instances
of an invariant subtree.
Invariant Path: a constant tag path between aWeb record’s con-
tainer node to the occurrences of an invariant subtree. Existing
works assume that subtrees of Web records are under the same
parent node, and thus all the record container nodes have the
same tag path. We can no longer expect such a property with the
presence of nested records; however, the tag paths within each
record subtree remain stable regardless of the nesting structure.
So we try to find an invariant path between invariant subtrees
and their corresponding record container nodes. To illustrate, we
mark the invariant path of the running example with a green ar-
row.We first align the invariant subtrees on a DOM tree, and then
we find their corresponding record container nodes by detecting
the potential invariant path.

5.3 Mining Frequent Patterns
We detect invariant subtrees based on frequent pattern mining
from the DOM tree. Notice that in Figure 5 (right), the tag path
signal of comments contains subsequences that form the same
variation pattern, which is contributed by candidates of invari-
ant subtrees on the original DOM tree. However, these patterns
have very different values (heights) due to the nesting behavior,
making it difficult to extract the patterns from the signal.

Intuitively, if we can represent a node in such a way that
nodes with the same subtree structure are represented by the
same value, then we can expect the invariant subtrees to form
the same code sequence. Naturally, we represent a node 𝑥 by
the identifier of its subtree structure 𝑠𝑡𝑟𝑢𝑐𝑡 (𝑥), which can be
calculated recursively by:

𝑠𝑡𝑟𝑢𝑐𝑡 (𝑥) = ⟨𝑥 .𝑡𝑎𝑔, 𝑥 .𝑎𝑡𝑡𝑟𝑖𝑏, 𝑠𝑡𝑟𝑢𝑐𝑡 (𝑥 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)⟩
where 𝑥 .𝑡𝑎𝑔, 𝑥 .𝑎𝑡𝑡𝑟𝑖𝑏 and 𝑥 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 are the tag, attributes, and
children of𝑥 , respectively. For example, the output of 𝑠𝑡𝑟𝑢𝑐𝑡 (E[4])
is:

⟨div,[class],[⟨button,[],[⟨img,[src],[]⟩]⟩]⟩

Note that 𝑥 .𝑎𝑡𝑡𝑟𝑖𝑏 and 𝑥 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 are arrays, and we use [·] to
enclose their elements. We only include HTML element attribute
names but not values in the structure representation because
some values like “id” or “href” are generally unique to individual
elements.

1027

0 10 20 30 40

10

20

n
o
d

e
id

en
ti

fi
er

Tag Path Identifier Structure Identifier

0 10 20 30 40

node index

5

10

15

Figure 6: Transforming the running example (Figure 3)
into a signal by representing a node using an HTML tag
path and subtree structure, respectively. The record con-
tainer nodes are marked in orange circles, and the nodes
of invariant subtrees are marked by gray squares.

Figure 6 shows the signal of the running example generated
by the HTML tag path and our structure representation, respec-
tively. We see that all the invariant subtrees (highlighted in gray
squares) are represented by the same sequence when using the
structure representation, whereas the invariant subtree under
the nested record (the last one) has different values than others
when represented by the HTML tag path.

Using the structure representation, we make sure all the oc-
currences of an invariant subtree are represented using the same
subsequence and thus transform the invariant subtree searching
into a classic pattern mining problem, which can be solved by
building a suffix tree. The suffix tree is a compressed trie of all
the suffixes of a given string (or general sequence). It enables
fast implementations of many important string operations, such
as searching for repeated substrings or common substrings in
𝑂 (𝑁) time [50].

We may use a suffix tree to find any patterns that have more
than one occurrence. However, a Web page generally contains
many trivial repetitive structures, such as page menus and para-
graphs, which may lead to a huge search space and interfere with
frequent patterns in comments. For example, they may happen to
be a subpattern of a larger pattern from comments, leading our al-
gorithm to use the more frequent subpattern to find the invariant
subtree. Thus we set a pattern frequency threshold (𝐹𝑡=10) and a
pattern size threshold (𝐹𝑠=10) to make sure we detect potential
invariant subtree with significant structure complexity.

5.4 Web Records Reconstruction
After frequent pattern mining, we map the occurrences of each
pattern back to the original DOM tree to get a group of candidate
invariant subtrees (note that a Web page may contain multiple
data regions). Then we reconstruct Web records in a bottom-up
manner, searching record container nodes by matching potential
invariant paths starting from each group of candidate invari-
ant subtrees. We will illustrate the process using the running
example.

We begin with the most frequent pattern ⟨3, 2, 1⟩, and the
occurrences are mapped back to six candidate invariant subtrees
E(4), E(12), E(20), E(30), E(38), and E(44) on the original DOM
tree (Figure 3). Notice that we may have false positives when
detecting invariant subtree with frequent patterns, like E(44)
(which represents an ad) in this example. Then we try to reach
their corresponding record container nodes through the potential

invariant path by matching their ancestor nodes. In the first
round, all the invariant subtree candidates except for E(44) have
identical ancestor node (div tag with class attribute), so we
discard E(44). In the next round, all the ancestor nodes of the
remaining candidates are of li tag. And in the last round, we
reach to a common ancestor node of all the candidate invariant
subtrees E[1], which means that we have reached the end of
invariant path. Thus we determine thatE(1) represents the whole
record section, and the subtrees at the last group of ancestor
nodes, E(2), E(10), E(18), E(28), and E(36) are detected records.

In our running example, there is only one section of Web
records and it is of our interest, i.e., comments. However, in prac-
tice, a Web page may contain multiple sections of Web records.
Our method detects each section of Web records solely based on
the DOM tree structures and does not distinguish the records
according to their semantics. The comment section detection
module introduced in Section 4.2 will detect sections that contain
comment records.

6 OFFLINE EVALUATION
In this empirical study, we evaluate ComCrawler offline with
ideal settings, that is, all things go right, e.g., every page has suffi-
cient comments and is loaded properly. We test ComCrawler on
datasets with simulated Web responses, and we study the perfor-
mance of each individual module.

6.1 Data
For entry point detection, we collect a comment-loading element
dataset comprising 1,500 positive clickable elements and 1,500
negative clickable elements. We first find 1,500 pages where the
comment entry point is a clickable element, uniformly distributed
over 150 websites of different languages and countries/regions.
Then for each page, we collect the comment loading element
and a random negative clickable element. To guarantee labeling
accuracy, wewrite strict XPath (XML Path Language) expressions
to extract the comment-loading elements for each website. We
name this dataset ClkElmSet.

For the task of Web record extraction and comment detec-
tion, we manually collect 2,000 pages with each having more
than 10 comments and 2,000 pages without comment, uniformly
distributed over 100 websites of different languages and coun-
tries/regions. For each page, we open it in the browser to check
if it has comments, and we manually trigger the event to dis-
play user comments. We then save the HTML document of the
rendered page and mark the record container nodes of each com-
ment and the container node of the comment section. We name
this dataset CmtSecSet.

6.2 Baselines
There are three key components in ComCrawler, and each is
compared with several baselines in the offline experiments. For
entry point detection, we compare with: 1) KeyWords, a heuris-
tic that matches the text contents of a clickable element to a
set of predefined keywords such as “comment”, “discussion”, “dis-
cuss”, “reply”. To cope with non-English websites, we translate
the keywords to their target languages. 2) TF-IDF. We parse the
HTML source codes of clickable elements into terms, compute
the TF-IDF vector based on the top 25 most frequent terms, and
train an SVM classifier.

For Web record extraction, we compare several representative
unsupervised methods using different techniques, including 1)

1028

Table 1: Performance of the individual components and
the Ensemble.

module method F1 Acc.

Entry Point
Discovery

Attribute-fastText (ours) 0.97 /
TF-IDF 0.91 /

KeyWords 0.35 /

Web Record
Extraction

Web Record Invariants (ours) / 0.96
PROSE / 0.82
DEPTA / 0.36

Pattern Signal / 0.39

Comment Section
Detection

Attribute-fastText (ours) 0.96 /
TF-IDF 0.93 /

Manual Features 0.81 /
End-to-End / 0.95 /

PROSE [38], a program synthesis API from Microsoft 3 that
allows users to synthesize the Web record extraction program
automatically. 2) DEPTA [51], a classic baseline that detects Web
records by aligning similar subtrees. 4) Pattern Signal [43], a
method that turns a Web page into a sequence and applies signal-
processing techniques to detectWeb records based on their signal
pattern and frequencies.

For comment section classification, we compare with: 1) TF-
IDF, which has the same implementation as the counterparts in
the entry point detection baselines, 2) Manual Features [27],
an SVM classifier trained on 14 Web page block features such as
<a> tag ratio and date string ratio.

6.3 Performance Analysis
6.3.1 Entry Point Detection. We evaluate our proposed classi-

fier and the corresponding baselines on the ClkElmSet dataset
with 10-fold cross-validation (except for the KeyWords method
which does not require training). We group samples by their web-
sites, so one website does not appear both in training and testing
samples. We measure the performance of the component by the
F1 score, which is given in the first block of Table 1. Our Attribute-
fastText method achieves the best F1 score of 0.97. The TF-IDF
and the KeyWords methods score 0.91 and 0.35, respectively. The
latter performs poorly because many comment-loading elements
indicate their functionality by their shapes and positions and do
not display any keywords to the user (the loading element at the
top left of Figure 2 is an example of such a case).

6.3.2 Web Record Extraction. We test the Web record extrac-
tion methods on the positive samples from the CmtSecSet. A
method may detect multiple groups of Web records, but we are
only interested in the comment section. So for each page, we
measure a method’s performance by calculating its accuracy in
detecting the comments of page 𝑝 and ignoring other outputs
that do not belong to the comment section:

𝑎𝑐𝑐𝑝 =𝑚𝑎𝑥 (# correctly extracted comments in 𝑠

ground truth comments in 𝑝
), 𝑠 ∈ 𝑆𝑝 (1)

where 𝑆𝑝 is the set of detected Web record sections in the page.
The accuracy is then averaged across all the pages. We observe
that a method may segment a comment section into multiple sec-
tions (i.e., treat a comment section as multiple groups of records),
which is generally not the desired behavior, and the formula
gives credit only to the largest comment segment in this case.
The second block of Table 1 shows the average accuracy. Both

3www.microsoft.com/en-us/research/group/prose/

DEPTA and Pattern Signal methods have low performance: the
former achieves 0.36 accuracy while the latter 0.39. The two
methods are designed for records “with similar size and struc-
ture” (as emphasized by the authors of [43]) and are unable to
cope with comments with complex content and nested struc-
tures. Their most frequent error is to split a comment section
into multiple sections, some of which may include content that
is not a comment. PROSE achieves 0.81% accuracy, and tend to
miss comments when the nesting structures are complex. Our
method locates comments by invariant subtrees and recovers
comments in a bottom-up manner, which is more resilient to
structure variations and nesting structures of comments, leading
to an accuracy of 0.96.

6.3.3 Comment Section Detection. In the evaluation of detect-
ing comment sections, we use the comment sections from the
positive pages of CmtSecSet and apply our Web record extraction
method to extract non-comment Web record sections from the
negative pages. We test the Attribute-fastText method and the
corresponding baselines on these record sections with 10-fold
cross-validation (except for the Date String Heuristic method,
which does not require training). We apply the same F1 score
metric in the entry point discovery step, which is calculated based
on the testing comment/non-comment sections.

As shown in the last block of Table 1, the Attribute-fastText
method achieves the best performance at 0.96. The TF-IDFmethod
scores at 0.93 while the Manual Features method scores at 0.81.
The good performance of the TF-IDF can be explained by the
fact that the most frequent words used in the TF-IDF feature
vector are terms from the HTML attribute values. This result
provides additional evidence that supports our motivation to
exploit HTML attributes.

6.3.4 End-to-End. The performance of ComCrawler is the
end-to-end performance of the three components in sequence.
We first evaluate ComCrawler offline using the ClkElmSet and
CmtSecSet to assess its performance in ideal settings.We simulate
Web response by randomly linking each positive/negative sample
in the testing holdout of the ClkElmSet to a positive/negative
sample in the testing holdout of the CmtSecSet. If a clickable
element is classified as a positive, we extract Web records in the
linked page and input them into the comment section dection
module.

When measuring the end-to-end performance, we are inter-
ested in the final output. Thuswe compare the detected comments
against the ground truth comments for each testing page 𝑝 and
calculate 𝐹1𝑝 = 2 · 𝑅𝑝 · 𝑃𝑝/(𝑅𝑝 + 𝑃𝑝), where

𝑅𝑝 =
correctly detected comments in 𝑝

ground truth comments in 𝑝
(2)

𝑃𝑝 =
correctly detected comments in 𝑝

detected comments in 𝑝
(3)

And 𝐹1 = 𝑎𝑣𝑔(𝐹1𝑝). Our approach yields a 0.95 F1 score,
with almost perfect precision, but 0.92 recall due to the loss
accumulated through the entire process.

7 IMPLEMENTATION AND DEPLOYMENT
In this section, we describe the implementation of ComCrawler and
the challenges we met when deploying the crawler online. We
analyze these challenges and present the extra steps we take to
address these challenges in order to make our ComCrawler prac-
tical.

1029

Entry Point
Discovery

Web Record
Extraction

Comment Section
Detection

Se
le

ni
um

 D
riv

er

Browser

browser
action

page
informationC

om
C

ra
w

le
r

Q
ue

ui
ng

 S
ys

te
m

A
rt

ic
le

 F
ee

d page
dequeue

page
enqueue

page
enqueue

Figure 7: System implementation of ComCrawler.

7.1 Real World Challenges
In our initial attempt for deployment, we connected ComCrawlerwith
the Google News Feed, fetching one page from the latest feeds at
a time. However, when we manually compare the output com-
ments with the target pages, we got a very disappointing results
of 0.41 F1 score: the precision remains comparable to what we
saw in the offline evaluation, but the recall degraded to 0.26. We
investigate the input and output of each step, and found that the
performance discrepancy is primarily due to the misses of com-
ment sections, accounting for 85.77% of the misses. The crawler
always visits incoming pages immediately, but very often, the
page is just published and has not received a sufficient number of
comments yet. Other failures include external events that prevent
comment sections from loading, such as login pages, blocking ad
popups, and page loading failure. These factors suggest that the
system should visit a page with proper timing and have a revisit
strategy.

7.2 Page Queuing System
To address the visit timing problem, one may try to delay the visit
by a long time so the page can accumulate as many comments as
possible. Such heuristic strategies, while possible, are not prin-
cipled and difficult to analyze to achieve the desired behavior.
Instead, we add a page queuing system to ComCrawler, and we
aim to design the queuing system with a proper expected waiting
time 𝑇𝑊 to accumulate enough comments before visiting.

To determine 𝑇𝑊 , we studied the user commenting behavior
across difference websites in another work [23], and we found
that it takes 3.41 hours on average for an article to accumulate 10
comments (the threshold for our Web record extraction module).
Thus, we control page arrival rate of the queuing system to set
𝐸 [𝑇𝑊] = 3.41 hours. Furthermore, considering the variance of
the comment arrival time, we may still visit too early for some
pages by waiting for 𝐸 [𝑇𝑊]. Thus we will schedule a revisit by
putting the target page at the back of the queue if we do not detect
comments but at least one comment loading element is detected.
Empirically, we discard a page on the third visit because we do
not observe any significant recall improvement going beyond
that (see Table 2).

7.3 Implementation
Figure 7 shows the implementation of ComCrawler , which con-
sists of an article feed that provides article page URLs, a page
queuing system that schedules the visiting timings of the target
pages (to be discussed in the following section), and a comment
crawler that contains the three core modules of ComCrawler for
comment discovery and extraction. The module uses a Selenium
WebDriver4 to control a Firefox browser so we can automatically
load, render, and interact with web pages.
4www.selenium.dev

Table 2: Online and offline performance of ComCrawler .

experiment setup F1 Rcall
offline test on datasets 0.95 0.92

online

w/o queue & immediate visit 0.41 0.26

w/ queue
1 visit 0.85 0.77
2 visits 0.89 0.84
3 visits 0.90 0.85

In our deployment, we implemented the article feed using the
Google News RSS feed. We choose Google News because it aggre-
gates news articles from a vast number of websites, and it allows
us to switch across different languages and countries/regions so
we can test our system comprehensively.

7.4 Online Evaluation
We deployed ComCrawler and validated its performance in a
10-days time window. The crawler visited more than 25k pages
from 4,739 websites. We partition the pages into 8 categories
according to Google News and performed a stratified sampling
of the crawled pages by taking 100 pages per day, distributed
proportionally per category. We manually investigated the data.
With the queuing system, the framework achieves a 0.85 F1 score
on the first visit, 0.89 on the second visit, and 0.90 on the third
visit (the last 3 rows in Table 2). We do not see any significant
performance change after the third visit.

8 CONCLUSION
We introduced the problem of detecting dynamically loaded user
comment sections on the Web. We identified the typical ways
comments are loaded on a Web page and described a framework,
ComCrawler, to find comments across different websites inde-
pendent of country/region and language. ComCrawler achieved
a high F1 score of 0.95 when tested offline. We deployed Com-
Crawler online, and we noticed that its performance dropped
drastically to a 0.41 F1 score. We analyzed the reasons for the
failures and identified that many of them could be addressed if a
page was properly queued and revisited. This observation was
drawn by analyzing user commenting behavior at a large number
of websites. We used that analysis to determine the parameters of
the underlying queuing system of the crawler. The new system
achieved an F1 score of 0.90. We contend that our tool is useful
to a broad range of practitioners who need to mine/analyze user-
generated content from many websites and need to transparently
access such data fromwebsites in different languages and applica-
tion domains. Our future work is to learn and maintain wrappers
to comment-loading elements and comment sections.

Acknowledgment
This work was supported in part by the U.S. National Science
Foundation 1546480, 1546441, 1838145 and 2137846 grants.

REFERENCES
[1] Carlo Aliprandi and Antonio E et al. De Luca. 2014. Caper: Crawling and

analysing Facebook for intelligence purposes. In ASONAM. 665–669.
[2] Abdullah Aljebreen, Weiyi Meng, and Eduard Dragut. 2021. Segmentation of

Tweets with URLs and its Applications to Sentiment Analysis. AAAI 35, 14
(May 2021), 12480–12488.

[3] Abdullah Aljebreen, Weiyi Meng, and Eduard C. Dragut. 2024. Analysis and
Detection of "Pink Slime"Websites in Social Media Posts. In theWebConference.
2572–2581.

[4] Jumanah Alshehri, Marija Stanojevic, Eduard Dragut, and Zoran Obradovic.
2021. Stay on Topic, Please: Aligning User Comments to the Content of a

1030

News Article. In Advances in Information Retrieval. Springer International
Publishing, 3–17.

[5] M. Bank and M. Mattes. 2009. Automatic User Comment Detection in Flat
Internet Fora. In DEXA. 373–377.

[6] Luciano Barbosa. 2017. Harvesting forum pages from seed sites. In ICWE.
457–468.

[7] Matko Bošnjak, Eduardo Oliveira, José Martins, Eduarda Mendes Rodrigues,
and Luís Sarmento. 2012. TwitterEcho: A Distributed Focused Crawler to
Support Open Research with Twitter Data. In WWW. 1233–1240.

[8] Donglin Cao, Xiangwen Liao, Hongbo Xu, and Shuo Bai. 2008. Blog Post and
Comment Extraction Using Information Quantity of Web Format. In AIRS.
298–309.

[9] Carlos Castillo. 2005. Effective web crawling. In ACM SIGIR Forum, Vol. 39.
55–56.

[10] Zhijia Chen, Lihong He, Arjun Mukherjee, and Eduard C Dragut. 2024.
Comquest: Large Scale User Comment Crawling and Integration.. In SIG-
MOD Conference Companion. 432–435.

[11] Zhijia Chen, Weiyi Meng, and Eduard Dragut. 2022. Web Record Extraction
with Invariants. Proceedings of the VLDB Endowment 16, 4 (2022), 959–972.

[12] F. Chun-Long and M. Hui. 2012. Extraction technology of blog comments
based on functional semantic units. In CSAE. 422–426.

[13] AnHai Doan, Jeff Naughton, Akanksha Baid, Xiaoyong Chai, Fei Chen, Ting
Chen, Eric Chu, Pedro DeRose, Byron Gao, Chaitanya Gokhale, et al. 2009.
The case for a structured approach to managing unstructured data. arXiv
preprint arXiv:0909.1783 (2009).

[14] Yongquan Dong, Eduard C. Dragut, and Weiyi Meng. 2019. Normalization of
Duplicate Records from Multiple Sources. IEEE Transactions on Knowledge
and Data Engineering 31, 4 (2019), 769–782.

[15] Eduard C. Dragut, Thomas Kabisch, Clement Yu, and Ulf Leser. 2009. A hier-
archical approach to model web query interfaces for web source integration.
Proc. VLDB Endow. 2, 1 (Aug. 2009), 325–336.

[16] Eduard C Dragut, Weiyi Meng, and Clement T Yu. 2012. Deep web query inter-
face understanding and integration. Synthesis Lectures on Data Management
7, 1 (2012), 1–168.

[17] Grzegorz Dziczkowski, Lamine Bougueroua, and Katarzyna Wegrzyn-Wolska.
2009. Social network-an autonomous system designed for radio recommenda-
tion. In CASoN. 57–64.

[18] F. Erlandsson, R. Nia, M. Boldt, H. Johnson, and S. F. Wu. 2015. Crawling
Online Social Networks. In ENIC. 9–16.

[19] Yixiang Fang, Xiaoqin Xie, Xiaofeng Zhang, Reynold Cheng, and Zhiqiang
Zhang. 2018. STEM: a suffix tree-based method for web data records extraction.
KIS 55, 2 (2018), 305–331.

[20] Johannes Fürnkranz. 1998. A study using n-gram features for text categoriza-
tion. OFAI 3 (1998), 1–10.

[21] Khyatti Gupta, Meghana Joshi, Ankush Chatterjee, Sonam Damani, Ked-
har Nath Narahari, and Puneet Agrawal. 2019. Insights from Building an
Open-Ended Conversational Agent. In Proceedings of the First Workshop on
NLP for Conversational AI. Association for Computational Linguistics, Florence,
Italy, 106–112. https://doi.org/10.18653/v1/W19-4112

[22] Alon Halevy and Jane Dwivedi-Yu. 2023. Learnings from data integration for
augmented language models. arXiv preprint arXiv:2304.04576 (2023).

[23] Lihong He, Chao Han, ArjunMukherjee, Zoran Obradovic, and Eduard Dragut.
2020. On the dynamics of user engagement in news comment media. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2020), e1342.

[24] Lihong He, Chen Shen, Arjun Mukherjee, Slobodan Vucetic, and Eduard
Dragut. 2021. Cannot predict comment volume of a news article before (a
few) users read it. In Proceedings of the International AAAI Conference on Web
and Social Media, Vol. 15. 173–184.

[25] Jingtian Jiang, Xinying Song, Nenghai Yu, and Chin-Yew Lin. 2012. Focus:
learning to crawl web forums. TKDE 6 (2012), 1293–1306.

[26] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017.
Bag of Tricks for Efficient Text Classification. In EACL. 427–431.

[27] Huan-An Kao and Hsin-Hsi Chen. 2010. Comment Extraction from Blog Posts
and Its Applications to Opinion Mining.. In LREC. 1113–1120.

[28] Nicholas Kushmerick. 1997. Wrapper induction for information extraction.
University of Washington.

[29] Kristina Lerman, Steven N Minton, and Craig A Knoblock. 2003. Wrapper
maintenance: A machine learning approach. JAIR 18 (2003), 149–181.

[30] Haoxin Liu, Ziwei Zhang, Peng Cui, and Yafeng et al. Zhang. 2021. Signed
Graph Neural Network with Latent Groups. In KDD. 1066–1075.

[31] Wei Liu, XiaofengMeng, andWeiyi Meng. 2006. Vision-based web data records
extraction. In Proc. 9th international workshop on the web and databases. 20–25.

[32] Jenny Mandl. 2016. Why are all programming languages in English? shorturl.
at/crxB7. Accessed: 2021-10-22.

[33] Gengxin Miao, Junichi Tatemura, Wang-Pin Hsiung, Arsany Sawires, and
Louise E Moser. 2009. Extracting data records from the web using tag path
clustering. In Proceedings of the 18th international conference on World wide
web. 981–990.

[34] Ankan Mullick, Sayan Ghosh, Ritam Dutt, Avijit Ghosh, and Abhijnan
Chakraborty. 2019. Public Sphere 2.0: Targeted Commenting in Online News
Media. In ECIR. Springer, 180–187.

[35] M. Neunerdt, M. Niermann, R. Mathar, and B. Trevisan. 2013. Focused crawling
for building Web comment corpora. In CCNC. 685–688.

[36] Pieter Noordhuis, Michiel Heijkoop, and Alexander Lazovik. 2010. Mining
twitter in the cloud: A case study. In CLOUD. 107–114.

[37] Stefano Ortona, Giorgio Orsi, Marcello Buoncristiano, and Tim Furche. 2015.
Wadar: Joint wrapper and data repair. VLDB 8, 12 (2015), 1996–1999.

[38] Mohammad Raza and Sumit Gulwani. 2017. Automated data extraction us-
ing predictive program synthesis. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 31.

[39] Kai Shu, Limeng Cui, SuhangWang, Dongwon Lee, andHuan Liu. 2019. defend:
Explainable fake news detection. In KDD. 395–405.

[40] Xinying Song, Jing Liu, Yunbo Cao, Chin-Yew Lin, and Hsiao-Wuen Hon. 2010.
Automatic extraction of web data records containing user-generated content.
In CIKM. 39–48.

[41] Marija Stanojevic, Jumanah Alshehri, Eduard Dragut, and Zoran Obradovic.
2019. Biased News Data Influence on Classifying Social Media Posts. In NewsIR
co-located with SIGIR, Vol. 2411. 3–8.

[42] Florian Toepfl and Eunike Piwoni. 2015. Public Spheres in Interaction: Com-
ment Sections of News Websites as Counterpublic Spaces. Journal of Commu-
nication 65 (2015), 465–488.

[43] Roberto Panerai Velloso and Carina F Dorneles. 2017. Extracting records from
the web using a signal processing approach. In CIKM. 197–206.

[44] Roberto Panerai Velloso and Carina F Dorneles. 2017. Extracting records from
the web using a signal processing approach. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. 197–206.

[45] Andrew Wang, Rex Ying, Pan Li, Nikhil Rao, Karthik Subbian, and Jure
Leskovec. 2021. Bipartite Dynamic Representations for Abuse Detection.
In KDD. 3638–3648.

[46] Patrick Weber. 2014. Discussions in the comments section: Factors influencing
participation and interactivity in online newspapers’ reader comments. New
Media & Society 16, 6 (2014), 941–957.

[47] Fan Yang, Eduard Dragut, and Arjun Mukherjee. 2020. Predicting Personal
Opinion on Future Events with Fingerprints. In COLING. 1802–1807.

[48] Junting Ye and Steven Skiena. 2019. MediaRank: Computational Ranking of
Online News Sources. 2469–2477.

[49] Reza Zafarani, Xinyi Zhou, Kai Shu, and Huan Liu. 2019. Fake news research:
Theories, detection strategies, and open problems. In KDD. 3207–3208.

[50] Mohammed J Zaki and Wagner Meira Jr. 2020. Data Mining and Machine
Learning: Fundamental Concepts and Algorithms. Cambridge University Press.

[51] Yanhong Zhai and Bing Liu. 2005. Web data extraction based on partial tree
alignment. In WWW. 76–85.

[52] Hongkun Zhao, Weiyi Meng, Zonghuan Wu, Vijay Raghavan, and Clement
Yu. 2005. Fully automatic wrapper generation for search engines. InWWW.
66–75.

[53] Zhuojie Zhou, Nan Zhang, and Gautam Das. 2015. Leveraging history for
faster sampling of online social networks. arXiv preprint arXiv:1505.00079
(2015).

[54] Marc Ziegele and Oliver Quiring. 2013. Conceptualizing online discussion
value: A multidimensional framework for analyzing user comments on mass-
media websites. Annals of the Int. Comm. Assoc. 37, 1 (2013), 125–153.

1031

