
A Computational Framework for Estimating Days of
Maintenance Delay of Naval Ships

Gerald White
NJIT, US

gkw@njit.edu

Deep Mistry
NJIT, US

dm728@njit.edu

Kevin Chhoa
NJIT, US

kevin.chhoa@njit.edu

Senjuti Basu Roy
NJIT, US

senjutib@njit.edu

Lingyi Zhang
U.S. Naval Research Laboratory
lingyi.zhang.civ@us.navy.mil

Adam Bienkowski
UCONN, US

adam.bienkowski@uconn.edu

Krishna Pattipati
UCONN, US

krishna.pattipati@uconn.edu

ABSTRACT
This work proposes a computational framework for estimating
Days of Maintenance Delay (DoMD) for US Navy ships, aiming to
improve fleet maintenance planning. The data, containing Con-
trolled Unclassified Information (CUI), is obfuscated and consists
of both time-dependent and time-invariant attributes, forming a
"fat" tensor with many attributes but few instances (around 200).
The solution is a predictive maintenance pipeline that uses obfus-
cated data for training and then retrains on raw data in the Navy
environment without human intervention. The pipeline includes
modules for transforming raw data, identifying effective features,
selecting machine learning models, and training models robust
to outliers and noise. The framework addresses computational
challenges and optimization opportunities, and its effectiveness
is demonstrated experimentally within the Navy environment.

1 INTRODUCTION
In January 2023, Vice Admiral Roy Kitchener, then-Commander
of the Naval Surface Forces, set a readiness goal for the US Navy
to have 75 combat-ready surface ships available at all times. A
major challenge to this goal is the frequent delays in the mainte-
nance of these ships, which is planned 2-3 years in advance but
often incurs costly execution delays. To address this, this work
proposes a data science pipeline to accurately estimate Days of
Maintenance Delay (DoMD) at any point during or before the
execution process. The pipeline is being deployed as a back-end
engine for a fleet-readiness application within the Navy’s Ship
Maintenance Data Improvement Initiative (SMDII).
DoMD Query. An end user logged into SMDII should be able to
at any time query the estimated delay of any ongoing or future
ship maintenance period, called availabilities or "avails".
Challenges. The Navy Maintenance Database (NMD) [9] con-
tains only 200 maintenance instances for study, yet there exists a
timestamped history of a myriad of structured attributes which
could potentially cause delays in the avail. This makes the result-
ing dataset short and extremely wide, with tens of thousands of
potential features for the 200 avails.

While the data is time-dependent and evolves throughout the
execution of the maintenance period, delay is obviously only mea-
sured at the conclusion of the avail. Thus, DoMD modeling is not

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Ship Work List Item Number (SWLIN) hierarchy

a classical time series problem nor is it a standard time-independent
regression problem and as the response variable is not measured
at every time step, similar to the field of game playing [29, 38].
Machine learning models on such datasets tend to overfit and
fail to generalize well to new, unseen data.

Finally, any features and models utilized in the pipeline must
be interpretable and actionable by Navy personnel. This pre-
cludes us from making use of complex feature transformations or
opaque black-box techniques, such as deep neural networks [14].
Contributions. The DoMD estimation problem is studied as a
regression problem with special attention paid to the temporality
inherent in the data. The goal is to develop and optimize a data
science pipeline which can effectively and efficiently generate
interpretable features, select the most salient among them, pro-
pose an effective machine learning configuration, and train these
supervised models to accurately and robustly estimate delay. Our
main contributions are the following:

• We introduce and formalize of the Days of Maintenance
Delay (DoMD) problem.
• We model the design of a data science pipeline which can
be refit to raw data as an optimization problem.
• We study data management challenges associated with
feature engineering and present a highly effective delay es-
timation framework inspired by time-series modeling [6]
and ensemble learning [43].
• We present an experimental evaluation against baselines
and show that our framework is highly effective. The
framework has been deployed inside the Navy environ-
ment and currently being integrated with the user inter-
face for use.

Industrial & Applications Paper

Series ISSN: 2367-2005 1014 10.48786/edbt.2025.84

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.84

Accurately estimating DoMD is crucial for the US Navy, as
each additional day of delay costs around $250,000, leading to
budget overruns and reduced fleet availability. This framework
allows for timely and interpretable delay predictions, helping
decision-makers proactively allocate resources, adjust schedules,
and mitigate risks before delays worsen.

2 DATA MODEL & PROBLEM DEFINITION

Figure 2: Delay distribution for all availabilities.
Availability. Eachmaintenance (or execution) period for a ship is
referred to as an availability or avail for short. Each avail 𝑎𝑖 ∈ A
can be conceptualized at a high level by its identification number,
planned start date, planned end date, actual start date, and actual
end date as shown below.

𝑎𝑖 = ⟨𝑖, 𝑡𝑝𝑙𝑎𝑛𝑆𝑖
, 𝑡
𝑝𝑙𝑎𝑛𝐸

𝑖
, 𝑡𝑎𝑐𝑡𝑆𝑖 , 𝑡𝑎𝑐𝑡𝐸𝑖 ⟩

Using Table 1, there are 5 avails, where for avail ID 2, 𝑡𝑝𝑙𝑎𝑛𝑆2 =

5/7/2019, 𝑡𝑝𝑙𝑎𝑛𝐸2 = 4/11/2020, 𝑡𝑎𝑐𝑡𝑆2 = 5/7/2019, 𝑡𝑎𝑐𝑡𝐸2 = 5/21/2021.

avail
id

ship
id status plan

start
plan
end

actual
start

actual
end delay

1 60 ongoing 8/20/23 12/4/24 8/20/23 - -
2 246 closed 5/7/19 4/11/20 5/7/19 5/21/21 405
3 202 closed 7/18/18 6/11/19 7/18/18 6/11/19 0
4 1565 closed 3/1/21 11/8/22 3/1/21 12/17/22 39
5 1547 closed 1/31/20 8/19/20 2/27/20 8/19/20 -27

Table 1: Toy availability table with key attributes.

The full input data describing the availability for modeling is
longitudinal in nature [9].

Notation Interpretation
𝑎𝑖 , 𝑑𝑖 Avail with ID 𝑖 , with delay 𝑑𝑖
𝑡
planS
𝑖

, 𝑡planE
𝑖

Planned start, end date of 𝑎𝑖
𝑡actS
𝑖

, 𝑡actE
𝑖

Actual start, end date of 𝑎𝑖
𝑠
plan
𝑖

, 𝑠act
𝑖

Planned, actual duration of 𝑎𝑖
Table 2: Table of key avail notation.

Delay. Delay 𝑑𝑖 is calculated using the difference between an
avail’s planned (𝑠𝑝𝑙𝑎𝑛

𝑖
) and actual (𝑠𝑎𝑐𝑡

𝑖
) duration . Here, 𝑠𝑝𝑙𝑎𝑛

𝑖

(similarly 𝑠𝑎𝑐𝑡
𝑖

) is calculated using the difference between the
planned (similarly actual) end date 𝑡𝑝𝑙𝑎𝑛𝐸

𝑖
(similarly 𝑡𝑎𝑐𝑡𝐸

𝑖
) and

the planned (similarly actual) start date 𝑡𝑝𝑙𝑎𝑛𝑆
𝑖

(similarly 𝑡𝑎𝑐𝑡𝑆
𝑖

).
That is, 𝑠𝑝𝑙𝑎𝑛

𝑖
= 𝑡

𝑝𝑙𝑎𝑛𝐸

𝑖
− 𝑡𝑝𝑙𝑎𝑛𝑆

𝑖
, 𝑠𝑎𝑐𝑡
𝑖

= 𝑡𝑎𝑐𝑡𝐸
𝑖
− 𝑡𝑎𝑐𝑡𝑆

𝑖
.

𝑑𝑖 = 𝑠𝑎𝑐𝑡𝑖 − 𝑠𝑝𝑙𝑎𝑛
𝑖

This definition of delay does not take into account the start
date and thus can be agnostic of late starting of the avail. Using
Table 1, 𝑑1 cannot be calculated as it is an ongoing avail, but
could be estimated once the model is trained. For avail id 𝑖 = 2,
𝑑2 = 405, as 𝑠𝑎𝑐𝑡2 − 𝑠𝑝𝑙𝑎𝑛2 = 745 − 340 = 405.

It follows that the delay of an avail is positive (or the avail
is tardy) when the avail takes longer to complete than planned
(i.e., 𝑠𝑎

𝑖
< 𝑠

𝑝

𝑖
), zero when an avail finishes exactly as planned (i.e.,

𝑠𝑎
𝑖
= 𝑠

𝑝

𝑖
), and negative when an avail is completed earlier than

planned (i.e., 𝑠𝑎
𝑖
> 𝑠

𝑝

𝑖
).

As shown in Figure 2, the avails under study have delays
ranging from 0 (on-time) to multiple years. While majority of
avails finish within a few months of their projected end dates,
Navy SME’s have identified that achieving an MAE of 30 days
for 80% of avails as a successful first milestone. Thus with this
pipeline we aim to achieve this standard.
Request for contract change (RCC). The Request for Contract
Change (RCC) is crucial for managing unplanned work and is
characterized by a timestamp, RCC type, and ShipWork List Num-
ber (SWLIN). The RCC type falls into three categories: Growth
(G), New Work (NW), or New Growth (NG), indicating whether
the work upgrades existing systems, creates new ones, or adds
distinct components. The SWLIN is an 8-digit hierarchical code
(Figure 1) that identifies specific physical locations on the ship.
The first digit represents the general subsystem, with subsequent
digits providing more specific module details of that subsystem.

Notationally, each RCC 𝑟 𝑗 ∈ 𝑅 associated with an avail 𝑎𝑖 is
represented as the following sextuple:

𝑟 𝑗 = ⟨ 𝑗, 𝑎𝑖 ,𝑤 𝑗 , 𝑡
𝑠
𝑗 , 𝑡

𝑒
𝑗 ,𝑚 𝑗 ⟩

Here, 𝑗 is an id showing type,𝑤 𝑗 is the 8 digit SWLIN , 𝑡𝑠
𝑗
is

creation date , 𝑡𝑒
𝑗
is settled date, and𝑚 𝑗 is settled amount (dollar

amount associated with RCC once settled). The creation and
settled date correspond to when the RCC begins and ends, and
the settled amount corresponds to the dollar amount associated
with the RCC. These base attributes alone provide numerous
ways of incorporating RCC trends into modeling as there are
generally hundreds of such RCCs per avail. Using Table 3, the
first RCC 𝑟1𝐺 associated with avail 𝑎𝑖 = 5, could be described as–
𝑗 = 1𝐺 (growth type), 𝑡𝑠

𝑗
= 3/22/20, 𝑡𝑒

𝑗
=6/16/20, 𝑤 𝑗=434-11-001,

𝑚 𝑗=8000.

avail
id RCC creation

date
settled
date status workspec amount

5 1G 3/22/20 6/16/20 settled 434-11-001 8000
5 32G 4/0820 7/9/20 settled 911-90-001 34520
5 76N 5/26/20 8/5/20 settled 804-11-001 56724
3 7NG 8/10/18 5/7/19 settled 983-11-001 22497
3 14N 11/8/18 11/29/18 settled 565-11-001 78339

Table 3: Example RCC table outlining key attributes and dates.

Logical time. In order to capture the temporal structure of this
problem, we define "logical time" 𝑡∗ for each physical time 𝑡 ,
representing the % of planned maintenance duration an avail 𝑎𝑖
is in at 𝑡 , as shown in Equation 1.

2

1015

𝑡∗ =
𝑡 − 𝑡𝑎𝑐𝑡𝑆

𝑖

𝑠
𝑝𝑙𝑎𝑛

𝑖

× 100 (1)

As an example, for avail ID 2, 𝑡 = 7/06/19 would represent a
logical time of 𝑡∗ = 18%.

We then discretize the entire planned maintenance duration
into a set of time windows, each of width x% (𝑥 is an input
parameter and could be set up per application need). This process
involves training ⌈ 100𝑥 ⌉ models to predict DoMD for 0% to 100%
planned maintenance duration.

Notation Interpretation
𝑟 𝑗 , 𝑎𝑖 RCC with ID 𝑗 , associated avail 𝑎𝑖
𝑤 𝑗 SWLIN code of RCC 𝑟 𝑗
𝑡𝑠
𝑗
, 𝑡𝑒

𝑗
,𝑚 𝑗 Creation date, settled date, associated cost of 𝑟 𝑗

Table 4: Table of key RCC notation.

Attributes of an avail. Attributes of an avail are time-invariant
(static) and time-dependent (dynamic): a. Static attributes 𝐹𝑆

𝑖
.

Static attributes generally predate the execution of the avail and
thus do not change across 𝑡∗. Some examples are the ship’s class,
the maintenance center, and any relevant planning features, such
as planned duration. 𝐹𝑆

𝑖
are integral to the "base prediction" of the

avail’s delay before the availability actually begins. b. Dynamic
attributes 𝐹𝐷

𝑖,𝑡∗ . These are primarily RCC attributes and change
as a function of 𝑡∗.

Problem 1. Overarching Problem. DoMD Queries. Given
a physical timestamp 𝑡 and its corresponding logical timestamp 𝑡∗,
a model gap interval 𝑥 , a set A𝑞 of input avails, produce estimates
of delay 𝑑𝑎𝑖 ,0, 𝑑𝑎𝑖 ,0+𝑥 , 𝑑𝑎𝑖 ,0+2𝑥 . . ., 𝑑𝑎𝑖 ,𝑡∗ as outputs at every 𝑥% of
planned avail duration from the beginning of maintenance upto 𝑡∗,
for each avail 𝑎𝑖 ∈ A𝑞 .

As an example, on 𝑡=4/12/2024, if 𝑥 = 10% and A𝑞 = 𝑎1, 6 dif-
ferent DoMDof𝑎1 are estimated starting from 0%, 10%, 20%, 30%, 40%,
and 50% of planned duration.

DoMD Queries are answered by training a set of 1 + ⌈100/𝑥⌉
supervised machine learning models over the logical timeline,
where model𝑚0+𝑖𝑥 estimates delay at 0 + 𝑖𝑥 (1 ≤ 𝑖 ≤ ⌈100/𝑥⌉)
over the logical timeline. A subset of avails identified as train set
(T) is used to train each model.

Problem 2. Constructing Modeling Pipeline. Identify opti-
mal parameter configuration 𝑥 ∈ 𝑋 defining the modeling pipeline
M(𝑥)– which include feature selection method 𝑠 ∈ 𝑆 which pro-
duce a set 𝐹 of features, a base model family and architecture
�̂� ∈ 𝑀 , a loss function for optimization 𝑙 ∈ 𝐿, a hyperparameter
determination method 𝑝 ∈ 𝑃 , and a ensembling technique 𝑓 ∈ F
for fusion across the timeline– utilizing the training set T to fit any
machine learning models and the validation setV to evaluate the
parameter settings, such that DoMD estimations can be produced at
all necessary logical times (1+ ⌈100/𝑥⌉. Formally, the optimization
problem is defined as:

𝑥 = argmin
(𝑠,𝑚,𝑙,𝑝,𝑓) ∈ (𝑆,𝑀,𝐿,𝑃,F)

∑︁
𝑡∗

∑︁
𝑎𝑖 ∈V

|𝑑𝑖−𝑓 ({𝑚(𝑡, 𝐹 (𝑠), 𝑙, 𝐻 (𝑝)}𝑡
∗
𝑡=0) |

(2)

𝑥 = (𝑠, �̂�, 𝑙, 𝑝, 𝑓)
where the final pipeline isM(𝑥) and the objective is to mini-

mize the sum of absolute errors between the true delay 𝑑𝑖 and the

predicted pr estimated delay 𝑓 ({𝑚(𝑡, 𝐹 (𝑠), 𝑙, 𝐻 (𝑝)}𝑡∗
𝑡=0), across the

validation setV over the entire timeline.

3 DOMD ESTIMATION FRAMEWORK
We study two key components: (a) Feature Engineering: This
involves the preparation and cleaning of raw data, followed by
the creation of a large number of effective features. The process
emphasizes efficiency, while ensuring that the features are also
relevant. (b) Modeling pipeline: This is formalized in Problem 2.

3.1 Feature Engineering
TASK 1. Feature Engineering. For every logical timestamp

𝑡∗, produce feature set 𝐹𝑖,𝑡∗ from the static and dynamic attributes,
𝐹𝑖,𝑡∗ = T ˜ (𝐹𝑆

𝑖
, 𝐹𝐷

𝑖,𝑡∗). T
˜ is the transformation function applied on

raw attributes to create features.

Across the entire avail set, the resulting features can be thought
of as a tensor across the avail, feature set, and logical time dimen-
sions. Each model is trained on a slice of that tensor generated
at discrete logical times 𝑡∗.
Transformation function T ˜ over RCCs. Given RCC 𝑟 𝑗 =<

𝑗, 𝑎𝑖 ,𝑤 𝑗 , 𝑡
𝑠
𝑗
, 𝑡𝑒
𝑗
,𝑚 𝑗 >, we first categorize the RCC based on at-

tributes like SWLIN, then within each group categorize the RCCs
as "active", "settled", or "created" which is a combination of the
prior two. We then utilize aggregation functions like average and
sum over attributes of the RCC (e.g. settled amount, duration, per-
cent active) to generate a large amount of features. For example,
a feature may measure the average settled amount for G RCC’s of
SWLIN first digit 1, and will be called "G1-AVG_SETTLED_AMT".
For this example, only "settled" RCC’s of type G and SWLIN code
1 will be included in the computation. See tech report [41] for
further details.

SELECT
RCC.ids ,
RCC.settled_amount ,
RCC.settled_date - RCC.creation_date AS

duration
FROM

RCC_table AS R
WHERE

creation_date <= t^* AND
settled_date <= t^* OR settled_date >= t

^*
GROUP BY

RCC_types , SWLIN_Level_no , ...

Figure 3: Status Query

A novelty of our proposed solution is to abstract feature en-
gineering through a generic retrieval task, refer to as Status
Query. Irrespective of the specific details of T ˜, Status Queries
are repeatedly invoked in the abstract form shown in Figure 3.

Section 4 discusses efficiency opportunities in processing Status
Queries.

3.2 Modeling Pipeline
Clearly, identifying all parameters ofM(𝑥) at the same time gives
rise to a prohibitively large combinatorial search space. This prob-
lem lends itself to the classical experiment design problem [1],
which is known to be NP-hard. For computational efficiency, we
employ a greedy modeling pipeline design, where we solve each
step locally one after the other. The problem is agnostic of the

3

1016

order of optimization, but we choose the order intelligently to
limit the size of the search space.

In order to do this sequential optimization, we assume default
parameter values for each before a parameter has been optimized.
As the default fusionmethod is no fusion, we drop the set notation
for most of the optimization definitions for simplicity.

3.2.1 Feature Selection

The problem of selecting an optimal subset of 𝑘 features is NP-
hard [22], we resort to greedy optimization methods to find an
approximate solution to Task 2.

TASK 2. Determining a feature selection method. Given
the set of all generated features 𝐹𝑖,𝑡∗ at timestamp 𝑡∗ and a set of
feature selection methods 𝑠 ∈ 𝑆 which assign scores to the feature
set, sort the feature set based on each score, and return the features
with the top 𝑘 scores, produce a set of 𝑘 feature as follows:

𝐹𝑖,𝑡∗ (𝑠) = 𝑠 (𝐹𝑖,𝑡∗), |𝐹𝑖,𝑡∗ (𝑠) | = 𝑘

Select an optimal scoring method which– with default model-
ing architecture 𝑚0, loss function 𝑙0, and hyperparameters 𝐻0–
minimizes the absolute validation error over the validation setV :

𝑠 = argmin
𝑠∈𝑆

∑︁
𝑡∗

∑︁
𝑎𝑖 ∈V

|𝑑𝑖 − 𝑓 0 (𝑚0 (𝑡∗, 𝐹𝑖,𝑡∗ (𝑠), 𝑙0, 𝐻0) |

We study both model-dependent (dependent on predictions
from the underlying choice of model,e.g., Recursive Feature Elim-
ination) and model-agnostic (independent of underlying model
choice e.g., Pearson Correlation Coefficient, Spearman’s Rank
Coefficient, Mutual Information Coefficient) state-of-the-art fea-
ture selection methods [8, 12, 15, 26, 30, 37]. Feature selection is
only applied to generated features, allowing for important static
features to be included by default.

3.2.2 Base Model and Modeling Architecture

The machine learning architecture for this effort must be struc-
tured to handle the complexity and high-dimensionality inherent
in the availability data, while also preventing overfitting. Our
goal is to first choose a base model family (Linear Regression,
Gradient Boosted Trees, etc.), and then deciding on their config-
uration (stacked or nested architecture, etc.).

Figure 4: Stacked modeling and recursive prediction.
TASK 3. Selecting the optimal machine learning archi-

tecture. Given a set of 𝑘 features 𝐹𝑖,𝑡∗ generated using the selected
scoring method 𝑠 , select a machine learning model family and
architecture from set𝑀– with default loss function 𝑙0, and hyper-
parameters 𝐻0– which minimizes the absolute delay prediction
error over the validation setV :

�̂� = argmin
𝑚∈𝑀

∑︁
𝑡∗

∑︁
𝑎𝑖 ∈V

|𝑑𝑖 − 𝑓 0 (𝑚(𝑡∗, 𝐹𝑖,𝑡∗ (𝑠), 𝑙0, 𝐻0) |

We also propose a stacked model architecture [3, 27] (Figure
4) to estimate delay at any given point over the logical time.
The stacked architecture employs a base or "static" model, which
takes as input all static features and several dynamic or "timeline"
models which take as input all features which change throughout
the course of the availability as well as predictions from the static
model.

3.2.3 Loss Function in Training

The choice of loss function directly influences the model’s ability
to minimize estimation error and adapt to data variance [13].
ℓ2[40] Loss is the default loss function but generally recognized
as being heavily sensitive to outliers, this loss function may not
be the optimal choice for a dataset with such high relative vari-
ance in the response. ℓ1[40] or absolute loss, on the other hand,
is also appropriate in this context as it penalizes absolute dif-
ferences between predicted and true values. Compared to ℓ2, ℓ1
loss is less sensitive to outliers. Huber loss[40] is an alternative
option, which provides a compromise between squared and ab-
solute losses. The Huber loss is less sensitive to outliers ℓ2 and
approaches ℓ1 when the error is large, making it particularly
well-suited for datasets with both small, frequent deviations and
occasional large outliers.

Formally, the Huber loss function is defined as follows (where
𝑥 = |𝑑𝑖 − 𝑑𝑖,𝑡∗ |):

𝑙𝛿 (𝑥) =
{
1
2𝑥

2 for |𝑥 | ≤ 𝛿,

𝛿 (𝑥 − 1
2𝛿) otherwise,

where 𝑥 is the difference between the predicted and actual
value, and 𝛿 is a threshold parameter that controls the point
where the loss transitions from quadratic to linear [13]. The
flexibility of 𝛿 allows for fine-tuning the model’s sensitivity to
outliers, ensuring robustness.

TASK 4. Determining a loss function. Given a set of fea-
tures 𝐹𝑖,𝑡∗ as well as a modeling architecture �̂� with default hyper-
parameters 𝐻0, select a loss function from a set 𝐿 which minimizes
the loss in the validation setV :

𝑙 = argmin
𝑙∈𝐿

∑︁
𝑡∗

∑︁
𝑎𝑖 ∈V

|𝑑𝑖 − 𝑓 0 (�̂�(𝑡∗, 𝐹𝑖,𝑡∗ (𝑠), 𝑙, 𝐻0)) |

3.2.4 Hyperparameter Tuning

We design a fully automated hyperparameter tuning (AutoHPT)
module which efficiently navigates the high-dimensional hyper-
parameter space using Bayesian chains. The key parameters to
optimize are described in detail in Section 5.

TASK5. Determining ahyperparameter selectionmethod.
Given a set of availabilities A, a hyperparameter selection method
𝑝 should take as input the set of data and utilize the modeling
architecture to return a set of hyperparameters as follows:

�̂� (𝑝) = 𝑝 (A)
Thus, the challenge is to produce a hyperparameter determina-

tion method 𝑝 from set 𝑃 which minimizes the prediction error on
the validation setV :

4

1017

𝑝 = argmin
𝑝∈𝑃

∑︁
𝑡∗

∑︁
𝑎𝑖 ∈V

|𝑑𝑖 − 𝑓 0 (�̂�(𝑡∗, 𝐹𝑖,𝑡∗ (𝑠), 𝑙, 𝐻 (𝑝))) |

We combine Tree-structured Parzen Estimation (TPE) and
Sequential Model-based Optimization (SMBO) [4][17][31] for
this, to optimize efficacy with minimal computational overhead.
We first determine the hyperparameter values, following which
we identify the number of optimization runs.

3.2.5 Fusion of Delay Estimation

Given that delays tend to compound over time, a key challenge
is how to effectively incorporate information from earlier logi-
cal time predictions into subsequent models. This introduces a
critical dependency across time steps, making the problem more
complex than a standard regression task. The goal of this task is
to identify the fusion approach, as formalized below.

TASK 6. Selecting ensembling method. Select an ensem-
bling function 𝑓 ∈ F – which at time 𝑡∗ takes as input all DoMD
predictions up to time 𝑡∗ and returns a single fused prediction– that
minimizes absolute error across the validation setV :

𝑓 = argmin
𝑓 ∈F

∑︁
𝑡∗

∑︁
𝑎𝑖 ∈V

|𝑑𝑖 − 𝑓 ({�̂�(𝑡, 𝐹𝑖,𝑡 , 𝑙, �̂�)}𝑡
∗
𝑡=0) |

We experiment with minimum fusion, which takes the minimum
prediction over the timeline and average fusion, which takes the
average of all predictions over the timeline. There are many other
possible ensembling methods but we leave these for future work.

4 EFFICIENT STATUS QUERY PROCESSING
We study 3 efficiency challenges of Status Query: how to search
over the logical timeline and retrieve RCC’s that satisfy dates,
how to compute the group by’s over SWLIN and RCC types, and
how to enable incremental computation over 𝑡∗?

The Status Query is repeated several times throughout the
pipeline to generate features and thus is directly related to the la-
tency of the pipeline. Low-latency queries are critical because in-
efficiencies in this stepwould be compounded, hindering decision-
making based on the most current data.

4.1 Designed Indexes
Note that a Status Query (Refer to Query in Figure 3) has two
predicates involving logical time - RCC creation date and RCC
settled date.

We present three designs for index structures R that allow
efficient retrieval over 𝑡∗. These designs are based on interval
trees, AVL balanced trees, and generic table joins, respectively.
These methods should store the start, end, and ID of each RCC
as shown:

(𝑡∗𝑠𝑡𝑎𝑟𝑡 , 𝑡∗𝑒𝑛𝑑 , 𝐼𝐷)
They should also allow for the querying of the following sets

of RCC’s at any specified logical time step.

𝑅𝐴𝑡∗ = R[point query @ 𝑡∗] (3)

𝑅𝑆𝑡∗ = R[overlap query @ [− inf, 𝑡∗)] (4)

𝑅𝐶𝑡∗ = union(𝑅𝐴𝑡∗ , 𝑅
𝑆
𝑡∗) (5)

𝑅𝑁𝑡∗ = difference(𝑅, 𝑅𝐶𝑡∗) (6)
The interval tree is used to hold the RCC duration (.e., the

difference between the settled and creation date of RCCs) and

allows the efficient search of all intervals that overlap with any
given interval or point. These trees have an initial creation time
of𝑂 (𝑛 log𝑛) and takes𝑂 (𝑛) space. 𝑛 corresponds to unique RCC
intervals, which is𝑂 (|𝑅𝐶𝐶 |). After creation, interval trees may be
dynamic, allowing for efficient insertion and deletion in𝑂 (log𝑛)
time [32].

We also consider the AVL tree index as an alternative. AVL
trees are self balancing binary search trees designed for efficient
searching of RCCs over the logical timeline. Its look up, insertion,
and deletion time are also similar to that of an interval tree. We
utilize one AVL tree for start times and another for end times to
allow for efficient maintenance of the index.

A naive index, on the other hand, joins the avail table with the
RCC table, stores it, and performs subsequent sorting, as needed.
Theoretically, this cost 𝑂 (|𝑅𝐶𝐶 |) time and 𝑂 (|𝑅𝐶𝐶 |) space.

4.2 Status Query Processing Algorithm
Algorithm StatusQ (Algorithm 1) is designed to process Status
Queries containing group by’s and logical timestamp. It lever-
ages the group by index structures RCC-Type-Tree R and SWLIN
tree ST to retrieve the subtree that satisfies the group by pred-
icates. Then, it uses the logical times based index structures T
to retrieve RCC’s that satisfy 𝑡∗ for each node 𝑀 ∈ 𝑅𝑀 . It also
makes use of incremental computation, as we discuss later.

Algorithm 1 Algorithm StatusQ

Require: 𝑡∗: Status Query Q, RCC-Type-Tree T , SWLIN tree
ST , 𝐴: avails table, Logical time index structure R

Ensure: 𝑅𝑀 : subtree of hierarchies specified in the Group By
conditions,𝑅𝐶

∗
𝑡 : RCC results produced according to the Status

Query

𝑅𝑀 ← Group Bys(T ,ST)
for all nodes𝑀 in 𝑅𝑀 do

𝑅𝐶
𝑡∗ ← R(𝑡

∗)processed according to index
𝑅𝐶
∗
𝑡 ← {𝑅𝐶∗𝑡 ∩𝐴}

end for

4.3 Incremental Computation
Recall Problem 1, where the goal is to produce estimates of delay
of an avail 𝑎𝑖 at 0+𝑥 , 0 + 2𝑥 , . . ., upto 𝑡∗ as outputs - i.e., estimate
delay at every 𝑥% of planned avail duration from the beginning of
maintenance upto 𝑡∗. This requirement translates to performing
repeated Status Queries progressively over the logical timeline,
such that between two consecutive logical timestamps (e.g., 0, 0+
𝑥, 0 + 2𝑥, ..) there is only an additional 𝑥% of additional logical
time for which Status Query predicates are to be retrieved. A
naive approach would be to ignore the previous computations
performed upto 0+ (𝑗)𝑥 and do everything from scratch at 0+ (𝑗 +
1) ∗ 𝑥 . Algorithm StatusQ reuses 𝑆𝑡𝑎𝑡𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑡∗

𝑥 𝑗
) containing

Status Query results upto time 𝑡∗
𝑥 𝑗

and only invokes Status
Query for a much shorted logical time interval (𝑗, 𝑗 + 1) ∗𝑥 when
𝑡∗ = (𝑗 + 1) ∗ 𝑥 .

5 EXPERIMENTAL EVALUATION
The implementations and experiments are done using Python
3.11 on a MacOS Ventura, 8GB RAM, 512GB SSDM3 Silicon Chip,
8-core CPU, 10-core GPU. Results are presented as the average
of 3 runs.

5

1018

5.0.1 Datasets

The real data comes from the Navy Maintenance data (NMD) and
contains two large tables. The avail table contains availability
information of the ships and other details. The RCC table contains
RCC information of those avails. Table 5 has further details.
Synthetic datasets. In addition to that, a synthetic dataset is

Dataset # Rows Columns

Avail 190 73
RCC 52,959 187

Table 5: Statistics of the real dataset

created for the RCC table, where the temporal distribution of the
RCCs are kept intact - only the number of RCCs of each type and
SWLIN is increased by x folds 1

5.1 Scalability Experiments
We evaluate the scalability of Status Query presented in Sec-
tion 3.
Implemented Algorithms We implement naive solution (of-
fered by Pandas merge library[42]), and compare that with the
indexes proposed in Section 4.
Measures. We measure indexing creation cost (memory and
time), as well as query processing cost.
5.1.1 Index Creation Cost
We measure the index creation time (in seconds) as the running
time of the index structures plus processing time that would not
be necessary without the indexes. We also measure the memory
footprint of the proposed indexing method.

Dataset Scaling Factor
Memory Usage (MB)

Pandas
Merge

AVL
Tree

Interval
Tree

Original 57.3 28.1 29.6
5x 274.7 137.6 146.4
10x 547.8 273.8 285.3
15x 820.8 410.0 427.0
20x 1090.0 556.1 578.5

Table 6: Index construction cost considering space.

Figure 5a and Table 6 show these results with increasing size of
RCCs (20x denotes 20 × 52, 959), the AVL tree turns out to be the
winner unanimously benefiting from significantly lower creation
time and memory utilization compared to the other indexes. AVL
tree exhibits an order of magnitude reduction in index creation
time and the twofold reduction in memory utilization for the
AVL tree compared to the naive solution.

The actual indexing time of the interval tree takes longer than
its theoretical runtime. Upon further investigation, we realize
that this mismatch is purely due to implementation differences.
Both AVL tree and Pandas merge methods are optimized for C
and Cython, while there is no such existing implementation for
interval tree. We leave this exploration for further work.
5.1.2 Query Processing Cost
Figure 5b presents the query processing time, whereas, Figure 5c
shows the index creation plus query processing time. As depicted
in Figure 5b, the AVL approach with incremental computation
enjoys a 5x increase in runtime over the Pandas Merge method.
This is massively important in developing a scalable data science
1The code and data is subject to stringent controls of the US govt and
can not be shared publicly.

pipeline, becuase DoMD queries must be answered with the least
latency. Likely for reasons mentioned in the previous section, the
interval tree implementation does diverge in runtime from its
expected behavior. These figures corroborate the effectiveness
of our indexing techniques. Incorporating this approach allows
DoMD predictions to be generated with a low latency and a small
memory footprint.

5.2 Modeling Experiments
In this section, we present the experiments carried out to optimize
the parameters of the modeling pipeline.

5.2.1 Experimental Set up

Data Splits. We first carve out a test set of 30% recent avails
as test set. From the rest of the 70% of avails, we take a random
sample with 25% of the avails used for validation and 75% used
for training. We utilize the validation set to set various pipeline
parameters and the training set to fit the machine learning mod-
els.
Feature Set.We deal with 8 static features that do not change
over time, such as ship class, RMC id, ship age, etc. We have 1490
RCC-dependent features.
Implemented Algorithms.We implement Recursive Feature
Elimination (RFE), Pearson Correlation, Spearman Rank, Mutual
Information, and Random Selection.

The machine learning models used to model DoMD are ex-
treme Gradient Boosting Trees (XGBoost) [36] and Linear Re-
gression. For stacking, we implement stacked and non-stacked
architectures - the stacked architecture develops base models
with static features and estimation delay only based on those.
Then, it uses that estimated value as a feature of another model
which utilizes RCC dependent features. The non-stacked archi-
tecture combines both static and RCC dependent features inside
the same model. For fusion, we implement aggregation functions
such as average and minimum, and compare that when no fusion
is done.
Evaluation Measures. The efficacy of the framework is vali-
dated capturing different aspects of quality, such as general error
magnitude (MAE), error sensitivity to larger deviations (MSE,
RMSE), and the overall goodness-of-fit (𝑅2) [12].
Pertinent Parameters. Feature selection methods: Recursive
Feature Elimination, Pearson Correlation, Spearman Rank, Mu-
tual Information, and Random Selection. Feature set sizes (𝑘): 20
to 100 features, incremented by 10 features. Base machine learn-
ing models: XGBoost and Linear Regression. Machine learning
modeling architectures: stacking and no stacking structures. Loss
functions: ℓ1, ℓ2, Huber loss. Number of hyperparameter tuning
optimization runs: [10, 20, 30, 40, 50, 100, 200]. Fusion technique:
no fusion, min fusion, average fusion.

5.2.2 Determining Modeling Pipeline Parameters

The following study details a systematic experimental process to
determine different parameter values by measuring the efficacy
of the trained models over the validation set using MAE.
Finding Feature Selection Method and Feature Set size. Fig-
ure 6a demonstrates the efficacy of different feature selection
methods for increasing feature set sizes, denoted by 𝑘 . These
include Recursive Feature Elimination (RFE), Pearson Correla-
tion, Spearman Rank, Mutual Information, and Random Selection.
Pearson Correlation method consistently achieves the best MAE
throughout the entire planned duration and reaches its optimal

6

1019

10
3

10
4

10
5

10
6

10
7

Data Size

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Ti
m

e
(s

ec
on

ds
)

Pandas Merge
AVL
IntervalTree

(a)

10
3

10
4

10
5

10
6

10
7

Data Size

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Ti
m

e
(s

ec
on

ds
)

Pandas Merge
AVL
IntervalTree

(b)

10
3

10
4

10
5

10
6

10
7

Data Size

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Ti
m

e
(s

ec
on

ds
)

Pandas Merge
AVL
IntervalTree

(c)

Figure 5: Scalability of indexing techniques (a) index creation time, (b) Query processing time, and (c) total time.

efficacy at 𝑘 = 60 features. Consequently, we select Pearson Cor-
relation with 𝑘 = 60 as the optimal feature selection approach.

Identifying Base Model We compare XGBoost with Linear
Regression. The latter is tuned with Elastic-Net - which uses
both ℓ1 and ℓ2 for regularization. These two model families are
selected as primary candidates to the nature of the problem, and
we choose Elastic Net regression as a simpler model family, and
XGBoost as a more powerful and SOA choice.

We train these models using 𝑘 = 60 different features, where
the features are selected using Pearson Correlation. The results
in Figure 6b demomstrate XGBoost as the preferred base model,
given its ability to handle non-linear relationships and complex
interactions within the data.

Identifying the Effect of Stacking Figure 6c presents the MAE
of validation set, comparing stacked vs. non-stacked architec-
ture, where the base models are XGBoost, where 𝑘 = 60 best
features are selected using Pearson Correlation method for each
model over the logical timeline. The results demonstrate that non-
stacked architecture outperforms its counterpart. Consequently,
we select non-stacked architecture as the winner from this stage.

Identifying Loss Functions In this experiment, we retain the
previously chosen model parameters (XGBoost, no stacking, Pear-
son correlation with 60 features) but evaluate the effectiveness of
different loss functions. In figure 6d, we assess each loss function’s
impact on the Mean Absolute Error (MAE) of the validation set.
Squared Error (ℓ2) heavily penalizes outliers, making it highly sen-
sitive to outliers in contrast to Absolute Error (ℓ1) which provides
a more stable estimation by reducing the influence of outliers.
Serving as a middle ground, Pseudo Huber Error loss function
combines the benefits of both ℓ1 and ℓ2 by applying a smoother
penalty curve, especially when tuning its threshold parameter
𝛿 . To optimize Pseudo Huber’s efficacy, we tune its 𝛿 parameter
to 𝛿 = 18, which demonstrates a consistent improvement. Thus,
we move proceed the Pseudo Huber Loss function with 𝛿 = 18
as the loss function from this point on.

Identifying Hyperparameters For hyperparameter tuning, we
employ a Bayesian optimization to fine-tune XGBoost’s hyper-
parameters. In our study, we keep the currently chosen model
parameters consistent, vary # trails, and observe their impact on
MAE. Table 6e shows that increased # trials results in a declining
MAE, which may indicate overfitting, where the model becomes
overly complex, ultimately impairing its ability to generalize to
new and unseen data. As a result, we decide 30 to be the number
of trails for each model and decide the hyperparameter values
accordingly.

Fusing Multiple ModelsWe explore how the trained models
fused considering different aggregation or “fusion” behave on
the validation set. Figure 6f presents those results. Based on this,

we select average fusion as the preferred way of performing this
step.
Selected modeling pipeline parameters The following param-
eters are selected overall: (1) Pearson Correlation for selecting
𝑘 = 60 features for each model.(2) eXtreme Gradient Boosting
(XGBoost) as base model. (3) Non-stacked architecture. (4) Pseudo
Huber (𝛿 = 18) loss function.(5) Obtain hyperparameters after 30
trails. (6) Average as the fusion technique.
5.2.3 Evaluation on Test Set

Table 7 shows MAE values at different percentiles. On an average,
for 80% of avails, the MAE is 19.99 days, for 90% of avails that is
27.52 days and for all avails in the test set is below 40 days. These
results demonstrate the effectiveness of the proposed solutions.

5.2.4 MAE, MSE, RMSE, 𝑅2

Table 7 also presents MAE, RMSE, MSE, and 𝑅2 measures on
the test set. These results demonstrate, on an average, our cur-
rent DoMD estimation is off by 38.97 days (MAE), giving rise
to MSE of 3159.96 (𝑑𝑎𝑦𝑠2), RMSE of 56.14 days. Our produced
pipeline generates a suite of predictors explaining over 88% of
the variation.

Logical Time (%) Qualitative measures
MAE
80th

MAE
90th

MAE
100th MSE RSME 𝑅2

0 26.82 34.44 43.23 3210.11 56.66 0.88
10 21.62 30.06 41.90 3622.78 60.19 0.86
20 20.00 28.90 42.00 3926.44 62.66 0.85
30 17.51 25.69 38.59 3447.48 58.72 0.87
40 16.05 23.65 35.72 2973.63 54.53 0.89
50 17.86 25.22 36.80 2953.07 54.34 0.89
60 19.26 26.40 37.63 2933.56 54.16 0.89
70 20.51 27.37 38.45 2958.67 54.39 0.89
80 20.21 27.14 38.28 2943.48 54.25 0.89
90 20.20 27.17 38.29 2933.11 54.16 0.89
100 19.90 26.69 37.80 2857.26 53.45 0.89

Average 19.99 27.52 38.97 3159.96 56.14 0.88

Table 7: Estimation quality over timeline on test set

5.2.5 Summary of Results

The evaluation on the test set highlights the following:
Robust estimation. The MAE remains consistently below 43.23
days across all avails, with lower values achieved for 80% and 90%
of the data. This reflects the performance of the chosen configura-
tions of our modeling pipeline, which displays reliable accuracy
across different percentiles.
Interpretability of Models. Beyond achieving a high average
𝑅2 of 0.88, our framework is designed to provide interpretable
outputs that facilitate user understanding and decision-making.
To assess user acceptability, we engaged subject matter experts
(SMEs) in the Navy maintenance domain to evaluate the model’s
predictions. This evaluation includes a review of the top con-
tributing features for each availability, enabling SMEs to validate

7

1020

20 30 40 50 60 70 80 90 100
Number of Features

60.0

62.5

65.0

67.5

70.0

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
da

ys
)

RFE
Pearson Correlation
Spearman Rank
Mutual Information
Random selection

(a) Efficacy varying feature selection methods & 𝑘

at 50% planned duration.

0 10 20 30 40 50 60 70 80 90 100
Percentage of Planned Duration

60

80

100

120

140

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
da

ys
)

Linear Regression
XGBoost

(b) Efficacy varying base models.

0 10 20 30 40 50 60 70 80 90 100
Percentage of Planned Duration

60

65

70

75

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
da

ys
)

Not stacked
Stacked

(c) Efficacy varying stacking vs. non-stacking.

0 10 20 30 40 50 60 70 80 90 100
Percentage of Planned Duration

70

80

90

100

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
da

ys
)

Squared Error
Pseudo Huber Error
Absolute Error

(d) Efficacy varying loss functions.

Trials Validation MAE (in days)

10 86.49
20 71.65
30 69.22
40 71.00
50 72.60
100 73.74
200 78.69

(e) Efficacy varying number of trials in hyperpa-
rameter tuning at 50% plannned duration.

0 10 20 30 40 50 60 70 80 90 100
Percentage of Planned Duration

60

65

70

75

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
da

ys
)

Average fusion
None fusion
Minimum fusion

(f) Efficacy varying fusion techniques

Figure 6: Experiments to determine modeling pipeline.

whether the most influential factors align with their domain
expertise.

Specifically, our model surfaces the top-5 contributing fea-
tures for each availability, allowing users to assess the primary
drivers of predicted delays. This feature importance analysis en-
sures transparency and supports actionable insights, as SMEs
can trace the rationale behind each prediction. Initial qualita-
tive feedback suggests that this interpretability aids in practical
decision-making, reinforcing the model’s usability in real-world
naval maintenance planning.
Balanced Error Metrics. The relatively low MSE and RMSE
suggest that our solution strikes a good balance between mini-
mizing errors and maintaining overall accuracy.
Effective temporal estimation. Errormeasures stabilize through
the planned duration, confirming that the proposed framework
is robust over timeline.

6 RELATEDWORK
Our work falls under the umbrella of data management for ma-
chine learning for specialized application domain. Data science
pipelines have been designed for specialized application domains
in the past, including healthcare, e-commerce, manufacturing,
software engineering, to name a few [5, 7, 16, 18, 25, 28]. However,
there is no trivial adaptation of these frameworks to our problem
due to two stark reasons - a. the data is purely longitudinal and
obfuscated, highly wide, sparse, and the number of instances are
small. b. the designed models need to be interpretable to the navy
users.

This proposed work also relates to Automated Machine Learn-
ing or AutoML [10, 19–21, 24, 35]. The field of automated ma-
chine learning is rich with examples of work that seek to auto-
mate parts of the creation of data science pipelines, such as [11,
23, 33]. For example, TPOT [24] uses tree-based optimization and
genetic programming to optimize a series of feature preproces-
sors and machine learning models. However, in our setting, a
fully automated approach is neither necessary nor satisfactory
for several reasons. First, the dataset used in this work is not only

short yet wide but is also obfuscated to protect sensitive infor-
mation, creating challenges that are not typical in most AutoML
applications. Second, feature engineering involving RCCs require
intricate domain knowledge, which fully automated approach
can not achieve.

In addition to AutoML, we draw heavily from the field of
feature engineering [2, 34, 39]. Feature engineering is essen-
tial for extracting meaningful insights from high-dimensional
datasets, and while previous works [2, 34, 39] provide signifi-
cant inspiration, they are not directly applicable in our context.
The complexity of Navy ship maintenance data requires the de-
velopment of novel, domain-specific features that address both
the temporal and hierarchical structure of the data. Our feature
set is uniquely designed to capture the nuances of Request for
Contract Change (RCC) types, milestone delays, and dynamic
progress updates, which are essential for predicting delays in
ship availability.

7 CONCLUSION & FUTUREWORK
This work proposes a computation framework to estimate Days
of Maintenance Delay (DoMD) of US Navy ships at anytime
during the actual maintenance. Our application involves a small
number of samples and a very high dimensional time-dependent
feature space. We present a new class of predictive maintenance
framework and investigate several data management challenges.

We believe the research challenges investigated in the work
are likely to adapt to other application domains as well, including
aircraft and spacecraft maintenance, manufacturing applications,
such as, maintaining pumps, motors, conveyor belts, as well as
automotive and rail. As an ongoing work, we are studying the
feasibility of our solution on other manufacturing data.

ACKNOWLEDGMENT
The research conducted by NJIT researchers is funded through
grants provided by the Office of Naval Research, with award
numbers N000142112966 and N000142412466.

8

1021

REFERENCES
[1] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. 2017. Near-

optimal design of experiments via regret minimization. In International Con-
ference on Machine Learning. PMLR, 126–135.

[2] Michael R Anderson and Michael Cafarella. 2016. Input selection for fast
feature engineering. In 2016 IEEE 32nd International Conference on Data Engi-
neering (ICDE). IEEE, 577–588.

[3] Senjuti Basu Roy, Ankur Teredesai, Kiyana Zolfaghar, Rui Liu, David Hazel,
Stacey Newman, and Albert Marinez. 2015. Dynamic hierarchical classifica-
tion for patient risk-of-readmission. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining. 1691–1700.

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
2011. Algorithms for Hyper-Parameter Optimization. In Advances
in Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K.Q. Weinberger (Eds.), Vol. 24. Curran Asso-
ciates, Inc. https://proceedings.neurips.cc/paper_files/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[5] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The art and
practice of data science pipelines: A comprehensive study of data science
pipelines in theory, in-the-small, and in-the-large. In Proceedings of the 44th
International Conference on Software Engineering. 2091–2103.

[6] George.E.P. Box and GwilymM. Jenkins. 1976. Time Series Analysis: Forecasting
and Control. Holden-Day.

[7] Xiaoyu Chen and Ran Jin. 2018. Data fusion pipelines for autonomous smart
manufacturing. In 2018 IEEE 14th international conference on automation science
and engineering (CASE). IEEE, 1203–1208.

[8] Xue-wen Chen and Jong Cheol Jeong. 2007. Enhanced recursive feature elimi-
nation. In Sixth international conference on machine learning and applications
(ICMLA 2007). IEEE, 429–435.

[9] Peter Diggle. 2002. Analysis of longitudinal data. Oxford university press.
[10] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer,

and Frank Hutter. 2020. Auto-sklearn 2.0: The next generation. arXiv preprint
arXiv:2007.04074 24 (2020), 8.

[11] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated
Machine Learning. In Advances in Neural Information Processing Systems,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

[12] Jiawei Han, Micheline Kamber, and Jian Pei. 2012. Data mining concepts and
techniques third edition. University of Illinois at Urbana-Champaign Micheline
Kamber Jian Pei Simon Fraser University (2012).

[13] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of
Statistical Learning. Springer New York Inc., New York, NY, USA.

[14] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning
algorithm for deep belief nets. Neural computation 18, 7 (2006), 1527–1554.

[15] Nguyen Thi Thao Ho, Torben Bach Pedersen, et al. 2022. Efficient temporal
pattern mining in big time series using mutual information. Proceedings of
the VLDB Endowment 15, 3 (2022), 673–685.

[16] Erik Johannes Husom, Simeon Tverdal, Arda Goknil, and Sagar Sen. 2022.
UDAVA: An unsupervised learning pipeline for sensor data validation in man-
ufacturing. In Proceedings of the 1st International Conference on AI Engineering:
Software Engineering for AI. 159–169.

[17] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential
model-based optimization for general algorithm configuration. In Proceedings
of the 5th International Conference on Learning and Intelligent Optimization
(Rome, Italy) (LION’05). Springer-Verlag, Berlin, Heidelberg, 507–523. https:
//doi.org/10.1007/978-3-642-25566-3_40

[18] Resham Jhangiani, Doina Bein, and Abhishek Verma. 2019. Machine learning
pipeline for fraud detection and prevention in e-commerce transactions. In
2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communi-
cation Conference (UEMCON). IEEE, 0135–0140.

[19] Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengx-
iang Zhai, and Kalyan Veeramachaneni. 2021. Automl to date and beyond:
Challenges and opportunities. ACM Computing Surveys (CSUR) 54, 8 (2021),
1–36.

[20] Teddy Lazebnik, Amit Somech, and Abraham Itzhak Weinberg. 2022. Substrat:
A subset-based optimization strategy for faster automl. Proceedings of the
VLDB Endowment 16, 4 (2022), 772–780.

[21] Erin LeDell and Sebastien Poirier. 2020. H2o automl: Scalable automatic
machine learning. In Proceedings of the AutoML Workshop at ICML, Vol. 2020.
ICML San Diego, CA, USA.

[22] George Nemhauser, Laurence Wolsey, and M. Fisher. 1978. An Analysis of
Approximations for Maximizing Submodular Set Functions—I. Mathematical
Programming 14 (12 1978), 265–294. https://doi.org/10.1007/BF01588971

[23] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore.
2016. Evaluation of a Tree-based Pipeline Optimization Tool for Automating
Data Science. In Proceedings of the Genetic and Evolutionary Computation Con-
ference 2016 (Denver, Colorado, USA) (GECCO ’16). Association for Computing
Machinery, New York, NY, USA, 485–492. https://doi.org/10.1145/2908812.
2908918

[24] Randal S Olson and Jason H Moore. 2016. TPOT: A tree-based pipeline
optimization tool for automating machine learning. InWorkshop on automatic
machine learning. PMLR, 66–74.

[25] Randal S Olson, Ryan J Urbanowicz, Peter C Andrews, Nicole A Lavender,
La Creis Kidd, and Jason H Moore. 2016. Automating biomedical data sci-
ence through tree-based pipeline optimization. In Applications of Evolutionary
Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal,
March 30–April 1, 2016, Proceedings, Part I 19. Springer, 123–137.

[26] Patrick Pantel, Andrew Philpot, and Eduard Hovy. 2005. Aligning database
columns using mutual information. In Proceedings of the 2005 national confer-
ence on Digital government research. Citeseer, 205–210.

[27] Bohdan Pavlyshenko. 2018. Using stacking approaches for machine learning
models. In 2018 IEEE second international conference on data stream mining &
processing (DSMP). IEEE, 255–258.

[28] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Jordan Henkel, Matteo Interlandi,
Subru Krishnan, Brian Kroth, Venkatesh Emani, Wentao Wu, Ce Zhang, et al.
2022. Data science through the looking glass: Analysis of millions of github
notebooks and ml. net pipelines. ACM SIGMOD Record 51, 2 (2022), 30–37.

[29] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat Storer. 2017.
Littletable: A time-series database and its uses. In Proceedings of the 2017 ACM
International Conference on Management of Data. 125–138.

[30] Md Abdus Salam, Senjuti Basu Roy, and Gautam Das. 2023. Efficient approxi-
mate top-k mutual information based feature selection. Journal of Intelligent
Information Systems 61, 1 (2023), 191–223.

[31] Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.
Optuna: A Next-generation Hyperparameter Optimization Framework. CoRR
abs/1907.10902 (2019). arXiv:1907.10902 http://arxiv.org/abs/1907.10902

[32] Jens M Schmidt. 2009. Interval stabbing problems in small integer ranges.
In Algorithms and Computation: 20th International Symposium, ISAAC 2009,
Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings 20. Springer, 163–
172.

[33] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann,
Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska.
2019. Democratizing Data Science through Interactive Curation of ML
Pipelines. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1171–1188. https://doi.org/10.1145/3299869.
3319863

[34] Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou.
2020. Safe: Scalable automatic feature engineering framework for industrial
tasks. In 2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 1645–1656.

[35] Micah J Smith, Carles Sala, James Max Kanter, and Kalyan Veeramachaneni.
2020. The machine learning bazaar: Harnessing the ml ecosystem for effective
system development. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 785–800.

[36] Chen Tianqi and Guestrin Carlos XGBoost. [n. d.]. A Scalable Tree Boosting
System. Proceedings of the 22nd ACM SIGKDD 1143 ([n. d.]), 785–794.

[37] Michael Vollmer, Ignaz Rutter, and Klemens Böhm. 2018. On Complexity and
Efficiency of Mutual Information Estimation on Static and Dynamic Data.. In
EDBT. 49–60.

[38] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin A McGrail, Peng Wang, et al. 2020. Apache
IoTDB: Time-series database for internet of things. Proceedings of the VLDB
Endowment 13, 12 (2020), 2901–2904.

[39] Kafeng Wang, Pengyang Wang, and Chengzhong Xu. 2023. Toward Efficient
Automated Feature Engineering. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 1625–1637.

[40] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. 2020. A comprehensive survey
of loss functions in machine learning. Annals of Data Science (2020), 1–26.

[41] Gerald White et al. 2024. Tech Report. https://www.dropbox.com/
scl/fo/r0qz3fbcomszklt3up4n0/ABat292W-1YGz94-Zr3EBqw?rlkey=
tiwhid0ukpgx0wf6ubnotng6k&dl=0.

[42] Art Yudin and Art Yudin. 2021. Data Analysis with Pandas. Basic Python for
Data Management, Finance, and Marketing: Advance Your Career by Learning
the Most Powerful Analytical Tool (2021), 93–150.

[43] Zhi-Hua Zhou. 2012. Ensemble Methods: Foundations and Algorithms (1st ed.).
Chapman & Hall/CRC.

9

1022

