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ABSTRACT
Composite activity recognition systems reason over streams of
low-level, symbolic events in order to detect instances of com-
posite activities, based on their formal definitions. Composite
activity definition construction is a highly involved task, as these
definitions often involve numerous spatio-temporal constraints,
while labels that may be used for learning them automatically
are hard to obtain. To address this issue, we propose a method
that generates composite activity definitions from natural lan-
guage descriptions using pre-trained Large Language Models
(LLMs). In order to assess the quality of LLM-generated defini-
tions, we propose a novel similarity metric, which reflects the
human effort required to correct them. We present a thorough ex-
perimental evaluation of our approach on the maritime domain,
demonstrating its effectiveness.

1 INTRODUCTION
Composite event recognition (CER) involves the detection of
composite activities by means of temporal pattern matching over
streams of low-level, symbolic events [2, 17, 18, 38]. CER re-
quires a formal language, determining the syntax of the temporal
patterns defining composite activities. Consider, e.g., maritime
situational awareness, where the CER task is to report dangerous,
illegal and suspicious vessel activities with minimal latency [5].
In order to detect illegal fishing, we may use a pattern specifying
that a vessel performs several consecutive turns while sailing in
an environmentally protected area at a speed that is typical for
fishing. Constructing such a pattern is an involved task, as we
need to combine several simpler vessel activities, i.e., entering an
area and making a turn, together with spatial information, i.e.,
the locations of protected areas, and background knowledge, i.e.,
the typical velocity of a fishing vessel.

The construction of definitions for composite activities, such as
illegal fishing, introduces further challenges. Composite activity
definitions should be specified in a formal language with unam-
biguous semantics; formalising a natural language description of
an activity definitionmay be an arduous and error-prone task that
demands specialised programming skills. Furthermore, methods
that learn composite activity definitions, such as [16, 22, 28, 29],
require big datasets for training, including a (partial) labeling of
composite activity instances. Due to the inherent infrequency of
composite activities, as well as privacy and security concerns re-
garding the dissemination of such data in sensitive domains (con-
sider, e.g., the cases of illegal activities in the maritime domain),
labels of composite activity instances are mostly unavailable,
prohibiting the use of such learning techniques.

To address these issues, we propose a method that generates
composite activity definitions from natural language descrip-
tions using pre-trained Large Language Models (LLMs). LLMs
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have proven effective semantic parsers, transforming natural
language descriptions into a formal form [19, 20, 32, 37, 39]. We
generate composite activity definitions in the language of the
“Run-Time Event Calculus” (RTEC)1, which represents such def-
initions with logic programming rules [4, 27, 34]. Contrary to
automata-based approaches for CER, such as [1, 9, 18, 40], RTEC
supports definitions of relational composite activities with back-
ground knowledge. Unlike other logic-based frameworks, such
as [7, 8, 13, 35, 36], RTEC supports durative composite activities
that may be subject to the common-sense law of inertia, such as
illegal fishing, as well as activity hierarchies that pave the way for
caching. RTEC is an implementation of the Event Calculus, i.e., a
logic programming formalism for representing events and rea-
soning about their effects over time [24]. Contrary to other Event
Calculus-based frameworks [3, 6, 10, 14, 21, 30], RTEC is opti-
mised for CER by means of windowing and caching techniques,
and has proven highly efficient in real applications, including
maritime situational awareness [33] and commercial fleet man-
agement [34], outperforming competing systems [26, 27].

The reasoning abilities of LLMs, particularly in multi-step log-
ical reasoning tasks, remain constrained [12, 19, 20]. Such reason-
ing tasks become even more demanding when we need to reason
over sequences of events that evolve over time, like, e.g., streams
of vessel position signals. These shortcomings aside, LLMs are
increasingly able to generate formal language expressions, such
as SQL queries [15] and Answer Set Programming (ASP) spec-
ifications [20], based on natural language descriptions of these
expressions. Ishay et al. utilised LLMs with prompt engineer-
ing to obtain ASP solutions for logic puzzles [20]. Coppolillo et
al. fine-tuned lightweight LLMs for optimising ASP performance
in specific tasks [12]. ChatLogic incorporates iterative correction
modules to refine the generated code in order to enhance multi-
step logical reasoning [37]. ‘Chain-of-thought’ prompting often
improves the interpretability and consistency of LLM-generated
logic specifications [12, 23, 37].

Unlike the aforementioned approaches, we propose a prompt-
ing approach that enables LLMs to construct composite activity
definitions in the language of RTEC, which may be subsequently
used for reasoning over data streams, in order to detect complex
spatio-temporal phenomena of interest. Since LLMs are statistical
models, the definitions generated by this approach may include
errors, in the form of, e.g., syntactic mistakes or conditions with
undefined activities. To tackle this issue, we introduce an auto-
mated quantitative evaluation technique, assessing the quality of
LLM-generated definitions using a novel similarity metric that
reflects the human effort required to correct these definitions.
Thus, our approach extends qualitative error analyses [20, 39],
which rely solely on subjective interpretations.

Our contributions may then be summarised as follows. First,
we present a prompting method for constructing composite activ-
ity definitions in the language of RTEC using pre-trained LLMs.
Second, we propose a framework that evaluates the quality of the

1https://github.com/aartikis/rtec
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LLM-generated composite activity definitions using a novel simi-
larity metric. Third, we present a thorough empirical analysis on
maritime situational awareness using a wide range of LLMs and
real maritime data. The results show that our proposed approach
produces activity definitions that may be successfully used in
practice, as these achieve high predictive accuracy.

2 BACKGROUND: RTEC
RTEC is a formal, logic programming framework that extends the
Event Calculus with optimisation techniques for CER [4, 26, 27].

Syntax. The language of RTEC includes sorts for representing
time, instantaneous events and fluents, i.e., properties whose val-
ues may change over time. RTEC employs a linear time-line with
non-negative integer time-points. A ‘fluent-value pair’ (FVP)
F=V denotes that fluent F has value V . happensAt(E, T ) signi-
fies that event E occurs at time-point T . initiatedAt(F =V , T )
(resp. terminatedAt(F =V , T )) expresses that a time period during
which a fluent F has the value V continuously is initiated (ter-
minated) at T . holdsAt(F =V , T ) states that F has value V at T ,
while holdsFor(F =V , I ) expresses that F=V holds continuously
in the intervals included in list I .

A formalisation of the activity definitions of a domain in RTEC
is called event description. An event description may contain rules
defining two types of FVPs: ‘simple’ and ‘statically determined’.
A simple FVP is defined using a set of initiatedAt and terminatedAt
rules, and is subject to the commonsense law of inertia, i.e., an
FVP F=V holds at a time-point T , if F=V has been ‘initiated’ by
an event at a time-point earlier than T , and not ‘terminated’ by
another event in the meantime.

Example 2.1 (Within area). In maritime monitoring, an activity
may be disallowed in certain areas, e.g., fisheries restricted areas.
Thus, it is desirable to compute the intervals duringwhich a vessel
is in such an area. See the definition of a simple FVP below:

initiatedAt(withinArea(Vl,AreaType) = true, T ) ←
happensAt(entersArea(Vl,AreaID), T ),
areaType(AreaID,AreaType) .

(1)

terminatedAt(withinArea(Vl,AreaType) = true, T ) ←
happensAt(leavesArea(Vl,AreaID), T ),
areaType(AreaID,AreaType) .

(2)

terminatedAt(withinArea(Vl,AreaType) = true, T ) ←
happensAt(gapStart (Vl), T ) . (3)

withinArea(Vl,AreaType) is a Boolean fluent denoting that a ves-
selVl is in an area of typeAreaType, while entersArea(Vl,AreaID),
leavesArea(Vl,AreaID) and gapStart (Vl) are input events, derived
by the online processing of vessel position signals, and their spa-
tial relations with areas of interest. areaType(AreaID,AreaType)
is an atemporal predicate storing background knowledge re-
garding the types of areas in a dataset. Rules (1) and (2) state
that withinArea(Vl,AreaType) is initiated (resp. terminated) as
soon as vessel Vl enters (leaves) an area AreaID, whose type
is AreaType. Rule (3) expresses that withinArea(Vl,AreaType) is
terminated when there is a communication gap, i.e., when Vl
stops transmitting its position, and we become uncertain of its
whereabouts. ♦

Definition 2.2 (Syntax of Rules Defining Simple FVPs). Consider
a simple FVP F =V . The initiatedAt(F =V , T ) rules of the event

description have the following syntax:

initiatedAt(F =V , T ) ←
happensAt(E1, T ) [[, [not] happensAt(E2, T ), . . . ,
[not] happensAt(En, T ), [not] holdsAt(F1 =V1, T ), . . . ,
[not] holdsAt(Fk =Vk, T )]] .

The first body literal of an initiatedAt rule is a positive happensAt
predicate; this is followed by a possibly empty set, denoted by
‘[[ ]]’, of positive/negative happensAt and holdsAt predicates. ‘not’
expresses negation-by-failure [11], while ‘[not]’ denotes that ‘not’
is optional. All (head and body) predicates are evaluated on the
same time-point T . The bodies of terminatedAt(F =V , T ) rules
have the same form. ■

A statically determined FVP F =V is defined via a rule with
head holdsFor(F =V , I ). This rule computes the maximal inter-
vals during which F =V holds continuously by applying a set
interval manipulation operations, i.e., union_all, intersect_all and
relative_complement_all, on the maximal intervals of other FVPs.

Example 2.3 (Anchored and moored vessels). Consider the fol-
lowing definition of a statically determined FVP:

holdsFor(anchoredOrMoored (Vl) = true, I ) ←
holdsFor(stopped (Vl) = farFromPorts, Isf ),
holdsFor(withinArea(Vl, anchorage) = true, Ia),
intersect_all( [Isf , Ia], Isfa),
holdsFor(stopped (Vl) = nearPorts, Isn),
union_all( [Isfa, Isn], I ) .

(4)

anchoredOrMoored (Vl) is a Boolean statically determined fluent,
defined in terms of three other FVPs: stopped (Vl) = farFromPorts,
stopped (Vl) = nearPorts andwithinArea(Vl, anchorage) = true. The
multi-valued fluent stopped (Vl) expresses the periods during
which vessel Vl is idle near some port or far from all ports. Rule
(4) derives the intervals during which vessel Vl is both stopped
far from all ports and within an anchorage area, by applying the
intersect_all operation on the lists of maximal intervals Isf and
Ia. The output of this operation is list Isfa. Subsequently, list I
is derived by applying union_all on lists Isfa and Isn. In this way,
list I contains the maximal intervals during which vessel Vl has
stopped near some port or within an anchorage area. ♦

Definition 2.4 (Syntax of Rules Defining Statically Determined
FVPs). The definition of statically determined FVP F =V is a rule
that has the following syntax:

holdsFor(F =V , In+m) ←
holdsFor(F1 =V1, I1) [[, holdsFor(F2 =V2, I2), . . .
holdsFor(Fn =Vn, In), intervalConstruct(L1, In+1), . . .
intervalConstruct(Lm, In+m)]] .

The first body literal of a holdsFor rule defining F =V is a holdsFor
predicate expressing the maximal intervals of an FVP other than
F =V . This is followed by a possibly empty list, denoted by
‘[[ ]]’, of holdsFor predicates and interval manipulation constructs,
expressed by intervalConstruct. intervalConstruct(Lj, In+j) may be
one of the following: union_all(Lj, In+j), intersect_all(Lj, In+j) or
relative_complement_all(Ik, Lj, In+j). Ik , where k < n + j, is a list of
maximal intervals appearing earlier in the body of the rule, and
list Lj contains a subset of these lists. The output list In+m contains
the maximal intervals during which F =V holds continuously. ■

Examples 2.1 and 2.3 illustrate that simple and statically deter-
mined FVPs may be used to express composite activities. Based
on the syntax of rules with head holdsFor (see, e.g., rule (4)), a

1006



statically determined FVP holds as long as a Boolean combina-
tion of other FVPs is satisfied. Thus, statically determined FVPs
are tailored for modeling composite activities that are defined
based on other activities by means of conjunction, disjunction
and negation operators, such as ‘anchored or moored’. Apart
from these types of activity, RTEC may also express ‘inertial’
composite activities, i.e., activities that persist through time and
may only come about (or conclude) based on the satisfaction of
a set of instantaneous conditions. Such conditions may be ex-
pressed using a set of initiatedAt and terminatedAt rules, effectively
defining a simple FVP (see, e.g., rules (1)–(3)).

Reasoning. The key reasoning task of RTEC is the compu-
tation of holdsFor(F =V , I ), i.e., the list of maximal intervals I
during which each FVP holds continuously. For a simple FVP
F =V , RTEC first computes the initiations and the terminations
of F =V , by evaluating its initiatedAt and its terminatedAt rules, re-
spectively. Next, RTEC computes the maximal intervals of F =V
by matching each initiation Ts of F=V with the first termina-
tion Te of F=V after Ts , ignoring every intermediate initiation
between Ts and Te . RTEC may then derive holdsAt(F =V , T ) by
checking whether T belongs to one of the maximal intervals
of F=V . In the case of a statically determined FVP F =V , RTEC
computes holdsFor(F =V , I ) by evaluating the conditions of the
holdsFor rule with FVP F =V in its head.

RTEC supports hierarchical event descriptions, where it is
possible to compute and cache the maximal intervals of FVPs
in a bottom-up manner. At each ‘query time’ qi , RTEC takes
into consideration the events that fall within a specified sliding
window with size 𝜔 . All events that took place before or at qi−𝜔
are discarded/‘forgotten’. This way, the cost of reasoning depends
on 𝜔 , instead of the size of the complete stream.

3 ACTIVITY DEFINITION GENERATION

Figure 1: LLM prompting for composite activity definition
generation.

Figure 1 illustrates our prompting approach for generating
composite maritime activities in the language of RTEC. Similar
to how a human would approach the task, we start by teaching
the LLM the syntax of the language, i.e., the main predicates of
RTEC — see "RTEC syntax (Prompt R)" in Figure 1. Then, we
proceed with the distinction between simple and statically deter-
mined FVPs — recall that these are the possible ways in which a
composite activity may by expressed. For this step, we provide
two alternative routes: "few-shot" prompting (prompt F*), as well
as "chain-of-thought" prompting (prompt F). In our empirical
analysis we found that zero-shot prompting produced poor re-
sults, and thus we do not include it in our pipeline. Third, we
present to the LLM the items of the input stream, i.e., the syntax
of the input events and FVPs (prompt E). These events and FVPs
may be used in the bodies of the rules expressing composite

maritime activities. Fourth, we present further domain-specific
information; for maritime situational awareness, there are sev-
eral threshold values that should be taken into consideration,
concerning, among others, the expected sailing speed per vessel
type and the allowed sailing speed near the coastline. Once these
steps are complete, we proceed with composite activity definition
generation, i.e., we provide a natural language description of an
activity and ask the LLM to express it in the language of RTEC
(prompt G). In what follows, we present prompts F*, F, E, T, and
G. Prompt R is based on Definitions 2.2 and 2.4.

3.1 Simple and Statically Determined FVPs
In this step the goal is to demonstrate to the LLM the possible
ways in which a composite activity may be expressed, i.e., as
a simple or a statically determined FVP. To achieve this, we
explain the differences between these types of FVP — see prompt
F below. One should replace lines 8, 11, and 14 in prompt F with
rules (1), (2), and (3) respectively. Moreover, one should replace
line 16 with a simple FVP definition other than "within area"
(see lines 5–14), and line 30 with a statically determined FVP
definition other than "under way" (see lines 20–28). In the case
of the chain-of-thought prompting, we provide two concrete
example formalisations for each type of FVP — see lines 5–16 and
20–30 in prompt F. In contrast, in the case of few-shot prompting,
i.e., prompt F without lines 7, 10, 13, and 22, we provide the
natural language description of each composite activity and the
corresponding formalisation, without presenting an explanation
of the formalisation.

1 There are two ways in which a composite activity may be
defined in the language of RTEC. In the first case, a
composite activity definition may be specified by means
of rules with initiatedAt(F=V,T) or terminatedAt(F=V,T)
in their head. This is called a simple fluent definition.

2

3 The first body literal of an initiatedAt(F=V,T) rule is
a positive happensAt predicate; this is followed by a
possibly empty set of positive/negative happensAt and
holdsAt predicates. Negative predicates are prefixed with
'not' which expresses negation-by-failure. Below you may
find two examples of composite activity definitions
expressed as simple fluents.

4

5 Example 1: Given a composite maritime activity
description, provide the rules in the language of RTEC.
Composite Maritime Activity Description: 'withinArea'.
This activity starts when a vessel enters an area of
interest. The activity ends when the vessel leaves the
area that it had entered. When there is a gap in signal
transmissions, we can no longer assume that the vessel
remains in the same area.

6

7 Answer: The activity 'withinArea' is expressed as a
simple fluent. This activity starts when a vessel enters
an area of interest. We use an 'initiatedAt' rule to
express this initiation condition. The output is a
boolean fluent named 'withinArea' with two arguments,
i.e.,'Vessel' and 'AreaType'. We use one input event
named 'entersArea' with two arguments 'Vessel' and
'Area' and one fluent named 'areaType' with two arguments
'Area' and 'AreaType'. This rule in the language of RTEC
is the following:

8 <Rule (1)>
9
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10 The activity 'withinArea' ends when a vessel leaves the
area that it had entered. We use a 'terminatedAt' rule
to describe this termination condition. We use one input
event named 'leavesArea' with two arguments 'Vessel' and
'Area' and one fluent named 'areaType' with two arguments
'Area' and 'AreaType'. This rule in the language of RTEC
language is:

11 <Rule (2)>
12

13 The activity 'withinArea' ends when a communication gap
starts. We use a 'terminatedAt' rule to express this
termination condition. We use one input event named
'gap_start' with one argument 'Vessel'. This rule in the
language of RTEC is:

14 <Rule (3)>
15

16 Example 2: <Definition 2>
17

18 A composite activity definition may be specified by
means of one rule with holdsFor(F=V, I) in its head. The
body of such a rule may include holdsFor(F'=V', I)
conditions, where F'=V' is different from F=V, as well
as the interval manipulation constructs of RTEC, i.e.,
union_all, intersect_all, and relative_complement_all. A
rule with holdsFor(F=V, I) in the head is called a
statically determined fluent definition. Below you may
find two examples of composite maritime activities
expressed as statically determined fluents.

19

20 Example 1: Given a composite maritime activity
description, provide the rules in the language of RTEC.
Composite Maritime Activity Description: 'underWay'.
This activity lasts as long as a vessel is not stopped.

21

22 Answer: The activity 'underWay' is expressed as a
statically determined fluent. Rules with 'holdsFor' in
the head specify the conditions in which a fluent holds.
We use a 'holdsFor' rule to describe that the 'underWay'
activity lasts as long as a vessel is not stopped. The
output is boolean fluent named 'underWay' with one
argument, i.e. 'Vessel'. We specify 'underWay' with the
use of the fluent 'movingSpeed'. More precisely, we
express 'underWay' as the disjunction of the three
values of 'movingSpeed', i.e. 'below', 'normal' and
'above'. Disjunction in 'holdsFor' rules is expressed by
means of 'union_all'. This rule is expressed in the
language of RTEC as follows:

23

24 holdsFor(underWay(Vessel)=true, I) :-
25 holdsFor(movingSpeed(Vessel)=below, I1),
26 holdsFor(movingSpeed(Vessel)=normal, I2),
27 holdsFor(movingSpeed(Vessel)=above, I3),
28 union_all([I1,I2,I3], I).
29

30 Example 2: <Definition 2>

Prompt F

3.2 Events, FVPs, and Thresholds
In this step, we present the items of the input stream, i.e., the
events and FVPs upon which RTEC reasons in order to detect,
at run-time, the composite activities of interest. Moreover, we
present the "background knowledge" of the application, which,
in the maritime domain, includes a set of threshold values con-
cerning the movement of vessels. The input events and FVPs,
and the threshold values, may appear in the bodies of the rules

expressing a composite activity. Prompts E and T present small
fragments of the lists of input events and FVPs, and threshold
values, for composite maritime activity recognition. By replacing
line 6 with the remaining predicates and meanings, we complete
the process of teaching the LLM the input events and FVPs, and
threshold values.

1 You may use the following input events:
2

3 Input Event 1: change_in_speed_start(Vessel)
4 Meaning: 'Vessel' started changing its speed.
5

6 Input Event 2: <Predicate>

Prompt E

1 You may use a predicate named 'thresholds' with two
arguments. The first argument refers to the threshold
type and the second one to the threshold value.
Threshold values can be used to perform mathematical
operations and comparisons.

2

3 Threshold 1:thresholds(hcNearCoastMax,HcNearCoastMax)
4 Meaning: The maximum sailing speed that is safe for a
vessel to have in a coastal area.

5

6 Threshold 2: <Predicate>

Prompt T

3.3 Rule Generation
Once the previous steps are complete, we proceed with rule gen-
eration, i.e., we provide a natural language description of each
composite activity of interest and prompt the LLM to express
it in the language of RTEC — prompt G below provides one
such example. We explicitly guide the LLM to utilise the input
events and FVPs, and threshold values that we have provided.
Additionally, we instruct the LLM to take into consideration any
of the activities that has been formalised so far. This way, we
may construct a hierarchical knowledge base of activity defini-
tions, according to which an activity definition depends on other
"lower-level" definitions. Such hierarchical knowledge bases typ-
ically lead to succinct RTEC event descriptions, and pave the
way for caching intermediate computations, and thus optimis-
ing run-time performance [4]. To generate the formalisations of
all maritime activities of interest, one needs to replace line 5 in
prompt G with the corresponding natural language descriptions.

1 Given a composite maritime activity description, provide
the rules in RTEC formalization. You may use any of the
aforementioned input events and fluents, and threshold
values thresholds. You may use any of the output fluents
that you have already learned.

2

3 Maritime Composite Activity Description - Communication
gap: A communication gap starts when we stop receiving
messages from a vessel. We would like to distinguish the
cases where a communication gap starts (i) near some
port and (ii) far from all ports. A communication gap
ends when we resume receiving messages from a vessel.

4

5 <Maritime Composite Activitiy Description>

Prompt G
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4 SIMILARITY METRIC
Unfortunately, LLM-generated activity definitions cannot always
be supplied directly to RTEC, as they often include errors, in the
form of, e.g., syntactic mistakes. To address this issue, we propose
a similarity metric that compares an RTEC event description
generated by an LLM, with a hand-crafted event description
acting as the gold standard. Our metric supports human error
correction, estimating the effort of manually correcting an LLM-
generated activity definition, i.e. transforming the definition in
a way that it may be used by RTEC. In the presence of a ‘gold
standard event description’, the similarity metric allows us to
perform a quantitative analysis of the LLM-generated definitions.
This is in contrast to related approaches in the literature, where
only qualitative assessments are performed.

Our metric extends the one proposed in [28], which computes
the similarity between sets of ground expressions, i.e., atoms and
terms that do not include variables. First, we outline the similarity
metric of [28]. Subsequently, we extend this metric in order to
make it suitable for comparing RTEC event descriptions.

4.1 Comparing Sets of Ground Expressions
We outline a distance function for ground expressions, after [31],
and a distance function for sets of ground expressions, after [28].

Definition 4.1 (Distance between Ground Expressions). The dis-
tance between ground expressions p(s1, . . . , sk) and q(t1, . . . , tr )
is defined as follows:
d (p(s1, . . . , sk), q(t1, . . . , tr )) =

0 if k = r = 0 ∧ p = q

1
2k

k∑
i = 1

d (si, ti) if k = r ≠ 0 ∧ p = q

1 if k ≠ r ∨ p≠ q

(5)

■

Example 4.2 (Distance between Ground Expressions). Suppose
that e1 denotes happensAt(entersArea(v42, a1), 23) and that e2
denotes happensAt(inArea(v42, a1), 23). Both e1 and e2 express
that vessel ‘v42’ enters the maritime area with ID ‘a1’ at time-
point 23, but differ on the event name employed to denote this
activity, i.e., e1 uses enterArea, while e2 uses inArea. The distance
between e1 and e2 is calculated as follows:

d (e1,e2) =
1
4
(d (entersArea(v42, a1),inArea(v42, a1))+d (23,23))

=
1
4
(1 + 0) = 0.25

To compute d (e1, e2), d (entersArea(v42, a1), inArea(v42, a1))
and d (23, 23), we follow, respectively, the second, the third and
the first branch of equation (5). ♦

In order to compute the distance between two sets of ground
expressions Ea and Eb , we need a cost matrix CEa ,Eb , contain-
ing the pairwise distances between the expressions in Ea and
Eb .

Definition 4.3 (Cost Matrix for Sets of Ground Expressions). Con-
sider two sets of ground expressions: Ea , containing ea,1, . . . , ea,M ,
and Eb , containing eb,1, . . . , eb,K , where M ≥ K . The cost matrix

CEa ,Eb of Ea and Eb is a square M ×M matrix. The element in

the i-th row and the j-th column of CEa ,Eb is:

C
Ea ,Eb
i,j =

{
d (ea,i, eb,j) if j ≤ K
0 if j > K

In the cases where j > K , the zero values capture the notion of
unmatched expressions. ■

Example 4.4 (Cost Matrix for Sets of Ground Expressions). Con-
sider set Ea , containing happensAt(entersArea(v42, a1), 23),
areaType(a1, fishing) and holdsAt(underway(v42) = true, 23), de-
noted by ea,1, ea,2 and ea,3 , and set Eb , with expressions
areaType(a1, fishing) and happensAt(inArea(v42, a1), 23), denoted
by eb,1 and eb,2 . Based on Definition 4.3, the cost matrix of Ea
and Eb is:

CEa ,Eb =
©«
1 0.25 0
0 1 0
1 1 0

ª®¬
C
Ea ,Eb
1,2 , e.g., contains the distance between ground expressions

ea,1 and eb,2 , which is equal to 0.25 (Example 4.2). Moreover,

C
Ea ,Eb
1,1 , i.e., the distance between ea,1 and eb,1, is 1, because ea,1

and eb,1 concern different predicates (see Definition 4.1), while

we set C
Ea ,Eb
1,3 = 0 in order to be able to express that ea,1 is left

unmatched. ♦

Cost matrix CEa ,Eb may be used to deduce a mapping g
between the expressions in sets Ea and Eb that is optimal, in
the sense that it minimises the sum of the distances between the
paired expressions. A naive approach for finding g is to calculate
the sum of the distances between paired expressions for each
possible mapping and then select the mapping that yields the
minimum such sum. This approach is too expensive; given that
Ea and Eb contain n expressions each, there are n! possible
mappings to consider. For this reason, we employ the Kuhn-
Munkres algorithm, which derives the optimal mapping g with a
worst-case cost of O(n3) [25]. Having computed g, the distance
between Ea and Eb is derived based on the distances of the
expressions that are paired with mapping g.

Definition 4.5 (Distance between Sets of Ground Expressions).
Consider two sets of ground expressions Ea and Eb , with sizes

M and K , where M ≥ K , the cost matrix CEa ,Eb of Ea and Eb ,
and the optimal mapping g of the ground expressions in Ea and
Eb . The distance between Ea and Eb is:

dE (Ea , Eb ) =
1
M

©«(M−K) +
∑︁
(i,j) ∈g

C
Ea ,Eb
i,j

ª®¬
The term M−K is used to penalise every unmatched ground
expression by the greatest possible distance, i.e., 1. ■

The similarity between two sets of ground expressions with
distance d is 1−d.

Example 4.6 (Distance between Sets of Ground Expressions).
Consider the sets of ground expressions Ea and Eb , with cost

matrix CEa ,Eb , of Example 4.4. Using the Kuhn-Munkres algo-
rithm, we derive the optimal mapping g between the expressions
in Ea and Eb , containing the following pairs: (1, 2), (2, 1), (3, 3).
Pair (1, 2), e.g., matches expressions ea,1 and eb,2 , while pair (3, 3)
indicates that expression ea,3 of Ea is left unmatched. g yields
the minimum sum of distances that may be induced based on ma-

trix CEa ,Eb , which is equal to C
Ea ,Eb
1,2 +CEa ,Eb2,1 +CEa ,Eb3,3 = 0.25.

Based on mapping g and Definition 4.5, the distance between Ea
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and Eb is:

dE (Ea , Eb ) =
1
3

(
(3−2) + CEa ,Eb1,2 + CEa ,Eb2,1 + CEa ,Eb3,3

)
=
1
3
(1 + 0.25 + 0 + 0) = 0.4167

Thus, the similarity between Ea and Eb is 1−0.4167 = 0.5833. ♦

4.2 Comparing Event Descriptions
We extend the distance metric in Definition 4.5 for comparing
event descriptions in RTEC. Event descriptions are sets of rules
defining FVPs, each containing a head atom and a set of body
atoms. Definition 4.5 cannot be used to compare event descrip-
tions because:
• Definition 4.5 concerns only ground expressions, while
the atoms appearing in a rule may contain variables.
• Rules cannot be treated as sets of atoms; the head of a rule
is not comparable with a body atom of a different rule.
• An event description is a set of rules, not a set of atoms.

First, we extend Definition 4.1 in order to consider non-ground
expressions. Subsequently, we define the distance between two
rules and the distance between two event descriptions.

Variables appearing in different rules may represent differ-
ent concepts, even though they have the same name. Moreover,
variables with different names may be referring to the same con-
cept in different rules. We will define a distance function that
assigns distance 0 to pairs of variables that are referring to the
same concept, and distance 1 to every other pair of variables.
We identify the concept to which a variable is referring in some
rule by inspecting the instances of the variable in the rule. To
specify these instances, we first define the tree representation
of an expression and an instance of a variable in an expression
based on its tree representation. Subsequently, we define the set
of instances of a variable in a rule.

Definition 4.7 (Tree Representation of Expression). Consider an
expression p(s1, . . . , sk). If k = 0, i.e., p is a constant or a variable,
then its tree representation is a single node with label p. Other-
wise, the tree representation of p(s1, . . . , sk) has a root node with
label p and k children. For each 1 ≤ i ≤ k, the i-th child of the
root is the tree representation of expression si . ■

Example 4.8 (Tree Representation of Expression). Consider the
tree representation th of happensAt(entersArea(Vl,AreaID), T ).
The root of th has label happensAt and two children. Its first child
is the tree representation of entersArea(Vl,AreaID), i.e., a tree
whose root has label enterArea and two children: the single nodes
with labels Vl and AreaID. The second child of th is a single node
with label T . ♦

Given the tree representation t of an expression p(s1, . . . , sk),
we use t [(p, i)], where 1 ≤ i ≤ k, to denote the sub-tree that is the
i-th child of the root of t. We use t [(p1, i1), (p2, i2), . . . (pn, in)]
as a shorthand for t [(p1, i1)] [(p2, i2)] . . . [(pn, in)].

Definition 4.9 (Instance of Variable in Expression). Consider an
expression u with tree representation t and a variable V that
appears in u. If the sub-tree t [(p1, i1), (p2, i2), . . . , (pn, in)] of t is
a single node with label V , then [(p1, i1), (p2, i2), . . . , (pn, in)] is
an instance of variable V in expression u. ■

The instances of a variable V in an expression umay be derived
with a depth-first search on the tree representation of u. We use
vir (V ) to denote the list containing the instances of a variable V
in the expressions included in rule r .

Example 4.10 (Instances of Variable in Rule). Consider rule (1),
expressing the initiation of withinArea(Vl,AreaType) = true. The
first instance of variable Vl in rule (1) is found in the head of the
rule. There, Vl is the first argument of withinArea(Vl,AreaType),
which is, in turn, the first argument of expression
‘=(withinArea(Vl,AreaType), true)’, following a prefix notation
for ‘=’. The latter expression is the first argument of the head
initiatedAt(withinArea(Vl,AreaType) = true, T ) of rule (1). More-
over, there is an instance of variable Vl in condition
happensAt(entersArea(Vl,AreaID), T ) of rule (1). There, Vl is the
first argument of entersArea(Vl,AreaID), which is the first ar-
gument of happensAt(entersArea(Vl,AreaID), T ). Therefore, list
vir(1) (Vl) contains [(initiatedAt, 1), (=, 1), (withinArea, 1)] and
[(happensAt, 1), (entersArea, 1)].

The remaining variables of rule (1) are AreaType and AreaID.
vir(1) (AreaType) contains [(initiatedAt, 1), (=, 1), (withinArea, 2)]
and [(areaType, 2)], while vir(1) (AreaID) contains [(areaType, 1)]
and [(happensAt, 1), (entersArea, 2)] . ♦

Definition 4.11 (Distance between Expressions). Suppose that
rule r1 (resp. r2) contains the possibly non-ground expression
p(s1, . . . , sk) (q(t1, . . . , tr )). vir1 (vir2 ) maps each variable in r1 (r2 )
to its list of instances in r1 (r2 ). The distance between expressions
u1 and u2 based on vir1 and vir2 is defined as follows:

d (p(s1, . . . , sk), q(t1, . . . , tr ), vir1 , vir2 ) =

0 if const (u1) ∧ const (u2) ∧ u1 = u2
0 if var (u1)∧var (u2)∧vir1 (u1) = vir2 (u2)
1 if var (u1)∧var (u2)∧vir1 (u1) ≠ vir2 (u2)
1
2k

k∑
i = 1

d (si, ti, vir1 , vir2 ) if k = r ≠ 0 ∧ p = q

1 if k ≠ r ∨ p≠ q

const (x) (resp. var (x)) denotes that x is a constant (variable),
while two lists of variable instances are considered equal iff they
contain the same variable instances. ■

Definition 4.12 (Distance between Rules). Consider rules r1 and
r2 , with heads h1 and h2 , and bodies b1 and b2 , respectively. b1
and b2 contain, respectively, M and K conditions, where M ≥ K .
The cost matrixCb1,b2 , containing the pairwise distances between
the expressions in b1 and b2 , is derived by Definition 4.3 using
distance function d (see Definition 4.11) instead of d , while g is
the mapping between the expressions in b1 and b2 that minimises
the sum of the distances between paired expressions with respect
toCb1,b2 . The distance dr (r1, r2) between rules r1 and r2 is defined
as follows:

dr (r1, r2) =
1

M+1

©«
d (h1, h2, vir1 , vir2 )+(M−K)+

∑︁
(i,j) ∈

g (Cb1,b2 )

Cb1,b2
i,j

ª®®®®¬
■

The head h1 (resp. h2) of rule r1 (r2) is not comparable with
any one of the conditions in body b2 (b1) of rule r2 (r1). Thus,
Definition 4.12 compares the heads of rules r1 and r2 to each
other, without considering them in mapping g.

Example 4.13 (Distance between Rules). Consider the following
rules, expressing initiations of withinArea(Vl,AreaType) = true.

initiatedAt(withinArea(Vl,AreaType) = true, T ) ←
happensAt(entersArea(Vl,Area), T ),
areaType(Area,AreaType) .

(6)
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initiatedAt(withinArea(Vl,AreaType) = true, T ) ←
happensAt(entersArea(Vl,AreaID), T ),
areaType(AreaType,AreaID) .

(7)

Rule (6) is generated from rule (1) by renaming variable AreaID
as Area. Variable renaming does not affect the meaning of a rule.
Thus, rules (1) and (6) are equivalent and their distance should
be 0. Rule (7) is the same as rule (1), with the exception that the
arguments of areaType are given in reverse order. The order of
the arguments matters when interpreting a predicate. Thus, rules
(1) and (7) are not equivalent and their distance should be greater
than 0.

The list of instances of variable Area in rule (6) is the same as
vir(1) (AreaID) (see Example 4.10). Thus, according to Definition
4.11, the distance between happensAt(entersArea(Vl,AreaID), T )
and happensAt(entersArea(Vl,Area), T ), and the distance between
areaType(AreaID,AreaType) and areaType(Area,AreaType), based
on vir(1) (AreaID) and vir(6) (Area), are 0. Therefore, following
Definition 4.12, the distance between rule (1) and rule (6) is 0.

Regarding the distance between rule (1) and rule (7), these
rules differ only in the second condition of their bodies. Variables
AreaType and AreaID have the following lists of instances in rule
(7):

vir(7) (AreaType) =[[(initiatedAt, 1), (=, 1), (withinArea, 2)],
[(areaType, 1)]]

vir(7) (AreaID) =[[(happensAt, 1), (entersArea, 2)],
[(areaType, 2)]]

Based on Example 4.10, vir(1) (AreaType) ≠ vir(7) (AreaType) and
vir(1) (AreaID) ≠ vir(7) (AreaID). Therefore, according to Defini-
tion 4.11, it holds that d (AreaType,AreaType, vir(1), vir(7)) = 1 and
d (AreaID,AreaID, vir(1), vir(7)) = 1. As a result, the distance be-
tween expressions containing variables AreaType and AreaID
in rules (1) and (7) is greater than 0. For instance, the distance
between expression areaType(AreaID,AreaType) of rule (1) and
expression areaType(AreaType,AreaID) of rule (7) is 0.5 (see Defi-
nition 4.11). Following Definition 4.12, the distance between rules
(1) and (7) is:

dr (r(1), r(7)) = 1
3
(0.015625+0+0.0625+0.5) = 0.1667 ♦

Definition 4.14 (Event Description Distance). Consider two event
descriptions in RTEC: KB1, containingM rules, and KB2 , contain-
ing K rules, where M ≥ K . The cost matrix CKB1,KB2 , containing
the pairwise distances between the rules in KB1 and KB2 , is de-
rived by Definition 4.3 using distance function dr (see Definition
4.12) instead of d , while g is the mapping between the rules in
KB1 and KB2 that minimises the sum of the distances between
paired rules with respect to CKB1,KB2 . The distance D(KB1,KB2)
between event descriptions KB1 and KB2 is defined as follows:

D(KB1,KB2) =
1
M

©«(M−K) +
∑︁

(i,j) ∈g (CKB1,KB2 )
CKB1,KB2
i,j

ª®¬ ■

The similarity between two event descriptions with distance
d is 1−d.

5 EMPIRICAL ANALYSIS
5.1 Experimental Setup
We evaluated our approach on composite activity recognition for
maritime situational awareness. As input, we consider Automatic
Identification System (AIS) position signals emitted by vessels,

containing information about their heading, speed and naviga-
tional status [5]. We employed a real, publicly available dataset2
containing 18M AIS position signals emitted from 5K vessels
sailing in the Atlantic Ocean around the port of Brest, France,
between October 2015–March 2016. The task was to generate an
event description in RTEC that includes accurate definitions for
composite maritime activities, such as trawling and ship-to-ship
transfer. To generate the maritime activity definitions, we em-
ployed GPT-4, GPT-4o, o13, Gemma-24, Mistral5 and LLaMa-36,
using the OpenAI API and Groq API.

5.2 Experimental Results
Syntactic Similarity. In the first set of experiments, we applied
our prompting method on GPT-4, GPT-4o, o1, Llama-3, Mistral
and Gemma-2, in order to assess the quality of the event descrip-
tions they generate. We used two types of prompting for each
LLM, i.e., few-shot and chain-of-thought prompting (see Section
3). We use X□ (resp. X△ ) to denote the event description gener-
ated by LLM X via few-shot (chain-of-thought) prompting. As
the gold standard for our comparison, we employed an event
description containing composite maritime activity definitions
that were hand-crafted with the help of domain expects. This
event description is described in [33] and is publicly available1.

For each LLM X, we calculated the similarities of event de-
scriptions X□ and X△ with our hand-crafted event description,
according to Definition 4.14, and identified the one, i.e., X□ or
X△ , that yields the highest similarity value. Figure 2a presents
these similarity values, along with the prompting technique that
enabled each LLM to generate them. The first 8 bar-groups ex-
press similarity values for the definitions of 8 composite maritime
activities of interest, while the last bar-group denotes the average
similarity value for all activity definitions in our event descrip-
tions. Note that employing chain-of-thought prompting does
not necessarily lead to more accurate definitions; long chains-of-
thought, e.g., may lead to a decrease in accuracy [39]. In the case
of ‘trawling’ (see the bar-group labeled ‘tr’), e.g., GPT-4o△ , o1□
and Llama-3□ generated definitions that yield a high similarity
value, as they were able express most of the conditions in our
hand-crafted definition of trawling, while introducing only one
redundant condition. In contrast, the corresponding definitions
generated by GPT-4□ and Mistral△ did not match any one of the
conditions in our hand-crafted definition, yielding a much lower
similarity. Gemma-2△ expressed ‘trawling’ as a simple fluent,
while the hand-crafted rules express it as a statically determined
fluent, resulting in a similarity of 0.

Qualitative Error Assessment. LLM-generated event de-
scriptions may include errors, in the form of, e.g., syntactic mis-
takes or conditions with undefined activities, which typically
lead to a drop in their similarity with respect to the gold stan-
dard. The errors found in the event descriptions generated in
our evaluation typically fall within one of the following cate-
gories. The first category of errors includes minor divergences
between generated event descriptions and the gold standard in
the names chosen for expressions denoting events, composite
activities and background knowledge. The second category con-
cerns modeling a composite activity definition using a different

2https://zenodo.org/record/1167595
3https://chatgpt.com/
4https://huggingface.co/blog/gemma2
5https://chat.mistral.ai/chat
6https://www.llama.com/
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(a) Similarity values of LLM-generated definitions.
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(b) Similarities after syntactic changes.
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(c) Predictive accuracy.

Figure 2: ‘h’, ‘aM’, ‘tr’, ‘tu’, ‘p’, ‘l’, ‘s’ and ‘d’ stand for ‘high speed near coast’, ‘anchored or moored’, ‘trawling’, ‘tugging’ ‘pilot
boarding’, ‘loitering’, ‘search-and-rescue’ and ‘drifting’. For each LLM, we report only the prompting scheme, i.e., few-shot
or chain-of-thought, with the highest similarity.

type of fluent than the one used in the hand-crafted event descrip-
tion. For instance, GPT-4o uses a statically determined fluent to
specify ‘movingSpeed’, which is defined with a simple fluent in
the hand-crafted rules. The third category concerns generated
definitions that cannot be used in practice, because their con-
ditions include composite activities that are not defined in the
generated event description. Lastly, we observed that LLMs often
fail at capturing definitions that include multiple operations be-
tween activities, such as disjunction, conjunction and negation.
For instance, GPT4o generated a definition of ‘loitering’, which
is incorrect, as it uses ‘intersect_all’ in the place of ‘union_all’.

Performance on CER. In the second set of experiments, our
goal was to assess the predictive accuracy of LLM-generated
event descriptions, when used for detecting composite maritime
activities. We evaluated the three event descriptions with the
highest similarity values, i.e., GPT-4o△ , o1□ and Llama-3□ (see
Figure 2a). Unfortunately, these event descriptions cannot be
used directly by RTEC, as they include minor syntactic errors,
such as incorrect names for constants and predicates. In event
description o1□, e.g., we had to rename constant ‘trawlingArea’
as ‘fishing’, because the predicates expressing background knowl-
edge, such as areaType (see, e.g., rule (1)), use the latter constant
to denote fishing areas. After performing the minimum required
changes on event descriptions GPT-4o△ , o1□ and Llama-3□, in
order to be compatible with RTEC, which led to event descrip-
tions GPT-4o▲ ,o1■ and Llama-3■, we measured their similarity
with our hand-crafted event description. Figure 2b outlines the
corresponding similarity values, demonstrating that our changes
were minor, i.e., led to a small increase in the average similarity
score of a generated definition, compared to the original score
(see Figure 2a).

We instructed RTEC to detect composite maritime activities
over real streams of vessel movement, included in the dataset
of Brest, based on the maritime activity definitions in event de-
scriptions GPT-4o▲ , o1■ and Llama-3■. We collected the mar-
itime activity instances that were detected using each event de-
scription, and compared them with the ones detected using our
hand-crafted event description. For each maritime activity, we
calculated the time-points (expressing seconds) at which the ac-
tivity was recognised based on both its LLM-generated and its
hand-crafted definition, making up the ‘true positives’. Similarly,
we derived the ‘false positives’ (resp. ‘false negatives’) by com-
puting the time-points at which the activity was detected based
on its LLM-generated (hand-crafted) definition, but not based
on its hand-crafted (LLM-generated) definition. Based on these
metrics, we computed the predictive accuracy of event descrip-
tions GPT-4o▲ , o1■ and Llama-3■ for each composite maritime
activity. Figure 2c presents our results, which demonstrate that
event description o1■ leads to a higher predictive accuracy than

event descriptions GPT-4o▲ and Llama-3■. While all three event
descriptions contained comparably accurate definitions for most
simple FVPs, we observed that o1■ included more accurate def-
initions for some statically determined FVPs, such as the ones
expressing ‘loitering’ and ‘pilot boarding’ (see Figure 2a). The
definition of loitering, e.g., stipulates that the vessel needs to be
‘stopped’ or ‘sail at a low speed’. Though these two activities are
mutually exclusive, GPT-4o▲ and Llama-3■ define loitering in
terms of their conjunction, confusing union_all with intersect_all,
and thus leading to a rule that is never satisfied. In contrast, o1■
defines loitering using the disjunction of ‘stopped’ or ‘sail at a low
speed’, leading to a definition that, although not being syntacticly
equivalent with the hand-crafted one, effectively expresses the
same meaning, and thus results in a perfect f1-score.

6 SUMMARY AND FURTHERWORK
We proposed a method that employs pre-trained LLMs in order
to generate RTEC specifications for composite activities based
on natural language descriptions. Contrary to machine learning
approaches [22, 29], our method does not require labels for com-
posite activities. Moreover, in order to measure the human effort
required to correct LLM-generated definitions, we proposed a
similarity metric for RTEC specifications. Our experimental eval-
uation on the maritime domain demonstrated the effectiveness
of our approach.

In principle, our approach may be used in other domains, such
as composite activity recognition for vehicle fleet management
[34]. Prompt R may be re-used as it is, while the prompts F,
E, and T may be customised with domain-specific knowledge.
Testing our method in other domains is direction for further work.
Furthermore, we aim to take advantage of the recent advances
in open foundational models, such as OLMo7.
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