
PhoebeDB: A Disk-Based RDBMS Kernel for High-Performance
and Cost-Effective OLTP

Boge Liu
Data Principles

(Beijing) Technology
boge.liu@enmotech.

com

Chunling Wang
Data Principles

(Beijing) Technology
chunling.wang@
enmotech.com

Xiaoshuang
Chen

Data Principles
(Beijing) Technology
xiaoshuang.chen@
enmotech.com

Yu Hao
Data Principles

(Beijing) Technology
yu.hao@enmotech.

com

Zhengyi Yang∗
University of New

South Wales
zhengyi.yang@
unsw.edu.au

Yi Jin
Data Principles

(Beijing) Technology
yi.jin@enmotech.

com

Yixing Yang
Data Principles

(Beijing) Technology
yixing.yang@
enmotech.com

Wenke Yang
Data Principles

(Beijing) Technology
wenke.yang@
enmotech.com

Wanchuan
Zhang

Data Principles
(Beijing) Technology
wanchuan.zhang@
enmotech.com

Wenjie Zhang
University of New

South Wales
wenjie.zhang@
unsw.edu.au

ABSTRACT
Relational databases have long been fundamental to data man-

agement. This paper presents PhoebeDB, an enterprise- and
commercial-oriented RDBMS kernel that integrates recent re-
search with practical innovations to deliver high-performance,
cost-efficient OLTP solutions. It features: 1) an in-memory data-
centric storage design optimized for parallel access and data
temperature-based buffer management, 2) a co-routine pool-
based runtime with a smart scheduler that maximizes CPU uti-
lization for high-concurrency workloads, and 3) optimized trans-
action management with in-memory UNDO logs, hybrid concur-
rency control, parallel Write-Ahead Logging with Remote Flush
Avoidance, and enhanced snapshot isolation. Experiments show
that PhoebeDB achieves nearly 13.7 million tpmC and 30 million
tpm on the TPC-C benchmark using a single machine, delivering
a 27× improvement over PostgreSQL.

1 INTRODUCTION
Relational DatabaseManagement Systems (RDBMS) have been

a cornerstone of data management since their inception in the
1970s, supporting a wide range of applications from financial
transactions to customer relationship management. These sys-
tems structure data into tables with rows and columns, enabling
efficient storage, retrieval, and manipulation.
Motivation. Early studies [15, 38, 40] have demonstrated that
conventional RDBMS architectures struggle to fully exploit mod-
ern hardware capabilities (e.g., multi-core processors, high-capacity
DRAM, and high-speed PCIe SSDs) due to legacy designs that
were originally optimized for older hardware configurations (e.g.,
limited-core CPUs, small-capacity DRAM, and slower magnetic
disks). As a result, substantial efforts have been devoted to opti-
mizing RDBMS, leading to groundbreaking advancements in its
architectures over the past decade [10, 13–15, 17, 18, 20, 21, 23, 25,
28, 30, 33, 35, 36, 41]. Despite these advancements, many remain
siloed, lacking integration into a cohesive system. A holistic, full-
stack design is essential to meet evolving enterprise demands,

∗Zhengyi Yang is the corresponding author.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

unifying these innovations to fully leverage modern hardware
and enhance performance in today’s dynamic database landscape.
Background. Modern businesses require high performance and
cost-effectiveness, necessitating designs that maximize modern
hardware utilization and adapt to evolving operational needs.

• Hardware Trends:Modern hardware evaluation, includingmulti-
core CPUs, large-capacity DRAM, and high-speed SSDs, have sig-
nificantly enhanced computational capabilities. These advance-
ments create substantial opportunities for optimizing RDBMS
performance [15, 21, 23, 33, 41].
• OLTP Requirements: Commercial relational databases are essen-
tial to enterprise IT, powering critical applications in banking,
finance, and e-commerce. High-performance Online Transaction
Processing (OLTP) is often primary focus in these sectors, along-
side the need for seamless integration with existing ecosystems.
• Cost Effectiveness: Increasing cost pressures drive enterprises
to seek RDBMS solutions that minimize overhead. An effective
RDBMS must maximize the performance-to-cost ratio by lever-
aging modern hardware, streamlining operations, and reducing
operational expenses to meet economic demands.

Aims. We focus on the following three key goals in this work.

• High-Performance OLTP: Optimize OLTP workloads by harness-
ing modern hardware, including multi-core CPUs, large DRAM
capacities, and high-speed SSDs, combined with a re-engineered
full technical stack and design innovations.
• PostgreSQL Compatibility: Ensure full compatibility with Post-
greSQL, providing a familiar interface that simplifies migration to
PhoebeDB while preserving existing workflows and toolchains.
• Commodity Hardware Oriented: Deliver robust performance on
disk-based storage and commodity servers, eliminating reliance
on specialized hardware to reduce infrastructure costs.

Contributions. In this paper, we presentPhoebeDB, an enterprise-
and commercial-oriented RDBMS kernel designed to deliver
high-performance and cost-effective OLTP. By combining re-
cent advancements in database research [14, 15, 21, 30, 41] and
modern hardware capabilities, PhoebeDB aims to address real-
world business requirements while maintaining compatibility
with PostgreSQL. PhoebeDB leverages innovative designs to op-
timize OLTP workloads, achieving 13.7 million tpmC (transac-
tions per minute Type-C) and 30 million tpm (transactions per

Industrial & Applications Paper

Series ISSN: 2367-2005 996 10.48786/edbt.2025.82

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.82

minute) on the TPC-C benchmark using a single machine, de-
livering a 27× performance improvement over PostgreSQL. The
main contributions are summarized as follows.
• In-Memory Data-Centric Storage Design: PhoebeDB adopts an
in-memory data-centric storage optimized for parallel access,
utilizing data temperature-based buffer policies to organize data
into hot, cold, and frozen storage layers, ensuring optimal access
patterns and efficient data retrieval.
• Co-Routine Pool-based Parallel Execution: To maximize CPU uti-
lization, PhoebeDB implements a co-routine pool-based runtime
with a pull-based scheduler that minimizes synchronization over-
head. This approach ensures efficient parallel execution and scal-
ability for high-concurrency workloads.
• Transaction Management and Concurrent Control: PhoebeDB op-
timizes transactions for massive-core using in-place updates with
in-memory UNDO logs and a hybrid concurrency control mech-
anism, while maintaining PostgreSQL compatibility. A paral-
lel Write-Ahead Logging (WAL) mechanism with Remote Flush
Avoidance (RFA) [30] achieves high-throughput I/O on NVMe
SSDs, while snapshot acquisition under snapshot isolation is
reduced to 𝑂 (1).

2 RELATEDWORK
PhoebeDB builds on recent advancements in database re-

search, drawing inspiration from systems such as LeanStore [21],
Umbra [41], and MosaicDB [14].
Shifted Optimization Focus. Traditional DBMS architectures
were primarily designed to mitigate I/O latencies. However, mod-
ern hardware has shifted the focus to in-memory data-centric
processing and maximizing computational efficiency [12, 15, 23].
In-Memory Data-Centric Architecture. Anti-Caching [15] in-
troduces optimization of computations onmain-memory-resident
data to enhance performance, along with the concept of data tem-
perature to manage DRAM by evicting cold data to SSD. This
paradigm aligns with modern hardware trends [1], spurring re-
search into optimizing CPU-DRAM interactions.
Reducing Contention in Massive-Core Computation.Min-
imizing globally shared data structures is key in massive-core
environments. LeanStore [21] employs a B-Tree with pointer
swizzling to eliminate the need for a global hash table, reducing
contention.
Maximizing Computational Resource Utilization. Corobase
[13] and MosaicDB [14] show that co-routines facilitate light-
weight context switching and efficient state management, out-
performing traditional threading models in RDBMS workloads.
Improving CPU Cache Efficiency. Efficient CPU cache utiliza-
tion reduces latency between cache and main memory. MosaicDB
[14] uses co-routines [9] with cache prefetching to avoid CPU
stalls, while ART [44] and OLC [22] enhance cache coherence.
Reducing Instructions in Critical Code Paths. [39] discusses
the instruction level cost of transactions, showing inefficiencies
in transaction routines. This motivates systems that reduce in-
struction costs and improve throughput [30].
Disk-Based Systemswith In-MemoryPerformance. LeanStore
[1], Umbra [41], and CedarDB [6] leverage NVMe SSD technol-
ogy with PCIe channels and internal parallelism to deliver near
in-memory performance on disk-based systems, narrowing the
performance gap between disk and memory.

3 POSITIONING AND DESIGN PHILOSOPHY
Designed for industry-grade performance, PhoebeDB delivers

a high-performance, cost-effective solution for business needs.

11/22/2024 248

Runtime (Co-routine Pool)

Main Storage
(In-mem Hot Data)

Cold Data

UNDO

Workload

Frozen Data

WAL

Figure 1: PhoebeDB Implemented Components

Business Value-Centric Design. PhoebeDB adheres to two
fundamental principles in its business value-centric design.
• Alignment with Industry Standards: PhoebeDB is developed to
align with widely adopted industry standards, conventions, and
ecosystems. By using PostgreSQL, one of the most popular open-
source databases, as a reference, PhoebeDB ensures full com-
patibility with PostgreSQL and its plugins, enabling seamless
integration into existing customer environments and workflows.
• Optimization for Standardized Hardware: PhoebeDB is optimized
to operate on cost-effective, general-purpose hardware and soft-
ware stacks. This design ensures broad deployability, allowing
customers to maximize their return on investment by leveraging
existing infrastructure and minimizing hardware costs.
Approaches to Cost-Effectiveness. Cost-effectiveness is a key
for businesses. PhoebeDB adheres to the following principles.
• Centralized over Distributed Solutions: Distributed systems add
complexity and network overhead that can affect cost-effectiveness
[27]. For most businesses, excluding the largest, single-server sys-
tems are often sufficient andmore efficient. Therefore, PhoebeDB
prioritizes optimizing single-server performance.
• Performance Optimization: Improving DBMS performance is the
most effective way to expand capacity while maintaining bud-
get constraints. By optimizing resource utilization, PhoebeDB
reduces infrastructure costs and lowers energy consumption.
• Prioritizing OLTP Workload: PhoebeDB employs resource iso-
lation and scheduling to prioritize OLTP while allowing less
critical workloads, such as batch or analytical queries, to use idle
resources. This maximizes resource utilization without compro-
mising OLTP performance, ensuring high-quality service (QoS).
• Leverage a Mature Ecosystem: PhoebeDB builds upon verified
efforts while introducing re-innovations tailored to practical use
cases. It maintains compatibility with PostgreSQL and its plugins,
reducing deployment costs and maintenance risks.
• Future HTAP Potential:While PhoebeDB is currently optimized
for OLTP workloads, its design includes forward-looking features
to support native Hybrid Transactional and Analytical Processing
(HTAP) in the future [8, 24, 26].

4 SYSTEM ARCHITECTURE
This section discusses the core architecture of PhoebeDB. The

major components are illustrated in Figure 1.
Evolving Hardware. The evolution of hardware has signifi-
cantly transformed the configuration of modern computers. We
summarize three major advancements as follows.
• Massive Cores: Modern servers now can feature hundreds of
cores, enabling high parallelism and allowing centralized systems
to efficiently handle OLTP workloads.
• Large Memory Size: Affordable high-capacity DRAM allows the
majority of OLTP data to reside in memory, transforming opera-
tions into in-memory computations and boosting performance.
• Fast NVMe SSD: PCIe-based SSDs deliver high throughput, elim-
inating disk latency [23]. SSD arrays further scale throughput,
making I/O latency no longer a major RDBMS bottleneck [15].

997

In-memory Data Centric Processing. Leveraging recent hard-
ware advancements,PhoebeDB adopts the in-memory data-centric
processing paradigm from [15] to optimize performance. Unlike
traditional relational DBMS architectures designed to mitigate
I/O latency, PhoebeDB integrates modern research innovations
to deliver high-performance solutions tailored for real-world
applications. Its architecture includes the following key features.

• Parallel Access Optimized Storage: Targeting future HTAP sup-
port, PhoebeDB adopts the PAX format [2] for storing base table
data. Similar to Umbra [41], PhoebeDB leverages secondary in-
dexes to enhance general-purpose data access flexibility, avoiding
the integration of primary keys into base tables as seen in [21].
• Data Temperature-based Buffer Policies: PhoebeDB employs the
concept of data temperature to dynamically organize data for op-
timal access. By categorizing data pages as hot, cold, or frozen
based on access frequency, PhoebeDB optimizes in-memory ac-
cess for hot and cold data while using an in-memory MVCC
implementation [29]. Batch update mechanisms are re-innovated
to ensure efficiency and practicality in real-world applications.
• Co-routine Pool-based Runtime with Smart Scheduler: PhoebeDB
employs lightweight co-routines as execution units, managed
by a smart scheduler to maximize CPU utilization and minimize
resource wastage from synchronization or idle waiting. . By min-
imizing the use of spin-lock-based synchronization, PhoebeDB
ensures that CPUs are fully dedicated to de-facto computations.
• Massive-core Optimized Transaction Management: PhoebeDB im-
plements transaction isolation levels identical to PostgreSQL,
ensuring compatibility with the PostgreSQL ecosystem. An in-
place update strategy combined with an in-memory UNDO log
enables high-performance OLTP transactional operations.
• Massive-core Optimized Pessimistic Concurrency Control: Tomain-
tain compatibility with PostgreSQL, PhoebeDB adopts a pes-
simistic concurrency control model. It introduces a new mecha-
nism to eliminate reliance on global lock data structures, enhanc-
ing scalability and efficiency in multi-core environments.
• Parallel WAL with RFA: PhoebeDB integrates a parallel Write-
Ahead Logging (WAL) flushing technique, utilizing Remote Flush
Avoidance (RFA) to maximize parallelism. This design, combined
with high-throughput NVMe SSDs, meets the demanding I/O
requirements of modern workloads.
• Efficient Snapshot Isolation: PhoebeDB maintains compatibility
with PostgreSQL by supporting the same snapshot isolation lev-
els (read committed and repeatable read). However, it enhances
efficiency by replacing traditional transaction scanning with a
simplified snapshot mechanism based on a single timestamp,
reducing snapshot acquisition to 𝑂 (1) complexity.

Transaction Management. PhoebeDB employs a transaction
management system for high performance and reliability.

• In-Memory History Version Storage: Retains historical data ver-
sions in memory to enhance transaction processing performance.
• Efficient Visibility Checks: Commit timestamps recorded for ev-
ery UNDO log to enable fast and accurate visibility checks.
• Decentralized UNDO Log: Groups UNDO logs by the same trans-
action to minimize write contention and garbage collection.
• Optimized Garbage Collection: Detailed UNDO log information
accelerates table and index cleanup, enabling fast log recycling.
• Efficient Concurrency Support: The design ensures efficient con-
current transaction processing by eliminating critical bottlenecks.

Figure 2: PhoebeDB’s 3-Layer Storage

Index

key: index key
value: row_id

Relation Table

key: row_id
value: relation tuple

(a)
Data Page File

Data Node
Page

Data Inner File

B-Tree Node
Page

Data Block File

Data Node
Block

(b)

Relation Table

Figure 3: PhoebeDB Storage File Structure

. . .

Frezzing Point

Cold Data
resides in high-speed storage

Relation table’s
data pages

Frozen Data
be compressed in
big data blocks

Hot Data
resides in memory

Data pages cooled down over time Data pages warmed by OLTP operations
Figure 4: PhoebeDB Page Temperature

5 DATA STORAGE
5.1 In-Memory Data-Centric Storage

PhoebeDB organizes data into relations, storing each rela-
tion’s data together. Designed for futureHTAP support,PhoebeDB
distributes data across three storage layers (Figure 2) based on ac-
cess frequency: Main Storage (in memory), Data Page File (on
disk), and Data Block File (on disk), representing hot, cold, and
frozen data, respectively. Data moves among layers for optimized
performance and resource utilization.

PhoebeDB organizes data using a B-Tree, where each B-Tree
represents a relation. It Leverages swizzle pointer technology
[21] for efficient memorymanagement while avoiding contention
from global hash tables, ensuring unified management of hot,
cold, and frozen data. To address inefficiencies in B-Tree page
management, particularly insertions such as node splitting, and
to support tables without primary indexes, PhoebeDB utilizes an
internally maintained, monotonically increasing row_id as the
key. Each tuple is stored as the value in the Data Page or Data
Block Files (Figure 3(b)). User-defined indexes are implemented
as secondary indexes, storing (𝑘𝑒𝑦, 𝑟𝑜𝑤_𝑖𝑑) pairs in the Index
File. For data consistency and efficient access under high concur-
rency, PhoebeDB employs a Multi-Version Concurrency Control
(MVCC) mechanism (discussed later).
5.2 Temperature-based Exchange

PhoebeDB categorizes data pages as hot, cold, or frozen, based
on access frequency. This temperature-based approach ensures
optimal storage for OLTP and OLAP workloads.

Hot and cold pages, which store most OLTP-accessed data,
use the PAX (Partition Attributes Across [2]) format. Hot pages
reside in memory (Main Storage) for rapid access, while cold

998

pages are stored on disk. Both hot and cold pages support in-
place updates, with historical versions maintained in a separate
transaction version buffer (UNDO log). Frozen pages primarily
serve OLAP workloads, utilizing a compressed data block format
to optimize analytical query performance. Out-of-place updates
prevent the need for full decompression and recompression, re-
ducing write amplification. The data exchange process consists
of the following three cases (Figure 4).
(1) Hot to Cold Data Exchange: Hot and cold data pages transition
based on OLTP access operations and buffer replacements in the
main storage. Frequently accessed cold pages become hot, while
less accessed hot pages move to cold storage.
(2) Freezing Hot or Cold Pages: Since most data is time-sensitive
and only a small portion remains frequently accessed, PhoebeDB
freezes data for extended periods, ensuring operations like ta-
ble scans do not warm any data. PhoebeDB tracks OLTP access
counts and the last OLTP access time for each hot page, using ac-
cess frequency over time to manage data movement . PhoebeDB
also tracks a𝑚𝑎𝑥_𝑓 𝑟𝑜𝑧𝑒𝑛_𝑟𝑜𝑤_𝑖𝑑 , classifying data before it as
frozen and data after it as unfrozen (hot or cold). Consecutive
node pages with OLTP access counts below a predefined thresh-
old are grouped into frozen data blocks, and𝑚𝑎𝑥_𝑓 𝑟𝑜𝑧𝑒𝑛_𝑟𝑜𝑤_𝑖𝑑
is increasing accordingly. Several consecutive leaf node pages are
compressed into a frozen data block while preserving the 𝑟𝑜𝑤_𝑖𝑑
order. In rare cases, hot data may also transition between frozen
and warmed states due to read, delete, and insert operations.
(3) Warming Frozen Pages:Delete & update operationsmark frozen
data as deleted, inserting updated versions into hot data pages.
Frequently accessed frozen pages, identified by exceeding a prede-
fined 𝑟𝑜𝑤_𝑖𝑑 read threshold, are marked as deleted and reinserted
into hot storage, requiring updates to related table indexes.

5.3 In-Memory Main Storage
PhoebeDB stores hot data in memory. To reduce contention

and overhead from global hash maps in traditional database sys-
tems [39], it employs Pointer Swizzling [21] for efficient data
storage and retrieval. Additionally, a B-Tree structure organizes
table data, enabling efficient page lookup and improving perfor-
mance under high-concurrency workloads.
B-Tree Structure. Traditionally, a global hash map is used to
quickly determine whether a page resides in main storage. How-
ever, locking the hash map leads to high concurrency contention.
To mitigate the issue, we eliminate the global hash map and in-
stead use a B-tree to accelerate page lookup. The B-Tree structure
(Figure 3(a)) in PhoebeDB organizes table and index data. Each
tuple is assigned a unique 𝑟𝑜𝑤_𝑖𝑑 as the primary key, enabling
rapid data retrieval and manipulation with minimal overhead. In
the table B-Tree, tuples are stored in a compressed format within
leaf nodes to optimize space and access speed, supporting effi-
cient sequential and random access for both transactional and
analytical workloads. The index B-Tree complements this by en-
abling efficient point and range queries, mapping user-defined
keys to 𝑟𝑜𝑤_𝑖𝑑 values that link to tuples in the table B-Tree. This
dual B-Tree design ensures flexibility, accuracy, and efficiency.
Pointer Swizzling. PhoebeDB employs pointer swizzling [16,
21] to manage seamless transitions between three states: Hot,
Cooling, and Cold. In the Hot state, the swizzle pointer directly
references the buffer frame in memory, eliminating indirection
through a mapping table, reducing latency, and enhancing per-
formance. When memory reaches its capacity, pages enter the
Cooling state, where they remain in memory with a marked cool-
ing bit on the swizzle pointer, signaling readiness for eviction

while allowing fast access if needed. Pages no longer required
in memory transition to the Cold state, with their IDs stored to
indicate relocation to disk. Upon access, cold pages are reloaded
into memory, and their pointers are swizzled back to the Hot
state, restoring direct references. This dynamic state manage-
ment optimizes memory usage and reduces access overhead.

Remark.PhoebeDB integrates the B-Tree structurewith pointer
swizzling to achieve notable advantages. This combination elimi-
nates reliance on a global hash map, simplifying system archi-
tecture and reducing overhead. By dynamically managing page
states, pointer swizzling optimizes memory usage and ensures
sustained high performance under heavy workloads. The B-Tree
structure further enhances query processing and data manipula-
tion, offering a robust organizational framework. Together, these
innovations position PhoebeDB as a high-performance database
system capable of efficiently handling large-scale data operations.

6 TRANSACTION MANAGEMENT
6.1 PostgreSQL-Compatible Transaction

PhoebeDBmaintains compatibility with PostgreSQL by adopt-
ing the same snapshot isolation levels (read committed and repeat-
able read). However, it improves efficiency by representing snap-
shots with a single timestamp, reducing snapshot acquisition to
constant time (𝑂 (1)), unlike PostgreSQL ’s transaction-scanning
approach. PhoebeDB uses a 62-bit global logical clock, imple-
mented as a globally incrementing atomic integer, to assign trans-
action IDs (XID) and manage snapshot and commit timestamps
(cts). At transaction start, a 64-bit XID is generated, with the
most significant bit set to 1, 62 bits for the start timestamp, and 1
bit reserved for future use. Upon commit, the transaction assigns
a cts and records it in the UNDO logs. Visibility checks compare
snapshot timestamps with commit timestamps, ensuring effi-
cient snapshot management. PhoebeDB also adopts PostgreSQL
’s lock semantics, including tuple and transaction ID locks. Fu-
ture plans include developing PhoebeDB as a PostgreSQL plugin,
delegating unsupported SQL queries to PostgreSQL while pro-
gressively expanding support for PL/pgSQL.

6.2 MVCC with In-memory UNDO
In this section, we introduce the multi-version concurrency

control (MVCC) design with in-memory UNDO in PhoebeDB.
Before-Image Delta for UNDO Log. PhoebeDB adopts before-
image delta for UNDO logging [3, 34, 46], where only the differ-
ences between the old and new data are recorded. The UNDO
logs generated by a single transaction are stored together, and
those for the same tuple are linked from the newest to the oldest,
forming a version chain. In Figure 5, the curved arrows illustrate
how version chains are formed by connecting UNDO logs from
various transactions. Each UNDO log includes two timestamps:
the start timestamp (sts) and the end timestamp (ets). The sts
indicates when the before image was committed, while the ets
represents the timestamp when the UNDO log itself was commit-
ted. When a transaction generates a new UNDO log, it inserts at
the head of the version chain and writes its XID to the ets field.
The sts is set to the ets of the previous UNDO log, or to 0 if the
previous UNDO log has been reclaimed. Upon commit, the ets is
updated to the transaction’s commit timestamp (cts).

Example 6.1. In Figure 5, XID 7 updates the value of rid1 from
𝑏 to 𝑎. The old value 𝑏 is modified by XID 4. In the previous
UNDO log ets = 6, we have XID 4 commits at timestamp 6. Thus,
XID 7 sets sts as 6. As XID 7 has not committed yet, the ets field
remains as its XID.

999

𝑟𝑟𝑟𝑟𝑑𝑑1
𝑟𝑟𝑟𝑟𝑑𝑑2
𝑟𝑟𝑟𝑟𝑑𝑑3

Page

𝑥𝑥𝑟𝑟𝑑𝑑𝑥

𝑥𝑥𝑟𝑟𝑑𝑑𝑥

𝑥𝑥𝑟𝑟𝑑𝑑𝑥

𝑎𝑎
𝑏𝑏
𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑒𝑒𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑠 𝑎𝑎

Undo logs

机密

Twin Table

𝑒𝑒𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑠 𝑏𝑏

𝑒𝑒𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑠 𝑐𝑐 𝑒𝑒𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎

𝑥𝑥𝑟𝑟𝑑𝑑𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏

Figure 5: PhoebeDB MVCC

Algorithm 1: Retrieve Visible Version
Input :Transaction ID: 𝑥𝑖𝑑 and snapshot: 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡
Output :The visible version of required 𝑡𝑢𝑝𝑙𝑒

1 𝑡𝑢𝑝𝑙𝑒 ← read from table;
2 if current page has no twin table then return 𝑡𝑢𝑝𝑙𝑒 ;
3 ℎ𝑒𝑎𝑑𝑒𝑟 ← read from twin table;
4 if ℎ𝑒𝑎𝑑𝑒𝑟 = 𝑛𝑢𝑙𝑙 ∨ ℎ𝑒𝑎𝑑𝑒𝑟 is invalid ∨ℎ𝑒𝑎𝑑𝑒𝑟 .𝑒𝑡𝑠 ≤ 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡

∨ℎ𝑒𝑎𝑑𝑒𝑟 .𝑒𝑡𝑠 = 𝑥𝑖𝑑 then return 𝑡𝑢𝑝𝑙𝑒 ;
5 𝑐𝑢𝑟 ← ℎ𝑒𝑎𝑑𝑒𝑟 ;
6 while 𝑐𝑢𝑟 ≠ 𝑛𝑢𝑙𝑙 ∧ 𝑐𝑢𝑟 is valid do
7 assemble before-image delta read from 𝑐𝑢𝑟 into 𝑡𝑢𝑝𝑙𝑒 ;
8 if 𝑐𝑢𝑟 .𝑠𝑡𝑠 ≤ 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 then break;
9 𝑐𝑢𝑟 ← 𝑐𝑢𝑟 .𝑛𝑒𝑥𝑡 ;

10 return 𝑡𝑢𝑝𝑙𝑒 ;

Remark. The necessity of having a sts alongside the ets may
seem redundant, as sts typically matches ets of the previous
UNDO log. However, sts plays a crucial role in preventing the
current UNDO log from inadvertently becoming an endpoint in
the version chain. Without sts, reclaiming the previous UNDO
log would require verifying that no active transaction depends
on it, which would significantly complicate garbage collection.
By explicitly defining sts, PhoebeDB simplifies the management
of the version chain, ensuring efficient garbage collection and
consistent performance.
Updating cts During Commit. In PhoebeDB, UNDO logs gen-
erated by the same transaction are stored together, allowing the
transaction to maintain a single pointer to the beginning of its
UNDO log during execution. At the commit phase, the ets of all
UNDO logs can be updated to the transaction’s cts in a single
scan, ensuring efficient log updates.
Linking Tuples to UNDO Logs Using a Twin Table. A naive
approach to link a tuple to its UNDO log is to append a pointer
to the version chain header at the end of each tuple. However,
not every tuple has UNDO logs, particularly in TP-heavy envi-
ronments where most transactions focus on a small set of hot
data. Adding pointers to all tuples wastes disk and memory space
and increases recovery costs since pointers must be validated
during recovery. To address this issue, Phoebe employs a page-
level mapping table called the twin table, where each tuple has
a corresponding entry storing a pointer to its version chain (or
null if none). When a tuple is modified, the data page is loaded
into memory (if needed), and a twin table is created if it doesn’t
already exist. The transaction copies the delta to a new UNDO
log, writes its XID in the ets field, and updates the twin table
entry to point to the UNDO log. While this approach may ap-
pear to increase memory usage, the impact is minimal. Most TP
workloads concentrate on a small subset of hot data, meaning the
twin table’s memory footprint remains small, ensuring efficient
memory usage in PhoebeDB.
Retrieve Visible Version. The process of retrieving visible ver-
sions using UNDO logs is detailed in Algorithm 1, ensuring effi-
cient and consistent access to historical data. Visibility during a
tuple read is determined as follows.

• No twin table: If the current page has no twin table, the tuple is
immediately considered visible (Line 1-2).

• Invalid pointer or reclaimed UNDO log: If the pointer in the
corresponding entry is null or the pointed UNDO log has been
reclaimed (marked as invalid), the original tuple remains visible
(Line 3-4).
• Examine the version chain header: The transaction checks the
ets in the version chain header: If ets is not XID, the tuple is
visible if ets is less than or equal to the snapshot. If ets is XID,
the tuple is visible only if ets equals the current transaction’s
XID. (Line 3-4)
• Traverse the version chain: If neither condition is met, the trans-
action traverses the version chain. It assembles deltas fromUNDO
logs until it finds the first UNDO log where the sts (start times-
tamp) is less than or equal to the snapshot. At this point, the
reconstructed version of the tuple becomes visible (Line 5-9).

Example 6.2. In Figure 5, XID 3 (𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 = 5) reads three
tuples. For 𝑟𝑖𝑑1, as the ets in the version chain header is XID7 ≠
XID3, value ‘a’ is invisible. The sts of the version chain header
is 6 which is larger than 5, the value ‘b’ is also invisible. As a
result, 𝑟𝑖𝑑1 is read as ‘c’. For 𝑟𝑖𝑑2, since the ets in the version
chain header is 3 which is less than 5, 𝑟𝑖𝑑2 is read as ‘b’. For 𝑟𝑖𝑑3,
the ets in the version chain header is 6 larger than 5, the value
‘c’ is invisible. The sts of the version chain header is 3 less than
5, value ‘a’ is visible, hence rid3 is read as ‘a’.

The algorithm and example above demonstrate how histor-
ical versions are retrieved for read-only operations. For write
operations at the Read Committed isolation level, the process
first checks the sts field in the version chain header: 1) If sts is
a timestamp, the tuple is updated. 2) If sts is a transaction ID,
the operation waits on the concurrent transaction’s XID lock
before proceeding. At the Repeatable Read isolation level: 1) If
the concurrent transaction aborts, the operation proceeds. 2) If it
commits, the operation aborts.

7 PARALLEL EXECUTION & CONCURRENCY
CONTROL

7.1 Co-routine Pool for High Concurrency
PhoebeDB employs a co-routine driven framework by execut-

ing transactions as co-routines. Co-routines enable lightweight
user-level context switching [13, 14], allowing transactions to
yield during waits (e.g., for locks or async reads). This efficiency
allows a single thread to manage multiple transactions concur-
rently, maximizing resource utilization and concurrency.
Co-routineDriven Framework. InPhoebeDB, a worker thread1
manages a fixed number of task slots. A task slot executes one
co-routine task at a time without switching until completion. The
configured number of worker threads and the task slots determine
transaction concurrency. As shown in Figure 6, a worker thread
handles multiple co-routines simultaneously but actively exe-
cutes only one task at a time, avoiding contention for resources
such as buffer frame allocation and latch acquisition within the
thread. However, contention across worker threads still presents.
Reducing Contention between Workers. In PhoebeDB, each
worker thread operates independently, with components such as
buffer management, MVCC, and garbage collection partitioned
by the worker thread. For instance, a worker thread manages
its own buffer pool partition and handles page swaps locally.
Similarly, the UNDO logs are managed and garbage is collected
by the same worker thread that generates them. As shown in

1The number of worker threads can be configured to match the CPU core count to
maximize CPU utilization.

1000

Running

Worker Thread

Vacant Suspended Dedicated

Async I/O, Tuple Lock, Latch,
Buffer Frame Allocation, etc

Garbage Collection,
Page Swap, etc

Task queue

Task Submit Pull new task if has
vacant task slots

Yield if blocked

Scheduler

Figure 6: PhoebeDB Worker Thread

Figure 6, a worker thread has dedicated task slots for page swaps
and garbage collection, reducing cross-thread contention.
Pull-based Scheduler. Scheduling in PhoebeDB is challeng-
ing due to the flexible yielding nature of transactions, which
can pause execution for various reasons. Transactions that yield
due to latch spins or asynchronous reads should be resumed
promptly, whereas those yielding due to tuple locks may involve
longer waits until other transactions signal readiness. Addition-
ally, unlike threads, co-routines cannot be interrupted by other
co-routines, which requires voluntary yielding to adjust execu-
tion priorities, creating potential delays. To address the chal-
lenges, pull-based execution model is employed. Transactions
are submitted to a global task queue, and worker threads pull
new tasks when task slots are vacant. Yields are categorized by
urgency, with worker threads prioritizing high-urgency cases
(e.g., mutex spins, async reads) by pausing new task acceptance
and resolving current tasks. Low-urgency cases (e.g., tuple locks),
do not block task pulling. Page swaps are triggered when buffer
frames drop below a threshold, while garbage collection occurs
after a certain number of transactions.

7.2 In-memory Parallel Optimization
Hybrid Lock Strategies. PhoebeDB employs a hybrid locking
strategy that combines pessimistic and optimistic locks, boosting
system concurrency while minimizing transaction abort rates.
Optimistic Locks. An optimistic lock [7] is a lightweight synchro-
nization mechanism to enhance concurrency, particularly in read-
heavy workloads. Read operations proceed without locking and
its correctness is verified by checking a version counter (incre-
ment on every write) at the end. If it remains unchanged, the
read completes successfully; otherwise, it retries. This method
reduces contention and avoids blocking during write operations.
Optimistic Lock Coupling. Lock coupling [4] is a common tech-
nique for safe, concurrent access to data structures such as B-
trees. A thread locks the current node until it locks the next, and
then releases the previous lock, minimizing lock contention by
limiting the number of locks held simultaneously. Optimistic Lock
Coupling (OLC) [22] extends lock coupling by integrating opti-
mistic locks. OLC interleaves version validation during traversal,
allowing optimistic reads and avoiding bottlenecks caused by
coarse-grained locks, thereby boosting concurrent performance.
Hybrid Lock Strategies. While OLC improves system throughput,
it introduces additional retry logic and increased validation com-
plexity, which can lead to higher transaction abort rates under
high concurrency. PhoebeDB adopts a hybrid lock strategy with
three locking modes: optimistic, shared, and exclusive. Optimistic
locks are used during B-tree traversal to maximize read concur-
rency, while shared and exclusive locks are applied for tuple
read/write operations on B-tree leaf nodes. This hybrid strategy
combines the advantages of optimistic locking for read-heavy
scenarios with reduced abort rates for write-intensive operations.

Decentralized Lock Management. In traditional RDBMS sys-
tems like MySQL [32] and PostgreSQL [37], object locks are
stored in a global hash table, creating contention hotspots. We
addresses this with decentralized lock storage and management.
Transaction ID Lock. A Transaction ID Lock assigns a lock to each
transaction ID. At the start of a transaction, it acquires an exclu-
sive lock on its own ID, held until the transaction commits or
aborts. If transaction A attempts to modify a tuple being modified
by transaction B, it must acquire a shared lock on B’s transaction
ID. This ensures transaction A waits for B to complete before
proceeding. In PhoebeDB, transaction ID locks manage depen-
dencies among concurrent transactions, allowing tuple locks to
be released immediately after operations. This ensures each ac-
tive transaction holds at most one tuple lock at a time, preventing
lock proliferation and enabling more efficient lock management.

Remark. Transaction ID locks have the following properties: (1)
A transaction A can acquire only one shared lock on transaction
B’s ID at a time, remaining in a sleeping state until B completes
and wakes it up. (2) No transaction other than A itself can hold
an exclusive lock on A’s ID. Hence, all waiting locks on A’s ID are
shared locks, which are released simultaneously once A finishes.
Lock Storage and Management. The following describes how dif-
ferent types of locks are managed in PhoebeDB.

• Table Lock: Each B-Tree in PhoebeDB corresponds to a single
relation or table (Section 5), offering a natural distribution for
table lock storage. Table lock information is stored in a dedicated
memory block, referenced by a pointer in the B-Tree root node.
• Transaction ID Lock: Each transaction maintains a list of shared
locks waiting on its transaction ID. Upon starting, a transaction
acquires an exclusive lock on its ID, releasing it upon completion
and notifying any waiting shared locks to proceed.
• Tuple Lock: Each active transaction holds at most one tuple lock
at a time. Instead of being stored within the transaction itself,
tuple locks are managed in co-routine task slots (Section 7.1).
This allows a tuple lock to be applied once and reused across
subsequent transactions. Tuple lockmetadata, such as the number
of granted locks per tuple, is stored in the twin table (Section 6.2).

7.3 Garbage Collection
Garbage collection (GC) [5, 19] is crucial for memory manage-

ment, as UNDO logs are in-memory for efficient commit times-
tamp updates (Section 6.2) and faster access to historical versions
[46], which can lead to high memory consumption.
GC Watermarks. PhoebeDB uses two watermarks for GC: the
minimum active XID and the max frozen XID. The minimum
active XID is the smallest XID among active transactions, while
the max frozen XID is the highest XID for which all transactions
with XID less than or equal to it are globally visible. Theminimum
active XID is determined by scanning active transactions, and a
transaction is globally visible if its commit timestamp is earlier
than any active transaction’s snapshot. These watermarks guide
GC for UNDO logs, twin tables, and deleted tuples.
GC for UNDO Logs. In PhoebeDB, a transaction’s snapshot is
always taken at or after its start timestamp. Therefore, UNDO
logs from transactions with commit timestamps earlier than the
minimum active XID ’s start timestamp are eligible for reclama-
tion. Since the commit timestamps of transactions within the
same task slot are strictly ordered, UNDO logs can be reclaimed
in a queue-like manner. The GC task sequentially scans these logs
until it encounters one whose commit timestamp is not earlier
than the minimum active XID ’s start timestamp.

1001

Remark. One significant advantage of PhoebeDB ’s MVCC
design (Section 6.2) is that the GC procedure avoids the need to
re-acquire an exclusive latch to update pointers in the twin table.
As UNDO logs are reclaimed in a queue-like manner, tracking
the address of the first unreclaimed UNDO log for each task slot
becomes straightforward. This enables efficient validation of the
pointer in the twin table by simply comparing it to the address
of the first unreclaimed UNDO log.
GC for Twin Tables. In PhoebeDB, the twin table records the
largest XID of transactions that have modified it, and it can only
be reclaimed if this XID is no larger than the max frozen XID,
which is computed as a by-product during the UNDO log GC.
Since transactions executedwithin the same task slot have strictly
increased XID, PhoebeDB tracks the XID of the most recently
reclaimed UNDO log for each task slot. The max frozen XID is
then determined as the minimum value among all the recorded
XID from each task slot.
GC for Deleted Tuples. Deleted tuples are physically removed
once they become globally visible, a process carried out during
UNDO log GC. Whenever an UNDO log containing a deletion
operation is reclaimed, the corresponding tuple is removed from
both the table and its associated index.

8 PARALLEL FLUSHWRITE AHEAD LOG
PhoebeDB employs Write-Ahead Logging (WAL) to ensure

data integrity, and follows the “Non-Force, Steal” principle [31],
that is, when a transaction is committed, it is not necessary to
flush all changes of the transaction to disk, and changes from
uncommitted transactions are allowed to be flushed to disk.
Traditional WAL Flushing. WAL flushing often becomes a
bottleneck due to the sequential nature of flushing logs to per-
sistent storage. While parallel WAL writes to in-memory buffers
are standard, the actual flush process typically remains serial-
ized, creating a bottleneck. Distributed Logging [45] introduces a
solution where parallel transactions write local log files indepen-
dently. During recovery, logs are ordered by a Global Sequence
Number (GSN) to maintain transaction execution order. However,
this requires transactions to wait for all prior WALs with lower
GSNs to flush before committing, introducing delays.
Remote Flush Avoidance. Remote Flush Avoidance (RFA) [30]
improves logging by allowing transactions to commit without
waiting for unrelated transaction logs, provided they modify
different data pages. This reduces commit latency by removing
unnecessary dependencies between unrelated transactions.
Phoebe’s ParallelWALDesign. PhoebeDB extends the parallel
log writing solution from Leanstore [21] with tuple-level RFA,
decoupling transaction commit dependencies from log flushing.
This design enables efficient log flushing, allowing transactions
to commit independently without unnecessary delays, thereby
enhancing system throughput and scalability.
• Global and Local Sequence Numbers: Each log entry records
a GSN (Global Sequence Number) and an LSN (Log Sequence
Number). The GSN is a globally monotonically increasing but
not unique, incremented for cross-page modifications. The LSN
is strictly monotonically increasing within each WAL writer.
• Task-Slot Specific WAL Writers: PhoebeDB maintains a separate
WAL writer for each task slot. Transactions on different task
slots, modifying separate data pages, only need to wait for their
respective WAL writer to flush logs to their WAL files.
• Decoupled Dependencies:When transactions are committed, they
do not need to wait for unrelated logs with the same GSN to flush,
significantly reducing contention and improving parallelism.

9 EVALUATION
Implementation and Hardware. PhoebeDB is implemented in
C++ and compiled using GCC 11. All experiments were conducted
on a server equipped with two Intel(R) Xeon(R) Gold 5320 CPUs
(2021 release, 2.2 GHz base frequency, 52 physical cores, 104
virtual cores), 512 GB of main memory, and two Samsung PM9A3
Enterprise NVMe SSDs (2021 release), running CentOS 9.
Metrics.We evaluate throughput using the TPC-C benchmark
[42], implemented as server-side user-defined functions (UDFs).
We use the latest PostgreSQL 17.0 and run the TPROC-C work-
load [43], by HammerDB [11]. HammerDB generates a TPC-C-
like workload by invoking server-side UDFs, allowing for a fair
comparison. All experiments are conducted over a 30-minute
duration with PhoebeDB configured to allocate 32 task slots
per worker thread and the transaction isolation level set to read
committed. Workload affinity is enabled by default, where each
worker thread is bound to a CPU core. WAL sync is enabled, and
a buffer size of 1GB (Main Storage) per warehouse is reserved.
Exp 1: tpmC Throughput. We evaluate PhoebeDB’s trans-
action throughput by varying the number of worker threads
and running the TPC-C benchmark with 1, 10, 25, 50, and 100
warehouses and worker threads. Figure 7(a) shows the average
tpmC over the test period. Notably, PhoebeDB achieves average
throughput values of 349𝑘 , 3362𝑘 , 6903𝑘 , 11578𝑘 , and 13690𝑘
tpmC at the respective scales, with stable throughput throughout
the test. Despite additional storage overhead designed for fu-
ture evolution into an HTAP kernel, PhoebeDB achieves a peak
throughput of approximately 13.7 million tpmC.
Exp 2: Scalability. Figure 8 shows average throughput as worker
count increases. Performance scales nearly linearly up to 52 work-
ers (physical CPU cores). Beyond this, per-worker performance
degrades slightly, but total throughput continues to rise.
Exp 3:WAL Flushing Performance. In this experiment, we sep-
arate the WAL and data storage onto two different physical disks
to evaluate WAL flushing performance, as shown in Figure 7(b).
Leveraging io_uring, PhoebeDB effectively utilizes NVMe SSDs,
achieving an average WAL flushing throughput of up to 1800
MB/s (130K IOPS for NVMe SSD RandomWrite). The throughput
remains stable throughout the entire runtime, demonstrating the
system’s efficiency in handling high I/O workloads.
Exp 4: Disk I/O Throughput. As a 1GB buffer is reserved per
warehouse, resulting in Main Storage sizes of 1GB, 10GB, 25GB,
50GB, and 100GB, respectively. Post-test, observed TPC-C data
sizes are 12GB, 119GB, 248GB, 423GB, and 480GB, showing most
data resides on disk. As seen in Figure 7(c) and (d), data exchange
betweenMain Storage and disk begins 2minutes in, causing tpmC
fluctuations. After 7 minutes, data writing throughput and tpmC
stabilize, while data reading throughput gradually increases.
Exp 5: Varying Buffer Size. Figure 10 shows PhoebeDB’s per-
formance with 100 warehouses and worker threads, varying the
buffer size from 4GB to 100GB. Larger buffers improve tpm per-
formance by reducing data page exchanges between memory and
disk. However, the performance improvement slows down when
the buffer size exceeds 25GB, as the buffer becomes sufficient to
hold all hot pages, leading to diminishing returns.
Exp 6: Co-routine vs Thread Model. Figure 11 compares
PhoebeDB’s performance in high concurrency using the co-routine
and thread models. We ran TPC-C with 100 warehouses and 100
worker threads under the co-routine model, assigning 32 task
slots per thread. For the thread model, we configured 3200 worker
threads with 1 task slot per thread, maintaining the same level of
concurrency. Since the number of worker threads differs from the

1002

0 500 1,000 1,500
0

0.5

1

1.5
·107

Time (s)

tp
m
C

(a) tpmC performance

0 500 1,000 1,500
0

1,000

2,000

Time (s)

Sp
ee
d
(M

B/
s)

(b) The WAL flushing performance

0 500 1,000 1,500

0

100

200

Time (s)

Sp
ee
d
(M

B/
s)

(c) The data reading performance

0 500 1,000 1,500

0

200

400

600

800

Time (s)

Sp
ee
d
(M

B/
s)

(d) The data writing performance

1 Worker 10 Workers 25 Workers 50 Workers 100 Workers

Figure 7: Performance Comparison Varying Numbers of Workers

1 10 25 50 100
0

0.5

1

1.5
·107

Number of Workers

tp
m
C

tpmC

Figure 8: tpmC In Different Scales

2 4 6
·106

N
ew

O
rd
er

Pa
ym

en
t

435,820

710,274

1,087,098

4,005,099

Time (CPU Cycles)

PhoebeDB PostgreSQL

Figure 9: Transaction Processing Time

0 250 500 750 1000 1250 1500 1750

Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tp
m

1e7

Dram=4G
Dram=10G

Dram=25G
Dram=50G

Dram=100G

Figure 10: Performance Under
Different Buffer Size

0 250 500 750 1000 1250 1500 1750

Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tp
m

1e7

Coroutine Model Thread Model

Figure 11: Performance of Co-
routine vs. Thread Model

number of warehouses, we set affinity to false in this experiment.
As shown in Figure 11, PhoebeDB achieves significantly higher
tpm in the co-routine model due to lightweight user-level context
switching, enabling efficient transaction management and better
resource utilization.
Exp 7: Breakdown of Instruction Count per Transaction.
We also evaluate the cost distribution across various components
in PhoebeDB by analyzing the instruction count per transac-
tion from TPC-C. As shown in Figure 12, we observe: (1) When
affinity is set to true, there is no contention, resulting in no vis-
ible locking cost. The costs associated with other components,
such as WAL, MVCC, latching, buffer manager and GC, remain
low. Notably, effective computation accounts for 60.8% of the
total instruction count, highlighting efficient resource utilization.
(2) When affinity is disabled, representing a scenario with con-
tention, the instruction count per transaction increases. This is
reflected in the appearance of locking costs and a higher WAL
overhead, as threads contend for shared resources. Despite this,
effective computation still accounts for 56.5% of the total instruc-
tions. These results demonstrate the efficacy of our proposed
lock management techniques and WAL design.
Exp 8: Transactions vs PostgreSQL. Under identical settings,
PhoebeDB achieves a total throughput of 30 million tpm, sig-
nificantly outperforming PostgreSQL’s 1.1 million tpm. This

50K

100K

150K

200K

250K

300K

350K
12.7% WAL

11.1% Latching

10.8% MVCC
5% Buffer Manager

56.5%
Effective

Calculation

3.7% GC

0.2% Locking

60.8%
Effective

Calculation

10.54% WAL

9.9% Latching

9.9% MVCC
4.9% Buffer Manager

3.9% GC

400K

Affinity=true Affinity=false

In
st

ru
ct

io
ns

/t
xn

Figure 12: Breakdown of Instruction Count per Transaction for
PhoebeDB from TPC-C.

highlights PhoebeDB’s clear advantage for OLTP workloads, de-
livering 27x higher throughput than PostgreSQL. In terms of
CPU cycles, as illustrated in Figure 9, PhoebeDB reduces the
cycles required for two critical TPC-C workload queries: the
Payment transaction and theNewOrder transaction. Specifically,
PhoebeDB achieves a 2.5x reduction for the Payment transaction
and a 5.6x reduction for the NewOrder transaction.
Exp 9: PerformanceComparisonswithCommercial RDBMS.
We also compare PhoebeDB with a widely used commercial
RDBMS, referred to as O-DB, on the same physical machine
but running CentOS 7.9. O-DB is configured with five NVMe
SSDs for storage and a 260 GB buffer pool. Using HammerDB 4.4,
it achieves a peak TPROC-C throughput of 3.2 million tpm. We
observed that, due to I/O bandwidth limitations, O-DB utilizes
only approximately 77% of CPU resources in this environment.

10 CONCLUSION
PhoebeDB introduces a disk-based RDBMS kernel optimized

for high-performance and cost-efficient OLTP workloads. By
leveraging modern hardware and integrating innovative fea-
tures, PhoebeDB achieves about 13.7 million tpmC on the TPC-C
benchmark. Future work will focus on: 1) Develop SQL interface
to establish PhoebeDB as a standalone server. 2) Implement a
primary-standby high-availability solution. 3) Evolve storage and
execution to support native HTAP.

1003

REFERENCES
[1] Alhomssi Adnan, Haubenschild Michael, and Leis Viktor. 2023. The Evolution

of LeanStore. 20th Conference on Database Systems for Business, Technology
and Web, BTW 2023 (2023), 259–281.

[2] Anastassia Ailamaki, David J DeWitt, andMark DHill. 2002. Data page layouts
for relational databases on deep memory hierarchies. The VLDB Journal 11
(2002), 198–215.

[3] Adnan Alhomssi and Viktor Leis. 2023. Scalable and robust snapshot isolation
for high-performance storage engines. Proceedings of the VLDB Endowment
16, 6 (2023), 1426–1438.

[4] Rudolf Bayer and Mario Schkolnick. 1977. Concurrency of operations on
B-trees. Acta informatica 9 (1977), 1–21.

[5] Jan Böttcher, Viktor Leis, ThomasNeumann, andAlfons Kemper. 2019. Scalable
garbage collection for in-memory MVCC systems. Proc. VLDB Endow. 13, 2
(Oct. 2019), 128–141. https://doi.org/10.14778/3364324.3364328

[6] CedarDB [n.d.]. CedarDB. https://cedardb.com/.
[7] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. 2001.

Cache-conscious concurrency control of main-memory indexes on shared-
memory multiprocessor systems. In VLDB, Vol. 1. 181–190.

[8] Zhang Chao, Li Guoliang, Zhang Jintao, Zhang Xinning, and Feng Jianghua.
2024. HTAP Databases: A Survey. IEEE Transactions on Knowledge and Data
Engineering 36 (2024), 6410–6429.

[9] Coroutines [n.d.]. Coroutines (C++20). https://en.cppreference.com/w/cpp/
language/coroutines.

[10] Immanuel Haffner and Jens Dittrich. 2023. A simplified Architecture for Fast,
Adaptive Compilation and Execution of SQL Queries.. In EDBT. 1–13.

[11] HammerDB [n.d.]. HammerDB. https://www.hammerdb.com/.
[12] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-

braker. 2008. OLTP through the looking glass, and what we found there. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’08). Association for Computing Machinery, New York, NY,
USA, 981–992. https://doi.org/10.1145/1376616.1376713

[13] Yongjun He, Jiacheng Lu, and Tianzheng Wang. 2020. CoroBase: coroutine-
oriented main-memory database engine. Proceedings of the VLDB Endowment
14, 3 (2020), 431–444.

[14] Kaisong Huang, Tianzheng Wang, Qingqing Zhou, and Qingzhong Meng.
2023. The Art of Latency Hiding in Modern Database Engines. Proceedings of
the VLDB Endowment 17, 3 (2023), 577–590.

[15] Debrabant Justin, Pavlo Andrew, Tu Stephen, StonebrakerMichael, and Zdonik
Stan. 2013. Anti-Caching: A New Approach to Database Management System
Architecture. In 2013 Proceedings of the VLDB Endowment. ACM, 1942–1953.

[16] Alfons Kemper and Donald Kossmann. 1995. Adaptable pointer swizzling
strategies in object bases: Design, realization, and quantitative analysis. The
VLDB Journal 4 (1995), 519–566.

[17] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In 2011
IEEE 27th International Conference on Data Engineering. 195–206. https:
//doi.org/10.1109/ICDE.2011.5767867

[18] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive execution of
compiled queries. In 2018 IEEE 34th International Conference on Data Engineer-
ing (ICDE). IEEE, 197–208.

[19] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh,
Yongjae Chuh, Wolfgang Stephan, and Wook-Shin Han. 2016. Hybrid Garbage
Collection for Multi-Version Concurrency Control in SAP HANA. In Proceed-
ings of the 2016 International Conference on Management of Data (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 1307–1318.
https://doi.org/10.1145/2882903.2903734

[20] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. 743–754.

[21] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann.
2018. LeanStore: In-memory data management beyond main memory. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 185–196.

[22] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic
Lock Coupling: A Scalable and Efficient General-Purpose Synchronization
Method. IEEE Data Eng. Bull. 42, 1 (2019), 73–84.

[23] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019.
KVell: the design and implementation of a fast persistent key-value store. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP
’19). Association for Computing Machinery, New York, NY, USA, 447–461.

https://doi.org/10.1145/3341301.3359628
[24] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Haozhou Wang, Gang

Guo, Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Ashwin Agrawal,
Alexandra Wang, Wen Lin, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo,
Jiang Wu, Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid
Database for Transactional and Analytical Workloads. arXiv:cs.DB/2103.11080
https://arxiv.org/abs/2103.11080

[25] Miao Ma, Zhengyi Yang, Kongzhang Hao, Liuyi Chen, Chunling Wang, and
Yi Jin. 2024. An Empirical Analysis of Just-in-Time Compilation in Modern
Databases. In Databases Theory and Applications. Springer Nature Switzerland,
Cham, 227–240.

[26] Pezzini Massimo, Feinberg Donald, Rayner Nigel, and Edjlali Roxane. 2014. Hy-
brid Transaction/Analytical ProcessingWill Foster Opportunities for Dramatic
Business Innovation. (2014). https://www.gartner.com/en/documents/2657815

[27] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but
at what cost?. In Proceedings of the 15th USENIX Conference on Hot Topics in
Operating Systems (HOTOS’15). USENIX Association, USA, 14.

[28] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. 2017. Relaxed opera-
tor fusion for in-memory databases: Making compilation, vectorization, and
prefetching work together at last. Proceedings of the VLDB Endowment 11, 1
(2017), 1–13.

[29] Freitag Michael, Kemper Alfons, and Neumann Thomas. 2022. Memory-
Optmized Multi-Version Concurrency Control for Disk-Based Database Sys-
tems. Proceedings of VLDB Endowment, PVLDB 15 (2022), 2797–2810.

[30] Haubenschild Michael, Sauer Caetano, Neumann Thomas, and Leis Viktor.
2020. Rethinking Logging, Checkpoints, and Recovery for High-Performance
Storage Engines. Proceedings of the 2020 ACM SIGMOD (2020), 877–892.

[31] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. 1992. ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM
Transactions on Database Systems (TODS) 17, 1 (1992), 94–162.

[32] MySQL [n.d.]. MySQL. https://www.mysql.com.
[33] Thomas Neumann. 2011. Efficiently compiling efficient query plans formodern

hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539–550.
[34] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast serializ-

able multi-version concurrency control for main-memory database systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 677–689.

[35] Haoran Ning, Bocheng Han, Zhengyi Yang, Kongzhang Hao, Miao Ma, Chun-
ling Wang, Boge Liu, Xiaoshuang Chen, Yu Hao, Yi Jin, Wanchuan Zhang,
and Chengwei Zhang. 2024. Exploring Simple Architecture of Just-in-Time
Compilation in Databases. InWeb and Big Data. Springer Nature Singapore,
Singapore, 504–514.

[36] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017.
Self-Driving Database Management Systems.. In CIDR, Vol. 4. 1.

[37] PostgreSQL [n.d.]. PostgreSQL. https://www.postgresql.org/.
[38] Mohammad Sadoghi and Spyros Blanas. 2019. Transaction processing on

modern hardware. Morgan & Claypool Publishers.
[39] Harizopoulos Stavros, Abadi Daniel J., Madden Samuel, and Stonebraker

Michael. 2008. OLTP through the looking glass, and what we found there.
Proceedings of the 2008 ACM SIGMOD (2008), 981–992.

[40] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The end of an architectural era: (it’s
time for a complete rewrite). In Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB ’07). VLDB Endowment, 1150–1160.

[41] Neumann Thomas and Freitag Michael. 2020. Umbra: A Disk-Based System
with In-Memory Performance. 10th Annual Conference on Innovative Data
Systems Research, CIDR (2020).

[42] TPC-C [n.d.]. TPC-C Benchmark. https://www.tpc.org/tpcc/.
[43] TPROC-C [n.d.]. HammerDB TPROC-C Workload. https://www.hammerdb.

com/docs/ch03s03.html.
[44] Leis Viktor, Kemper Alfons, and Neumann Thomas. 2013. The Adaptive

Radix Tree:ARTful Indexing for Main-Memory Databases. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE). IEEE.

[45] Tianzheng Wang and Ryan Johnson. 2014. Scalable logging through emerging
non-volatile memory. Proceedings of the VLDB Endowment 7, 10 (2014), 865–
876.

[46] Wu Y, Arulraj J, Lin J, et al. 2017. An empirical evaluation of in-memory
multi-version concurrency control. Proceedings of the VLDB Endowment 10, 7
(2017), 781–792.

1004

