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ABSTRACT
Ensuring data quality is crucial in modern data ecosystems, espe-
cially for training or testing datasets inmachine learning. Existing
validation approaches rely on computing data quality metrics
and/or using expert-defined constraints. Although there are auto-
mated constraint generation methods, they are often incomplete
and may be too strict or too soft, causing false positives or missed
errors, thus requiring expert adjustment. These methods may
also fail to detect subtle data inconsistencies hidden by complex
interdependencies within the data. In this paper, we propose
DQuag, an end-to-end data quality validation and repair frame-
work based on an improved Graph Neural Network (GNN) and
multi-task learning. The proposed method incorporates a dual-
decoder design: one for data quality validation and the other for
data repair. Our approach captures complex feature relationships
within tabular datasets using a multi-layer GNN architecture
to automatically detect explicit and hidden data errors. Unlike
previous methods, our model does not require manual input
for constraint generation and learns the underlying feature de-
pendencies, enabling it to identify complex hidden errors that
traditional systems often miss. Moreover, it can recommend re-
pair values, improving overall data quality. Experimental results
validate the effectiveness of our approach in identifying and
resolving data quality issues.

1 INTRODUCTION
In the era of artificial intelligence and large models, ensuring
data quality is crucial. High-quality data is essential for reliable
decision-making, particularly in machine learning, where data
quality directly impacts model performance. This paper addresses
data quality validation, focusing on innovative approaches that
overcome the limitations of existing methods.
Background: Quality validation is important to ensure that data
meets specific requirements. Its main steps start with data pro-
filing [5], generating metadata to describe quality like missing
values and data dependencies [25, 27]. This metadata forms the
basis for assessing data quality against established metrics. How-
ever, this often relies on expert-defined constraints, which are
resource-intensive and time-consuming to develop, maintain,
and adjust.
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Figure 1: Examples of Data Errors in tabular data: anom-
alies, typos, and conflicts between attributes.

Automated constraint generation [9, 35] attempts to learn
from dataset characteristics, but these constraints are often in-
complete or either too strict or too soft. Strict constraints can
lead to false positives, such as flagging acceptable minor data
entry variations as errors. While soft constraints may miss criti-
cal issues, such as overlooking small discrepancies in numerical
data. They need expert intervention for fine-tuning, which limits
practical effectiveness.

Furthermore, these automated constraint generation methods
often fail to detect hidden relationships and dependencies within
the data, which we refer to as hidden errors. Indeed, data quality
involves not only individual data points but also the complex
interrelationships among them.
Motivation: To motivate our work, consider a dirty tabular
dataset with four data quality errors that require verification.
Figure 1 shows common data errors: numeric anomalies, typos,
and attribute mismatches. Tuple 1 includes a numeric anomalies
value in the Age field, and tuple 2 has a typo in the Occupation
field. Existing data quality validation systems, such as Amazon
Deequ [35] and Google TFDV [9], can automatically generate
constraints (e.g., the age should be less than 100) to detect errors
in tuples 1 and 2. However, these constraints are often difficult
to set accurately, as valid cases may exist where age exceeds 100.
In tuple 1, being employed as a truck driver at that age is highly
unlikely and should be flagged as an error. Traditional systems
often set such constraints either too strictly or too leniently,
resulting in false positives or missed errors. Tuple 3 contains a
simple dependency issue, such as a city listed as Toronto while
the country is listed as the USA. This type of error can often be
addressed through expert-defined constraints. However, tuple 4
involves deeper dependencies, which is an illogical combination
of age and income, referred to as hidden errors. Although data
profiling [5, 25, 27] methods can discover such dependencies,
existing automated data quality validation approaches only rely
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on expert-based strategies to identify such dependencies. As a
result, they frequently overlook errors like those in tuple 4.

Our goal is to detect challenging errors, such as hidden errors
(e.g., tuple 4), without relying on expert input, while also detect-
ing ordinary errors like missing data and typos. Additionally, we
provide suggestions for repairing the identified errors.
Challenges: Addressing the limitations of existing methods in-
volves several challenges. First, obtaining expert input for defin-
ing constraints is costly and often impractical, making an auto-
mated approach essential. Second, existing methods struggle to
detect subtle issues embedded within complex feature relation-
ships, which we refer to as hidden data quality errors. Third, the
approach must be capable of identifying which specific features
of a sample are contributing to the data quality issue, ensur-
ing a precise assessment of problematic areas. Lastly, the model
should provide suggestions to repair problematic features, while
maintaining consistency with the overall clean data distribution.
Our Solution: To address these challenges, we propose DQuag,
a multi-task learning framework, which integrates a GNN en-
coder [23] for feature embedding and dual decoders for data
quality validation and repair. This combination leverages graph-
based learning and multi-task optimization to detect and repair
data quality issues.

The method includes the following key steps in the training
phase: First, we construct a feature graph from clean tabular
data to capture relationships between features. This graph repre-
sentation enables the model to leverage relational dependencies
inherent in the data. Next, a GNN encoder generates feature
embeddings that encapsulate these relationships. The generated
feature embeddings are then passed to two separate decoders.
The Data Quality Validation Decoder reconstructs the original
data from the feature embeddings, aiming to maximize the re-
construction accuracy for clean data and identify errors based on
reconstruction loss. The Data Repair Decoder generates corrected
values for problematic features. These decoders are optimized
with distinct loss functions.

During the verification phase, we apply the trained model to
unseen datasets and use reconstruction errors to measure data
quality, with large errors indicating potential data quality issues.
The repair decoder then suggests corrections for these features.
This approach detects both explicit and underlying data quality
problems, reducing the need for expert-defined constraints and
manual intervention.
Contributions: This paper makes three key contributions. First,
we introduce a novel advanced data quality validation and repair
framework based on graph neural networks and multi-task learn-
ing, eliminating the need for expert-defined constraints. Second,
we develop a novel dual-decoder architecture to address two
critical tasks: data quality validation and data repair. The Data
Quality Validation Decoder is designed to highlight potential
quality issues, while the Data Repair Decoder provides correction
suggestions. Finally, we validate our approach through compre-
hensive and extensive experiments, thoroughly demonstrating
its effectiveness and adaptability across various scenarios.

2 RELATEDWORK
Research in data quality has traditionally emphasized the cal-
culation of data quality dimensions and statistics to assess data
quality. Fundamental components of this field include data pro-
filing, which identifies issues like missing values and syntax vio-
lations [10, 18, 30], and data quality assessment, which measures

attributes such as accuracy, completeness, and consistency [38,
44] to ensure datasets meet standards applicable to various do-
mains [19, 20, 47].

Several studies have investigated data qualitywithinML pipelines,
examining its influence on ML performance [7], methods for
high-quality data preparation [15, 17], ensuring data complete-
ness [21, 36], detecting data drift [12, 41, 45], and validating data
quality [9, 14, 35, 39]. Frameworks like Dagger [33] and Mlin-
spect [16] incorporate advanced debugging and interactive query
mechanisms to streamline systematic data management. Further-
more, tools such as HoloClean [32] and ActiveClean [22] extend
these efforts to data cleaning and repair, leveraging probabilistic
models and active learning for iterative dataset refinement.

Existing quality validation systems typically use statistical
methods or statistics to train machine learning models for detect-
ing data quality problems. These methods often rely on prede-
fined rules and constraints that require expert adjustment [14,
39], e.g., automated data quality verification systems, such as
Deequ [35] and TFDV [9], which generate constraints automat-
ically. However, these constraints are not always accurate and
often need expert fine-tuning to effectively detect hidden data re-
lationships and dependencies [34]. Other systems like ADQV [31]
use k-nearest neighbors to evaluate data quality by computing
limited metrics, but fail to detect hidden errors and cannot pin-
point the incorrect samples.

Our approach uses a multi-task learning framework that com-
bines GNN encoder [23] and dural decoders. While GNNs and
other machine learning models are used for data imputation [8,
40, 42], anomaly detection [13], and fraud detection [24, 29], their
use in an integrated manner for direct data quality validation
remains underexplored. Our work applies GNN to automatically
validate data quality, focusing on both explicit data errors and
complex interdependencies without relying on expert-defined
rules and manual adjustments and optimizes for both detection
and repair tasks, setting our approach apart from conventional
data management techniques that typically rely on isolated, task-
specific methods.

3 OUR APPROACH: DQUAG
In this section, we present DQuaG (Data Quality Graph), a novel
approach for data quality validation. Figure 2 illustrates the frame-
work of our approach, which includes two main phases: model
training on a clean dataset and data quality validation and repair
for new data. In Phase 1, we train a model using a clean dataset
to learn the normal patterns and relationships between features.
In Phase 2, we use the trained model to assess the quality of new
data and provide repair suggestions for any detected errors.

3.1 Phase 1: Training GNN on Clean Data
We assume the availability of a high-quality, clean dataset,Dclean,
that has undergone rigorous quality control and is free from er-
rors. This dataset serves as the foundation for training our model.
For feature encoding and normalization, categorical features are
converted to numerical form using label encoding, where the
encoder is fitted on both clean data and any possible future data
to ensure consistency. For numerical features, we apply min-max
normalization to scale values to the range [0, 1], which helps
improve training stability and ensures that all features are on a
comparable scale.

3.1.1 FeatureGraphConstruction. Weuse ChatGPT-4 [28]
to automate the feature graph construction. Given a clean dataset,
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Figure 2: Data Quality Validation Framework Using GNN. Top: Training on clean data. Bottom: Validating unseen data by
reconstruction error comparison.

we extract the feature names (𝐹 ) and their descriptions (𝐷) from
the data source. We then randomly sample 100 data points from
the dataset, denoted as (𝑆). These feature names, descriptions, and
sample points are provided to ChatGPT-4 in a structured format
to infer potential relationships between features. The output from
ChatGPT-4 is a JSON file capturing feature relationships, which
we denote as Feature_Relationships = {(𝑓𝑖 , 𝑓𝑗 ) | 𝑓𝑖 , 𝑓𝑗 ∈ 𝐹 }, indi-
cating that there is a relationship between features 𝑓𝑖 and 𝑓𝑗 .

Prompt for Feature Relationship Inference

Given the following information, please infer the relationships
between features. Provide your output in JSON format, capturing
the type of relationships.
Feature Names: List of feature names (𝐹 )
Feature Descriptions: List of descriptions (𝐷) for each feature
Sample Data Points: 100 data samples (𝑆) from the dataset
Output: Please return a JSON object in the format:
{"relationships": [{"feature1", "feature2"},

{"feature3", "feature4"}, ...]}

Using these relationships, we construct the knowledge-based
feature graph 𝐺 = (𝑉 , 𝐸), where 𝑉 represents features and 𝐸

represents edges indicating relationships between features.

3.1.2 GNNModel Architecture. Our model architecture
combines the strengths of different graph neural network vari-
ants to effectively capture complex feature relationships. The
architecture consists of three main components: an improved
GNN encoder that fuses Graph Attention Network (GAT) [43] lay-
ers and Graph Isomorphism Network (GIN) [46] layers, and two
specialized decoders for quality validation and repair suggestion
generation.
GNNEncoder (GAT + GIN). Our encoder consists of four layers:
alternating Graph Attention Network (GAT) and Graph Isomor-
phism Network (GIN) layers, in the order of GAT-GIN-GAT-GIN.
This design is inspired by recent findings in the field of graph rep-
resentation learning that demonstrate how combining different
types of graph layers can yield improved performance in feature
extraction and relational representation tasks [48]. Our experi-
mental results demonstrate the advantages of this structure.

The GAT layers compute attentionweights between connected
features, enabling the model to adaptively assign importance to
significant relationships in the data. This allows the model to
focus on critical connections and ignore irrelevant information,

which enhances its ability to learn meaningful feature repre-
sentations. Our approach uses GAT layers, which automatically
learn edge weights through attention mechanisms during train-
ing. This eliminates the need to manually assign weights in the
initial feature graph.

The GIN layers aggregate feature information from neighbor-
ing nodes to capture structural information more effectively. By
using GIN, the encoder gains a strong ability to represent the
underlying structure of the data, preserving key relationships
crucial for data quality validation and repair tasks.

This alternating GAT and GIN structure enhances the model’s
ability to both prioritize important features and learn intricate
structural relationships, thereby making it more effective at rep-
resenting complex feature dependencies in the data. Specifically,
the GNN encoder processes the feature graph 𝐺 = (𝑉 , 𝐸) along
with the input data matrix X ∈ R𝑛×𝑑 , where 𝑛 is the number
of nodes (features) and 𝑑 is the dimensionality of each feature
vector. The output from the GNN encoder is a feature embedding
matrix Z ∈ R𝑛×ℎ , where ℎ represents the size of the learned
feature embeddings.
Dual Decoder Structure. Our model employs two separate de-
coders to address the tasks of Data Quality Validation and Repair
Suggestion, enabling focused optimization for each objective.

Data Quality Validation Decoder is responsible for reconstruct-
ing the original feature space from the learned embeddings, de-
noted as Z. The primary objective of this decoder is to learn the
correct patterns from clean data and reconstruct the features in
a way that captures the underlying structure of the dataset. This
allows us to identify abnormalities by measuring reconstruction
errors. We have designed a unique loss function that ensures the
model focuses on learning accurate representations of clean data
while effectively distinguishing abnormal samples.

For normal data samples, the decoder should ideally have
a low reconstruction error, as the learned embeddings should
effectively capture the true relationships between the features, re-
sulting in an accurate reconstruction. For abnormal samples, the
reconstruction error will be higher, indicating that these samples
do not conform to the learned patterns from the clean data. The re-
construction loss is defined as𝐿validation = 1

𝑁

∑𝑁
𝑖=1𝑤𝑖

X𝑖 − X̂𝑖

2
2,

where X𝑖 represents the original input features, and X̂𝑖 is the
reconstructed feature vector for the 𝑖-th sample. The weights𝑤𝑖

are assigned to each sample based on its reconstruction error.
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We assign larger weights to normal data samples (𝑤𝑖 s higher
for samples with smaller reconstruction errors), giving them a
greater influence in minimizing their reconstruction loss. This
encourages the model to accurately reconstruct the normal data
and effectively learn the correct data distribution. For samples
with potential quality issues, theweights𝑤𝑖 are reduced, meaning
that their influence on the overall loss is diminished. This allows
the model to focus on minimizing the reconstruction loss for
normal data while maintaining high reconstruction errors for
problematic samples during the backpropagation. By using this
weighting mechanism, we ensure that the validation decoder can
distinguish between normal data and data with potential issues
based on reconstruction errors.

Data Repair Decoder, on the other hand, takes the same learned
embeddings Z as input, but its goal is different: it aims to suggest
repaired values for features identified as erroneous. Unlike the
Data Quality Validation Decoder, which reconstructs data to high-
light discrepancies, the Data Repair Decoder attempts to produce
an output that aligns with the clean, underlying data distribution,
effectively suggesting corrections for the detected errors. The
objective of this decoder is defined through the following loss
function: 𝐿repair = 1

𝑁

∑𝑁
𝑖=1

X𝑖 − X̃𝑖

2
2. Here, X̃𝑖 represents the

feature values repaired by the decoder, while X𝑖 stands for the
corresponding clean feature values from the input dataset. Since
the input is already clean, X𝑖 can directly serve as the target for
the repair task.

The combination of these two decoders is essential for ef-
fectively handling data quality issues. The overall loss function
is a weighted sum of the validation and repair losses: 𝐿total =
𝛼𝐿validation + 𝛽𝐿repair, where 𝛼 and 𝛽 are hyperparameters used
to balance the contributions of reconstruction and repair, both
of which are set to 1 in our experiments.

The two decoders serve different purposes: the Data Quality
Validation Decoder is optimized to detect data issues by maxi-
mizing reconstruction errors for problematic instances, while
the Data Repair Decoder aims to provide realistic corrections for
identified issues. By separating these tasks, the model avoids
conflicting optimization goals, ensuring it is both effective at
identifying problems and providing reliable repairs.
Multi-Task Learning Framework. The encoder is shared be-
tween the quality validation and repair tasks, while each task-
specific decoder learns independently. This multi-task framework
enables the model to exploit shared information between these
tasks, allowing the model to learn a unified representation bene-
ficial for both.

3.1.3 Training Process. We train the model on the clean
dataset using an optimizer Adam to minimize 𝐿total.

3.1.4 Collecting the statistics of reconstruction errors.
During training, we record the reconstruction error for each
instance. The reconstruction error is essentially the loss for each
instance. Let 𝑒𝑖 denote the reconstruction error for instance 𝑖 ,
and let E be the set of all reconstruction errors from the clean
dataset. Given that even cleaned datasets may contain undetected
errors, we do not set the maximum reconstruction error as the
threshold for identifying problematic instances. Instead, we set
the threshold at the 95th percentile of E, denoted as 𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

Instances in the next phase with reconstruction errors above
𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are flagged as potentially problematic.

3.2 Phase 2: Data Quality Validate and Repair
3.2.1 DataQuality Validation Process. In this phase, we

validate the quality of incoming data by comparing it to the
patterns learned during model training.

The new unseen data is preprocessed in the same manner
as the clean dataset to ensure consistency in feature encoding,
normalization, and feature graph construction. These new unseen
datasets must keep the same schema as the original clean dataset.
Detecting Data Quality Issues by Reconstruction Errors.
After preprocessing, the model uses the validation decoder to
reconstruct the features of the new data. For each data instance,
the reconstruction error 𝑒𝑖 is calculated. We then obtain a list of
reconstruction errors, denoted as Enew. Next, we compare each
reconstruction error in Enew with the threshold 𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 from
the clean dataset. We calculate the proportion of instances in
the new dataset with reconstruction errors exceeding 𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,
denoted as 𝑅𝑒𝑟𝑟𝑜𝑟 . Since the threshold was set at the 95th per-
centile for the clean dataset, we expect around 5% of clean data
instances to exceed this value.

To account for data variability, if 𝑅𝑒𝑟𝑟𝑜𝑟 exceeds 5% × 𝑛, we
classify the new dataset as problematic. This means if more than
5𝑛% of instances in the new dataset have errors greater than
𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , we will report the dataset has data quality issues. The
parameter 𝑛 can be adjusted based on observed reconstruction
errors after deployment. In our experiments, we set 𝑛 = 1.2,
which exhibited good performance. Finally, we report the indices
of all instances in the new dataset with reconstruction errors
above 𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , clearly identifying problematic samples.
Detecting Feature Errors. Each instance’s reconstruction error
𝑒 is a list corresponding to each feature’s loss. To identify specific
problematic features, we detect outliers with significantly higher
reconstruction errors. For an instance x𝑖 , let e𝑖 = [𝑒𝑖1, 𝑒𝑖2, . . . , 𝑒𝑖𝑛]
be the reconstruction errors for the 𝑛 features. We calculate the
mean 𝜇𝑖 and standard deviation 𝜎𝑖 of the errors. Features with
errors greater than 𝜇𝑖 + 5𝜎𝑖 are flagged as problematic.

3.2.2 Repair Suggestion Generation. In this phase, we
provide repair suggestions for detected errors to improve the
quality of the data for downstream use. The repair decoder is used
to generate a repaired feature vector, which includes suggested
repaired values for all features. In the previous step, we flagged
which specific instances and features were problematic. Then we
selectively apply modifications only to the flagged problematic
features. For categorical features, the repair decoder predicts the
most likely corrected category, while for numerical features, it
predicts a value that aligns with the learned data distribution.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
The experiments were conducted using Python 3.11 and PyTorch
1.12.1. All computations were performed on an NVIDIA A100
GPU. The source code and data have been made available1.

4.1.1 Datasets. We evaluate the robustness and generality of
our approach using datasets with varied error types and data
structures, followingmethodologies outlined in prior research [31].
Datasets with ground-truth errors. Airbnb Data[1] which con-
tains information about Airbnb listings in New York City, in-
cluding attributes such as price, location, and property type; and
Chicago Divvy Bicycle Sharing Data[2] includes trip data

1Source code and data: https://github.com/SiSijie/DQuaG
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from the Divvy bike-sharing program in Chicago, with details
like the trip duration, start and end locations, and bike ID.Google
Play Store Apps Data[11] includes app data, capturing ratings,
downloads, categories, and trends in app performance. For these
datasets, we have uncleaned versions with real-world errors.
We involved data-cleaning techniques to create cleaned version
datasets, such as removing duplicates, handling missing data, and
filtering out illogical records.
Datasets without ground-truth errors.NewYorkTaxi TripData[4]
which comprises taxi trip records in New York City, detailing
pickup and dropoff locations, fares, and trip durations; Hotel
Booking Data[6] contains booking information for a city hotel
and a resort hotel; and Credit Card Data[3] includes informa-
tion on credit card applications. For these datasets, we directly
utilized clean versions of data from reliable sources [3, 4, 6]. These
datasets were publicly released, carefully collected, and cleaned
before use. From these clean versions, we generated four types
of data errors to create the corresponding dirty version datasets.

Clean datasets are not entirely error-free. Clean data is defined
as having higher quality than dirty datasets and meeting the
user’s standards.

4.1.2 Synthetic Errors in Datasets without ground-truth errors.
We simulate three ordinary errors and propose two potential
hidden errors to evaluate the effectiveness of our approach:

Ordinary Errors: We introduce three types of errors affecting
20% of values in three selected attributes: missing Values arise
from empty cells due to collection or integration errors; numeric
anomalies occur when sensor malfunctions or scaling issues
result in out-of-range values; and String typos are caused by
spelling errors simulated by randomly replacing letters with
neighboring keys on a "qwerty" keyboard.

Hidden Errors: Logical and Temporal Conflicts between
Attributes, which occur when related attributes contain values
that are either conflicting or illogical when considered together,
or when time-related data does not follow chronological logic.
In the Credit Card dataset, we set two hidden conflicts. First,
a conflict arises when DAYS_EMPLOYED exceeds DAYS_BIRTH,
implying employment before birth. Second, a conflict involves
AMT_INCOME_TOTAL, NAME_EDUCATION_TYPE, and OCCU-
PATION_TYPE, producing improbable combinations (e.g., high ed-
ucation and advanced occupation but extremely low income) that
simple domain rules rarely cover. In the Hotel Booking dataset, a
hidden error was generated for bookings labeled customer_type
as ’Group’ with zero adults and more than zero babies, conflicting
with logic.

4.1.3 Baselines. We selected four SOTAbaselines, eachwidely
recognized for their effectiveness in detecting and validating data
quality issues. Deequ [35]: A tool by Amazon for scalable data
quality validation, using constraints and metrics. Deequ auto
generates constraints automatically, while Deequ expert incorpo-
rates expert-tuned adjustments for higher precision. TFDV [9]:
TensorFlow Data Validation for scalable ML pipeline validation,
automatically detecting anomalies and schema violations. TFDV
auto uses auto-generated constraints, while TFDV expert sup-
ports expert fine-tuning. ADQV [31]: A tool leveraging adaptive
learning to dynamically adjust validation criteria, excelling in
evolving datasets. Gate [37]: A machine learning-based method
for automated detection and correction of data quality issues,
offering an adaptive alternative to rule-based systems.

Similar to previous work [31], we manually performed the
fine-tuning work required by experts for Deequ and TFDV.

Table 1: Accuracy and recall across different methods and
two datasets with synthetic data errors (Ordinary errors:
N = Numeric Anomalies, S = String Typos, M = Missing
Values; Hidden Errors: Conflicts = Logical and Temporal
Conflicts between Attributes). Note: * Indicates average value.

Dataset Error Types Methods Acc. Recall

Hotel Booking

N, S, M Deequ auto 0.530* 1
N, S, M Deequ expert 1 1
N, S, M TFDV auto, expert 1 1
N, S, M ADQV 0.963* 1
N Gate 0.500 0
S, M Gate 0.980* 0.960*
N, S, M DQuaG 1 1
Conflicts Deequ expert 0.500 0
Conflicts TFDV expert 0.500 0
Conflicts ADQV 0.970 1
Conflicts Gate 0.820 0.640
Conflicts DQuaG 1 1

Credit Card

N, S, M Deequ auto 0.550* 1
N, S, M Deequ expert 0.970* 1
S, M TFDV auto 1 1
N TFDV auto 0.500 0
N, S, M TFDV expert 1 1
N, S, M ADQV 0.960* 1
N, S, M Gate 0.510* 1
N, S, M DQuaG 1 1
Conflicts-1 Deequ expert 0.500 0
Conflicts-1 TFDV expert 0.500 0
Conflicts-1 ADQV 0.500 1
Conflicts-1 Gate 0.510 1
Conflicts-1 DQuaG 1 1
Conflicts-2 Deequ expert 0.500 0
Conflicts-2 TFDV expert 0.500 0
Conflicts-2 ADQV 0.960 1
Conflicts-2 Gate 0.560 1
Conflicts-2 DQuaG 1 1

4.2 Accuracy of Synthetic Error Detection
We used a clean dataset, randomly sampling 10% to generate 50
batches of clean data, and did the same with a dirty dataset to
generate 50 batches of dirty data. We then used these 100 batches
to test our method and baselines.

According to Table 1, our method performs well in detecting
both ordinary and hidden errors, achieving accuracy and recall
of 1. For ordinary errors, Deequ-auto and TFDV-auto methods
are inaccurate due to overly strict or soft constraints but perform
well after expert tuning. However, they cannot detect hidden
errors. ADQV can automatically detect ordinary errors but fails
to identify hidden errors. For hidden errors in the Hotel Book-
ing dataset, ADQV shows an accuracy of 0.97 but actually flags
change in numeric feature distribution, missing the real issues.
For the Gate, the results are also unstable. The constraints it sets
are too strict and cannot distinguish between dirty and clean
datasets. It also cannot distinguish well between hidden errors.
The experimental results highlight our method’s robustness, par-
ticularly in identifying complex data interdependencies.

4.3 Accuracy of Real-World Error Detection
We used the same method to generate 100 test batches from
Airbnb and Bicycle datasets as in Section 4.2. In Figure 3, our
approach showed excellent performance in detecting problem-
atic data in both real-world datasets, achieving an accuracy of
1. ADQV and Gate performed poorly, flagging all batches due
to overly strict error detection. Deequ auto and TFDV auto per-
formed poorly on the Airbnb dataset but well on the bicycle
dataset. Deequ expert and TFDV expert performed well on both
datasets but required manual tuning of constraints. Therefore,
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Figure 3: Accuracy across different methods and two
datasets with real-world data errors. (All methods have
Recall=1)

Table 2: Difference (%) in flagged errors for clean vs. dirty
data. (Higher is better.)

Dataset Graph2Vec GCN GCN+GAT GCN+GIN GAT+GIN

Airbnb 2.72 1.83 2.60 4.55 4.17
Bicycle 21.49 11.06 12.36 17.51 21.72
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Figure 4: Scalability Analysis: data quality validation time
of our approach, when varying the data dimensionality
and data size, on the New York Taxi dataset.

our method effectively detects real-world errors without the need
for manual intervention.

4.4 Comparison with Encoder Architectures
To validate the effectiveness of the GAT+GIN architecture, we
tested five encoder architectures:Graph2Vec [26],GCN,GCN+GAT,
GCN+GIN, and GAT+GIN on Airbnb and Bicycle datasets. Table 2
shows that GAT+GIN achieves the highest difference in flagged
errors, reflecting its stronger ability to distinguish clean from
dirty data. We attribute this to GAT’s attention mechanism (fo-
cusing on important neighbors) and GIN’s injective aggregation
(capturing nuanced relationships). For hyperparameters, all mod-
els used four layers, a hidden dimension of 64, a learning rate of
0.01, and a batch size of 128.

4.5 Scalability Analysis
Figure 4 illustrates the scalability analysis of our data quality
validation method on the New York Taxi dataset, showing the
validation time across different data dimensions (5, 10, and 18)
and varying data sizes (up to 1 million samples). The results
demonstrate that as the dataset size and the number of dimen-
sions increases, our method’s computation time increases linearly
rather than exponentially, which is logical. When processing
datasets with millions of data points, our method only takes ten
minutes. These findings indicate that our method is scalable.

To further assess scalability and robustness, we conducted an
experiment using different sample sizes (10 to 1000). The accuracy
results are summarized in Table 3. The sample size represents
the number of new data instances used for quality validation.

Table 3: Summary of Overall Accuracy for Different Sample
Sizes across 3 Datasets.

Sample Size 10 20 50 100 500 1000

Airbnb (Accuracy %) 85.0 93.0 99.0 99.0 100.0 100.0
Bicycle (Accuracy %) 86.0 92.0 89.0 97.0 100.0 100.0
NY Taxi (Accuracy %) 83.0 89.0 98.0 97.0 100.0 100.0

The experimental results show that as the sample size in-
creases, the model’s accuracy also improves. When the sample
size exceeds 500, the model achieves 100% accuracy across both
datasets, indicating stable performance at larger scales. These
findings highlight the effectiveness of our method for large sam-
ple sizes but also suggest limitations in scenarios with smaller
data availability.

4.6 Data Repair Evaluation
To assess the effectiveness of our data repair process, we con-
ducted experiments on the Airbnb and Bicycle datasets. Accord-
ing to our data quality validation results of the Airbnb dataset,
The error rate of the original dirty dataset was 10.52%. After
applying repair suggestions generated by our repair decoder, the
error rate was reduced to 4.97%, closely matching the error rate of
4.95% observed in the clean dataset. For the results of the Bicycle
dataset, the repair decoder reduced the error rate of the dirty
data from 21.11% to 2.75%. Importantly, the repaired dataset was
classified as clean under our quality validation framework.

5 CONCLUSIONS AND FUTUREWORK
We proposed DQuaG, a novel multi-task learning framework that
combines a GNN encoder with dual decoders for data quality val-
idation and repair. Our approach effectively detects and repairs
data quality issues without expert-defined constraints or manual
interventions. By utilizing a dual-decoder structure, our model
independently optimizes data quality validation and repair tasks,
with a specially designed validation decoder loss that enhances
the detection of erroneous data. We evaluated our approach us-
ing real-world datasets containing inherent data quality issues,
where it performed well. However, in extreme scenarios—such as
datasets with only a few thousand samples where only a single
erroneous instance exists—our method may lack sensitivity. In
such cases, traditional statistical methods often prove to be more
accurate, as they can better identify isolated anomalies within
smaller datasets. We aim to further refine our approach, improv-
ing its robustness in extreme conditions. Additionally, we plan to
extend our approach to encompass post-validation tasks, such as
data cleaning and data selection. To improve the interpretability
of our models, we will focus on optimizing the GNN frameworks.
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