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ABSTRACT

Blockchains are being positioned as the "technology of trust"
that can be used to mediate transactions between non-trusting
parties without the need for a central authority. They support
transaction types that are native to the blockchain platform or
user-defined via user programs called smart contracts. Despite
the significant flexibility in transaction programmability that
smart contracts offer, they pose several usability, robustness, and
performance challenges.

This paper proposes an alternative transaction framework that
incorporates more primitives into the native set of transaction
types (reducing the likelihood of requiring user-defined trans-
action programs often). The framework is based on the concept
of declarative blockchain transactions whose strength lies in the
fact that it addresses several of the limitations of smart contracts,
simultaneously. A formal and implementation framework is pre-
sented and a subset of commonly occurring transaction behaviors
is modeled and implemented as use cases, using an open-source
blockchain development platform, BigchainDB as the implemen-
tation context. A performance study comparing the declarative
transaction approach to equivalent smart contract transaction
models reveals several advantages of the proposed approach.

1 INTRODUCTION

Blockchains, as a technology for mediating and managing trans-
actions between non-trusting parties, is becoming an increas-
ingly popular concept. They are decentralized, fully replicated,
append-only databases of transactions that are validated through
a large, distributed consensus. These characteristics ensure that
blockchain contents are tamper-proof and that no single author-
ity controls a blockchain’s operation and contents, conferring a
good degree of trust in them.

Initially aimed at cryptocurrency, blockchain technology now
extends to areas seeking data control and ownership decentral-
ization, primarily for privacy and efficiency. This includes health-
care, [7, 30], supply chain [17, 39, 49], decentralized finance (Defi)
[37, 45], governance [29], web browsing, gaming, social media,
and file sharing/storage [8].

Blockchain transactions typically involve digital asset manage-
ment aligned with business activities. The fundamental transac-
tion type is asset TRANSFER between accounts, a native function
in most blockchains. To address the diverse needs of modern
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applications, blockchains have evolved to include user-designed
transactions known as smart contracts [40]. These contracts exe-
cute business operations and adhere to specific conditions. Ex-
amples include auction bidding and regulated patient record
management. Recent survey [3] indicates the existence of over
44 million smart contracts on the Ethereum blockchain alone.

Problem: Smart contracts, despite their flexibility, face adop-
tion barriers due to several issues: (i) They require significant
effort in creation and verification, offer limited reusability across
platforms, and constrain automatic optimization possibilities. (ii)
Vulnerable to user errors and security breaches, they pose finan-
cial risks, exemplified by the DAO attack [31] that resulted in a
loss of approximately 3.6METH (about $12.02B1). (iii) Many trans-
actional behaviors in smart contracts, embedded in programming
structures, remain hidden on the blockchain, hindering their util-
ity in complex data analysis. Blockchain ledgers record method
calls, but the semantics of user-programmed behavior remain
opaque because call signatures alone don’t reveal full logic. Under-
standing often requires source code, which is optional to publish
and frequently omitted since only executables are required for
deployment. (iv) Their execution involves higher latency and
costs compared to native transactions. The lack of validation
semantics for these user-programmed transactions complicates
concurrency conflict management, leading most platforms, in-
cluding Ethereum, to adopt sequential execution, which lowers
throughput.

Declarative smart contracts [12], domain-specific languages
[47], and smart contract templates [26] aim to ease creation and
verification processes. However, they fall short in addressing
performance, throughput, queryability, and other transactional
model challenges in smart contracts.

To address these limitations, we propose the concept of declar-
ative transactions, inspired by database systems, as a way to
abstract transactional behavior on blockchains. Similar to how
SQL revolutionized relational databases by allowing users to
specify what data to retrieve or manipulate without detailing
how to execute the query, declarative transactions enable devel-
opers to specify what transactional behavior is desired, while
the system determines how to execute it. This abstraction offers
several advantages over imperative approaches, including auto-
matic optimization of transaction execution, improved code
reusability, better scalability, and enhanced queryability for
complex data analysis.

1As of December 20, 2024, 1 ETH = $3,338.66 USD. Source: Investing.com.
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1.1 Contributions:

This paper investigates the feasibility and impact of lifting trans-
actional behaviors typically found in smart contracts into the core
blockchain layer as native transactions. Specifically, we propose:
(1) a declarative and typed blockchain transaction model that in-

cludes the novel concept of nested blockchain transactions, as a
foundation formodeling transactional behavior on blockchains.

(2) concrete declarative blockchain transaction modeling of a
sample transactional behavior represented in many smart
contracts of themost popular blockchain application category
- marketplaces.

(3) an implementation framework for declarative blockchain
transactions that builds on BigchainDB blockchain develop-
ment platform [1], extending its transaction modeling and
validation infrastructure.

(4) a comparative performance and usability evaluation of the
declarative transactionmodel vs. imperative transactionmodel
that uses Ethereum smart contracts as the basis. The eval-
uation results demonstrate that the declarative transaction
method significantly outperforms smart contracts, achieving
improvements by a factor of 635 in latency and a minimum
of 60 in throughput.
The rest of the paper is organized as follows: Section 2 pro-

vides motivation and background information on blockchain
native transactions, smart contracts, and BigchainDB. Section 3
introduces the formal blockchain transaction model and novel
concepts of Non-nested and Nested transactions. Section 4 pro-
vides implementation details of the concepts presented in Section
3. Section 5 reports on the comparative experiments conducted
to evaluate declarative and imperative approaches. Section 6 re-
views the literature on the topic, while Section 7 discusses the
limitations and scenarios where declarative transactions may
face challenges. Finally, we conclude the paper with a summary
and future work in Section 8 and acknowledgement in Section 9.

2 MOTIVATION AND BACKGROUND

2.1 Smart Contracts in Blockchain

Marketplaces

Most blockchain platforms typically support only basic trans-
actions like TRANSFER, with Ethereum adding more complex
types, such as multi-signature transactions that focus more on op-
erational semantics rather than behavior. Consequently, most ap-
plications rely on smart contracts to extend functionality, which
comes with inherent limitations. For example, in setting up a
decentralized marketplace for procurement and supply chain
management, smart contracts are needed for actions like posting
service requests by buyers or supply bids by providers, involv-
ing complex metadata management through user-programmed
methods.

Example. Buyers can post requests (e.g., for manufacturing
services), and providers (e.g., 3-D printer manufacturers) can re-
spond with bids. These transactions involve detailed metadata such
as quantity, product type, and deadlines, managed through the
createrfq method for requests and createbid for bids, which
also includes the asset’s production capabilities like certifications
and work history. This setup mimics traditional auctions where the
asset that forms the basis of a bid is some form of payment. Fig. 1
shows the skeleton of an Ethereum smart contract modeling such
a procurement reverse auction marketplace.

Figure 1: Smart Contract sample implemented in Solidity

Figure 2: Comparison of runtime (in milliseconds) and gas

cost for executing a TRANSFER transaction using Ethereum

native transactions, Ethereum Smart Contracts, andDeclar-

ative transactions. The left y-axis represents gas costs,

while the right y-axis represents execution time. Note: For
ETH: Native and Declarative SmartchainDB, certain metrics
are not measured due to the lack of programmable execution
(time) or fee structure (gas).

Observations:

Native transactions such as TRANSFER automatically handle
validation against errors like double-spending. However, with
smart contracts, developers must manually code such validations,
as seen with methods like checkValidBid(). In an auction con-
text, this includes ensuring all non-winning bids are refunded (if
escrow deposits were required), verifying ownership of bidding
assets, and managing bid withdrawals and deletions by autho-
rized parties only.

Smart contracts also manage a broad range of transaction and
asset metadata, which are not directly visible on the blockchain.
This includes everything from user content (e.g., documents, au-
dio/videos) [53] to digital twins of physical assets like diamonds
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[4], cars and houses [51] etc., even ownership certificates for var-
ious physical assets [32–34]. These assets are stored in complex
structures that require deep technical knowledge to navigate.
In our example, metadata for requests, bids, and their underly-
ing assets are represented as the struct variables, request, bid,
and asset respectively. The mappings of accounts to bids and
requests are implemented using program map data structures
(e.g. requests) and not wallet accounts. Consequently, a query like
finding open service requests for 3-D printing manufacturing
capabilities may be of interest to 3-D printing manufacturing
providers. However, this query involves specifying conditions
on the metadata of the service request that are not queryable
on the blockchain. Even more complex queries are critical for
supporting tasks like fraud analysis or other business decision-
making tasks, but unfortunately, they cannot be supported easily.
Thirdly, the smart contract execution model has more overhead
than that of native transactions. An experiment comparing the
native TRANSFER transaction to its smart contract equivalent
in Figure 2 showed that using smart contracts instead of native
transaction primitives increased GAS costs by 40% in Ethereum,
reflecting higher transaction latencies and variable execution
fees that depends on the contract’s runtime behavior. Ethereum
native transactions show zero time because they rely on pre-
defined primitives that do not involve programmable execution.
In contrast, the declarative SmartchainDB lacks a measurable
"gas cost" because it operates without a fee structure. Unlike
Ethereum’s native transactions, smart contract performance can
be unpredictable because it’s tied to network conditions rather
than fixed processing rules.

2.2 Rationale for Approach

Introducing more native transaction types is one way to min-
imize this dependence on smart contracts. However, the exact
set of native transaction types necessary to mitigate the bur-
den of smart contracts is unclear. Further, the best strategy for
extending mainstream blockchain transaction models requires
some investigation. In this paper, we exploit the fact that a large
percentage of the transaction calls on the blockchain are associ-
ated with marketplace applications [50]. Consequently, we focus
our attention on transaction types such as BID, ACCEPT_BID,
REQUEST etc. With respect to strategy, we admit a bias towards
declarative specifications with the hope of ultimately enabling
some of the database-style optimization strategies for improv-
ing performance and scalability of blockchains. To support the
exploration of these ideas, a platform with a stratified or lay-
ered and flexible architecture would be ideal. These requirements
led to the choice of BigchainDB as our implementation context.
BigchainDB is not an actual blockchain (e.g. does not have any
native assets) but a blockchain development platform that can be
used to implement different kinds of blockchains from permis-
sioned to public blockchains. Using such a platform allows us to
insulate our efforts from unrelated issues.
Importantly, this choice does not limit the applicability of our ap-
proach. Our techniques can be implemented on other blockchain
systems as well.

Comment about objective: This paper does not aim to sug-
gest someminimal set of blockchain transaction primitives. Rather,
it aims to demonstrate how declarative blockchain transaction
modeling can be achieved and its potential benefits. To this end, it
introduces a set of primitives relevant tomarketplace applications.
The hope is that this set can be extended over time resulting in a

corresponding decrease in the dependence on smart contracts, at
least for some categories of blockchain applications.

3 APPROACH

Our approach is based on extending the BigchainDB platform
which provides some foundational blockchain components but is
not a concrete blockchain. It provides support for usual transac-
tion types: CREATE and TRANSFER. Its architecture supports an
extensible and customizable transaction model through the trans-
action schema layer. For transaction execution, BigchainDB’s
architecture runs on a network where each node operates three
services: BigchainDB server, Tendermint, and MongoDB. The
BigchainDB server processes transactions, while Tendermint,
a Byzantine Fault Tolerant engine, handles consensus without
mining, using a Proof-of-Stake mechanism.

Our approach introduces a conceptual transaction model that
encapsulates the existing two transaction types in BigchainDB,
in addition to, introducing additional ones. The extended trans-
action model also introduces the concept of nested blockchain
transactions to allowmodeling of more complex transaction types.
It also formalizes the validation schemes for each transaction
type. The second dimension of our contributions is the extensions
to transaction execution infrastructure - specifically the blockchain
server and the blockchain storage to provide support for the newly
proposed transaction types. A novel concept that is introduced
in this context is a recovery model for nested transactions.

3.1 Formal Conceptual Model for Blockchain

Transactions

Our formal transaction model defines key components necessary
for a transaction: the asset involved, the participating accounts
identified by public keys, the type of transaction, and protocols
for automated validation of semantics, such as preventing double
spend errors in TRANSFER transactions. The model is based on
the number of sets:
• a set PBPK = {pbpki = < pbi, pki >} of public-private key
pairs. The pair < pbi, pki > represents account/owner 𝑖 . We
denote a subset PBPK-ℛℯ𝓈 ⊆ PBPK as reserved accounts
i.e. system or admin accounts.

• sets L – a set of literals. RK , RV ⊆ L is a set of string liter-
als that are reserved keywords and values, respectively. We
assume a specific subset of reserved values𝒪𝒫 ⊆ RV that are
the names of transaction operations, e.g.,CREATE, TRANSFER,
and so on.

• a set S ⊆ L is a set of strings that are called digital signatures,
which are associated with two functions such that given a
message string m : sign(pk, m) returns a signature string s ∈ S
and verify(s, pb, m) is a boolean function that returns True
if the corresponding public key can be used to decrypt the
signature and recreate the signed message m. We can also have
a more complex string made up as a function of multiple signa-
tures. This is used in the case where an asset is controlled by a
group of entities who must sign transactions on the asset. We
use msi,j,k to denote such a multi-signature string from using
signatures generated with private keys pki, pkj, pkk.

• AS – the set of all blockchain assets where each blockchain
asset A is a tuple < (ki, vi), amt > where (ki, vi) is a nested
set of key-value pairs such that each ki ∈ { L - RK } and vi ∈
L ∪ A and amt is a non-negative number of shares that an
asset holds.
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• T - set of all blockchain transactions
Definition 1. (Transactions). A transaction T ∈ T is a

complex object < ID, OP, A, O, I, Ch, R > s.t.:
• ID - a globally unique string identifier
• OP ∈ 𝒪𝒫 i.e. the name of transaction operation
• {A} ⊆ AS - set of assets
• {O} - a set of transaction output objects {o1, o2, ...om}. T.ok is
used to denote the kth output of transaction some T . Since
assets can be divisible, the different outputs can hold different
numbers of shares of some asset Ai. Consequently, each of
T’s output object oj is a tuple < pbi, Ai .amt, pb

prev
i >, where

Ai .amt is the number of shares of Ai associated with the jth
output of T, i.e., T.oj [1] that denotes pbi is a set of public keys
of the owners or controllers of those shares, and T.oj [3] that
denotes pbprevi is a set of public keys of previous owners.

• I - a set of transaction input objects {i1, i2, ...in}. We use
T.ik to denote the kth input of some transaction T. Each input
object ik is a tuple < T′ .ob, msu,v,w >, where T′ .ob is the output
that is being "spent" by this input (in this case, the ob is an
output of some T′) can be referenced by the notation T.ik [1]
meaning it is the first element of the input T.ik. msu,v,w is the
signature string formed from the private keys that should be
the signatures of the assets’ owners.

• Ch - A set of children transactions. A child transaction is a
transaction that depends on the outcome of a preceding parent
transaction. It is triggered by the results or changes initiated
by the parent transaction, ensuring that subsequent steps align
with established rules and maintain workflow integrity.

• R - a reference vector of referenced transactions by their ID.
Referencing a transaction differs from spending it, as referenc-
ing does not result in the consumption of its output.
Definition 2. (Nested transactions). Blockchain trans-

action T is Nested transaction if the following conditions are
satisfied:
• It contains at least one child transaction, denoted as |𝐶ℎ | ≥ 1.
• The parent transaction is considered committed if and only if
all its child transactions have been committed.

• For any parent transaction Tparent, there exists at least one
child transaction T within its children set Ch such that every
output of Tparent is included within the outputs of T, expressed
as ∀Tparent, ∃T ∈ Ch : Tparent .o ⊆ T.o.

Nested blockchain transactions, as defined, incorporate the prin-
ciple of eventual commit semantics, a commitment that is realized
through the strategic use of escrow mechanisms. This guarantees
that a parent transaction is committed only after the successful
commitment of all its child transactions.

3.2 Declarative Transaction Types and

Transaction Workflow

We introduce a novel typing scheme over the set of all blockchain
transactions T that defines a blockchain transaction type 𝜏𝛼 = <

T𝛼 ,C𝛼 >where 𝜏𝛼 is the subset of transactions in T that haveOP
= 𝛼 and a set of conditions C𝛼 defined in terms of a transaction’s
inputs and outputs. There are Non-nested: CREATE, TRANSFER,
REQUEST,BID RETURN, and Nested: ACCEPT_BID transaction
types. We say a transaction T is valid with respect to a trans-
action type 𝜏𝛼 = < T𝛼 , C𝛼 > if it meets all the conditions in
C𝛼 . For brevity, we present one representative transaction type

from the Non-nested and Nested transaction categories, BID and
ACCEPT_BID, respectively. The formal models for the remaining
transaction types are available in the extended version of our
paper [6].

Definition 3. (BID Transaction type). BID transaction
is usually an offer transaction for something being sold or in the
context of our procurement example, a REQUEST being made.
We make the assumption that typically some asset is used to
guarantee a bid and is typically held in some form of escrow
account. Given this perspective, a BID can be represented as
𝜏BID = < TBID, CBID > where: TBID = < ID,BID, A, O, I, Ch, R >.

ID = 95879..., OP = BID, A = {𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 : 65𝑏𝑒4..}
I ={< 𝐾𝑚𝑆𝑑2..., 1 >, msYM2sd4hn... },
O = { < [7𝐸𝐴𝑠𝐻 ..], [1] >}, Ch = {∅}, R = [6𝑎𝑒47...]

Figure 3: BID transaction type

For example, the tuple above represents a BID transaction,
with its details illustrated in Fig 3. In this BID transaction, the
key behavior involves transferring an asset to an escrow account.
The escrow account is defined by the output field, where the
public_key of the escrow account is specified. Here’s a detailed
explanation of the process:

• The input asset, identified by the asset_id 65𝑏𝑒4..., is trans-
ferred to an escrow account. This is achieved by transferring
ownership of the asset through the output section, where the
public_key of the escrow account is set as the new owner.

• The cryptographic fulfillment, indicated by𝐾𝑚𝑆𝑑2𝑃 ..., ensures
that the previous owner’s conditions are satisfied before the
asset can be transferred. This signature proves that the previ-
ous owner authorizes the transfer of the asset to the escrow
account.

• The output condition and amount for this transaction,
[7𝐸𝐴𝑠𝐻 ...] for the public key and 1 for the amount, define how
much of the asset is being transferred and to whom (the escrow
in this case).

This BID transaction is tied to a prior REQUEST transaction,
identified by R = [6𝑎𝑒47...], which references the request being
made. This is essential for validating the context of the BID,
ensuring that the assets and references are properly linked to the
request.

A BID transaction has the following set of boolean validation
conditions CBID:
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(1) |I| ≥ 1 i.e. must be at least 1 input object
(2) |R| ≥ 1 i.e. reference vector must contain at least 1 element
(3) ∃!T ∈ R : T.OP == REQUEST, i.e., there exists exactly 1

REQUEST transaction in reference vector
(4) ∃i : TBID .i[1] .A.amt > 0 i.e. there exists at least one input

object with none-null asset
(5) ∀i ∈ I, verify(si, pbi,mi) == 𝑇𝑟𝑢𝑒
(6) ∀j ∈ T.o : T.oj [1] = PBPK-ℛℯ𝓈 i.e. The output of every

BID transaction has to be sent to PBPK-ℛℯ𝓈 account
(7) T.R.A ⊆ ⋃ |I |

𝑗=1 T.ij [1] .A, where T.R.OP == REQUEST.
The amount of the requested asset(s) must be a subset of the
union of input bid assets.

(8) ∀i ∈ [1, |I|], T.i == T.oj, i.e., every transaction input i has
to spend some transaction’s jth output

Definition 4. (ACCEPT_BID Transaction type).
ACCEPT_BID transaction is a Nested transaction that takes one
or more BID as the parameters. Its semantics is to transfer the
winning bid to the requester while unaccepted bids are trans-
ferred back the original bidders.

Formally, 𝜏ACCEPT_BID = < TACCEPT_BID, CACCEPT_BID >

where
TBID = < ID,ACCEPT_BID, A, O, I, Ch, R > with the following set
of boolean validation conditions CACCEPT_BID
(1) |I| == 𝑛 i.e. where 𝑛 is the number of BIDs for 1 REQUEST
(2) |R| = 1 i.e. reference vector must contain exactly 1 element
(3) ∃!TACCEPT_BID ∈ R : T.OP == REQUEST, i.e., there exists

exactly 1 REQUEST transaction in reference vector
(4) |CH| == |I| number of elements in children set is equal to the

number of input objects
(5) ∀i ∈ I, verify(si, pbi,mi) == 𝑇𝑟𝑢𝑒
(6) ∀T ∈ Ch : TACCEPT_BID .o ⊃ T.o, i.e., The output of parent

ACCEPT_BID is a proper superset of every transaction’s out-
put in the children set

(7) ∀k ∈ [1, |I|], T.ik [1] [1] == PBPK −ℛℯ𝓈, i.e. each input
has to spend an output of some TRANSFER transaction that
has an account owner PBPK-ℛℯ𝓈

(8) ∀j ∈ [1, |O|]∀k ∈ [1, |I|] : T.oj [1] [1] == T.im [1] [3] where
T.om [1] [3] ∧𝑇 .𝑜 𝑗 .𝐼𝐷 ≠ 𝑇ACCEPT_BID .𝐴.𝐼𝐷 ∧𝑇 .𝑖𝑘 .𝐼𝐷
≠ 𝑇ACCEPT_BID .𝐴.𝐼𝐷 is pbprevi previous owner of 𝑇 .𝑖𝑚 , i.e.,
every unaccepted output of ACCEPT_BID transaction must
be transferred back to the original bidder

(9) ∃!T.o : T.o[1] == TACCEPT_BID .R.o[1], i.e., there exists ex-
actly one output transaction that transfers asset to the re-
quester.
In a similar way to BID the ACCEPT_BID can be represented

in the following tuple form TACCEPT_BID:
ID = 𝑏64𝑐6..., OP = ACCEPT_BID, A = {𝑤𝑖𝑛_𝑏𝑖𝑑_𝑖𝑑 : 95879...}
I = { <HmkC1...,1>, msHmkC1..., <MfcDL...,1>, msHmkC1...}
O = {<[HmkC1..], [1]>}
Ch = { <[HmkC1..], [1]>, <[fPjsA..], [1]> } , R = [6𝑎𝑒47..]

The tuple above can be described in the following way. For
brevity, we will omit previously described general fields like ID,
OP (operation), and O (output) and focus on transaction-specific
fields. The asset A field anchors the transaction to the specific
bid with id 95879. . . that has won acceptance, forming a bridge
to the original offer. This transaction includes two Inputs, Ch,
<[HmkC1..], [1]>, <[fPjsA..], [1]>, each representing the outputs
from two different BID transactions for the same REQUEST, as
indicated in the reference vector R.

Sometimes, complex transaction behavior may require com-
posing multiple transactional primitives into a workflow which
we define as follows:

Definition 5 (Blockchain transaction workflow).
Transaction workflow is a sequence of transactions T1, T2, ..., Tn
where T1 is head that initiates the workflow and Tn is tail of the
sequence. The following condition must be true for a transaction
in the sequence:
• T1 .i = ∅ Input of the transaction initiating workflow is null.
• ∀{Tj .i − {𝑇1}}∃T.ok where T.ok is committed. The input of
any transaction in the sequence, except the head transaction,
must come from a committed transaction.
Transaction workflow refers to a series of executions of differ-

ent types of transactions in a specific order. The exact number of
transaction types involved may vary depending on the workflow.
An example can be the utilization of a reverse auction work-
flow within the context of supply chain procurement. Where the
only valid workflows can be, CREATE, CREATE − TRANSFER,
CREATE−REQUEST−BID−ACCEPT_BID−TRANSFER. This is
a multistage process, where one side can REQUEST an execution
of a particular item/task and the suppliers can show their interest
through BID for this REQUEST, and, eventually, if the other side
accepts the bid the workflow ends. Other scenarios may include a
different number of steps, and/or their structure will be different,
but the main point is that they all involve the same primitives.

4 TRANSACTION MODEL

IMPLEMENTATION

Our implementation builds upon the BigchainDB platform by ex-
tending and modifying its core architectural components, while
retaining its original consensus layer (Tendermint). Figure 4 il-
lustrates the transaction life cycle and the key elements of
SmartchainDB, the enhanced system developed as part of this
work. At the core of our approach, transactions are defined using
YAML schemas. Each transaction is validated according to its spe-
cific schema type by the Driver before submission to the Server .
We have enriched the Server with specialized transaction vali-
dation algorithms for each type, enabling automatic transaction
validation.

In terms of schemas, we have expanded the existing
BigchainDB transaction types CREATE and TRANSFER, incor-
porating new components detailed in the transaction model (Sec-
tion 3.1). This extension also includes schemas for new transac-
tion types like REQUEST. On the storage front, theMongoDB col-
lections within BigchainDB have been adjusted and expanded
to support the novel transaction structures introduced in our
model. Additionally, the Server component has been fortified
with unique transaction validation algorithms for each transaction
type, facilitating an automated and efficient validation process.

The transaction life cycle begins with the client providing
a serialized transaction payload in JSON format. Subsequently,
Driver utilizes the received payload to generate a transaction by
employing pre-existing templates customized to each transac-
tion type and signs it before submitting it to the Server ("Prepare
and Sign"). At this stage, one of the validator nodes is chosen at
random to act as the receiver node, which is responsible for the se-
mantic validation of the transaction according to the rules for its
type. Each transaction has associated validateT𝛼 method used
by the validator nodes at the Server layer, e.g., validateTBID for
the BID transaction. At the network validator node, a transaction
undergoes a secondary set of validation checks triggered by the
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Figure 4: SmartchainDB Transaction Life cycle

CheckTx function. This step is implemented to verify that the
validator node did not tamper the transaction and to add valid
transactions to the local mempool. Once a transaction is success-
fully committed on more than 2/3 of validators, the final, third
set of validation checks take place at DeliverTx stage before
mutating the state. After accumulating validated transactions,
the Server issues a commit call to store the newly accepted block
to the local MongoDB storage. The Server awaits the response
from MongoDB about the commit state. Depending on the trans-
action type, it may end the cycle and inform the client about
the transaction’s status or proceed to the internal process from
where the response is returned with a successful transaction
commit message. The Driver usually attaches a callback to the
request, thus, the respective callback method is invoked when
the transaction is committed or if any validation error is raised.

Observation: Blockchain transactions differ from distributed
transactions in that they have a transaction "validation" phase
done by each peer independently and this phase is delineated
from the distributed consensus and commit phases. In the fol-
lowing, we elaborate on the implementation of the transaction
validation algorithms for both Nested and Non-Nested transac-
tions.

4.1 Implementation of Non-nested blockchain

transactions

Fig. 5 illustrates a portion of the YAML schema that defines the
transaction structure in SmartchainDB. This schema serves as
the foundational framework for creating, validating, and pro-
cessing transactions, ensuring that each transaction adheres to a
uniform format. The schema enforces a strict structure by speci-
fying required fields, including id, inputs, outputs, operation,
metadata, asset, children, and version. Each of these fields
comes with clearly defined constraints, such as data types, pat-
terns, and references to other components within the schema.

Figure 5: Transaction Schema in YAML

This ensures that every transaction meets predefined standards,
making it easier to validate and interpret transactions across the
system. Additionally, the schema supports flexibility through
object references, allowing for modular and scalable transaction
definitions while maintaining consistency.

Subsequently, each transaction is subjected to a schema vali-
dation method upon arrival at the Server . This method employs
a schema validation algorithm, described in Algorithm 1, that
receives a transaction object as input and yields a boolean vari-
able, which signifies the transaction’s validity as per the defined
schema. The algorithm ensures structural adherence of the JSON
transaction payload to the established blueprint.

For example, the id within the asset definition field imposes
constraints that it must adhere to a specific format, as indicated by
the reference to a ’sha3_hexdigest’, ensuring that each transaction
can be uniquely identified and verified. The operation field is re-
stricted to only predefined operations like CREATE, TRANSFER,
REQUEST, BID, etc. This constraint ensures that only allow-
able transaction types are processed within the SmartchainDB
ecosystem. If an operation does not match this predetermined
set, it is rejected during schema validation and is prevented from
proceeding to the semantic validation phase.

During semantic validation, rules about permissions, required
dependencies between transactions and conditions about assets
are checked. For example, assume Alice responds to a REQUEST
for bids by Sally with a BID transaction. Some of the required
conditions to check about the bid include (i.) ensuring that Alice
owns the asset used to support the bid i.e. she has the permission
to spend the output of the CREATE transaction that created the
asset; (ii.) and that the bid is in response to some request and meet
some conditions (we ignore additional details). Fig. 6 illustrates
the transaction dependencies (spending and reference) in the
example. The permission dependencies forAlice are shown by the
relationship PubKAlice and the input signature SigAlice) while
Sally’s ownership of the REQUEST transaction is indicated by
her signature SigSally on its input. The output of BID is owned
by escrow (one of the system accounts) which holds bids until a
winning bid is selected.

Algorithm 2 provides a high-level implementation for BID,
incorporating semantic validation based on the validation con-
ditions (VC) outlined in subsection 3.2. The primary function,
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validateBidTx(), is executed during the initial validation on
the receiver node and twice in the consensus phase on validator
nodes (as depicted in Fig. 4). Initially, a MongoDB query (line 1)
retrieves the REQUEST transaction for the specified rfq_id. The
algorithm’s first major check (line 4) confirms all transaction
inputs, addressing semantics in VC 1-3. Ensuring input trans-
action correctness, related to VC 4-6, is covered in lines 6-8. A
crucial aspect of BID validation, checking if a BID asset meets
the required "capabilities", is based on VC 7 and implemented in
lines 14-16. Finally, as BID entails aspects of a TRANSFER trans-
action, it undergoes additional semantic validation (VC 8) in the
algorithm’s concluding step (line 13).

4.2 Nested blockchain transactions (NBT)

The traditional “nested transaction” semantics is that a parent
transaction is not committed unless child transactions have been
committed so that parent transaction blocks on child transactions.
A typical concern is the semantics of nested transactions in the
presence of failures. For blockchain contexts, we not only have to
worry about being able to recover from failure but also to ensure
that security vulnerabilities that allow violation of transaction
semantics do not occur due to a failure.

Example. Consider a sealed-bid auction with suppliers
Sup1, Sup2, ..., Supn submitting bids TB1 , TB2 , ..., TBn in response
to a REQUEST transaction TREQUEST. The requester initiates an
ACCEPT_BID transaction TACC (TB1 ), choosing TB1 as the win-
ning bid. Correctly, TACC should initiate one TRANSFER of the
winning bid to the requester and n − 1 RETURNs TR1 , ..., TRn back
to the original bidders, all from the PBPK-ℛℯ𝓈 account. These
TRANSFER transactions must be written to the blockchain before
committing the parent transaction. Transactions can be executed
in sync (immediate response before validation) or async mode
Algorithm 1: validateTBID−schema
Input: TxnObject
Output: Boolean variable

1 validateSchema(loadSchema(bid.yaml), TxnObject)
2 validateTxObj(asset, TxnObject[asset], data, validateKey)
3 validateTxObj(metaData, TxnObject[metaData],

data, validateKey)

4 validateLanguageKey(TxnObject, data)

5 validateLanguageKey(TxnObject,metaData)

6 return True

Algorithm 2: validateTBID
Input: rfq_id, asset_id, TxnObject,CurrentTxs : List < TxObject >
Output: Boolean variable

1 RFQTx = getTxFromDB(rfq_id);
2 AssetTx = getTxFromDB(asset_id);
3 if RFQTx AND AssetTx txs are not committed then

4 throw InputDoesNotExistError;
5 for every 𝑜𝑢𝑡𝑝𝑢𝑡 in TxnObject.outputs do
6 if 𝑜𝑢𝑡𝑝𝑢𝑡 .𝑝𝑢𝑏𝐾𝑒𝑦 is not EscrowPubKey then

7 throw ValidationError;
8 RequestedCaps = getCapsFromRFQ(RFQTx);
9 AssetCaps = getCapsFromAsset(AssetTx);

10 if RequestedCaps is not subset of AssetCaps then
11 throw InsufficientCapabilitiesError;
12 return validateTransferInputs

(TxnObject,CurrentTxs : List < TxObject >);

Figure 6: Example of BID

(response after validation confirmation from the SmartchainDB
server).

Imagine a scenario where only a subset 𝑠 of child transac-
tions, say TR1 , TR2 , TR3 , completes before a failure occurs. Due to
blockchain immutability, transactions in 𝑠 cannot be undone. A
potential issue arises if the TACC (TB4 ) transaction is reinitiated
with a different winning bid; it’s not a duplicate since it wasn’t
committed, creating a security risk where the requester might
receive both winning bids.

To tackle this, we propose a Non-blocking transaction execu-
tion approach, allowing the parent transaction to be committed
(no lock) to the blockchain even if child transactions are pending.
This method enforces ’eventually commit’ semantics for the child
transactions, ensuring transaction integrity and preventing such
vulnerabilities.

Building on this, we address the possibility of failures during
the execution of Nested blockchain transactions, we propose a
Redo Recovery strategy that is mediated by an escrow account
- special system account. The escrow account uses a logging
protocol to keep track of pending nested transactions. Access
authorization for assets of pending nested transactions always
remains with the escrow account to ensure that it has the nec-
essary permissions to retry transactions until they commit. Fig.
7 illustrates the workings of our recovery scheme. A dedicated
recovery log (accept_tx_recovery) tracks the state of all nested
transactions, capturing which child transactions have been suc-
cessfully committed andwhich remain incomplete. In the event of
a failure, the escrow-mediated logging protocol ensures recovery
without undoing previously committed actions by identifying in-
complete child transactions using logged states and automatically
re-initiating them with a binary exponential backoff timeout.

Furthermore, the Byzantine Fault Tolerant (BFT) consensus
mechanism protects the system by pausing consensus during
faults, preventing invalid transactions until a sufficient quorum
is restored. While the escrow mechanism effectively resolves
failures within the nested transaction framework, the BFT mech-
anism ensures robustness at the consensus layer. The following
subsection delves into how our system handles failures under
BFT constraints, particularly focusing on scenarios where more
than 1/3 of validator nodes go offline.

4.2.1 Implementation NLT. Non-blocking approach was ex-
amined under two scenarios regarding system failures: (1) a
positive case without any failures, (2) a case with a possible
crash while processing the transaction when more than 1/3
(BFT) of voting power goes offline simultaneously. Under case
(1) with no failures, after receiving the transaction payload and
performing schema validation, the receiver node logs and sends
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Figure 7: Recovery Flow for NBT

ACCEPT_BID for the consensus without waiting for the chil-
dren’s transactions to be determined and validated, contrary to
blocking approach. After consensus has been reached, each child
transaction, i.e, TRANSFER is enqueued into a task queue during
the commit phase by the receiver node. Multiple parallel work-
ers execute the queued jobs asynchronously. Such an approach
enables quick commit of the ACCEPT_BID transaction to the
blockchain because it gets committed first, allowing committing
all the incoming returns after it in an asynchronous way. Under
case (2), when 1/3 of the validator nodes go offline, there are two
possible sub-cases: (a) receiver node excluded from the set of the
crashed nodes, then the process will resume as soon as sufficient
voting power is attained, and (b) receiver node included to the
set of the crashed nodes. The possible node crash times and crash
handling techniques under sub-case (2.b) are provided below:
(1) while processing a parent transaction:

• if a crash happens during the initial validation phase,
the driver will re-trigger ACCEPT_BID after the timeout
interval.

• if a crash happens on Tendermint in mempool, the election
process will be resumed as soon as the quorum of nodes
is back online

(2) while enqueueing RETURN transactions:
• enqueue all the RETURNs using the recovery log when
the receiver node comes up online

(3) while processing RETURN transactions:
• All the RETURN transactions already persist in the queue
for the execution. RETURNs are sent to a randomly se-
lected validator node to track its commit status and to
retry them if needed. Once the chain resumes, they will
end up in the mempool and get committed

Algorithm discussion. The gray shaded area in Fig. 4 shows
the extra phases required to validate Nested transactions using
the Algorithm 3, that can be divided into two parts. In the first
part, parent transaction ACCEPT_BID gets validated according
to the conditions from subsection 3.2 Definition − 4. The con-
ditions and errors that can be thrown by this function are readily
comprehensible through the pseudo-code provided. For example,
if REQUEST and winning BID transactions are not committed
or the signer of the ACCEPT_BID transaction is different from
the signer of REQUEST transaction, a validation Error is thrown.
In the second part, all the appropriate children transactions are
determined and written to the blockchain via the invocation of
the commit() method. The commit() method is called on the re-
ceiver node as the last step of the consensus process to trigger
children transactions. The function deterRtrnTxs() determines
unaccepted BIDs for particular REQUEST given the winning BID.
Once the list of the n-1 RETURN transactions has been identified,
they all are enqueued to the ReturnQueue allowing the system to
asynchronously send them without blocking the actual flow. To

Algorithm 3: validateTACCEPT_BID
Input: rfq_id,win_bid_id, TxnObject,CurrentTxs : List < TxObject >
Output: Boolean variable

1 RFQTx = getTxFromDB(rfq_id);
2 WinTx = getTxFromDB(win_bid_id);
3 BidsForCurrentRFQ = getLockedBids(rfq_id);
4 if RFQTx ANDWinTx txs are not committed then

5 throw ValidationError;
6 if signer(Accept-bid) != signer(RFQ) then
7 throw ValidationError;
8 DuplicateAcceptTx = getAcceptTxForRFQ(rfq_id);
9 if DuplicateAcceptTx is in the database then
10 throw DuplicateTransactionError;
11 if WinTx is not found

in EscrowHeldBidsForCurrentRFQ then

12 throw ValidationError;

13 return validateTransferInputs (RFQTx,WinTx);

// Block commit is the final step in consensus

14 Commit(BlockTxs: 𝐿𝑖𝑠𝑡 < 𝑇𝑥𝑂𝑏 𝑗𝑒𝑐𝑡 >):
15 for every 𝑡𝑥 in BlockTxs do
16 if 𝑡𝑥 is of type ACCEPT_BID then

17 ReturnTxs = 𝐿𝑖𝑠𝑡 < 𝑇𝑥𝑂𝑏 𝑗𝑒𝑐𝑡 >;
18 r = deterRtrnTxs(WinTx, getPubKey(RFQTx))
19 ReturnTxs.append(r);
20 for every 𝑟𝑒𝑡𝑢𝑟𝑛𝑇𝑥 in ReturnTxs do
21 ReturnQueue.put(𝑟𝑒𝑡𝑢𝑟𝑛𝑇𝑥 )
22 logAcceptBidTxUpdForRecovery(𝑡𝑥 , status :

commit)

monitor the status of unaccepted BIDs and to conduct the recov-
ery process, a new collection named accept_tx_recovery was
introduced in the MongoDB database model. Furthermore, the
employed storage model enables reliable queryability facilitating
the ability to answer various inquiries.

5 EVALUATION

In our evaluation, we analyze the performance and usability of
blockchain transaction mechanisms by comparing our proposed
declarative transactions with equivalent transactional behavior
implemented as smart contracts i.e. imperative specifications.
Our marketplace case study focused on transaction behaviors in
reverse-auction contexts because they have slightly more com-
plex transactional requirements than the traditional forward
auction. Our evaluation focuses on assessing the performance
of declarative and imperative blockchain transaction models by
measuring their latency and throughput under varying work-
loads and cluster configurations. While performance metrics are
explicitly measured, usability is discussed qualitatively based
on the effort required to instantiate and customize transaction
workflows.

5.1 Setup

5.1.1 Experiment environment.
The experiments were run on Digital Ocean Cloud using vir-

tual machines (VMs) under Ubuntu 20.04 (LTS) x64 operating
system with 8 vCPUs, 16 GB of RAM, and 200 GB of SSD storage.
The number of VMs utilized varied depending on the experiment.

5.1.2 Implementation of Approaches.
Smart Contract Implementation: We implemented reverse

auction marketplace contract (ETH-SC), we employed Solidity,
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(a) Latency of REQUEST and CREATE (b) Latency of BID and ACCEPT_BID (c) Throughput

Figure 8: The Effect of Transaction Size

(a) Latency of SCDB transaction types (b) Latency of ETH-SC transaction types (c) Throughput

Figure 9: The Effect of Cluster Size

Ethereum’s Turing-complete, statically-typed, and compiled lan-
guage designed for smart contract development. Our implemen-
tation incorporated standard data structures like struct to manage
user-defined assets, including bids, with transactional functions
defined as methods within the contract.
To thoroughly test the consensus mechanism in a multi-node
environment, we integrated GoQuorum [2], a permissioned
blockchain platform. Both GoQuorum and BigchainDB priori-
tize scalability and performance over the financial incentivization
model of traditional blockchains such as Ethereum. Moreover,
both systems employ Byzantine Fault Tolerance (BFT), ensuring
transaction finality and low latency in permissioned environ-
ments. This makes them comparable in terms of usability and
throughput, as neither imposes the gas cost overhead, allowing
for a fair evaluation of declarative versus imperative transaction
models in similar environments.

We deployed the reverse auction smart contract on this net-
work and conducted multiple transaction rounds. GoQuorum
fully enforced the protocol, offering a realistic assessment of
transaction throughput and latency. This setup allowed us to
measure the consensus overhead and compare the performance
of our declarative approach with traditional smart contract ex-
ecution, highlighting the trade-offs between usability and the
operational costs of maintaining consensus.

For our declarative transactions approach, we leveraged
SmartchainDB-Server , implemented in Python, alongside
SmartchainDB-Driver , developed in Java. Notably, Python, be-
ing dynamically typed and interpreted, contrasts with Solidity’s
compiled nature. Our setup involved a network configuration
of a different number of Server clusters, incorporating a con-
sensus protocol. This integration introduces various overheads,
including computational, bandwidth, and latency considerations,
among others.

5.1.3 Workload.
Blockchains don’t have a standard transaction size, so compar-

ing Blockchain X’s throughput with Blockchain Y’s throughput
isn’t straightforward because transaction sizes can differ signifi-
cantly. Consequently, transactions of larger size may require a
longer duration for disk writing operations.In our study, unlike
Ge et al., 2022 [20] that used established benchmark YCSB [14] to
evaluate the performance of hybrid blockchains, we recognized
the critical role of transaction validation semantics in blockchain
performance, including aspects like access rights, asset condi-
tions, and transaction dependencies. This complexity extends
beyond simple 𝑟𝑒𝑎𝑑 and 𝑤𝑟𝑖𝑡𝑒 operations, especially in smart
contracts, and requires a more complex workload.

To accurately evaluate smart contracts, we devised a synthetic
workload generator tailored for the declarative transaction ap-
proach. This generator creates synthetic payloads varying in
data size across different transaction fields. We have sent 110,000
transactions to each system comprising of CREATE: 50,000, BID:
50,000, REQUEST: 5000, ACCEPT_BID: 5000.

5.1.4 Metric calculation.
Transaction latency was computed by measuring the time

elapsed from the moment the transaction was received to its final
commitment.

Throughput was calculated by counting the number of trans-
actions that were successfully committed within a time frame,
defined as the interval between the reception of the first and the
commitment of the last transaction.

5.2 Experiments and analyses

The experiments simulate a reverse auction workflow within the
manufacturing domain. We conducted four sets of experiments:
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• Experiment 1: Aimed to evaluate latency and throughput by
varying transaction sizes in both systems. The cluster of four
nodes was used for both systems.

• Experiment 2: Involved a various network size of Server val-
idator nodes to simulate real-world scenarios, evaluating how
well the system scales, focusing on throughput and latency
across the cluster.

5.2.1 Experiment 1 - Latency and Throughput Analysis with
Varied Transaction Sizes. To assess the average latency and
throughput, we put a list of strings of various sizes in the meta-
data of REQUEST and CREATE transactions representing digital
manufacturing capabilities being requested and created respec-
tively.

The data, illustrated in Figs. 8a and 8b, reveal that transac-
tion size had minimal impact on the latency in SmartchainDB
(SCDB), remaining nearly constant across all transaction types.
Conversely, Ethereum-based Smart Contracts (ETH-SC) exhibited
an increase in latency for CREATE and REQUEST transactions
as the transaction weight increased, with latency for CREATE
transactions becoming nearly five times, and for REQUEST trans-
actions, twice that of SCDB. Additionally, the latency for BID
transactions in ETH-SC showed substantial growth with increas-
ing transaction size; at 1.74 KB, ETH-SC’s latency was 635 times
higher (66.43 seconds) compared to SCDB’s 0.104 seconds. For
ACCEPT_BID transactions, latency remained stable in both sys-
tems, although ETH-SC was over four times slower than SCDB.

Furthermore, results in Fig. 8c indicate that SCDB’s throughput
stayed consistent despite the growing size of transactions. A
notable observation was the inverse relationship between asset
size and throughput in ETH-SC, where throughput decreased
from an initial 0.72 transactions per second (tps) to 0.02 tps by
the end of the experiment.

Analysis SCDB vs. ETH-SC: SCDB leverages BigchainDB’s
execution architecture, which enhances transaction processing
through efficient indexing for database queries, built-in caching
for quick data access, and pipelined execution. These features
mitigate the transaction payload size’s impact on latency. Con-
versely, in ETH-SC, we observed a consistent rise in latency
across all transaction types with an increasing number of trans-
action size, suggesting scalability issues under heavier workloads.
This escalation, particularly for CREATE and REQUEST transac-
tions (Fig. 8a), ties back to the smart contract’s storage structure,
comprising a vast array of 2256 slots. For dynamic data structures
like mappings, Solidity’s hash function computes storage loca-
tions, but each map item’s retrieval takes𝑂 (𝑛) time. Additionally,
the complexity of smart contract logic exacerbates latency and
throughput issues. The quadratic time complexity (𝑂(𝑛2)) for BID
transactions results from a nested loop comparing each CREATE
asset capability with every REQUEST capability to validate BIDs.
The validation also employs a costly compareStrings() function
in terms of GAS usage.

5.2.2 Experiment 2 - Analyzing Impact of Cluster Size on La-
tency and Throughput. This experiment assessed how the number
of validator nodes in the cluster affects latency and throughput
in both SCDB and ETH-SC. Throughout the experiment, the
transaction size was kept constant at 1.09KB to ensure consistent
conditions for evaluation. As shown in Figs. 9a and 9b , despite
the increased complexity and number of validators, the latency
for various transaction types remained relatively stable for both
SCDB and ETH-SC across increasing numbers of validator nodes

(from 4 to 32). While adding more validator nodes typically intro-
duces more communication overhead in decentralized networks,
the results indicate that ETH-SC’s latency does not significantly
increase as more nodes are added. This could be due to the effi-
cient finality properties of the IBFT consensus mechanism, which
ensures low-latency agreement among nodes. However, despite
the stable latency across varying node counts, the baseline la-
tency for ETH-SC is still significantly higher compared to SCDB,
particularly for BID and REQUEST transactions.

As depicted in Figure 9c, throughput shows a slight steady in-
crease from 43.5 TPS with 4 nodes to 45.3 TPS with 32 nodes. This
incremental improvement in throughput can be attributed to the
system’s ability to leverage blockhain pipelining technique,which
enhances scalability during the voting process for new blocks.
With more nodes available, SCDB can distribute the workload
more effectively, allowing multiple transactions to be processed
simultaneously across different validators. While adding more
nodes generally improves throughput, it also introduces poten-
tial challenges. Typically, increasing the number of nodes leads
to more communication and data exchange among validators,
which can slow down the consensus process. These factors ac-
count for the steady, incremental increase in throughput, illus-
trating SCDB’s ability to balance performance enhancements
with the given complexities.

In comparison, ETH-SC exhibits significantly lower through-
put, beginning at 0.77 TPS with 4 nodes and showing no substan-
tial improvement as the cluster size increases. This limitation
stems from the added computational overhead of GoQuorum’s
IBFT consensus mechanism, which handles Ethereum smart con-
tracts and privacy layers, making it more resource-intensive. The
difference is further amplified by SCDB’s streamlined transac-
tion model, which avoids the computational complexity of smart
contract execution.

Usability. Instantiating and customizing a transaction in our
model is simply a matter of providing metadata for the appro-
priate transaction type - no programming expertise is required.
Smart contracts (even with the help of templates) often require
programming expertise to identify and, potentially customize,
suitable smart contract codes. They must also deal with other
programming-related tasks such as the deployment of contracts
which may produce errors.

6 RELATEDWORK

Different efforts have been made to address some of the limita-
tions of smart contracts as a mechanism for specifying transac-
tion behavior.

Addressing usability and interpretability challenges: Stan-
dardized function interfaces or tokens such as ERC-721 [46] and
ERC-20 [43] prescribe the minimum set of methods (signatures
and behaviors) for specific classes of smart contracts, e.g., fun-
gible tokens. Smart contract templates [13] are similar in spirit
to token interfaces but incorporate methods for linking legal
contracts written in prose to methods in a contract so that exe-
cution parameters are extracted from the legal prose and passed
to the smart contract code to drive execution. Domain-Specific
Languages (DSLs) such as Marlowe [27], SPECS [24], Findel [11],
Contract Modeling Language (CML) [48], ADICO [18] are pro-
gramming languages with limited expressiveness that provide
high-level abstractions and features optimized for a specific class
of problems (typically in a specific domain such as finance or
law). DSLs allow the possibility of domain experts rather than
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programmers to implement smart contracts using graphical user
interfaces that can be translated to smart contract code via the
DSL. However, while efforts like (DSLs) and formal verification
tools improve usability and correctness within specific domains,
they lack generality and composability. Further, they still require
a non-trivial amount of manual code implementation which is
vulnerable to the risk of errors and inefficiencies. Further, being
imperative specifications, they are less amenable to querying and
analysis. Some contributions have been made in the area of smart
contract code analysis [19, 21, 44], but most have focused on the
problem of identifying bugs or attack vulnerabilities.

Addressing performance challenges: Several solutions have
been proposed [35] to address the throughput and latency limita-
tions of current blockchains, including sophisticated consensus
algorithms [22, 23] in Hyperledger Fabric, adjusting block size
which is prone to security vulnerabilities due to the increase in
the propagation delay [5] and reducing block datawhich provides
a limited increase in throughput [28]. Sharding divides the net-
work into different subsets (i.e., shards) and distributes workloads
among shards to be executed in parallel. This provides processing
and storage scalability, although cross-shared communication
overhead is often a major challenge. Further, poor shard design
may lead to a 1% attack and other security issues [25, 44, 52].
Some recent work [41] on a distributed and dynamic sharding
scheme that reduces communication cost and improves reliabil-
ity has been proposed. However, these efforts do not directly
address the sequential execution of smart contracts adopted by
most platforms which limits their throughput.

Declarative smart contracts, such as those (DeCon) proposed
by Chen et al., [12], represent a significant shift from traditional
imperative programming models. By enabling developers to spec-
ify high-level rules and conditions rather than procedural logic,
DeCon aims to simplify the creation and validation of smart
contracts. This approach reduces the need for detailed coding
and allows for a more transparent specification of transaction
behaviors.
However, while DeCon simplifies smart contract creation, achiev-
ing functional parity with manually written contracts still re-
quires significant effort. For instance, even after using DeCon to
model a contract, we found it necessary to modify parts of the
generated contract to align it with the functional requirements
of a custom-created contract. Changes included adjusting data
structures, refining method references, and ensuring the gener-
ated logic adhered to the desired transactional workflow. This
indicates that declarative frameworks like DeCon still require
manual intervention to create contracts that meet specific use
cases, limiting their usability in complex or highly tailored sce-
narios. Furthermore, declarative frameworks like DeCon fail to
address several critical challenges inherent in the transactional
model of smart contracts.

With respect to parallel execution of smart contracts, the main
challenge is dealing with the conflicts and dependencies between
smart contracts, given that they have a shared state. [16] pro-
pose the use of pessimistic transactional memory systems for
concurrent execution of non-conflicting smart contracts. They
suggest achieving parallelism with lower latency by two steps:
first, involving a serializable schedule for miners and, second, exe-
cuting this sequence of transactions deterministically for parallel
validating to avoid the synchronization excessive costs. How-
ever, this approach implies that validating should be performed
significantly more times thanmining. On the other hand, [10] pro-
posed optimistic transactional memory systems which guarantee

correctness through opacity rather than serializability. Specula-
tive concurrent execution of smart contracts proposed in which
transactions are executed in parallel, and if a conflict occurs, by
tracing write and read sets, one of the transactions is committed,
and the other is discarded to rerun later. Speculative strategies
usually perform reasonably well when the rate of conflicts is
low [9, 15, 36]. However, these techniques are still in their early
phases and often use read-write sets to define conflicts. Further-
more, empirical results [36] suggest that this notion might be
too aggressive, resulting in many unnecessary conflicts detected,
suggesting the need for reasoning about conflicts at a slightly
higher level of abstraction.

Alternative strategies such as aggressive caching and parallel
validation using validation system chaincode have also been used
in Hyperledger Fabric [38, 42].

7 LIMITATIONS

Declarative transactions excel in scenarios with well-defined and
standardized operations. However, they might lack the flexibility
required for handling complex, dynamic, or unique transactions
that do not fit neatly into predefined patterns. Also, for certain
applications requiring fine-grained control over individual steps
or transactions, the declarative model might not offer the level
of granularity needed.

8 CONCLUSION AND FUTUREWORK

This paper introduces the concept of declarative blockchain trans-
actions, emphasizing an alternative approach to modeling trans-
action behavior on blockchains. By leveraging declarative prin-
ciples, we aim to address the usability and performance chal-
lenges associated with traditional imperative approaches, such
as smart contracts. The proposed methodology, implemented by
extending an open-source blockchain database, demonstrates
how pre-defined primitives can simplify transaction workflows
and improve efficiency.

Our experimental results validate the benefits of this approach,
highlighting its potential to improve usability and performance
in specific application contexts. However, the variability among
blockchain systems underscores the need for cautious interpre-
tation of the results. Future work will focus on generalizing the
modeling framework to support more complex transaction work-
flows and exploring its application across diverse blockchain
domains.

This work lays a foundation for developing advanced transac-
tion optimization strategies, particularly in the context of typed
transaction models. Such models have the potential to enable
reasoning about semantic conflicts during concurrent execution,
paving the way for more efficient transaction processing in dis-
tributed systems. Another promising direction is to explore im-
plementation strategies for extending the declarative transaction
paradigm to other blockchain architectures. This would allow
us to assess the applicability and benefits of our approach in a
broader range of blockchain contexts, addressing diverse require-
ments and use cases.
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