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ABSTRACT
Although location data is crucial in many decision-making do-
mains, such as mortgages and insurance, identifying spatial bias
with respect to legally protected attributes is not straightforward.
While the emerging field of spatial fairness examines differences
in outcomes based on location, it entirely overlooks legally pro-
tected attributes and their correlation with location, meaning
the outcomes may differ but may not necessarily violate legal
compliance. On the other hand, while the fairness in machine
learning (fair-ML) community focuses on legally protected at-
tributes, it has not explored the specific challenges introduced by
spatial data. Such challenges, such as the modifiable areal unit
problem (MAUP), render extant fair-ML work impractical for spa-
tial fairness. This work extends spatial fairness by incorporating
legal compliance from fair-ML, introducing the legally compli-
ant spatial fairness (LC-spatial fairness) framework. LC-spatial
fairness evaluates ML model outputs for fairness concerning lo-
cation and legally protected attributes, identifying biased regions
that need attention. We introduce a new fairness definition that
simultaneously considers both spatial data and legally protected
attributes, and demonstrate that it is robust to MAUP. Further-
more, we highlight why previous approaches are not robust to
MAUP. Experimental evaluation on real-world data demonstrates
the efficacy of our approach, which identifies significantly more
spatial unfairness than previous techniques. Furthermore, results
highlight the ability of our approach to identify spatial biases that
other methods overlook while also revealing areas where com-
petitors found biases that our approach did not, largely because
our approach explicitly considers legally protected attributes and
unprotected attributes in addition to location, while previous
approaches focus on location only.

1 INTRODUCTION
Machine learning (ML) is increasingly used across various fields
to facilitate location-based decision-making (LB-DM), where de-
cisions are influenced by an individual’s geographic location,
such as their address or residential zip code. For instance, ML is
being widely adopted in banking and insurance, both industries
that heavily rely on location data for decision-making and can
have a significant effect on an individual’s life, notably affecting
financial prospects such as mortgage rates, credit card approvals,
and insurance premiums [12, 21, 22]. Such use of ML in location-
based decision-making is poised to increase further. Just in the
United States alone, over 80% of financial institutions report
that they feel confident in using AI- and cloud-based credit-risk
decision-making [12], and more than 60% of businesses intend
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to boost budgets for credit-risk analytics further [12]. However,
location can correlate with many personal attributes, such as
race, ethnicity, and national origin [34, 43], which are legally
protected against discrimination in various decision-making do-
mains [7, 28]. Due to discriminatory historical practices like
redlining1, location’s correlation with legally protected charac-
teristics continues to persist after decades, often with harmful
consequences. For example, researchers have found that the racial
composition of a neighborhood was a stronger predictor of home
appraisal values in 2015 than in 1980 [17]. Spatial segregation by
race, in particular, has been challenging to remedy [8, 23]. As a
result, neglecting to account for location appropriately, combined
with the growing use of ML in these domains, risks data-driven
models picking up and perpetuating such bias even further. Al-
though the fair-ML literature has noted that ML systems may
replicate undesirable trends present in historical data, perpetuat-
ing discrimination further, hardly any attention has been paid
to unfairness that may creep into ML models due to location’s
correlation with legally protected attributes.

Meanwhile, the use of location in LB-DM without careful con-
sideration is already leading to (potentially illegal) unintented
consequences in many domains. For example, the non-profit
ProPublica found that drivers fromminority neighborhoods were
charged higher car insurance premiums than drivers with similar
risk from majority-white neighborhoods [3]. This prompted an
investigation by the state of California, leading to the state requir-
ing insurers to adjust rates to remove racial disparities [2]. Other
research has also found that riders in neighborhoods with more
minority residents and higher poverty levels are significantly
associated with higher fares for ride-hailing services [34]. In an-
other instance, Amazon was accused of racism when an analysis
of its Prime Same-Day Delivery service in six major U.S. cities
by Bloomberg found that Amazon was significantly less likely
to offer the service to Prime customers living in predominantly
minority neighborhoods [18]. In the most egregious instance, in
Boston, the three zip codes constituting the majority-black neigh-
borhood of Roxbury were excluded from Same-Day Delivery. In
contrast, zip codes on all sides of it were included. Differences
in neighborhoods’ household income did not explain all such
exclusions.

Although the problem of spatial bias has started receiving
attention recently [38, 44, 49], work so far does not consider
legally protected attributes at all while assessing spatial fairness.
For example, Sacharidis et al. [38] define spatial fairness as the
statistical independence of outcomes from location. However,
requiring the distribution of a measure (e.g., positive outcomes
of a model) to be independent of location ignores the reality that,
often, location offers legitimate (and legal) information valuable

1Redlining is the discriminatory practice of systematically denying individuals from
specific neighborhoods access to mortgages, insurance, and other financial services
based on their race or ethnicity [37, 48]. It was outlawed in 1968 [Title VIII of the
1968 Civil Rights Act].
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for decision-making. For example, two similarly-valued houses
may not have the same insurance premiums if one house happens
to be in a very high fire risk zone while the other is not. In other
words, there may often be valid and perfectly legal reasons for the
distribution of a measure to vary in different regions. Thus, since
location can provide information relevant to decision-making
that is perfectly legal to use, simply removing location from
decision-making or making systems location-invariant is not a
practical solution. Furthermore, since these definitions do not
account for legally protected attributes and their correlation with
location, they lack practical real-world applications [43] and
would not hold up to legal scrutiny. Therefore, it is necessary
to consider fairness comprehensively with location and legally
protected attributes in tandem.

However, considering location simultaneously with legally
protected attributes introduces complications unique to spatial
data, such that traditional fair-ML approaches to measure or
mitigate bias cannot be directly applied for spatial fairness. The
focus of fair-ML research on discrete attributes, combined with
the spatial challenges such as the bias introduced by modifiable
areal unit problem (MAUP), renders fair-ML work ineffective in
handling an attribute that is simultaneously continuous and spa-
tial. Firstly, such work does not consider location at all. Secondly,
most fair-MLwork focuses on legally protected attributes that are
discrete with well-defined values (e.g., gender: male/female; race:
black/white) and does not map well to the continuous nature
of spatial data. Thirdly, the unique challenges associated with
spatial data further complicate the issue. Perhaps the most salient
challenge introduced with spatial data is the modifiable areal unit
problem (MAUP). MAUP is a type of statistical bias present only
in geographical data, occurring when point-based estimates of
spatial phenomenon are aggregated into spatial partitions. For a
given space subdivided into many partitions, the shape and size
of the partitions can affect the outcomes, i.e., they can alter the
perceptions of fairness. For example, Figure 1(a) shows a region
where positive (green circles) and negative (red circles) outcomes
are distributed in space. Depending on how we partition this
space can change the perceptions of spatial fairness. Figure 1(b)
and (e) appear spatially fair with an even balance of positive
and negative outcomes, while the partitions in Figure 1(c) and (d)
appear spatially unfair with only one kind of outcome in each par-
tition. Thus, changing the partitioning can lead to a completely
different fairness outcome, highlighting how MAUP can pose a
problem in assessing spatial fairness in a robust manner. Gerry-
mandering is a real-world example of MAUP, where the shape of
the districts is manipulated to serve a particular political party
[26, 30]. Even fair-ML work on proxy discrimination, i.e., when
a seemingly innocuous attribute happens to be correlated with
a legally protected one, suffers from limitations. For example,

Figure 1: An example illustrating theModifiable Areal Unit
Problem. Green and red denote positive and negative out-
comes respectively. The partitioning of the space can sig-
nificantly change the perceptions of spatial fairness.

one such method is fair-PCA [40, 46], which requires one extra
dimension for a discrete protected attribute with two possible
values (e.g., gender, with the possible values male or female). But
in the case of spatial fairness, there may be numerous protected
subgroups (e.g., the various subregions that must be treated as
protected in addition to the subgroups of the legally protected
attribute), which renders fair-PCA impractical in this setting.

To prevent instances of spatial bias, this work presents a novel
framework, Legally Compliant-Spatial Fairness, or LC-spatial fair-
ness, that can holistically assess the outcomes of data-driven
models for fairness with respect to location as well as legally
protected attributes to ensure that neighborhoods and regions
that are different mainly in legally protected attributes are not
treated differently. We avoid the pitfalls of spatial fairness work
by defining fairness with respect to location and legally pro-
tected attributes simultaneously to withstand legal scrutiny. Our
definition, formulated for geographic data, can also efficiently
handle continuous spaces. Furthermore, we empirically show
that our definition is robust to the modifiable areal unit problem
(MAUP), enhancing its real-world applicability. Finally, by con-
sidering location and legally protected attributes simultaneously,
LC-spatial fairness can identify regions where the outcomes of a
given model are unfair. Intuitively, we identify pairs of regions
in a given space which are similar in non-protected attributes
while being different in the protected attribute of interest (such
as race). We perform likelihood ratio tests to determine whether
the outcomes in such pairs of regions are significantly different,
which demonstrates spatial unfairness. Thus, it can be used by
regulatory agencies to detect cases of spatial bias, identify which
regions deserve more attention, and enforce corrective measures,
and by companies to ensure legal compliance. To the best of our
knowledge, we formulate the first spatial fairness definition that
holistically encompasses location and legally protected attributes.
Overall, our main contributions are as follows:

• Motivate and identify the need for defining spatial fair-
ness with respect to location as well as legally protected
attributes

• Formalize a spatial fairness definition capable of simultane-
ously considering location and legally protected attributes
holistically

• Intuitively show how our definition of spatial fairness is
robust to the modifiable areal unit problem (MAUP)

• Present two use cases to illustrate the utility of our LC-
Spatial-Fairness framework: one in the domain of mort-
gage lending and the other in improving access to healthy
food

• Experimental evaluation on real-world datasets show the
efficacy of our framework in identifying spatial bias

The rest of this paper is organized as follows. Section 2 reviews
related work on fair-ML and spatial fairness. The LC-spatial-
fairness framework is covered in Section 3. Use cases for our
framework are detailed in 4 along with preliminary results. Sec-
tion 5 describes the experimental evaluation. We conclude with
Section 6.

2 RELATEDWORK
Sections 2.1 and 2.2 cover fairness definitions and techniques
from fair-ML. Section 2.3 explores the emerging area of spatial
fairness.
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2.1 Fairness definitions or metrics
The first step towards quantifying the extent of unfairness is
defining what it means to be fair. This is not a straightforward
task: there is no agreement within the fair-ML community about
what it means to be fair in different contexts [28, 41]. The disci-
plines of philosophy and psychology, from which multiple fair-
ML definitions have been inspired, also do not offer a universal
definition of fairness despite grappling with this question for a
much more extended period of time [28]. This lack of agreement
has led to a generally well-accepted consensus that a single def-
inition of fairness would be insufficient across varied contexts
[7, 42]. Thus, many fair-ML definitions have been proposed to
measure unfairness in diverse computational domains, with over
20 estimated metrics proposed by 2018 already [29]. A typical
fair-ML fairness metric measures unfairness concerning legally
protected attributes in the outputs of ML models on a particular
task either at the level of the individual [11, 24, 28] or at the level
of the group [16, 20, 47]. For example, a simple metric might
consider true positive rates for different groups (e.g., different
racial groups or men and women) for a classification task. More
complex metrics have been proposed for different settings and
application areas [7]. For example, metrics have been proposed
to measure gender bias in machine translation [14] and other
NLP tasks [25], fairness definitions for clustering [9], as well as
graph machine learning [10] and multi-armed bandits [19, 24]
have been proposed. No work so far defines fairness with respect
to location and legally protected attributes.

2.2 Fairness techniques
A fairness technique aims to mitigate bias at one of three stages of
theML pipeline: pre-processing, in-processing, and post-processing.
Pre-processing methods attempt to “debias” data by transforming
datasets before they are used for training an ML model [7]. Such
methods may be more general (e.g., focusing on datasets with
biased or imbalanced distributions for protected attributes, such
as removing bias in embeddings [6]) or geared towards removing
specific types of biases from data (e.g., [1] propose a technique to
correct for Simpson’s Paradox). In contrast, in-processing meth-
ods tweak the model itself to remove bias during model training,
typically by altering the objective function or adding a fairness
constraint [4, 7, 28]. In-processing fairness techniques have been
proposed for regression [4] and linear contextual bandits settings
[15], among other settings. Finally, post-processing approaches
massage a model’s outputs so that they are fairer with respect
to the given fairness definition [7, 28, 35]. For example, [35] pro-
pose a graph smoothing problem that corresponds to Laplacian
regularization such that the corrected outputs are aligned with
the “treat similar people similarly” definition proposed by [11].
Pre- and post-processing techniques are inherently data-related
challenges (i.e., debiasing datasets for use by ML models, or debi-
asing data that ML models output), rather than a traditional ML
challenge. They also have the added advantage of not requiring
access to the ML model. Thus, they can still be utilized if access
to the model is unavailable and must be treated as a black box or
if model retraining would be prohibitively costly.

2.3 Spatial fairness
Most spatial fairness work defines unfairness only with respect
to spatial regions or partitions and can be considered a form
of group fairness (where every spatial partition is a group). For
example, Xie et al. [49] impose a two-dimensional rectangular

grid over a given region and consider multiple possible parti-
tionings of the form 𝑠1 × 𝑠2 (where 𝑠1 is the number of rows
and 𝑠2 the number of columns). Then, for each partitioning, they
measure the variance of performance metric (e.g., accuracy) of a
model’s outcomes in each partition. Finally, they compute mean
variance across all partitionings, with a lower mean variance
implying higher fairness. However, as pointed out by [38], their
method is apt for assessing the fairness of outcomes that are
regularly distributed across space. It does not perform as well
when outcomes are distributed irregularly in space. In contrast,
[38] formulate a framework to conduct a likelihood ratio test to
audit for spatial unfairness. However, they only consider location
and the number of positive outcomes (or another measure of
outcome). Our approach builds upon the work of Sacharidis et al.
and incorporates the notion of non-protected and legally pro-
tected features into the assessment of fairness. Furthermore, our
method compares two partitions at a time to each other, while
the method of Sacharidis et al. compare the number of positive
outcomes inside a partition to the number of positive outcomes
everywhere outside that partition. The overarching goal of our
work is similar to Sacharidis et al. [38] – to detect the presence
of unfairness given a spatial dataset and a model’s outputs for
that data. Unlike our work, however, Sacharidis et al. [38] and
Xie et al. [49] do not consider fairness with respect to legally
protected attributes when auditing for spatial fairness, which
limits the real-world application of their work since bias due to
location is illegal only when it concerns location’s association
with legally protected attributes [43]. They can be considered the
state of the art (SOTA) approach in spatial fairness. We compare
with them in Section 4.3.

There is also some work exploring individual spatial fair-
ness. Shaham et al. [44] explore individual spatial fairness by
adapting the fair-ML fairness definition proposed by Dwork
et al. to location. For a given set of locations 𝐿 = 𝑙1, 𝑙2, ..., 𝑙𝑚 ,
where 𝑙𝑖 ∈ R𝑘 and an output set 𝐴, a randomized mapping
𝑀 : 𝐿 → Δ(𝐴) will satisfy individual spatial fairness iff the (𝐷,𝑑)-
Lipschitz condition is satisfied for every two locations 𝑙𝑖 , 𝑙 𝑗 ∈ 𝐿:
𝐷 (𝑀 (𝑙𝑖 ), 𝑀 (𝑙 𝑗 )) ≤ 𝑑 (𝑙𝑖 , 𝑙 𝑗 ). In Dwork et al., the (𝐷,𝑑)-Lipschitz
condition must hold over every pair of individuals in the set
of individuals 𝑉 , whereas Shaham et al. require it to hold over
pairs of locations in 𝐿 instead (where each location may be that
of a specific individual). The authors then use this to define
distance-based spatial fairness and zone-based spatial fairness
in the following manner. Distance-based fairness considers the
distance of individuals from a reference point of interest, and
requires two individuals to be treated similarly if they are at
similar distances from the reference point. For example, the refer-
ence point could be a health store that wants to display discount
offers to nearby individuals. Then, the 𝐿 would be composed
of different individuals’ distance to this store, and the outcome
of the model may be whether to display an offer to a particu-
lar individual or not. The authors argue that a strict boundary
risks treating two individuals very close to each other differently
if they happen to be on opposite sides of the boundary, which
they propose is unfair. Zone-based fairness, on the other hand,
adapts their spatial fairness definition for coordinate values rather
than distances. The authors propose ’c-fair polynomials,’ where
a polynomial is fit to the outputs of a model to achieve distance-
and zone-based spatial fairness. According to their definition,
a polynomial 𝑃 (𝑥) : R → R would be c-fair iff the condition
|𝑃 (𝑥) − 𝑃 (𝑦) | ≤ 𝑐 |𝑥 − 𝑦 | holds for every pair of points 𝑥 and 𝑦
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in its domain, where 𝑐 acts as the knob to control the trade-off
between fairness and utility. In the same vein, they define c-fair
polynomials for zone-based spatial fairness where the location
dataset 𝐿 is composed of zones or regions where an individual
might be located. Both distance-based and zone-based spatial
fairness only consider location while determining fairness, and
ignore legally protected attributes. Thus, both definitions have
limited applicability in the real world as bias due to location alone
is not considered illegal.

These studies pioneered the field of spatial fairness and raised
awareness for the need of fairness concerning location. We build
upon their research to close the gap between their works and
fair-ML research by defining fairness with respect to location
and legally protected attributes.

3 LEGALLY COMPLIANT SPATIAL FAIRNESS:
A FRAMEWORK

3.1 Our spatial fairness definition
We propose LC-spatial fairness, a comprehensive framework that
first defines fairness with respect to location and legally pro-
tected attributes. Subsequently, it utilizes this definition to audit
the outputs of a given location-based decision-making model
for fairness concerning legally protected attributes to identify
regions that exhibit unfairness, and are in need of more resources
and attention.

We present our definition (Definition 3.3) after introducing
some relevant terminology.

Definition 3.1. Legally protected attributes refers to features
in a data-driven decision-making model that are safeguarded
against discrimination by law across various domains (such as
banking and credit, for example). Such attributes are typically
immutable personal characteristics, such as sex, race, or national
origin.

Definition 3.2. Non-protected attributes refers to features that
are relevant to decision-making but are not safeguarded against
discrimination by law. Such attributes are typically mutable char-
acteristics that can be changed, such as income.

Definition 3.3. Consider a region 𝑅 divided into 𝑛 partitions,
𝑟1, . . . , 𝑟𝑛 . Let F be the set of non-protected feature vectors f𝑖 ∈
R𝑚 for each partition 𝑟𝑖 , and let P be the set of protected attribute
vectors p𝑖 ∈ R𝑝 for each partition 𝑟𝑖 . Let 𝑂 : 𝑅 → R be the
outcome function of the model, where𝑂𝑖 is the outcome of region
𝑖 .

Amodel’s outcomes are fair if and only if for any two partitions
𝑟𝑖 and 𝑟 𝑗 :

1. The non-protected features are similar:

Sim(f𝑖 , f𝑗 ) ≥ 𝜖

2. The protected attributes are dissimilar:

Diss(p𝑖 , p𝑗 ) ≥ 𝛿

3. The outcomes are similar:

|𝑂 (𝑟𝑖 ) −𝑂 (𝑟 𝑗 ) | ≤ 𝜂

where 𝜖, 𝛿, 𝜂 > 0 are small positive thresholds indicating sim-
ilarity in non-protected features, dissimilarity in protected at-
tributes, and similarity in outcomes, respectively. Sim(f𝑖 , f𝑗 ) and
Diss(p𝑖 , p𝑗 ) represent a similarity and dissimilarity metric re-
spectively.

A notable strength of the LC-spatial-fairness framework is
its flexibility in defining the thresholds of (dis)similarity based
on relevance to the specific task at hand. Industries required to
protect against discrimination by law, such as banking and credit,
would have stricter requirements and likely prefer higher 𝜖, 𝛿
thresholds and a lower 𝜂 threshold. Other application settings
which merely desire to act more ethically without being required
by law may prefer lower 𝜖, 𝛿 thresholds and a higher 𝜂 threshold.
Moreover, in recognition of the fair-ML literature acknowledging
that different (dis)similarity metrics may be required for different
contexts, our LC-spatial-fairness framework provides the flexi-
bility to incorporate different(dis)similarity metrics tailored for
specific tasks.

3.2 Assessing spatial unfairness: Hypotheses
and Likelihood Ratio Test

Next, we incorporate our definition into a hypothesis test to
audit a given model’s outcomes. We define two hypotheses as
follows. Our hypotheses assume two regions 𝑟𝑖 and 𝑟 𝑗 under
consideration are similar in the non-protected attributes, 𝐹 , and
dissimilar in the protected attributes, 𝑃 . The null hypothesis (𝐻0)
posits no spatial unfairness between the two regions, i.e., their
outcomes are similar. In contrast, the alternate hypothesis (𝐻𝑎)
posits there is spatial unfairness, and the outcomes in 𝑟𝑖 and 𝑟 𝑗 are
significantly different. As we build on the work of Sacharidis et al.
[38], we adopt their terminology, start with their equation, and
build upon it to get to ours. Although the discussion uses positive
rate as the measure of interest, this can be easily adapted to other
measures. Furthermore, for consistency, we continue with their
setting of a model for determining outcomes for individuals.
However, it is generalizable to other settings, such as assessing
unfairness in funding resources for different school districts.

As defined in [38], let 𝜌 = 𝑃𝑟 (𝑌 = 1) denote the overall
positive rate of a data-drivenmodel, and 𝜌 (𝑟𝑖 ) = 𝑃𝑟 (𝑌 = 1|𝐿 ∈ 𝑟𝑖 )
be the local positive rate of a region 𝑟𝑖 . As [38] point out, the
positive rate of a model can also be interpreted as the probability
of being assigned to the positive class or a Bernoulli trial with
𝜌 as the success probability. To be considered fair in [38], the
positive rate in every region 𝑟1, 𝑟2, ..., 𝑟 𝑗 should follow the same
Binomial distribution (i.e., this is their null hypothesis). Their
alternative hypothesis states unfairness: a region 𝑟𝑖 has a positive
rate that follows a Binomial with a different success probability
than the Binomial distribution of the positive rate outside 𝑟𝑖 . In
contrast, rather than comparing the positive rate inside a region
to the positive rate outside it, our hypotheses posit the following
for any two regions 𝑟𝑖 , 𝑟 𝑗 ∈ 𝑅 that are similar in 𝐹 (non-protected
attributes) and dissimilar in 𝑃 (protected attributes). Our null
hypothesis, 𝐻0, assumes no difference between the positive rates
of 𝑟𝑖 and 𝑟 𝑗 . Our alternative hypothesis, 𝐻𝑎 , posits there is a
difference in the positive rates of 𝑟𝑖 and 𝑟 𝑗 .

To understand which hypothesis explains the outcomes better,
we derive their maximum likelihoods and compute the likelihood
ratio as well as [38]. The likelihood for the null hypothesis for
Sacharidis et al. [38] is given by:

𝑆0 (𝑅, 𝜌0) = 𝜌
𝑝 (𝑟𝑖 )
0 (1 − 𝜌0)𝑛 (𝑟𝑖 )−𝑝 (𝑟𝑖 ) (1)

where 𝑛(𝑟𝑖 ) is the number of individuals in region 𝑟𝑖 , while 𝑝 (𝑟𝑖 )
represents the number of individuals with positive outcomes in
𝑟𝑖 . The likelihood for their alternative hypothesis is the product
of the binomial of a region 𝑟𝑖 with the binomial for outside 𝑟𝑖 . It
is defined as follows:
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𝑆𝑎 (𝑟𝑖 , 𝜌0, 𝜌1) = 𝜌
𝑝 (𝑟𝑖 )
0 (1 − 𝜌0)𝑛 (𝑟𝑖 )−𝑝 (𝑟𝑖 )

× 𝜌
𝑃−𝑝 (𝑟𝑖 )
1 (1 − 𝜌1)𝑁−𝑛 (𝑟𝑖 )−(𝑃−𝑝 (𝑟𝑖 ) )

(2)

where 𝜌0 is the positive rate inside region 𝑟𝑖 and 𝜌1 is the
positive rate outside it. 𝑁 is the total number of individuals
across the entire space 𝑅, and 𝑃 is the total number of positive
outcomes in the entire space 𝑅.

In contrast, the likelihood for our alternative hypothesis, 𝐻𝑎 ,
has some more terms, which we describe individually before
putting them all together. For a region 𝑟𝑖 , the likelihood will
contain the term:

𝜌
𝑝 (𝑟𝑖 )
𝑖

(1 − 𝜌𝑖 )𝑛 (𝑟𝑖 )−𝑝 (𝑟𝑖 ) (3)
where 𝜌𝑖 is the success probability for region 𝑟𝑖 , 𝑛(𝑟𝑖 ) is the
number of individuals in 𝑟𝑖 , and 𝑝 (𝑟𝑖 ) is the number of positive
labels in 𝑟𝑖 . This will be multiplied by the term:(

𝑛𝐺 (𝑟𝑖 )
𝑛(𝑟𝑖 )

)𝑛 (𝑟𝑖 )
·
(
1 − 𝑛𝐺 (𝑟𝑖 )

𝑛(𝑟𝑖 )

)𝑛 (𝑟𝑖 )−𝑛𝐺 (𝑟𝑖 )
(4)

where 𝑛𝐺 (𝑟𝑖 ) is the number of individuals belonging to pro-
tected group 𝐺 in region 𝑟𝑖 . Finally, both these terms would be
multiplied by:(

𝑛𝑉 (𝑟𝑖 )
𝑛(𝑟𝑖 )

)𝑛𝑉 (𝑟𝑖 ) (
1 − 𝑛𝑉 (𝑟𝑖 )

𝑛(𝑟𝑖 )

)𝑛 (𝑟𝑖 )−𝑛𝑉 (𝑟𝑖 )
(5)

where 𝑛𝑉 (𝑟𝑖 ) denotes the number of individuals in non-protected
group 𝑉 in region 𝑟𝑖 .

Thus, the likelihood for a region 𝑟𝑖 , 𝐿𝑟𝑖 , will be the product of
Equations 3, 4, and 5. Therefore, the likelihood of our alternative
hypothesis for regions 𝑟𝑖 and 𝑟 𝑗 will be given by the product of
the likelihood for the two regions:

𝐿𝑎 = 𝐿𝑟𝑖 · 𝐿𝑟 𝑗 (6)

We maximize this likelihood for each pair of partitions and
then compute a likelihood ratio test to determine which hypothe-
sis explains the model’s outcomes better. To determine the signif-
icance of the test statistic of the likelihood ratio test we conduct
Monte Carlo simulations, similar to how Sacharidis et al. also
determine significance. By creating𝑚 alternative “worlds” with
𝑁 total data points, with each data point’s outcome determined
by a Bernoulli trial with appropriate success probability 𝜌 [38].
The 𝜏 statistic for each alternative world is ranked. If the 𝜏 statis-
tic for the actual observed data is ranked at position 𝑘 , then the
significance or 𝑝-value for the observed data would be 𝑘/(𝑚 − 1).
We conclude the outcomes of a pair of partitions, 𝑟𝑖 , 𝑟 𝑗 , are spa-
tially unfair if the test statistic is less than the predetermined
level of significance.

3.3 Resistance to the Modifiable Areal Unit
Problem (MAUP)

In this section, we discuss the resistance of the LC-spatial-fairness
framework to MAUP. A significant difference between our frame-
work and that of previous works such as Sacharidis et al. [38]
and Xie et al. [49] is that they compare the measure of interest
(such as positive rate/rate of approval or prediction accuracy)
within each partition with the measure of interest globally. In
the Sacharidis et al. framework [38], for instance, the goal is to
identify partitions where the measure of interest in a partition
differs from the measure of interest across the entire space. For
example, in an experiment with loan approval decisions, their

framework identifies partitions where the loan approval rate dif-
fers significantly from the overall global approval rate of 0.62.
Thus, to change the designation of a given partition from spatially
unfair to spatially fair according to this framework, an adversary
could redraw the boundaries of the partitions such that the local
measure of interest becomes more similar to the global measure.

Consider the following scenario where an adversary could
“game” the system. Assume a space 𝑅 divided into 𝑛 partitions
𝑟1, 𝑟2, . . ., 𝑟𝑛 . Let the positive rate (e.g., rate of approval of loans) be
the measure of interest. The positive rate across the entire space 𝑅
is given to be 70% (i.e., this is the global measure). Intuitively, the
framework of Sacharidis et al. designates a partition 𝑟𝑘 as spatially
unfair when the measure of interest in the partition 𝑟𝑘 is different
from the global measure of interest. Let there be two adjacent
partitions, 𝑟𝑖 and 𝑟 𝑗 , with local positive rates of 90% and 50%,
respectively (Figure 2a). The framework in [38] would label these
partitions as spatially unfair. A malicious adversary, however,
could manipulate the system into labeling both partitions as
spatially fair by changing the boundaries of 𝑟𝑖 and 𝑟 𝑗 such that
the new partitions 𝑟 ′

𝑖
and 𝑟 ′

𝑗
(Figure 2b) each have a local positive

rate of 70%.

(a) The original partitions, 𝑟𝑖 with local positive rate of 90%
and 𝑟 𝑗 with local positive rate of 50%, that are deemed spatially
unfair by the mechanism in Sacharidis et al. [38]. The global
positive rate is 70%.

(b) An adversarial redrawing of the boundary of partitions
such that new 𝑟 ′

𝑖
and 𝑟 ′

𝑗
each have a local positive rate of 70%

and are now deemed spatially fair.

Figure 2: A partitioning where the global positive rate is
70%.

In contrast, our LC-spatial-fairness framework does not com-
pare local rates against a global measure to appraise fairness.
Since our framework compares the outcomes of a pair of parti-
tions at a time, where both are similar in unprotected and dissimi-
lar in protected attributes, rather than comparing each partition’s
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local outcomes to the global outcome rate, we avoid this issue.
Let us continue with the example of a given space 𝑅 divided
into 𝑛 partitions 𝑟1, 𝑟2, ...., 𝑟𝑛 . To recall, spatial fairness in our
framework is defined by:

∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝑖 ≠ 𝑗 :
(
𝐹 (𝑟𝑖 ) ∼ 𝐹 (𝑟 𝑗 )

)
∧
(
𝑃 (𝑟𝑖 ) ≁ 𝑃 (𝑟 𝑗 )

)
=⇒ 𝑂 (𝑟𝑖 ) ∼ 𝑂 (𝑟 𝑗 )
where ∼ denotes similarity in non-protected attributes and

model outcomes, while ≁ denotes dissimilarity in protected at-
tributes.

Let 𝑟 and 𝑟 𝑗 be two partitions labeled as unfair by the LC-
spatial-fairness framework for being similar in unprotected and
dissimilar in protected attributes yet having dissimilar outcomes.
Thus:(

𝐹 (𝑟𝑖 ) ∼ 𝐹 (𝑟 𝑗 )
)
∧
(
𝑃 (𝑟𝑖 ) ≁ 𝑃 (𝑟 𝑗 )

)
but 𝑂 (𝑟𝑖 ) ≁ 𝑂 (𝑟 𝑗 )

Let us assume amalicious adversary redraws the boundaries of
𝑟𝑖 and 𝑟 𝑗 . Let the new partitions be 𝑟 ′

𝑖
and 𝑟 ′

𝑗
. Four possible cases

might occur. First, redrawing the boundaries does not change
the makeup of the unprotected and protected attributes of 𝑟 ′

𝑖
and 𝑟 ′

𝑗
. That is, 𝐹 (𝑟 ′

𝑖
) ∼ 𝐹 (𝑟 ′

𝑗
), while 𝑃 (𝑟 ′

𝑖
) ≁ 𝑃 (𝑟 ′

𝑗
). In this case,

𝑟 ′
𝑖
and 𝑟 ′

𝑗
would still be compared and deemed unfair by our

methodology. Second, redrawing the boundaries could result in
a change such that 𝑟 ′

𝑖
and 𝑟 ′

𝑗
are no longer similar in unprotected

attributes, while the protected attributes remain dissimilar. Thus,
𝐹 (𝑟 ′

𝑖
) ≁ 𝐹 (𝑟 ′

𝑗
), while there is no change in the makeup of the

protected attributes 𝑃 (𝑟 ′
𝑖
) ≁ 𝑃 (𝑟 ′

𝑗
). In this case, the two parti-

tions will no longer be compared because the LC-spatial-fairness
framework requires them to be similar in unprotected attributes
for them to be compared. However, the fairness assessment will
not be circumvented because now 𝑟 ′

𝑖
and 𝑟 ′

𝑗
will be compared

to other, different partitions that are now similar to them in un-
protected attributes and dissimilar in protected attributes. Thus,
unfairness will likely resurface elsewhere in the network, as the
adversary cannot isolate partitions from comparison without
affecting other comparisons. In the third case, 𝑟 ′

𝑖
and 𝑟 ′

𝑗
are still

similar in unprotected attributes, 𝐹 (𝑟 ′
𝑖
) ∼ 𝐹 (𝑟 ′

𝑗
), but are now

similar in protected attributes, 𝑃 (𝑟 ′
𝑖
) ∼ 𝑃 (𝑟 ′

𝑗
). Similar to the pre-

vious case, while 𝑟 ′
𝑖
and 𝑟 ′

𝑗
will no longer be compared to each

other, they will now be compared to other partitions they were
not compared to earlier but are now similar to in unprotected
and dissimilar in protected attributes. Finally, the last case would
be that the redrawn partitions differ in unprotected attributes
while becoming similar in protected attributes: 𝐹 (𝑟 ′

𝑖
) ≁ 𝐹 (𝑟 ′

𝑗
)

and 𝑃 (𝑟 ′
𝑖
) ∼ 𝑃 (𝑟 ′

𝑗
). While 𝑟 ′

𝑖
and 𝑟 ′

𝑗
are no longer compared, they

will be compared to other partitions they were not eligible to be
compared to before. In sum, any redrawing of boundaries will
only result in a fresh set of fairness comparisons.

Thus, the LC-spatial-fairness framework’s fundamental na-
ture ensures that redrawing any partition’s boundary only shifts
comparisons and cannot eliminate fairness checks.

4 USE CASES
We utilize two use cases to demonstrate the utility of our LC-
Spatial-Fairness framework: the first, in the domain of mortgage
lending, was developed previously and serves as a baseline for
comparison, while the second, focused on healthy food accessi-
bility, is newly introduced in this paper. These diverse use cases
underscore the broad applicability of our framework across var-
ied settings. The LC-spatial-fairness framework helps identify

regions that are treated unfairly in approved loans and with dis-
proportionately heavy access to fast food establishments. This
section outlines the use cases and presents experimental results
for each of them. We then continue the experimental analysis
in Section 5, where we compare with baselines and perform ex-
periments with various partitionings to study our framework’s
resistance to MAUP.

4.1 Mortgage Lending
Given the growing adoption of artificial intelligence in the fi-
nancial sector [12], our first use case focuses on the scenario of
mortgage applications.

4.1.1 Use Case. Consider a data-driven model for classifying
mortgage applications in the United States into binary outcomes
(e.g., approval or rejection). Then, 𝑅 would be the U.S., and the 𝑛
partitions could be defined in many ways. They may be the dif-
ferent states or counties, or a grid could be superimposed and the
cells used as partitions. Let us assume a grid creates 𝑛 partitions
𝑟1, 𝑟2, ..., 𝑟𝑛 . The set of non-protected attributes 𝐹 can be rele-
vant non-protected attributes such as an applicant’s income and
amount of current debt. In contrast, the protected attribute under
consideration, 𝑃 , would be race (since it is protected against dis-
crimination in the credit industry in the United States by federal
law [36, 43]). The outcome 𝑂 would be the decision regarding
the mortgage application (i.e., approval or denial).

Many metrics may be incorporated to assess similarity and
dissimilarity. Statistical parity [28] and the Mann-Whitney U test
statistic are two potential metrics for similarity, while disparate
impact measure from the fair-ML literature [28] or the z-score
statistic may be utilized for dissimilarity. We present results for
them in Section 5. Since discrimination on the basis of race is
outlawed in the credit industry in the United States, the 𝜖 and 𝛿
thresholds should be strict. In Section 5, we present experimen-
tal results with publicly available mortgage data and set these
thresholds to be 0.001.

Other (dis)similarity metrics may also be employed, such as
distance-metric inspired ones suggested in Dwork et al. [11].
However, they must be manually crafted specifically for the appli-
cation setting and typically require deep subject matter expertise.

4.1.2 Data and Experimental Results. We now present results
for the mortgage application use case. We utilize the publicly
available Loan Application Register (LAR) dataset2, which con-
tains an anonymized record of mortgage application decisions
by financial institutions in the United States. All financial insti-
tutions in the U.S. that issue 200 or more open-end lines of credit
or closed-end mortgage loans must report such data every year
under the Home Mortgage Disclosure Act [45]. For a given finan-
cial institution, the dataset contains the applicant’s geographic
location at the census tract level and the application’s outcome
(e.g., whether the loan was approved, denied, approved but not
taken out, or application withdrawn, et cetera).

To study spatial unfairness in this context, we utilize income
as the unprotected attribute of relevance, while race serves as the
legally protected attribute (since the Equal Credit Opportunity
Act prohibits discrimination based on race in credit decisions).
Thus, after filtering for applications that were either approved or
denied, we perform a spatial join with data from the U.S. Census

2https://ffiec.cfpb.gov/data-publication/modified-lar/
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Table 1: Results for the LC-Spatial Fairness framework for the mortgage application use case.

Dataset Grid dimensions Number of unfair regions

Bank of America 100 × 50 493
Wells Fargo 100 × 50 569

United Wholesale Mortgage 100 × 50 238
Loan Depot 100 × 50 899

Bureau from the 2020 Census3 to obtain the racial composition
and income distribution of different census tracts. The outcome of
interest is the positive rate, or in other words, the rate of approval
of loans.

We perform the aforementioned pre-processing for a mix of
different types of institutions that offer mortgages in the U.S.
We process datasets for Bank of America and Wells Fargo, two
popular banks in the U.S., obtaining 224,145 and 311,375 applica-
tions respectively. We also process the LAR datasets for United
Wholesale Mortgage, a wholesale mortgage lender, and Loan
Depot, a non-bank mortgage lender in the U.S. We obtain 687,772
application records for United Wholesale Mortgage and 225,495
for Loan Depot after all pre-processing is complete. We adopt
a high-resolution grid partitioning of 100 × 50, and utilize the
Mann-Whitney U test statistic and the z-score statistic for sim-
ilarity and dissimilarity respectively, while the thresholds for
𝜖 and 𝛿 are set to 0.001. Table 1 presents the number of unfair
regions found by the LC-Spatial Fairness framework. For Bank
of America, for example, the framework finds that there are 493
regions which would be considered unfair when compared with
another region with similar income yet different racial distribu-
tion. UnitedWholesale Mortgage is the largest mortgage provider
in the U.S. [33], originating $108 billion USD in loans in 2023.
The much higher number of applications received and approved
likely results in the considerably lower number of unfair regions
found for it, while institutions that receive fewer applications
show more unfairness.

We present experimental analysis for this use case with more
metrics and partitionings in Section 5.

4.2 Access to healthy food
We now consider a different kind of use case: an application
setting where an industry or agency wishes to act more ethically
without necessarily being required by law. We consider such uses
of the LC-spatial-fairness framework to be ethical spatial fairness.

Agencies such as Food Access Advisory Group and States’
Department of Food and Agriculture [32] may wish to analyze
the distribution of fast food restaurants across a given space to
identify which regions need more grocery stores to combat the
problem of food deserts. A food desert is a low-income area in
which more than a third of the population lives more than a mile
from a grocery store or a supermarket (the distance is 10 miles
for rural areas) [31]. A higher concentration of fast food chains
in such regions exacerbates the food desert crisis, contributing
to decreased access to nutritional food. Thus, government agen-
cies may be interested in identifying regions with an unjustified
abundance of fast food chains and choose to offer incentives for
more healthy food outlets to open in such areas.

Here, 𝑅 could be the U.S. or the specific state carrying out
the analysis, and the unprotected attribute, 𝐹 , would be income
(since an area must be low-income to qualify as a food desert).
3https://data.census.gov/table

The protected attribute, 𝑃 , would be race since food deserts are
typically in minority neighborhoods [31, 32]. The outcome of
interest would be the number of fast-food restaurants in each
region. If two regions 𝑟𝑖 and 𝑟 𝑗 have similarly low income, but 𝑟𝑖
is a minority region, and 𝑟 𝑗 is not, but 𝑟𝑖 has significantly more
fast food outlets, then we can conclude that it is spatially unfair.

4.2.1 Data and Experimental Results. For experiments for this
use case, we utilize SafeGraph Places data4 [39]. SafeGraph Places
provides detailed information about geographical places, also
known as point-of-interest (POI) data. It identifies various in-
formation including the main “category” (e.g., restaurant) and
“sub-category” (e.g., fast food or limited service restaurant) of
each geographical place, location, and brand. We compile infor-
mation for locations of the top 15 most popular fast food brands
in the U.S. [27] and perform a spatial join with census data for
income and racial data. After all pre-processing, we are left with
106,091 fast food places nationwide. We can use the same metrics
as in Section 4.1; however, since governments will likely not have
an unlimited budget to offer incentives, we can have lower thresh-
olds for 𝜖 and 𝛿 . We set these thresholds to be 0.01. For a lower
resolution grid partitioning of 20 × 20, the LC-spatial-fairness
framework finds 41 unfair regions, about 10% of the total number
of partitions. Each of these 41 regions is an area with significantly
more fast food outlets than another area with similar income yet
different racial makeup. In other words, it has an unfairly high
abundance of unhealthy food options that cannot be explained
away by the income of the area.

We present more results for this use case with different parti-
tionings in Section 5.

5 EXPERIMENTAL ANALYSIS
This section details the comparison of the LC-spatial-fairness
framework with baselines, as well as experimental evaluation of
our framework with different partitionings to assess its resistance
to MAUP.

5.1 Comparison to Baselines
Here, we compare the LC-spatial-fairness framework with two
baselines. The first baseline is a common technique to assess bias
or unfairness in the discipline of fair-ML known as disparate
impact [28]. The second baseline is a previous spatial fairness
methodology proposed by Sacharidis et al. [38].

5.1.1 Fair-ML baseline. We compare the fairness assessment
of the LC-spatial-fairness framework with the disparate impact
assessment commonly used to measure unfairness in varied
decision-making settings in many fair-ML works [28]. Disparate
impact is formally defined as follows.

Definition 5.1. Disparate impact is the ratio of the positive
outcome rate for a protected group to the positive outcome rate
4https://www.deweydata.io/data-partners/safegraph
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Figure 3: A figure illustrating the 5 most spatially unfair pairs of regions as determined by our method.

for a reference or comparison group. Mathematically, it may be
defined as:

Disparate Impact =
𝑃 (positive outcome | 𝐴 = 𝑎)
𝑃 (positive outcome | 𝐴 = 𝑏)

where 𝑃 (positive outcome | 𝐴 = 𝑎) denotes the probability
of receiving a positive or desirable outcome (e.g., mortgage ap-
proval, job offer in hiring) for individuals in group 𝐴 = 𝑎, and
𝑃 (positive outcome | 𝐴 = 𝑏) is the probability of receiving a
positive or desirable outcome for individuals in group 𝐴 = 𝑏.
𝐴 = 𝑎, 𝑏 denote the different groups of the protected attribute
(e.g., white/black when the protected group is race).

Like most fair-ML metrics to measure bias in given decisions,
disparate impact also only looks at the outcomes and protected
features. It does not take other features into account. The thresh-
old of disparate impact that indicates concern is 0.80, modeled
on the 𝑝%-rule used by the U.S. Equal Employment Opportunity
Commission (EEOC) to evaluate bias in hiring [5, 13]. In other
words, a disparate impact of less than 0.80 indicates the presence
of significant bias. The closer the disparate impact assessment
is to 1, the lower the bias. Using this to assess bias in the Bank
of America data, we get a disparate impact value of 0.962038.
Such a high value indicates the presence of almost no bias. How-
ever, this is highly likely to be incorrect since we do not live in a
perfect world. Thus, while disparate impact is an efficient tool
to assess the presence of bias in many other decision-making
scenarios, it is not suitable for spatial settings. Not accounting
for the spatial features ignores too much information and leads
to faulty assessments of fairness. Next, we shall compare to a
baseline that does take spatial features into account, and we see
that it does detect the presence of unfairness.

5.1.2 Spatial fairness baseline. We compare the LC-spatial-
fairness framework with the previous spatial fairness work clos-
est to ours, Sacharidis et al. [38]. For comparison with Sacharidis
et al. [38] we use the LAR dataset for Bank of America for the year

2021. After the pre-processing steps detailed in 4.1 and spatial
join with census data, we are left with 224,145 applications.

Like Sacharidis et al. [38], our goal is to audit this dataset for
spatial fairness, and the outcome we consider is the positive rate,
or in other words, the rate of approval of loans. In contrast to [38],
however, we consider other attributes in addition to location. For
our methodology, income will be the unprotected attribute of
relevance, and race will be the legally protected attribute.

In their study, Sacharidis et al. [38] analyze results from a
partitioning of 100 × 50. The measure of interest is the positive
rate or the rate of approval for a mortgage. As a reminder, their
approach aims to identify partitions where the positive class (i.e.,
positive outcomes or mortgage approvals) is assigned differently
from the global mean. Sacharidis et al. consider only location
(partition) and outcomes. In contrast, we consider income as well
as race (the legally protected attribute) in addition to location and
outcomes. Therefore, although the methodology of Sacharidis
et al. is the closest to our framework, the two techniques still
have considerable differences in their fairness assessment.

The technique of Sacharidis et al. [38] identifies 59 statisti-
cally significant partitions as spatially unfair. In other words,
their framework ascertains that 59 partitions have local positive
rates that are statistically significantly different from the global
positive rate (which is 0.62).

In contrast, our methodology assesses the presence of sig-
nificantly more spatial unfairness, and identifies 493 pairs of
partitions as spatially unfair. The five pairs with the most spatial
unfairness are depicted in Figure 3. The pairs of partitions are
color coded, with the partition that is spatially unfair with respect
to the other sharing the same color. The spatially unfair parti-
tion is colored, while the other is a transparent rectangle. Some
partitions are determined to be spatially unfair in comparison to
multiple partitions. Intuitively this makes sense, since partitions
where there is truly the most unfairness will likely stand out
in stark contrast to multiple other partitions which are similar
to them in non-protected attributes and dissimilar in protected
attributes yet have much better outcomes.
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Figure 4: The most spatially unfair region as determined by Sacharidis et al. [38].

Figure 5: The most spatially unfair region as determined by our methodology.

Next, we analyze the region deemed to be most spatially unfair
by each methodology. Figure 4 depicts the partition the method
of Sacharidis et al. [38] determines to be the most spatially unfair.
It covers a region in Northern California with a positive rate of
84% in comparison to the global positive rate of 62%. This region,
however, happens to contain parts of the San Francisco Bay Area,
encompassing neighborhoods such as Sunnyvale, CA and parts of
Mountain View, CA which has household incomes significantly
higher than the national average. Therefore, it is not surprising
that the region’s rate of approval of mortgages is also significantly
higher than the global rate of approval. Plausible and legally valid
reasons for observed differences in different locations should not
be considered an instance of spatial unfairness.

In contrast, the pair of regions determined to exhibit the most
statistically significant spatial unfairness is shown in Figure 5.
The region in Detroit is spatially unfair with respect to the region
in Florida. Both regions are have similar income. The region
in Detroit is majority minority, while the region in Florida is
majority white. Finally, despite similar income, the region in
Detroit has a significantly lower mortgage approval rate than the
region in Florida. The ability of our technique to not only identify
regions with spatial unfairness but also identify the region(s) with
respect to which it is unfair significantly increases its utility in
real-world applications.

Sacharidis et al. [38] also find a partition near Detroit to be
spatially unfair because it has a positive rate of 0.47 while the
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Figure 6: Spatially unfair regions flagged by our method as well as Sacharidis et al. [38].

global positive rate is 0.62. However, the partition they find unfair
is separate from the partition deemed unfair by our methodology.
The LC-spatial-fairness framework, in contrast, does not find
that partition to be spatially unfair.

Finally, we highlight the regions determined to exhibit spatial
unfairness by both methodologies. Figure 6 highlights the five
partitions labeled as spatially unfair by both techniques. They are
all clustered together, with three partitions in the state of Florida.
The other two partitions are in the state of North Carolina, near
the border with South Carolina.

5.2 Different Partitionings
In this section, we present results for both use cases for different
partitioning schema. This is intended to explore how chang-
ing the resolution might affect the spatial fairness assessment,
and whether a malicious adversary could potentially “game” the
framework by changing the grid resolution to change the assess-
ment from spatially unfair to spatially fair. We test for various
grid resolutions, ranging from very low resolution of 10 × 10 to
very high resolution of 100 × 50.

5.2.1 Mortgage Lending. Weutilize the Bank of America dataset
to analyze the mortgage lending use case with different parti-
tionings. Table 2 presents the results for various grid dimensions,
which range from the U.S. being divided into 100 regions to 5,000
regions.

As observed from the table, at very low resolution (the 10× 10
partitioning), there is a relatively high number of region pairs
deemed to be unfair. This is likely because with such huge re-
gion sizes (100 cells is only double the number of states in the
country), it is likely that a region may be similar in income but
dissimilar in race to many other regions. As the resolution of
the partitioning increases, the number of unfair region pairs also
increases, but starts to stabilize around the partitioning with size
10 × 50. On growing the partitioning dimensions further, the
number of unfair region pairs found changes but does not vary
drastically relative to the number of partitions. Simply changing
the partitioning, therefore, is not a reliable way for a malicious

Table 2: Results for the LC-Spatial Fairness framework for
the mortgage application use case with Bank of America
dataset for different partitionings.

Partitioning Number of unfair region pairs

10 × 10 65
10 × 20 146
10 × 30 190
20 × 20 231
10 × 50 274
20 × 30 325
20 × 40 299
50 × 20 311
40 × 30 450
30 × 50 535
40 × 40 583
90 × 30 464
70 × 40 447
90 × 40 442
80 × 50 431
90 × 50 430
100 × 50 493

actor to “game” the auditing process to change the assessment
of the LC-spatial-fairness framework from spatially unfair to
spatially fair.

5.2.2 Access to healthy food. We now present experimental
results for the fast food experiment with various partitionings.
Table 3 presents the results for various partitions, with the U.S.
divided into grids with 100 regions to 5,000 regions. As shown in
the table, very few unfair regions are found at very low resolution
(such as 10 × 10) and at very high resolution (such as 100 × 50).
This is likely because at high resolution, say 100 × 50, the data
gets too sparse. As a reminder, we obtain only 106,091 fast food
places across the country after combining outlets of the top 15
most popular fast food chains in the U.S. In contrast, we have

851



Table 3: Results for the LC-Spatial Fairness framework for
the access to healthy food use case with SafeGraph dataset
for different partitionings.

Partitioning Number of unfair region pairs

10 × 10 7
10 × 20 22
10 × 30 42
10 × 40 53
20 × 20 41
10 × 50 51
30 × 20 73
40 × 20 103
50 × 50 18
90 × 50 13
70 × 40 14
100 × 30 15
90 × 50 13
100 × 50 5

many times the amount of data for the mortgage lending scenario.
The 106,091 fast food outlets spread across 5,000 regions would
be incredibly sparse. In the case of very low resolution, the data is
so aggregated that most differences are not statically significant.
As the resolution of the partitioning increases, the number of
unfair regions found usually increases. For partitionings until
50×50, the LC-spatial-fairness framework assesses approximately
10-14% of the total number of regions to be unfair. At the parti-
tioning of size 50×50, the number of unfair regions starts to drop
significantly, likely because at this point the resolution becomes
too fine. The 106,091 fast food outlets divided between 2500 re-
gions (the 50 × 50 partition) would mean an average of only 42
fast food outlets per region, which is not significant. For more
reasonable partitioning resolutions, the number of unfair regions
tends to increase on average as the partition resolution becomes
finer; however, the change is not drastic. For instance, from the
second-lowest resolution partition (10×20) to a higher resolution
of 40 × 20, the framework identifies approximately 10–14% of
regions as unfair. Thus, it would be hard for an adversary to be
able to successfully exploit the LC-spatial-fairness framework by
simply changing the partitioning.

These results highlight two key observations. The first ob-
servation is that changing the resolution does indeed affect the
results, but this is expected–similar to the impact of altering the
similarity metric. Changing the grid resolution significantly al-
ters the characteristics (both protected and unprotected features)
of each region. But the LC-spatial-fairness framework still detects
unfair regions with respect to the new resolution. The second
observation is that our method is agnostic to MAUP-resistence
when it comes to grid resolution. To be MAUP-resistant does
not mean finding exactly the same number of unfair regions
each time or consistently identifying a specific region as unfair.
Rather, it means that the framework can remain robust against
intentional manipulation of the partitioning. Specifically, an ad-
versary should not be able to alter the resolution or partitioning
in a way that systematically conceals unfairness or falsely indi-
cates fairness. While changes in resolution naturally affect the
characteristics of regions and the results, the LC-spatial-fairness
framework still reliably identifies unfair regions according to the
criteria set for the new resolution.

Table 4: Results for the LC-Spatial Fairness framework
with statistical parity as the dissimilarity metric for the
mortgage application use case with Bank of America
dataset for different partitionings.

Partitioning Number of unfair region pairs

10 × 10 69
10 × 20 150
10 × 30 174
20 × 20 290
10 × 50 316
20 × 30 281
20 × 40 350
50 × 20 784
40 × 30 553
30 × 50 532
40 × 40 539
90 × 30 417
70 × 40 644
90 × 40 837
80 × 50 674
90 × 50 684
100 × 50 740

5.3 Use case with a different metric
To demonstrate the flexibility of our LC-spatial-fairness frame-
work in incorporating various (dis)similarity metrics tailored to
different application contexts, we now present results for the
mortgage lending scenario using an alternative dissimilarity met-
ric. This is intended to showcase how different similarity met-
rics can be integrated into our framework for novel application
settings. Specifically, we utilize the widely-recognized fair-ML
metric of statistical parity to assess the dissimilarity of the pro-
tected attribute and conduct the mortgage lending experiment
using the Bank of America dataset. The statistical parity metric
is defined as follows:

Definition 5.2. Statistical parity evaluates whether a desirable
or positive outcome is distributed equitably across different pro-
tected groups. In other words, statistical parity examines whether
the proportion of individuals receiving a positive outcome is the
same across all groups. Mathematically:

𝑃 (𝑌 = 1 | 𝐴 = 𝑎) = 𝑃 (𝑌 = 1 | 𝐴 = 𝑏), ∀𝑎, 𝑏 ∈ Protected Groups

In our context, the desirable outcome is the approval of a
mortgage application and the protected groups are racial groups.
The experimental results are presented in Table 4.

Table 4 shows that incorporating statistical parity as a metric
gives somewhat similar results as in Table 2 up until the partition
with resolution 20 × 40. As the partitions get finer, statistical
parity leads to an assessment of greater unfairness.

6 CONCLUSION
This work introduces the LC-spatial-fairness framework to as-
sess for legally-compliant spatial fairness and identify regions
which exhibit significant unfairness. By considering location in
consideration with relevant non-protected attributes and legally
protected attributes, we bridge the gap between traditional fair-
ML approaches and previous spatial fairness work in a manner
that would withstand legal scrutiny. Government agencies and
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non-profits can utilize our framework to identify instances of
spatial unfairness, while companies can make use of it to ensure
they do not contribute to it unintentionally.

While the LC-spatial-fairness framework proposed in this pa-
per represents a significant step forward for assessing spatial
fairness, it is not without limitations. The first limitation reflects
a broader challenge inherent to the discipline of fairness in artifi-
cial intelligence: there is no ground truth for what it means to be
“fair.” Thus, any framework to measure fairness would require the
definition of a metric to measure “similarity” of individuals or
groups to assess whether their outcomes are “fair enough.” Since
there is no universally agreed-upon definition of fairness, mea-
suring it always involves choosing a metric that tries to capture
the concept. As no single metric is perfect, selecting the right
one for a specific task requires careful consideration. A second,
and closely related, limitation is that defining an appropriate
(dis)similarity metric for a specific application context may de-
mand substantial subject matter expertise, adding complexity
to the implementation of the framework. An independent reg-
ulatory body could be tasked with deciding on the appropriate
fairness metric for each industry (for example, for mortgage loans
in the credit industry), perhaps in tandemwith consultations with
subject matter experts as needed.
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