
Apache Ignite + Calcite Composable Database System:
Experimental Evaluation and Analysis

Mark Dodds and Khuzaima Daudjee
Cheriton School of Computer Science

University of Waterloo
{mtdodds,khuzaima.daudjee}@uwaterloo.ca

ABSTRACT
Recent interest in composable data management systems is lead-
ing to a growing use of Apache Ignite composed with Apache
Calcite for query processing. Apache Ignite is an open-source
distributed system that is used to process database workloads. It
utilizes Apache Calcite as the underlying query engine to parse
SQL queries into relational algebra operators that are passed
to the Ignite execution engine. This paper conducts an experi-
mental analysis of the performance of Apache Ignite composed
with the Apache Calcite system for online analytical processing
(OLAP) with varying workload and data distribution settings.
From empirical studies and technical analysis, multiple areas for
improvement are identified, and associated enhancements are
implemented into the system. Through experimental evaluation
using the de facto TPC-H and Star Schema benchmarks, it is
demonstrated that each strategy yields performance improve-
ments across multiple queries, and with all strategies enabled,
performance improves generally for all queries in the workload.

1 INTRODUCTION
The “one size does not fit all” tenet has sparked recent interest in
moving away from monolithic database systems to composable
database systems in which modular components that map to core
functionality can be composed together to deliver a complete and
customized system. This paradigm shift touts advantages that in-
clude faster and focused innovation, co-evolution of components,
efficiency, resource disaggregation and better user experience,
among others [26, 27]. In this paper, we conduct an experimental
study and analysis of Apache Ignite + Apache Calcite, forming a
composable system with an Ignite user base advertised to include
several major commercial vendors [14]. Currently, no published
work exists detailing the use of Apache Ignite + Apache Calcite as
a composable database system for complex queries on distributed
data.

Apache Ignite is a distributed in-memory key-value data sys-
tem whose operations are interacted with through its open-
source API. The data can be partitioned and distributed across
multiple nodes or sites to achieve horizontal scaling and distrib-
ute query processing. Apache Ignite also provides an ANSI-99-
compliant SQL interface to support more traditional applications
using the standard JDBC API. To allow the JDBC API to interact
with Ignite’s in-memory store, Ignite implements a database en-
gine using Apache Calcite (Ignite+Calcite) [13]. Apache Calcite is
a high-performance dynamic data management framework that
provides many functionalities of a typical database management
system [11]. It contains an out-of-the-box SQL parser, validator,
and optimizer but defers data storage, metadata storage, and data

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

processing functions to the implementer. The result is a highly ex-
tensible framework that handles query parsing and optimization
while remaining completely agnostic to storage and processing
implementations.

Apache Ignite andApache Calcite are both open-source projects
supported by a community of developers both within and outside
of the Apache Software Foundation. This can allow development
teams to focus on system improvements and feature enhance-
ments without being limited by commercial support obligations.
However, being open-source, these projects come with a level of
assumed risk and responsibility for the user not shared by com-
mercial projects. One possible trade-off is the lack of testing in
complex environments during the development process. Instead,
development teams must rely on users deploying the software in
real systems to test and report any issues they uncover.

Consequently, we conducted this research to understand and
evaluate the processing capabilities of OLAP workloads using
Ignite+Calcite. Multiple issues arose quickly when Ignite+Calcite
was tested with TPC-H [28], a popular de facto benchmark for
OLAP workloads. Of the 22 TPC-H queries, eight failed to exe-
cute using a standard deployment. Query 15 requires SQL Views
which are not supported in Ignite+Calcite and Query 20 raised
an exception in the planning process. Queries 17, 19, and 21
produced partially optimized execution plans containing multi-
ple nested-loop joins that exceeded a four-hour runtime limit.
Queries 2, 5, and 9 failed to generate execution plans entirely.
When queries were executed, work was often isolated to a sin-
gle CPU core, leaving other cores idling. These experimental
studies yielded the following problems to address in Apache Ig-
nite+Calcite as the core of this research: (i) the query planning
process is unstable and can fail to generate execution plans; (ii)
execution plans are often not fully optimized, resulting in long
execution times, particularly for join processing; (iii) execution
plans do not fully utilize modern CPUs with multiple cores. To ad-
dress these issues, this paper presents an experimental evaluation
and analysis that gave rise to three key contributions:

(1) The implementation of Apache Calcite within Apache Ig-
nite was experimentally studied, and multiple areas where
Calcite was incorrectly configured were discovered and
resolved.

(2) Strategies for executing join operations were newly im-
plemented, including a hash-join algorithm.

(3) Support for multi-threaded execution plans was added to
increase CPU utilization when processing queries.

To the best of our knowledge, this paper is the first work that
provides insight, through experimentation and analysis, on the
use of the Ignite+Calcite composable system for OLAP query
processing. Furthermore, we discuss our experience with modu-
larity, interoperability, developer support, and documentation in
using this composable system.

Experiments & Analyses Paper

Series ISSN: 2367-2005 949 10.48786/edbt.2025.77

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.77

Table Schema:
employee (int id, primary key(id));
sales (int order_id, int emp_id,

primary key(order_id));

Query A:
SELECT * FROM employee INNER JOIN sales
ON employee.id = sales.emp_id WHERE employee.id = 10;

Figure 1: Sample Schema and Join Query

2 RELATEDWORK
There is growing interest in composable data management sys-
tems [26, 27]. Instead of a single-purpose monolithic system,
composable systems, like Ignite, are built from a collection of
reusable components. These reusable components promote stan-
dardization and can considerably speed up development time.
Research topics vary from standardizing relational algebra [36],
integrating external query optimizers [21] to developing entire
query engines using existing projects [24]. Being a relatively new
area, there are currently no published performance evaluations
of systems built using this composable paradigm.

Despite claims by industry giants like Microsoft, Netflix, IBM,
and Yahoo of using Apache Ignite [14], there is no detailed infor-
mation about their usage. General implementations of Apache
Ignite exist [1, 25] with one for a simple e-commerce platform
[33] but none of these include performance evaluations. Stan et.
al. [35] present a performance comparison of Apache Ignite and
Apache Spark through the lens of Big Data processing. However,
Apache Ignite is used only as a distributed processing engine
for two generic data processing algorithms, not as a database
management system.

Query optimization as a general research area has been a
heavily researched topic as it is a core feature of any database
management system. Jarke and Koch [18] provide a foundational
relational calculus framework for general query evaluation. Bern-
stein et al. [5] presented techniques for optimizing relational
queries in the early distributed database system SDD-1 [30]. Al-
most two decades later, Chaudhuri [6] focussed on optimization
of SQL queries in relational database systems using relational
algebra.

Since join operations are typically among the most resource-
intensive processes in a database system, a large body of research
is dedicated to them [16, 22, 39]. Hash and sort-merge join algo-
rithms under varying memory and CPU constraints have been
the focus of many studies [2, 3, 19, 32]. Schneider and DeWitt
[31] evaluated parallelized versions of the join algorithms from
[8].

3 QUERY PROCESSING AND OPTIMIZATION
As Apache Ignite’s core functionality is a distributed data storage
system, it composes most of the querying logic from an external
library. Apache Calcite was built for this exact purpose, providing
out-of-the-box query parsing and optimization capabilities that is
composable with a system like Apache Ignite. Knowing how these
two composable systems work is essential for understanding how
Ignite+Calcite processes queries. The majority of this knowledge
was derived from analyzing the source code of Apache Ignite and

FILTER[cond: employee.id == 10]

JOIN[type: inner, cond: employee.id = sales.emp_id]

SCAN[employee] SCAN[sales]

Figure 2: UnoptimizedQuery Tree of QueryA fromFigure 1

Apache Calcite, and how they interfaced with each other, driven
by investigative evaluation and testing.

3.1 Apache Calcite
Relational algebra [7] operators are the main building blocks for
Calcite. They can be either logical operators that are agnostic to
the execution environment or physical operators that have traits.
Traits are physical properties associated with an operator that de-
scribe some aspect of the execution but do not change the logical
expression itself. They enforce specific properties for an execu-
tion plan (such as the sort order of a sort operator) and can be
varied during the planning process to explore alternative execu-
tion plans. Calcite implements a wide range of logical operators,
but physical operators and traits are left to the implementer.

The main entry point is the Calcite SQL parser. It consumes
an SQL string and returns a tree-like structure representing the
query (a query tree) that contains the operators, their properties,
and the required data flow between them. Figure 2 shows the
resulting query tree when Query A in Figure 1 is parsed by Cal-
cite. Each operator is responsible for performing its operation
and passing the result up the tree to its parent, with leaf nodes
being the starting point for the data flow. Since Calcite does not
inherently have context about the expression it evaluates, it relies
on the implementer to provide this context via provider hooks.
These provider hooks consume a provider function that produces
metadata required for a Calcite procedure, such as schema defini-
tions, table statistics, or estimation algorithms.When a procedure
requires context-specific information about a table (e.g., table
cardinality), it calls the requisite provider function to retrieve the
information, defaulting to no-operation (NO-OP) implementa-
tions if one is not provided. The NO-OP implementations can
prevent catastrophic errors but can also result in inefficient query
plans being generated. Therefore, care must be taken to ensure
providers have valid implementations.

When an SQL expression is converted into a query tree, it
is semantically equivalent to the original expression but rarely
efficient and thus must be optimized. Optimizing a query tree
means swapping or re-ordering operators to reduce the execution
time. Calcite uses rules to define how the swaps and re-orderings
occur. A rule is an operation that consumes a single operator
and produces a set of operators that are semantically equivalent
to the original but potentially more efficient. Each rule also has
a predicate indicating which operator it can operate on. Rules
can either be logical, which modifies the relational algebra of the
query tree, or physical, which determines the implementation
and execution of the query tree. Calcite provides many rules [12]
that the implementer can enable depending on the type of query
trees their application can execute.

To execute rules, Calcite provides two planner engines. A plan-
ner engine consumes a set of rules and applies them repeatedly
until it reaches a specified objective (or is forcibly stopped). Once

950

the objective is reached, it returns a semantically equivalent
query tree optimized according to the provided rule set. The
first is an exhaustive planner [4] called the HepPlanner, which
performs logical optimizations via query rewrites. It consumes a
list of optimization rules and continuously applies them until it
produces an expression that is no longer altered by any rules [4].

The second planner engine is a cost-based planner [4] called
the VolcanoPlanner that uses a dynamic programming algorithm
similar to [17]. It repeatedly applies the input rules to reduce the
overall cost of the query tree until it reaches a configurable termi-
nation point [4]. Each operator 𝑂 is responsible for determining
its cost 𝐶 (𝑂) by using query metadata and a cost model that
the implementer injects through provider functions. Calcite does
not apply any implementation constraints on the cost model; it
simply defaults to NO-OP implementations if an implementation
for an operator does not exist. The cost 𝐶 of a query tree 𝑄𝑇 is
the sum of the individual costs of each operator 𝑂 in the tree
(Equation 1).

𝐶 (𝑄𝑇) =
∑︁

𝑂∈𝑄𝑇
𝐶 (𝑂) (1)

3.2 Apache Ignite
Ignite supports a standard architecture for distributed query pro-
cessing described in [20]. Before Ignite can optimize any queries,
it must provide Calcite with the required metadata, estimation al-
gorithms, and cost model. Ignite already tracks metadata related
to the data it is storing (schemas, cardinality, etc.), so it simply
re-formats and serves this information to Calcite as needed. Es-
timation algorithms (e.g., join result size) are implemented by
overriding Calcite’s default implementations with custom algo-
rithms. Some of these algorithms also use the metadata Ignite
collects (e.g., cardinality of distinct column values). Ignite’s cost
model contains four parameters, each representing some of the
overall costs of executing an operation: CPU, Memory, IO, and
Network. The CPU parameter approximates the number of oper-
ations performed on tuples (e.g., reading the fields). The memory
and network parameters approximate the number of bytes used
to store and send data, respectively. The IO parameter is always 0
since Ignite is an in-memory system. Each operator is responsible
for implementing a getSelfCost method, which returns a cost ob-
ject consisting of these four parameters. The equal-weighted sum
of the four parameters represents the cost of a specific operator
shown in Equation 2 (Section 4.2 discusses the standardization
of the relevant operator cost units).

𝐶 (𝑂) = 𝑂CPU +𝑂Memory +𝑂IO +𝑂Network (2)

3.2.1 Optimizing the Query Tree. Once Ignite has a valid
query tree from the Calcite SQL parser, it employs Calcite plan-
ners to optimize the tree using a two-stage approach. The first
stage employs multiple HepPlanners, each using a different set
of logical rules: one with three rules, another with seven rules,
and the third with five rules. These rules are standard optimiza-
tions Calcite provides, e.g., pushing filter operators down the
query tree (Figure 3). The objective of this first stage is to apply
transformations that are guaranteed to improve the execution
performance of the query.

In the second stage that is the main optimization phase, Ignite
uses a VolcanoPlanner with a set of 52 rules that are a mix of
logical rules provided by Calcite, logical rules written for Ignite,
and physical rules specific to the Ignite execution engine. The
VolcanoPlanner uses these rules to generate alternate query trees,

FILTER[cond: employee.id == 10]

JOIN[type: inner, cond: employee.id = sales.emp_id]

SCAN[employee, filter: id == 10 SCAN[sales]

Figure 3: Query TreeAfter Applying Filter PushdownRules
to Figure 2

compare their costs, and return the query tree with the lowest
overall cost using the cost model. An essential part of the second
stage is optimizing the physical traits of each operator in the
query tree to create as efficient a physical execution plan as
possible.

3.2.2 Distribution Trait. The distribution trait has the most
impact on the cost of a query tree, as it determines at which
processing sites an operator will be executed. There are three
values for this trait that Ignite uses when optimizing query plans:

(1) Single: the operator will be executed at a single site
(2) Broadcast: the operator will be executed at all processing

sites
(3) Hash: the operator will be executed at a subset of sites

determined by a hash function.
Each operator has a distribution trait (property) value. Since op-
erators are inputs (sources) for other operators, the destination or
target distribution trait of the main operator must be compatible
with the distribution traits of all its sources (source distribution
traits) for data to flow between them. A source distribution is
compatible (satisfies) a target distribution if the source distribu-
tion executes at a superset of the target distribution sites (see
Table 1). If the source distribution does not satisfy the target
distribution, an exchange operator is inserted between the target
and source operators. The exchange will take data from its source
and send it to one or more targets over the network, acting as
an intermediary between two operators with incompatible dis-
tributions. Using Figure 4 as an example, there are two relations
employee and sales, which are partitioned on their primary
key using a hash function, yielding a hash distribution. The Vol-
canoPlanner attempts to create an execution plan where the join
is processed at one site. Thus, it assigns a single distribution type
to the join operator. Since a hash distribution source does not
satisfy a single distribution target, an exchange is added between
the operators. This exchange executes on the same sites as the
scan, sending its result tuples to the join for processing. Calcite
uses this trait satisfaction as a proxy for correctness, allowing the
implementer to define what constitutes a valid execution plan.
The VolcanoPlanner is then free to explore different execution

Table 1: Distribution Satisfaction Matrix

Source
Target Single Broadcast Hash

Single Yes No No
Broadcast Yes Yes Yes
Hash No Yes* Yes*

*Only if the hash function produces a superset of the target sites

951

JOIN[type: inner, cond: employee.id = sales.emp_id
distribution: single]

EXCHANGE
[hash→ single]

SCAN[employee, filter: id == 10
distribution: hash(id)]

EXCHANGE
[hash→ single]

SCAN[sales,
distribution: hash(order_id)]

Figure 4: Enforcing Distribution Trait Satisfaction on Fig-
ure 3

plans, knowing that if trait satisfaction is maintained, then so is
correctness.

This exploration is facilitated by the deriveDistributionmethod,
which any operator can implement. This method generates a list
of distribution mappings, each containing a possible target dis-
tribution for the current operator and a corresponding set of re-
quired source distributions, one for each of the operator’s sources.
Most operators do not implement this method as they take on
the distribution of their source(s). The only operators that imple-
ment this method are the physical join operators: merge-join
and nested-loop-join. Table 2 shows the set of distribution
mappings currently generated in Ignite+Calcite. The first map-
ping, single, is where all data is shipped to a single processing
site. This is the most frequently generated plan because it has no
restrictions on the join properties (e.g., the join condition). The
second mapping, broadcast, is a fully replicated join, where all
partitions are sent to all sites to perform the complete join. This
approach does not restrict join properties but incurs a high cost
for transmitting the same data to multiple sites. Thus, it is rarely
used and is typically reserved for scenarios where the join results
are inputs to another expensive operation that can be distributed
among all processing sites.

The third mapping, hash, is for a distributed equi-join [34]
where the left-hand equi-join condition is a partition key for the
left relation of the join operation. Each row of the right relation
uses the hashing function of the left relation to determine the
partition of the left relation that contains possible matches. Once
the partition is identified, the row of the right relation is sent to
that partition’s location to be processed.

3.2.3 Fragmentation. Once a query tree has been fully opti-
mized, Ignite must convert it into an execution plan consisting of
one or more fragments. Each fragment contains a root operator,
serving as the starting point for the subsection of the query tree it
is assigned to execute. While traversing the query tree depth-first
from the root, if an exchange operator is encountered, the frag-
ment undergoes splitting. This entails replacing the exchange

Table 2: Possible Join Operator Distribution Mappings

Required Source Distributions
Possible Join
Distribution Left Source Right Source

Single Single Single
Broadcast Broadcast Broadcast
Hash Hash Hash

JOIN[type: inner, cond: employee.id = sales.emp_id
distribution: single]

RECEIVER

SENDER
[hash→ single]

SCAN[employee, filter: id == 10
distribution: hash(id)]

RECEIVER

EXCHANGE
[hash→ single]

SCAN[sales,
distribution: hash(emp_id)]

Figure 5: Query A (Figure 1) Single-Site Join Execution
Fragments

with two operators: a receiver and a sender. A sender sends
results from its child operator over the network to a correspond-
ing receiver in another fragment. The receiver becomes the
leaf in the current fragment’s subtree, while the sender becomes
the new parent of the children of the original exchange and the
root of a new fragment. This process iterates until no exchange
operators remain in the overall tree. The outcome is a collection
of fragments, each containing a subsection of the original query
tree, that can be entirely executed at one processing site.

Data enters through the leaf operators and leaves through the
root operator. The fragment containing the root of the original
query tree is responsible for collecting and sending the final
results to the end user and is called the root fragment. After the
fragments have been generated, they are sent to their respective
processing sites for execution. The distribution traits from the
operators in each fragment determine the processing sites to
which a fragment will be sent. Each fragment is executed in a
dedicated thread, using the sender at its root to send the result
to the next fragment (or to the end user in the case of the root
fragment). This thread-isolated execution allows independent
fragments to run concurrently using a thread pool without any
interaction between them.

Algorithm 1 shows this process in detail. Figure 5 shows a
possible set of fragments for executing Query A from Figure 1 as
a single-site join. Each colour group, shown by red-dashed, blue-
dotted, and black-solid outlined boxes, represents a fragment
to be executed. The red group will be executed at all data sites
housing a segment of the employee relation. The blue group
will be executed at all data sites housing a segment of the sales
relation. The black group will be executed at the site that received
the original request and will send results back to the requester
as they materialize.

Figure 6: SQL Query Execution Flow

952

Algorithm 1 Execution Plan Fragmentation

procedure ExecPlanFrag(rootNode):
global fragments← []
fragments.add(Fragment(root = rootNode))
create_fragments(node← rootNode)
return fragments

end procedure
procedure create_fragments(node):

current← node
if node is exchange then

fragments.add(Fragment(root = node))
sender← new sender
sender.children← node.children
node.children← [new receiver]
current← sender

end if
for child ∈ current.children do

create_fragments(child)
end for

end procedure

Figure 6 shows the architectural workflow when executing
an SQL query. Blue boxes represent processes in Ignite, orange
boxes represent processes in Calcite that have been customized
for Ignite, purple boxes represent inputs to Calcite processes and
black boxes represent information states. The boxes with green
outlines constitute the first optimization stage, and the box with
the blue outline constitutes the second optimization stage.

4 IMPROVING IGNITE+CALCITE’S QUERY
PLANNER

The first goal of this research was to analyze Ignite+Calcite’s
query planner and consequently to improve its query planning
process. This meant stabilizing the query planner to ensure it
consistently generated fully optimized execution plans for all
queries.

4.1 Query Planner
Our experiments revealed multiple problems in the planning
code that required attention. The most significant problem was
with the join result size estimation algorithm. It had an edge case
where, if the estimated cardinality of either join input was very
small, the estimated join result cardinality would always be 1.
When this join was nested with another join (e.g., a join with
another join as an input), each join in the chain would have an
estimated result cardinality of 1. Thus, there would be a chain of
joins, each with at least one source having an estimated cardi-
nality of 1. Then, when the planner converted the generic join
operation to a specific join method, it chose the most efficient
way to perform an 𝑁 × 1 join, which is a nested-loop join. This
produced query plans with a chain of nested-loop-join op-
erators predicted to be 𝑁 × 1 joins. However, when executed,
these joins were 𝑁 ×𝑀 with𝑀 >> 1. The algorithm was unintu-
itive, and its origin was unclear, so an algorithm with theoretical
backing was desired. The requirement for this algorithm was
to accurately estimate the result size of an equi-join operation.
The equi-join restriction arises because in Ignite+Calcite, any
non-equi-join operation is limited to using a nested-loop-join
(although merge-join can handle inequality conditions, this is

not implemented). Equation 3 is proposed as an estimate of the re-
sult size for an equi-join 𝐴 ⊲⊳ 𝐵 where 𝑑𝐴 and 𝑑𝐵 are the number
of distinct values in A and B, respectively [37].

| (𝐴 ⊲⊳ 𝐵) | = |𝐴| × |𝐵 |
max(𝑑𝐴, 𝑑𝐵)

(3)

Equation 3 is correct when at least one of the join columns is
uniformly distributed [29]. While it cannot be definitively stated
that this restriction holds for all joins in Ignite+Calcite, it is
believed to be a fair assumption. Furthermore, empirical testing
showed estimations from Equation 3 were as good or better
compared to the original join estimation algorithm and did not
suffer from the issue above.

Another problem was discovered with the HepPlanner in
the first planning stage. It was missing an essential rule called
FILTER_CORRELATE [12], which pushes a filter down past a
logical correlation in the query tree. Without this rule, filter
operations that could be executed close to the leaves of the query
tree would instead be executed near the root. This meant many
operators in the middle of the tree performing unnecessary work
on tuples that should have been filtered out much earlier.

Finally, the exchange operator had a programming error, which
can result in incorrect costs being generated. A penalty was sup-
posed to be applied when an exchange sends data to more than
one site. However, the constant used in the functional check
shared its name with a constant from another class, leading to
the incorrect constant being used and no penalty being applied.
As a result, these exchange operators would have an identical
cost to an exchange operator that sent data to a single site.

4.2 Cost Model
As shown in Equation 2, the cost of an operator is the sum of
four components: CPU, Memory, IO, and Network, with each
component having an equal impact on the overall cost. Cost-
ing algorithms vary between different operators based on their
requirements, but they all use the same constants to have com-
parable costs. For example, Equation 4 shows the cost of a sort
operator for a relation 𝐴 with cardinality |𝐴| and width (i.e., col-
umn count) 𝑑𝑒𝑔(𝐴). As Ignite+Calcite is an in-memory system,
it is assumed that relation 𝐴 fits entirely in memory.

𝑂CPU = |𝐴| ∗ 𝑅𝑃𝑇𝐶 + |𝐴| ∗ log(|𝐴|) ∗ 𝑅𝐶𝐶
𝑂Memory = |𝐴| ∗ 𝑑𝑒𝑔(𝐴) ∗𝐴𝐹𝑆 (4)

Since a sort operator does not perform IO or network operations,
those components are zero in its cost model. The memory cost is
the product of the relation cardinality, the relationwidth (𝑑𝑒𝑔(𝐴)),
and a constant approximating the average field size (𝐴𝐹𝑆) in bytes.
The CPU cost is the sum of two estimations: the cost of passing
𝐴 through the operator and the cost of sorting 𝐴. The cost of
passing 𝐴 through the operator is the cardinality |𝐴| multiplied
by a constant approximating the CPU work required to pass a
single tuple through the operator (RPTC). The cost of sorting
is an 𝑛 log(𝑛) sort operation on 𝑛 = |𝐴| tuples multiplied by a
constant estimating the cost of comparing two rows (RCC).

The issue with this cost model is the difference in units be-
tween the CPU and memory/network components. Since the
CPU approximates the number of operations performed on tu-
ples, its only variable is the relation cardinality. However, since
the memory and network components are estimates of the bytes
used, they use the relation cardinality multiplied by the relation
width. This resulted in a much higher effective weighting for
those components. Thus, when VolcanoPlanner performed its

953

Algorithm 2 Distribution Factor Calculation

procedure DistFactorCalc(rootNode)
if hasExchange(rootNode) then

return 1
end if
return dataPartitionSites(rootNode)

end procedure
procedure hasExchange(node):

if node is Exchange then
return true

end if
for child ∈ node.children do

if hasExchange(child) then
return true

end if
end for
return false

end procedure

cost-based optimization, it implicitly prioritized reducing mem-
ory and network consumption on a system with high memory
availability and low network latency. The solution was to remove
the column count component and make input cardinality the sole
variable factor in the costing methods. Equation 5 shows this
change applied to the cost of a sort operator.

𝑂CPU = |𝐴| ∗ 𝑅𝑃𝑇𝐶 + |𝐴| log(|𝐴|) ∗ 𝑅𝐶𝐶
𝑂Memory = |𝐴| (5)

Additionally, a distribution factor was added to the operators
capable of distributed computation. This factor rewarded opera-
tors for performing a distributed execution (i.e., the map phase
of a map-reduce operation) by reducing its cost relative to a non-
distributed execution. Algorithm 2 shows the calculation of a
distribution factor for a certain operator. If an operator has a
path to a leaf operator in the query tree, which did not include
an exchange, it can be executed in parallel on partitions of the
leaf operators’ relation. Since all leaves in the query tree are
base relation operations (either an index scan or table scan), the
distribution factor would be the number of partition sites for that
base relation (where a replicated base relation has one partition).
If the operator had an exchange operator between itself and all
the leaves, it would be operating on a whole relation, yielding a
distribution factor of 1. Equation 6 shows a distribution factor df
applied to the updated sort operator cost equation (Equation 5).
In this equation, df is determined by using Algorithm 2 on the
child of the sort.
𝑂CPU = 𝑑 𝑓 −1 |𝐴| ∗ 𝑅𝑃𝑇𝐶 + 𝑑 𝑓 −1 |𝐴| log(𝑑 𝑓 −1 |𝐴|) ∗ 𝑅𝐶𝐶

𝑂Memory = 𝑑 𝑓 −1 |𝐴|
(6)

4.3 Planner Exploration Efficiency
The final issue unearthed by our experiments was that the Vol-
canoPlanner took too long to generate and evaluate alternatives.
This was due to the extensive rule set, which included almost all
possible physical and logical rules. All the corresponding physical
optimizations had to be regenerated for every logical alternative
(e.g., pushing a filter one level down). Consequently, Calcite could
generate as many possible plans as the Cartesian product of logi-
cal and physical possibilities, leading to an impossible number of
alternatives to explore. Although such single-phase optimization

could theoretically discover an optimal plan, it can be expensive
and practically infeasible to do so [16]. Our solution was to re-
place this process with the popular two-phase plan generation
and optimization process [15]. This approach generates a logi-
cally optimized plan first, followed by a physically optimized plan,
which is a practical, systems-oriented, approach that breaks away
from the expensive single phase optimization process. The logical
optimization phase contained 20 logical rules, and the physical
optimization phase contained 36 rules, with about two-thirds
being physical rules and the rest being logical rules.

Two of the logical rules included in the physical optimiza-
tion phase were responsible for permuting the inputs of a join
(JoinCommuteRule [12]) and permuting the order of a nested
join (JoinPushThroughJoinRule [12]), i.e., ((𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶) ⊲⊳ 𝐷).
When these rules were included with the physical optimization
phase, on queries with multiple joins or nested joins, the query
planner would exceed either the computation time limit or the
system resource limit and fail to generate a query plan. This
was the root cause of multiple planning failures in the original
Ignite+Calcite planner. To resolve this, a second physical opti-
mization phase was created with these two rules disabled. This
phase was used conditionally on queries that contained more
than three nested joins or more than four join operations. These
conditions were determined by trial and error to target only the
queries in TPC-H [28] that failed to generate execution plans
with the two rules enabled. By splitting the second planning stage
into two phases and conditionally applying these two rules in the
physical optimization phase, execution plans were successfully
generated for all queries in the testing suite.

5 IMPROVING QUERY EXECUTION
Once the query planner, based on our analysis, was stabilized,
the next task was to improve the performance of query execution.
This task deals with optimizing the execution of join operators
and increasing the level of parallel computation within execution
plans.

5.1 Join Operation Optimizations
This section focusses on optimizations applied to join operators.

5.1.1 Fully Distributed Joins. When analyzing the distribution
mappings in Table 2, it was apparent that a distribution mapping
was missing. Assume the goal is to perform the join𝐴 ⊲⊳ 𝐵 where
both 𝐴 = 𝐴1 . . . 𝐴𝑛 and 𝐵 = 𝐵1 . . . 𝐵𝑘 are partitioned at sites
𝛼 = 𝛼1 . . . 𝛼𝑛 and 𝛽 = 𝛽1 . . . 𝛽𝑘 respectively. The join can be
expressed as follows:

𝐴 ⊲⊳ 𝐵 ≡ 𝐴 ⊲⊳ 𝐵1 ∪𝐴 ⊲⊳ 𝐵2 ∪ · · · ∪𝐴 ⊲⊳ 𝐵𝑘 .

Then, 𝑘 partial joins can be performed in parallel by sending all
of 𝐴 to every site in 𝛽 . Each partial join operates on a partition
of 𝐵 and decreases the input relation size by a factor of 𝑘 . The
disadvantage is since 𝐴 is being broadcasted, the same data is
scanned and sent to all sites in 𝛽 , which incurs extra CPU and net-
work overhead. However, on a modern network with low latency,
the gains from parallel computation often outweigh this extra
data shipping cost [20]. Implementing this strategy also allowed
join operations to broadcast their results to other operations that
would benefit from parallel computation, like other joins. This
was particularly effective for queries involving multiple large
tables, as it eliminated the need to perform data shipping for
these large relations and allowed for the parallelization of their
operations simultaneously.

954

5.1.2 Hash Join. The hash-join algorithm [38] was imple-
mented as a hash-join operator with both input relations fully
in memory. In this implementation, the right relation is used
during the build phase and the left during the probe phase. Equa-
tion 7 shows the cost for the hash-join operator when per-
forming 𝐴 ⊲⊳ 𝐵. The distribution factor df 𝑟 is calculated using
Algorithm 2 on the right relation (relation 𝐵). The CPU compo-
nent is the cost of passing through (𝑅𝑃𝑇𝐶), comparing (𝑅𝐶𝐶),
and hashing (𝐻𝐴𝐶) all the tuples that the operator processes
(|𝐴| + |𝐵 | ∗ df −1𝑟). The memory component is the cost of storing
|𝐵 | tuples in the hash table. Since the hash-join operation does
not perform IO or network operations, those values are zero.
As for Equation 4, it is expected that both relations 𝐴 and 𝐵 fit
entirely in memory.

𝑂CPU = (|𝐴| + |𝐵 | ∗ 𝑑 𝑓 −1𝑟) ∗ (𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + 𝐻𝐴𝐶)
𝑂Memory = |𝐵 | ∗ 𝑑 𝑓 −1𝑟

(7)

Applying the distribution factor to only the right join relation
(𝐵) was an intentional choice. Since the hash-join builds the
hash table on the right join relation, performance can suffer if it
must wait for data to be shipped to perform the build. Recalling
the specifics of Algorithm 2, the distribution factor is ≥ 1 only if
the operator operates on a local data partition (i.e., it does not
have to be shipped). Thus, by applying the distribution factor to
only the right join relation, the planner is rewarded only for plans
where the right relation is partitioned, not the left. This behaviour
is complemented by the memory component being a function of
only the right relation, which rewards the planner for making the
right relation as small as possible. Combining these means the
planner prioritizes a hash table built on a small, local partition,
with data shipping happening for the probe phase on the larger
relation. This design follows the principle of the Simple-Hash
join algorithm [8]. Section 5.1.3 details the derivation of the CPU
cost component. When implementing the hash-join operator,
the same distribution mappings as the existing join algorithms
were used, including the changes in Section 5.1.1.

5.1.3 CPU Cost Comparison of Hash Join and Merge Join.
Assume 𝐴 ⊲⊳ 𝐵 is executing where 𝐴 and 𝐵 have distribution
factors 𝑑 𝑓 𝐴 and 𝑑 𝑓 𝐵 , respectively. The CPU cost of a hash-join
operator 𝐻 for this join using Equation 7 is:

𝐻𝐶𝑃𝑈 = 𝑑 𝑓 𝐴 ∗𝐴(𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + 𝐻𝐴𝐶)
+ 𝐵(𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + 𝐻𝐴𝐶)
where 𝐴 = 𝑑 𝑓 −1𝐴 |𝐴| and 𝐵 = 𝑑 𝑓 −1𝐵 |𝐵 | .

(8)

The CPU cost of a merge-join operator is the cost of sorting both
inputs and performing the merge. The CPU cost of performing
the merge is:

(|𝐴| ∗ 𝑑 𝑓 −1𝐴 + |𝐵 | ∗ 𝑑 𝑓
−1
𝐵) ∗ (𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + 𝐻𝐴𝐶) .

Combining this with the cost of two sort operators from Equa-
tion 6 (for the left and right input relations𝐴 and 𝐵, respectively)
yields the total CPU cost of a merge-join operator𝑀𝐽 :

𝑀𝐽𝐶𝑃𝑈 = 𝐴(𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + log(𝐴) ∗ 𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶)
+ 𝐵(𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + log(𝐵) ∗ 𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶) . (9)

There are two cases to consider: 𝑑 𝑓 𝐴 = 1 and 𝑑 𝑓 𝐴 > 1 (since
a distribution factor can never be < 1). First, assume the distri-
bution factor 𝑑 𝑓 𝐴 has a value of 1. As the relations grow, the
extra cost of sorting will outweigh the constants in 𝐻𝐶𝑃𝑈 and
hash-join will be chosen. However, if one relation’s sort costs
are removed, the determining factor is the cost of sorting the

other relation. If both sorting costs are removed, then the𝑀𝐽𝐶𝑃𝑈
will always be less than 𝐻𝐶𝑃𝑈 .

If 𝑑 𝑓 𝐴 ≠ 1, then 𝑑 𝑓 𝐴 > 1. In this case, existing code dictated
that relation B is data shipped to build the hash table so 𝑑 𝑓 𝐵 = 1.
By swapping the input relation order of 𝐻 , a new hash-join
operator 𝐻∗ is created with CPU cost:

𝐻∗𝐶𝑃𝑈 = 𝑑 𝑓 𝐵 ∗ 𝐵(𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + 𝐻𝐴𝐶)
+𝐴(𝑅𝐶𝐶 + 𝑅𝑃𝑇𝐶 + 𝐻𝐴𝐶)

< 𝐻𝐶𝑃𝑈 .

Join operations are commutative excluding attribute ordering
[34], so swapping the input relation order is a valid query rewrite
and does not affect correctness. The planner now has a new
hash-join operator 𝐻∗ with a smaller CPU cost that can be
compared to a merge-join using the first case described above.
This is how the restriction of not building a hash table on shipped
data is enforced.

5.2 Join Condition Simplification
When running tests initially, Query 19 from TPC-H [28] was
disabled because it did not complete execution after 4 hours. After
investigation, it was discovered that the query does a nested-loop
join on the LINEITEM and PART tables. With a scale factor of 1
(i.e., ∼1GB of raw data), this would be a join with 6𝑀 × 200𝐾 =

1.2 × 1012 tuples to process. The join predicate for Query 19 was
an OR of multiple AND conditions where each AND shared a
common condition but had multiple other conditions bundled
with it:

𝑃 ≡ ((𝑐1 ∧ 𝑐2 ∧ 𝑐3) ∨ (𝑐1 ∧ 𝑐4 ∧ 𝑐5) ∨ (𝑐1 ∧ 𝑐6 ∧ 𝑐7)) .
In this format, 𝑃 could only be executed using a nested-loop join.
However, the common condition 𝑐1 could be pulled outside the
OR:

𝑃 ≡ 𝑐1 ∧ ((𝑐2 ∧ 𝑐3) ∨ (𝑐4 ∧ 𝑐5) ∨ (𝑐6 ∧ 𝑐7)) .
If 𝑐1 is a literal condition (e.g., 𝐴.id = 123), it can be converted
to a filter on the corresponding input. This reduces the amount
of data the join operation has to process, greatly improving the
performance of a nested-loop join. If 𝑐1 is a join condition (e.g.,
𝐴.id = 𝐵.id) it can be split into two operations: a join opera-
tion with the predicate 𝑃1 ≡ 𝑐1 and a filter operation with the
predicate 𝑃2 ≡ ((𝑐2 ∧ 𝑐3) ∨ (𝑐4 ∧ 𝑐5) ∨ (𝑐6 ∧ 𝑐7)).

With a simplified join condition, the query planner can choose
a more efficient algorithm to execute the join operation. This ex-
traction can be repeated until all common conditions are removed,
yielding a superior execution plan. This logic was added as a new
rule to the new logical optimization phase in the VolcanoPlanner
stage, which significantly improved the performance of Query
19.

5.3 Multi Threaded Execution Plans
Fragments are executed in parallel at different sites to take ad-
vantage of the data partitioning functionality in Ignite. This par-
allelization was improved by creating runtime sub-partitions
at each site and having multiple threads process distinct sub-
partitions instead of a single thread processing the whole parti-
tion. A fragment would be duplicated into multiple variant frag-
ments, each responsible for creating and processing sub-partitions
at a target site.

5.3.1 Variant Fragment Creation. To create a variant fragment
(VF), Algorithm 3 is run with a non-root fragment and the target
number of VFs 𝑛. Since each VF will run in its own thread, 𝑛

955

Algorithm 3 Variant Fragment Creation

procedure VFC(node← rootNode, type← SPLITTER)
if node is source then

return node.copyWithType(type)
else if node is reduction operator then

Raise Exception
else if node is join then

newLeft← VFC(node.left, DUPLICATOR)
newRight← VFC(node.right, type)
return node.copyWithChildren([newLeft, newRight])

else
newChildren← []
for child in node.children do

newChildren.add(VFC(child, type))
end for
return node.copyWithChildren(newChildren)

end if
end procedure

represents the number of threads desired. 𝑛 VFs are created, each
assigned a unique ID 𝑣id ∈ {0 . . . 𝑛−1}, and a copy of the original
fragment query tree is created. When the original query tree is
copied, three operators are modified: the two base relation scans
(table scan and index scan) and the receiver. These three
operators constitute a source. They are the leaf nodes of every
query tree in every fragment, so any data in the fragment must
start at one of these operators. When a source is encountered, it
is converted into a splitter or a duplicator. A splitter splits its data
between its variant fragments, whereas a duplicator duplicates
its data to all. Most sources are splitters, which is how dynamic
sub-partitioning is achieved. The exception is when two sources
are the left and right sources to a join operator (i.e., there are no
other sources between them and the join operator). If both join
sources are partitioned, some partitions may not be properly
combined, yielding incomplete results. Thus, one of the sources
must be a duplicator to maintain correctness. Algorithm 3 makes
the direct source of the left input a duplicator as the right source
is more often a base relation scan that benefits from the dynamic
sub-partitioning.

Sources are the only operators that are modified. All others
are identical to the original fragment query tree. Additional re-
strictions are placed on root fragments and reduction operators
(e.g., the reduce phase of a map-reduce operation). As root frag-
ments are responsible for providing the final result to the user,
they must have access to all the data to serve it in the correct se-
quence. Reduction operations would require non-trivial changes
to support multi-threading, such as injecting collection operators
into other fragments that merge partial reduction results into
the query tree. These changes would add significant complexity
to variant creation and execution processes to maintain correct-
ness. A fragment is skipped if it is a root fragment or contains a
reduction operator.

For example, in Figure 5, there are three fragments: black,
blue, and red. Since the black fragment is the root fragment,
no variants are created. When Algorithm 3 is run on the blue
fragment, it starts at the sender operation and traverses down
the tree to the scan operation, copying each operation as it goes.
Since there are no special cases (e.g., a join operator in the tree),
the scan operation becomes a splitter by default. There are no
more operations in the blue fragment, so the variant creation is

successful, and the variants are returned. The process is identical
for the red fragment.

5.3.2 Variant Fragment Execution. When a VF is executed, it
knows its variant id (𝑣id) and the total number of variant frag-
ments (𝑛). If a source in the VF is a splitter, it keeps an internal
counter, 𝑐 of the number of tuple reads it has done. If 𝑐 % 𝑛 = 𝑣id ,
it will send the tuple to the next operator. Otherwise, it will skip
it. This is how the runtime partitions are created without im-
pacting the base-level storage of the relations. This method does
incur a slight penalty, as the entire partition is read in all threads.
However, because Ignite+Calcite operates entirely in memory,
these reads are inexpensive and far outweighed by the benefits
of parallel computation.

Again, using Figure 5 as an example, assume 2 VFs were cre-
ated for the blue fragment, with each VF knowing its 𝑣id and the
total number 𝑛 of VFs = 2. Each VF would execute immediately
and concurrently when it reached the processing site. In both
VFs, the scan operation would read in all tuples from the sales
relation but would only pass every 2nd tuple to the sender op-
eration. The VF with 𝑣id = 0 would pass the 2nd, 4th, 6th, etc.,
tuples and the VF with 𝑣id = 1 would pass the 1st, 3rd, 5th, etc.,
tuples. When the corresponding receiver in the black fragment
receives the tuples from the VFs, they would be consolidated and
sent up the query tree to the join operation.

6 EXPERIMENTAL EVALUATION
To evaluate the performance of the system before, and after, the
aforementioned changes, the open-source system Benchbase [9]
was used with the TPC-H [28] benchmark and the Star Schema
Benchmark (SSB) [23]. The goal was to provide a performance
evaluation and analysis of a composable system using bench-
mark workloads. For TPC-H, minor configuration changes were
made to Benchbase to ensure compatibility with Ignite+Calcite.
SSB was added to Benchbase as a new benchmark1. The TPC-
H [28] schema was followed and 16 indexes were created across
all tables2. Two TPC-H queries were disabled during this testing.
Query 15 required SQL VIEWS, which are not supported in Ig-
nite+Calcite, and Query 20 contained an unresolved bug in the
planning code that caused the query planner to fail.

6.1 Methodology
Each system variant was tested using 4 and 8 machines (sites).
Eachmachine had two Intel E5-2620v2 CPUs (2.1GHz, 12 physical
cores, 24 logical cores) with 32GB of RAM, connected by 10 GB
ethernet. Ignite+Calcite was configured in a partitioned cache
modewith zero backups and statistics enabled. Ignite+Calcite was
started on each machine as a Java 11 process (OpenJDK Runtime
Environment, build 11.0.11+9-Ubuntu-0ubuntu2.20.04) [10]. The
standardApache Ignite version 2.16 built from sourcewithout any
improvements was the baseline system that we will call IC. Our
improvements from Section 4, Section 5.1, and Section 5.2 (Query
Planner Changes and Join Optimizations) were implemented to
enhance the baseline system, compiled and executed on each
machine. We call this improved system IC+. IC+ augmented with
multithreading (Section 5.3) is called IC+M. The improvements
were tested in these groups because the changes in Section 4,
Section 5.1, and Section 5.2 are dependent on one another, but are
independant of the multithreading changes from Section 5.3. For
1Code is available from https://github.com/marktdodds/benchbase/tree/ignite-tests
2Full DDL can be found at https://github.com/marktdodds/benchbase/blob/
ignite-tests/src/main/resources/benchmarks/tpch/ddl-ignite.sql

956

1 3 4 6 7 8 10 11 12 13 14 16 18 22
1

2

4

8
1.
02
x 1.
39
x

2.
59
x

1.
06
x

2.
06
x

1.
49
x

1.
19
x
1.
85
x

1.
08
x 1.
4x

13
x

2.
19
x

1.
35
x

2.
69
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

(a) IC (4 sites) vs. IC+ (4 sites)

1 3 4 6 7 8 10 11 12 13 14 16 18 22
1

2

4

8

1.
02
x

1.
64
x

3.
49
x

1.
05
x

1.
64
x

1.
46
x

1.
21
x
1.
79
x

1.
09
x 1.
29
x

8.
98
x

2.
69
x

1.
5x

3.
13
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

(b) IC (8 sites) vs. IC+ (8 sites)

Figure 7: Join Optimizations & Query Planner Performance Improvements over Baseline

each benchmark, every combination of scale factor and system
configuration was tested thrice. The average performance gain
across all scale factors was used as the performance gain for
that configuration. Red error bars in the graphs represent 95%
confidence intervals around each mean (data point). Results are
presented for two configurations of the number of processing
sites, 4 and 8, per graph. Each 4- or 8-site result is compared with
its respective (4- or 8-site) baseline. While not explicitly shown,
all 8-site configurations consistently outperformed their 4-site
counterparts in all tests.

6.2 TPC-H Per Query Response Time
Individual query response time was measured on the three test
systems: IC, IC+, and IC+M. A test consisted of a warm-up execu-
tion followed by three measured executions for each query. The
mean response time of the three independent query executions
was used as the query’s execution time for that test. Every system
ran tests using TPC-H scale factors 0.5, 1, 2, and 3, corresponding
to ∼0.5GB, ∼1GB, ∼2GB, and ∼3GB of raw data.

6.2.1 Join Optimizations & Query Planner Improvements. Fig-
ure 7 shows the performance of IC+ compared to IC for 4 and 8
sites. With the changes incorporated into IC+, there were perfor-
mance improvements for every query. The biggest gains from

these changes were in Queries 4, 14, and 22. Queries 4 and 22
show large improvements from adding the missing rule to the
first optimization phase. This allowed filter operations to be
pushed down multiple levels into the base relation scans, sig-
nificantly reducing the tuples being processed in the remainder
of the query. Query 14 improved due to a change in the sort
order (i.e., sorting order) of an index scan on a base relation.
The new sort order changed the aggregation function from hash-
map-based to sort-based on an already sorted input, removing an
intermediary sort operation entirely. There were also large gains
in Queries 7, 8, 11, 13, and 16. In IC, all of these queries process
at least one join by data shipping the larger relation via a hash
distribution mapping. With the broadcast distribution mapping,
the smaller relation is now data shipped, and the large relation is
kept in place. Queries 7, 8, 16, and 18 also benefit from the new
hash-join operator in place of what were initially merge joins
on intermediate results. This removed multiple intermediate sort
operations from the query tree, decreasing the total operation
time and increasing the parallelism since the sort operation can-
not be distributed. Queries 3, 10, and 14 all have performance
gains owing to the broadcast distribution mapping. These queries
all perform a join operation with the LINEITEM table, the largest

1 3 4 6 7 8 10 11 12 13 14 16 18 22
1

2

4

8

16

1.
34
x

1.
57
x

2.
99
x

1.
21
x

2.
73
x

1.
66
x

1.
23
x
1.
93
x

1.
13
x 1.
44
x

17
.2
7x

2.
06
x

1.
22
x

2.
71
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

(a) IC (4 sites) vs. IC+M (4 sites)

1 3 4 6 7 8 10 11 12 13 14 16 18 22
1

2

4

8

1.
3x

1.
96
x

3.
25
x

1.
23
x

2.
15
x

1.
7x

1.
26
x
1.
81
x

1.
13
x 1.
34
x

11
.1
x

2.
11
x

1.
24
x

2.
67
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

(b) IC (8 sites) vs. IC+M (8 sites)

Figure 8: Overall Performance Improvement over Baseline

957

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 21 22

0.75

1

1.5

1.
31
x

1x

1.
14
x

1.
16
x

1.
21
x

1.
13
x

1.
33
x

1.
12
x

1.
1x

1.
03
x

1.
05
x

1.
05
x

1.
03
x

1.
35
x

0.
95
x

0.
87
x 0.
93
x

0.
95
x

1.
1x

1.
02
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

Figure 9: Multithreading Incremental Performance Difference: IC+ (4 sites) vs. IC+M (4 sites)

in the benchmark. With this new mapping, IC+ avoids data ship-
ping this relation entirely, instead broadcasting tuples to the sites
containing partitions of this relation as needed.

In Query 12, the input ordering of a join was swapped (i.e.,
𝐴 ⊲⊳ 𝐵 became 𝐵 ⊲⊳ 𝐴), but this did not result in any meaningful
performance changes. Queries 1 and 6 produce the same execu-
tion plan as the baseline system and show no significant changes.
Comparisons for Queries 2, 5, 9, 17, 19 and 21 are not available be-
cause they did not complete execution in the IC baseline system.
However, all six of these queries completed execution in under
one minute on average in IC+, a significant improvement from
the timeouts and planning failures seen in IC. For Queries 2, 5,
and 9, the main factor was the improved query planning process
which could successfully generate execution plans for these com-
plex queries. For Queries 17, 19, and 21, the main factors were the
additional optimization rules (Section 4.1 and Section 5.2) and
the join optimizations (Section 5.1), yielding far more efficient
execution plans.

6.2.2 Overall Performance. Figure 8 shows the performance
of IC+M compared to IC. Performance improved for every query
and configuration. Queries 2, 5, 9, 17, 19, and 21 are not shown
here because the baseline system failed to plan or execute them.

6.2.3 Multithreading. Figure 9 and Figure 10 show the perfor-
mance changes between IC+ and IC+M, representing the impact
of adding multithreading. When testing different multi-threaded
configurations, a dual-threaded configuration (i.e., each fragment
is split into two variants) had the best performance so those re-
sults are presented here. Queries 1, 3, 5–8, and 14 all experienced
significant performance improvements ranging from 15% to 35%
depending on the configuration. These queries all have multi-
ple distributed computation components (e.g., distributed joins,
distributed aggregations, partially distributed sorts) that bene-
fit from the extra parallelism. They also operate on very large
subsets of the benchmark data, which is reduced substantially by
the dynamic sub-partitioning. Conversely, Queries 2, 9–13, and
21 all have negligible changes in performance. Queries 9, 10, and
19 are queries in which most of the work is executed in the root
fragment, which does not support multithreading. For Query
19, this becomes a bottleneck and causes a slight performance
decrease. Queries 12 and 13 have very restrictive filters that limit
the amount of data being processed, thus limiting the effective-
ness of the dynamic sub-partitioning. Queries 2, 11, 17, and 21 are
complex distributed join plans with multiple nested joins. These
queries generate deep query trees where time is spent on data
shipping and waiting for source materialization. These dominate
the execution times and do not benefit from multithreading.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 21 22

0.75

1

1.5

1.
27
x

1.
08
x 1.
2x

0.
93
x

1.
22
x

1.
16
x 1.
31
x

1.
17
x

1.
06
x

1.
04
x

1.
01
x

1.
04
x

1.
04
x

1.
25
x

0.
79
x

0.
82
x

0.
86
x

0.
93
x

1.
02
x

0.
86
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

Figure 10: Multithreading Incremental Performance Difference: IC+ (8 sites) vs. IC+M (8 sites)

958

Table 3: Average Query Latency (seconds) for 4 and 8 Sites

4 Sites 8 Sites

Clients IC IC+ IC+M IC IC+ IC+M

2 9.91 𝑠 7.08 𝑠 6.87 𝑠 7.15 𝑠 5.19 𝑠 4.97 𝑠
4 13.82 𝑠 9.25 𝑠 9.95 𝑠 9.86 𝑠 6.21 𝑠 6.24 𝑠
8 20.24 𝑠 13.38 𝑠 16.38 𝑠 14.98 𝑠 9.13 𝑠 9.46 𝑠

Queries 16, 18, and 22 all experience slowdowns because they
contain a reduction operator in the fragment performing most
of the computation and are kept single-threaded. There are no
operations that benefit from the base relation scans being multi-
threaded. Thus, dynamic partitioning is performed only to rejoin
everything into a single thread directly after. This overhead in-
creases the wait time between data shipping requests, causing
slowdowns. Query 4 is a relatively simple aggregation query with
two base relation scans. Only the base relation scans were suit-
able for multi-threaded execution, and they constitute a fraction
of the overall execution time, resulting in minimal gain from the
multi-threaded plans. When run on eight processing sites, this
caused a performance decrease resulting from idle time during
data shipping. Query 17 suffered from a similar issue: there was
little distributed computation so most of the work was performed
in the root fragment, which does not support multithreading.
Again, the base relation scans were the only multi-threaded com-
ponents and constituted a fraction of the overall execution time.
The extra overhead of splitting and collecting the scan results
caused the performance decrease.

6.3 TPC-H Average Query Latency
Average query latency (AQL) was measured on the three test
systems: IC, IC+, and IC+M. Each system had one warm-up ex-
ecution of each query before measurement. A test consisted of
one or more terminals (clients) submitting randomized queries
sequentially until the specified time elapses. Tests were run with
two, four, and eight clients submitting work in parallel for 300
seconds on four and eight sites. AQL was measured as the arith-
metic mean latency of all completed requests. Each configuration
(e.g., two clients, four sites, IC+) was executed five times, and the
average latency across all five runs was used as the final value.
Queries 2, 5, 9, 17, 19, and 21 do not complete execution on the

baseline system, so they were disabled for this test suite to ensure
a fair comparison. Table 3 shows the AQL testing results. Both
IC+ and IC+M showed statistically significant decreases in AQL
relative to IC. These decreases ranged from 20% – 40% depending
on the experiment setting. The largest was a 39% decrease in
AQL using IC+ with eight clients and eight sites. The lowest was
a 19% decrease using IC+M with eight clients and four sites.

Independently for each system, performance increased (mean-
ing AQL decreased) with an increased number of sites, and de-
creased (meaning AQL increased) as the number of clients in-
creased, as expected. The performance increase came from more
processing sites yielding improved load distribution and parallel
processing capabilities. The performance decrease came from an
increase in the processing load due to more concurrent client re-
quests. When comparing systems, IC+ consistently outperforms
IC for each same-site configuration with an increasing number of
clients. In contrast, IC+M outperforms IC+ with two clients but
has a decrease in performance as the number of clients increases
to four and eight. This is because more clients results in more
parallel requests to the point where the number (2×) of concur-
rent processing threads surpasses the CPU core count resulting
in CPU contention.

6.4 Star Schema Benchmark
Our second evaluation used the Star Schema Benchmark [23],
a variation of TPC-H modified to more accurately represent a
classical data warehousing structure. Nine indexes were created:
one on the primary key of each relation, and four on columns of
the LINEORDER table (LO_ORDERDATE, LO_PARTKEY, LO_SUPPKEY,
LO_CUSTKEY) used as join conditions. Figure 11 shows the per
query response time performance multiplier of IC+M relative to
IC for each query. Each value is the average of scale factors 0.5,
1, 2, and 3, for four and eight sites. Both query sets contained a
parent query whose parameters were varied to create specific
queries (e.g., Q1.1 and Q1.3) that executed on disjoint data.

The largest performance improvements were seen in query
set three (QS3). Response times improved by 2×–5× depending
on the query variation and was due to multiple factors. The first
factor was a difference in the ordering of join operations. The
IC+M system performed the joins with more restrictive condi-
tions at the base of the query tree, reducing the number of rows
intermediary operations had to process. The second factor was

1.1 1.2 1.3 3.1 3.2 3.3 3.4
1

2

3

4
5

1.
19
x

1.
16
x

1.
23
x

4.
03
x

4.
57
x

4.
66
x

1.
93
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

(a) IC+M (4 sites) vs IC (4 sites)

1.1 1.2 1.3 3.1 3.2 3.3 3.4
1

2

3

4
5

1.
22
x

1.
19
x

1.
18
x

3.
59
x 4.

89
x

5.
02
x

2.
11
x

Query

Pe
rf
or
m
an
ce

M
ul
tip

lie
r(
x)

(b) IC (8 sites) vs IC+M (8 sites)

Figure 11: Star Schema Benchmark Per Query Performance: IC vs IC+M

959

multiple hash-join operations in place of merge-sort opera-
tions, removing multiple sort operations from the query tree.
The third factor, the broadcast-distributed join mapping, allowed
the largest relation LINEORDER to remain in place and smaller
relations to be shipped to it.

Query set one (QS1) had moderate performance improvements
between 1.1× to 1.25× depending on the variation. This improve-
ment came from the broadcast-distributed join mapping, which
allowed the smaller DATE relation to be data-shipped instead of
the LINEORDER relation, the largest in the test bench.

Query sets two (QS2) and four (QS4) were excluded from the
SSB test bench. When executing the main optimization phase,
QS2 and QS4 both produce search spaces that are too large for
Apache Calcite to process, resulting in a process timeout and a
failure to generate a fully optimized query plan. For QS4, this
happens on both the baseline and modified systems due to the
number of nested join operations (QS4 is a 5-way join). For QS2
this happens on the modified system due to the additional join
algorithm (hash-join) and join distribution mappings (fully dis-
tributed joins). In both cases, this is a limitation of the Calcite
library itself and thus not a focus of this research.

7 EXPERIENCES AND TAKEAWAYS
Throughout the course of this research, much insight was gained
into Ignite and Calcite as components of a composable system.
Our takeaways can be organized around four key areas that we
consider essential for components of any successful compos-
able system: modularity, interoperability, developer support, and
documentation.

Modularity, the degree to which a piece of software is divided
into reusable components, is the core feature of every composable
system. Apache Calcite was designed with modularity as the key
consideration, and this is very evident. All of its features (e.g.,
the VolcanoPlanner, the HepPlanner, and the SQL Parser) can be
used independently of one another and are highly configurable.
Apache Ignite also has a high degree of modularity, from its
large feature offering to its design. The internal modules that
control different features (e.g., data storage, message streaming,
and distributed computation) can all be selectively enabled and
have programming interfaces in multiple modern programming
languages. Thus, both Ignite and Calcite have a high degree of
modularity, which make them easy to integrate into new and
existing systems.

Interoperability, the ability of a system to operate and commu-
nicate with other systems, is another core aspect of a composable
system. Ignite shines here, supporting multiple industry-standard
communication protocols (e.g., REST API’s, JDBC) and maintain-
ing client libraries in multiple programming languages (Java,
C++, Python, Node.JS, PHP). Apache Calcite, however, is more
limited in the systems it can interface with as it is developed
solely as a Java package. Wrappers can always be used to port
Calcite’s functionality to different languages, but a lack of out-
of-the-box solutions limits the breadth of systems with which
it can be integrated. This is particularly relevant for industry
standard databases (e.g., MySQL, PostgreSQL, Oracle Database,
andMongoDB) that could benefit from Calcite but are not written
in Java.

Developer support and documentation are both essential pieces
for any component in a composable system. Without these, it
would be nearly impossible to combine unfamiliar components

into a coherent system. Apache Ignite has excellent user doc-
umentation which allows easy integration into other systems.
However, its developer documentation (e.g., README files and
code comments) is quite sparse. As open-source software that
relies on public contributors, this can pose a challenge for mak-
ing improvements by those not familiar with the codebase. As
a more consumer facing product, Ignite does not have a large
developer support community. The methods of support avail-
able publicly are limited to GitHub issues, a developer e-mail
forum, and Atlassian’s Jira that is closed-source. Calcite also falls
short on these categories, having the same level of developer
support and little documentation. The documentation that does
exist is limited to technical documentation (JavaDocs) with min-
imal explanations/examples and no significant user guides. As
software designed to be used by other developers, this limitation
can present a barrier for adoption and is a key shortcoming of
Apache Calcite.

It should be noted that there are significant benefits to be
gained from building a system using composable components.
By using a composable system, the knowledge it imbues from
the skills, technical expertise and effort that developers have
invested into the design of each component is effectively lever-
aged. For open-source projects, this can encompass the time of
many developers working on each component, exceeding that
of what many operations could provide if the system were to be
built from scratch. Another potential benefit is a shorter turn-
around time for new projects. A minimum viable product could
be returned more quickly by a small number of developers as
they need to only compose components together. This provides a
viable opportunity for creating production-level systems without
large budgets. A third potential benefit of composing systems is
that if much of the system testing is completed by developers of
individual components, then only the outputs that come from
combining the components together need to be validated. Thus,
this approach leverages prior testing and validation of individual
components of the target composable system.

8 CONCLUSION
This paper experimentally studied composable data management
through the composition of Apache Ignite and Calcite system
components to process OLAP workloads. It provided an analysis
of these components used to execute SQL queries. Leveraging
this analysis, three distinct strategies to improve performance
were implemented: improving the stability and efficiency of the
query planner, adding new operations for executing queries, and
multi-threaded query execution support. Each strategy was ex-
perimentally evaluated. With all strategies combined, significant
query response time improvements were obtained ranging from
1.2× to 17× faster than the baseline Ignite+Calcite system. This
work highlights the potential of composable systems to deliver
functionality for processing data system workloads and the im-
portance of experimental benchmarking and analysis when de-
veloping them.

ACKNOWLEDGMENTS
Thisworkwas supported by a Salesforce ResearchAward, Natural
Sciences and Engineering Research Council of Canada, Canada
Foundation for Innovation and Ontario Research Fund.

REFERENCES
[1] Murali Ande and Narendra Paruchuri. [n. d.]. In-Memory Computing Patterns

for High Volume, Real-Time Applications. Presented at In-Memory Computing

960

Summit, Oct. 2018. [Online]. Available: https://www.imcsummit.org/2018/us/
session/memory-computing-patterns-high-volume-real-time-applications.
Accessed: 2024-06-29.

[2] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. 2013.
Multi-core, main-memory joins: sort vs. hash revisited. Proceedings of the
VLDB Endowment 7, 1 (2013), 85–96. https://doi.org/10.14778/2732219.2732227

[3] Cağrı Balkesen, Jens Teubner, Gustavo Alonso, andM. Tamer Özsu. 2015. Main-
Memory Hash Joins on Modern Processor Architectures. IEEE Transactions
on Knowledge and Data Engineering 27, 7 (2015), 1754–1766. https://doi.org/
10.1109/TKDE.2014.2313874

[4] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Opti-
mized Query Processing Over Heterogeneous Data Sources. In Proceedings
of the 2018 International Conference on Management of Data (SIGMOD ’18).
Association for Computing Machinery, 221–230. https://doi.org/10.1145/
3183713.3190662

[5] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve,
and James B. Rothnie. 1981. Query processing in a system for distributed
databases (SDD-1). ACM Transactions on Database Systems 6, 4 (1981), 602–625.
https://doi.org/10.1145/319628.319650

[6] Surajit Chaudhuri. 1998. An overview of query optimization in relational
systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS ’98). Association for
Computing Machinery, 34–43. https://doi.org/10.1145/275487.275492

[7] E. F. Codd. 1970. A relational model of data for large shared data banks.
Commun. ACM 13, 6 (1970), 377–387. https://doi.org/10.1145/362384.362685

[8] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R
Stonebraker, and David A. Wood. 1984. Implementation techniques for main
memory database systems. In Proceedings of the 1984 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’84). Association for
Computing Machinery, 1–8. https://doi.org/10.1145/602259.602261

[9] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: an extensible testbed for benchmarking rela-
tional databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.
https://doi.org/10.14778/2732240.2732246

[10] Mark Dodds. 2025. Publication Resources. Retrieved Feb 17, 2025 from https:
//github.com/marktdodds/ignite/blob/ignite-2.16/publication_resources.md

[11] Apache Software Foundation. 2024. Apache Calcite. [Online]. Available:
https://calcite.apache.org. Accessed: 2024-07-31.

[12] The Apache Software Foundation. 2024. Apache Calcite Java Documentation.
Retrieved Dec 19, 2024 from https://calcite.apache.org/javadocAggregate/

[13] The Apache Software Foundation. 2024. Calcite-based SQL Engine. Retrieved
Dec 19, 2024 from https://ignite.apache.org/use-cases/provenusecases.html

[14] The Apache Software Foundation. 2024. Proven Business Use Cases. Retrieved
Dec 19, 2024 from https://ignite.apache.org/use-cases/provenusecases.html

[15] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2009. Database
systems - the complete book (2. ed.). Pearson Education.

[16] Goetz Graefe. 1993. Query evaluation techniques for large databases. Comput.
Surveys 25, 2 (1993), 73–169. https://doi.org/10.1145/152610.152611

[17] Goetz Graefe andWilliam J. McKenna. 1993. The Volcano optimizer generator:
extensibility and efficient search. In Proceedings of IEEE 9th International
Conference on Data Engineering. 209–218. https://doi.org/10.1109/ICDE.1993.
344061

[18] Matthias Jarke and Jurgen Koch. 1984. Query Optimization in Database
Systems. ACM Computing Survey 16, 2 (1984), 111–152. https://doi.org/10.
1145/356924.356928

[19] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009.
Sort vs. Hash revisited: fast join implementation on modern multi-core CPUs.
Proceedings of the VLDB Endowment 2, 2 (2009), 1378–1389. https://doi.org/
10.14778/1687553.1687564

[20] Donald Kossmann. 2000. The state of the art in distributed query processing.
Comput. Surveys 32, 4 (2000), 422–469. https://doi.org/10.1145/371578.371598

[21] Arunprasad P. Marathe, Shu Lin, Weidong Yu, Kareem El Gebaly, Per-Åke
Larson, and Calvin Sun. 2022. Integrating the Orca Optimizer into MySQL.
In Proceedings of the 25th International Conference on Extending Database
Technology (EDBT), Edinburgh, UK, 29th March-1st April, 2022 (2022). Open-
Proceedings.org. https://doi.org/10.48786/EDBT.2022.45

[22] Priti Mishra andMargaret H. Eich. 1992. Join processing in relational databases.
Comput. Surveys 24, 1 (1992), 63–113. https://doi.org/10.1145/128762.128764

[23] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak.
2009. The Star Schema Benchmark and Augmented Fact Table Index-
ing. Springer-Verlag, Berlin, Heidelberg, 237–252. https://doi.org/10.1007/
978-3-642-10424-4_17

[24] Mosha Pasumansky and Benjamin Wagner. 2022. Assembling a Query Engine
From Spare Parts. In 1st International Workshop on Composable Data Man-
agement Systems, CDMS@VLDB 2022, Sydney, Australia, September 9, 2022,
Satyanarayana R. Valluri and Mohamed Zaït (Eds.). https://cdmsworkshop.
github.io/2022/Proceedings/ShortPapers/Paper1_MoshaPasumansky.pdf

[25] Kinjal Patel. 2022. Real-time Data Access with Apache Ignite SQL. Presented
at Ignite Summit Europe, Nov. 2022. [Online]. Available: https://www.youtube.
com/watch?v=3w0H3zLH594. Accessed: 2024-06-29.

[26] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes
McKinney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The

Composable Data Management System Manifesto. Proc. VLDB Endow. 16, 10
(June 2023), 2679–2685. https://doi.org/10.14778/3603581.3603604

[27] Pedro Pedreira, Deepak Majeti, and Orri Erling. 2024. Composable Data
Management: An Execution Overview. Proceedings of the VLDB Endowment
17, 12 (2024), 4249–4252. https://doi.org/10.14778/3685800.3685847

[28] Meikel Poess and Raghu Nambiar. 2010. TPC Benchmark H Standard Spec-
ification. Available: http://dx.doi.org/10.13140/RG.2.1.1883.9288. https:
//doi.org/10.13140/RG.2.1.1883.9288 Accessed: 2024-03-12.

[29] Arnon S. Rosenthal. 1981. Note on the expected size of a join. SIGMOD Record
11, 4 (1981), 19–25. https://doi.org/10.1145/984488.984491

[30] J. B. Rothnie, P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers,
C. Reeve, D. W. Shipman, and E. Wong. 1980. Introduction to a system for
distributed databases (SDD-1). ACM Transactions on Database Systems 5, 1
(1980), 1–17. https://doi.org/10.1145/320128.320129

[31] Donovan A. Schneider and David J. DeWitt. 1989. A performance evaluation of
four parallel join algorithms in a shared-nothing multiprocessor environment.
ACM SIGMOD Record 18, 2 (1989), 110–121. https://doi.org/10.1145/66926.
66937

[32] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Com-
parison of Thirteen Relational Equi-Joins in Main Memory. In Proceedings
of the 2016 International Conference on Management of Data (SIGMOD ’16).
Association for Computing Machinery, 1961–1976. https://doi.org/10.1145/
2882903.2882917

[33] Roman Shtykh and Toru Yabuki. 2019. ’Recent purchases’ with Apache Ig-
nite. [Online]. Available: https://techblog.yahoo.co.jp/oss/yahoo_shopping_
purchases_ignite. Accessed: 2024-06-29.

[34] Abraham Silberschatz, Henry Korth, and S. Sudarshan. 2019. Database System
Concepts (7th ed.). McGraw-Hill Education. 1376 pages.

[35] Cristiana-Stefania Stan, Adrian-Eduard Pandelica, Vlad-Andrei Zamfir,
Roxana-Gabriela Stan, and Catalin Negru. 2019. Apache Spark and Apache
Ignite Performance Analysis. In 2019 22nd International Conference on Control
Systems and Computer Science (CSCS). 726–733. https://doi.org/10.1109/CSCS.
2019.00129

[36] Substrait. 2024. Substrait: Cross-Language Serialization for Relational Algebra.
[Online]. Available: https://substrait.io/. Accessed: 2024-10-05.

[37] Arun Swami and K. Bernhard Schiefer. 1994. On the estimation of join result
sizes. In Proceedings of the 4th International Conference on Extending Database
Technology: Advances in Database Technology (EDBT ’94). Springer-Verlag,
287–300.

[38] Jingren Zhou. 2009. Hash Join. In Encyclopedia of Database Systems, Ling Liu
and M. Tamer Özsu (Eds.). Springer US, 1288–1289. https://doi.org/10.1007/
978-0-387-39940-9_869

[39] M. Tamer Özsu and Patrick Valduriez. 2020. Principles of Distributed Database
Systems (4th ed.). Springer. https://doi.org/10.1007/978-3-030-26253-2

961

