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ABSTRACT
Given a set of deep learning models, it can be hard to find models
appropriate to a task, understand the models, and characterize
how models are different one from another. Currently, practi-
tioners rely on manually-written documentation to understand
and choose models. However, not all models have complete and
reliable documentation. As the number of models increases, the
challenges of finding, differentiating, and understanding mod-
els become increasingly crucial. Inspired from research on data
lakes, we introduce the concept of model lakes. We formalize key
model lake tasks, including model attribution, versioning, search,
and benchmarking, and discuss fundamental research challenges
in the management of large models. We also explore what data
management techniques can be brought to bear on the study of
large model management.

1 INTRODUCTION
With the dramatic rise in AI capabilities across a variety of do-
mains [2, 3, 22, 26, 49, 50, 74, 94, 109, 125, 147], many organiza-
tions have begun to commit significant resources to developing
Machine Learning Models. Many of these are fine-tuned ver-
sions of popular foundation models, such as Llama-3 [154], Mis-
tral [63], DeepSeek-R1 [25], Stable Diffusion [121], BART [77],
and BERT [27]. Proprietary closed-source models such as GPT-
4 [110], Gemini [6] and Claude-3 [7] also support creation of
fine-tuned models. To support this proliferation, sharing, and
reuse of large models, many models are hosted on platforms
to support the collaborative use and sharing of models such as
Hugging Face [37] and Kaggle [66].

As the number of pre-trained models grows, comparing them
and selecting the right one for specific tasks becomes increasingly
difficult (see Example 1.1). Documentation, particularly model
cards [97], aims to provide essential insights, but Liang et al. [80]
have revealed a concerning lack of transparency and complete-
ness in these resources. This makes it hard for users to make
informed decisions, especially when navigating model sharing
platforms. Efforts such as the Data Provenance Initiative [84],
MLCommons [90, 118], and Responsible Foundation Model De-
velopment Cheatsheet [83] have been introduced to enhance the
documentation of model creation and capabilities, with a particu-
lar focus on detailing their training data. However, not all model
creators adhere to these guidelines, meaning that many existing
and future models may still lack crucial information needed by
users. To address this gap, we propose a systematic breakdown
and formalization of tasks for “model lakes" — a system contain-
ing numerous heterogeneous pre-trained models and related data
in their natural formats (one example is Hugging Face [37]).
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We introduce model lakes, as a parallel to data lakes, and
discuss how important innovations in data lakes [106], includ-
ing data discovery, annotation, and version management, can
(and should) be applied within model lakes and studied with the
same vigor. We look at how model lakes are currently managed
and define and discuss tasks that can be used to better inform
users about the models and their relationships. Others have dis-
cussed how one type of model (LLMs) may disrupt data manage-
ment [41]. We focus on how data management can transform the
management and use of AI models.

Example 1.1. Model Search Problem: Consider a situation
where a user wants to find a model that can summarize a le-
gal document and simplify it in a non-technical manner. On
Hugging Face (as of Sept 2024), the user finds that there are
around 1M+ models uploaded and 1950 of them have the ‘sum-
marization’ task tag. While there are filters (trending, most
likes, most downloads, model name search, and more), the user
finds it hard to choose which model to use. There are various
concerns that the user goes through as she scrolls through dif-
ferent model cards (a common semi-structured form of model
documentation). Is this model aware of legal jargon? Is it good
at summarizing and simplifying legal documents? Is this the
latest version of the model? Was this model trained on legal
texts and if so which texts? What are other models that are
similar to this model? Are they also trained on the same or
different legal texts?

2 THREE VIEWPOINTS OF A MODEL
An AI model,M, can be analyzed from three viewpoints: accord-
ing to its history, intrinsic composition, or extrinsic behavior.
These viewpoints highlight different aspects of the model’s char-
acteristics, aspect that we will show are useful in analyzing model
lake problems and solutions.

The history of the model is defined by its training data (D)
and training algorithm (A), which may include processes like
fine-tuning, model editing, or other adaptation techniques. The
degree to which history is documented within a model lake can
vary greatly [80].

The intrinsic viewpoint concerns the model’s internal struc-
ture. This includes the model architecture (𝑓∗), and the specific
trained parameters (𝜃 ). The architecture refers to the structural
design of the model, such as a combination of multi-layer per-
ceptrons (MLPs) and attention layers in transformer models. For-
mally, the architecture defines a function family 𝑓∗ which is in-
stantiated with the specific learned parameters 𝜃 to create the
function 𝑓𝜃 .

In contrast, the extrinsic viewpoint focuses on the model’s
observable behavior and performance in user-defined tasks. The
model parameters, 𝜃 , are not visible as part of the extrinsics.
However, the function 𝑓𝜃 and the model behavior, 𝑝𝜃 , is extrinsic.
For example, in the case of an unconditional generativemodel, the
extrinsics correspond to the observable probability distribution
defined by the model, 𝑝𝜃 (𝑥). For a classifier, the extrinsics are
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defined by the behavior of the modeled predictions 𝑝𝜃 (𝑦 |𝑥) =
𝑓𝜃 (𝑥). Extrinsics can be observed in terms of a neural network’s
action on inputs and outputs 𝑥 and 𝑦, without requiring any
knowledge of its training data or its internal structure.

The distinction among intrinsics, extrinsics, and history is
useful because, while every model M = (D,A, 𝑓∗, 𝜃, 𝑝𝜃 ) has
all these characteristics, there are cases where certain aspects
may be unavailable. For example, in a Model Lake, the intrinsic
details of some models might be inaccessible, and some analysis
methods may rely solely on extrinsic observations or historical
records to understand a model’s behavior. We use this distinction
to analyze possible solutions to a variety of model lake tasks. Our
envisioned model lake is depicted in Figure 1.
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Figure 1: On the bottom of the figure, we illustrate the con-
cept of model lakes, where diverse models are stored. As
these models undergo the tasks outlined on the top-right
side, users gain a deeper understanding of their origins,
strengths, and how they are structured in relation to other
models. This process provides key insights into themodels’
development, performance capabilities, and their position-
ing within the broader landscape of models. A model is
defined as M = (D,A, 𝑓∗, 𝜃, 𝑝𝜃 ), where D (training data)
and A (algorithm) can be traced through documentation,
while architecture 𝑓∗ and parameters 𝜃 come from accessi-
ble model weights, and behavior 𝑝𝜃 from observable out-
puts (illustrated on the upper left side of the figure).

3 FORMALIZING MODEL LAKE TASKS
Model lake tasks are specifically concerned with gathering and
presenting insights about the models that are stored within the
lake. Topics related to the infrastructure behind model training
or storage systems fall outside this scope.
Model Attribution. In data lakes, data provenance is the “de-
scription of the origins of a piece of data and the process by which
it arrived in a database" [17]. Model provenance (often called at-
tribution) considers questions like “Why was image X generated
when the model was given input Y?" If the history is recorded,
the history can be consulted to directly ask the training data at-
tribution question formally: which training data items 𝑑 ∈ D are
most influential on the decision; in other words, which 𝑑 , if they
were not present in the training data, would cause the decision to
change the most? When history is not available, attribution can
be studied using intrinsic and/or extrinsic clues to provide insight

into the attribution of model decision behavior. For example, we
can perform sensitivity analysis on the observable extrinsics of
a model by asking: which aspects of the inputs to 𝑓𝜃 or 𝑝𝜃 are
most important in a model’s prediction of a particular output?
And if we have access to model intrinsics, we can study feature
or representation analysis, which asks, which internal representa-
tions or internal “concepts” within the model are most important
for a decision?

Model Versioning. In the model versioning task, we want to
understand whether (and possibly how) a model has been cre-
ated from other models (similar to studying how a version of
a data set or table may have been derived from another [136]).
One possible definition of model versioning that uses an intrinsic
viewpoint [56] is: Given a model, M𝑡 and a set of 𝑁 models,
{M𝑐 |𝑐 ∈ 𝑁 }, construct a directed Model Graph, T , where a di-
rected edge between models indicates that one model is a version
of the other. The edges can describe the transformation. This can
include training techniques, optimization techniques, as well as
the data used to further train (fine-tune) models. An important
problem in versioning is: given a model’s training parameters
𝜃𝑡 and a candidate model’s parameters, 𝜃𝑐 , is 𝜃𝑐 a source of 𝜃𝑡 ?
Being a source model would mean that 𝜃𝑐 or a version of 𝜃𝑐 was
used for training 𝜃𝑡 .

Model Search. Model search is the task of finding a related
or desired model. Again we can consider this task from differ-
ent viewpoints. An extrinsic view considers the behavior of the
model. Given a task function, 𝑄 : 𝑋 → 𝑌 where a task takes
an input, 𝑥 ∈ 𝑋 and produces an output 𝑦 ∈ 𝑌 , we want to find
the best performing model, M𝑏𝑒𝑠𝑡 , for the given task among
a set of 𝑁 candidate models, 𝑈 = M1,M2, ....M𝑁 . Each can-
didate model is characterized by their observable behavior, i.e.,
{𝑝1𝜃 , 𝑝2𝜃 , ..., 𝑝𝑁𝜃 }. The optimal model is selected based on a scor-
ing function of how close the model’s behavior is to a query
model.

Even considering only an extrinsic view, there are many for-
mulations of model search. If the goal is to find models that
perform similarly on specific data (for example, a specific im-
age), then a possible definition is [85]: given a point, 𝑑 , and a
set of 𝑁 candidate models, 𝑈 = M1,M2, ....M𝑁 , rank models
based on their similarity of their respective observable behavior
{𝑝1𝜃 , 𝑝2𝜃 , ..., 𝑝𝑁𝜃 } w.r.t. to 𝑑 . This could be extended to other
types of models where for a given model, M𝑡 and a set of can-
didate models, {M𝑐 |𝑐 ∈ 𝑛}, we want to find related models
based on a ranking function that considers the similarity of mod-
els’ output distribution and semantic concepts/patterns present
within them.

An intrinsic view of model search would find models with
similar model architectures and training parameters. Or as done
in data lakes where intrinisic search is the norm, we could create
embeddings representing the important features of the model
and design a fast nearest neighbor search over these embeddings.
Considering model history, we could search for models that have
been trained on the same dataset. This is straight-forward when
history is recorded, but when it is not fully explicit, we may
leverage extrinsic or intrinsic clues in the search.

Benchmarking. For single model tasks, a benchmark, B (for
example, a set of images), is used to measure the performance
of a model, M (or set of models) based on a scoring function,
𝑆 (M,B) ∈ 𝑅. For model lake tasks, we will need new (shared)
model lake benchmarks (large sets of models L) that can be used
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to measure the quality of a lake task solution. This means that
within a benchmark lake, we will need verified ground truth.

4 STATE-OF-THE-ART IN MODEL MGMT
Model Repositories, Registries, and Lakes. A model reposi-
tory is a storage system for machine learning models. A model
registry goes beyond basic storage by offering version control
(the representation of versions, not today the discovery of version
relationships mentioned in Section 4). These registries typically
enforce clear naming conventions (for models and versions) and
organize structured, standardized metadata [73, 149]. Recent ad-
vancements have added functionalities like explainable network
intrusion detection [140] for security and integrations of different
tools such as model monitoring and experiment tracking into a
single framework [150]. Model registries are typically private,
facilitating collaboration within organizations, while open plat-
forms such as Civitai [61], Hugging Face [37], and Kaggle [66]
enable public sharing of models. These platforms, which we can
consider as model lakes, assist users in model exploration by
providing curated catalogs and keyword search, often leveraging
both manually created model names and metadata for more effi-
cient discovery. Unlike lifecycle creation and training platforms,
model lakes focus on managing a set of AI models, including
their interrelationships. This is distinct from model management
in databases, which deals with schemas and their mappings [13].
Current model lakes capabilities lack effective mechanisms for
representing and navigating the model space semantically, par-
ticularly when model documentations or names are incomplete
or unknown to users, leaving many models effectively undiscov-
erable [80].
Documenting Models. Models that are deployed are usually
accompanied with documentation known as model cards [97].
Model cards contain (among other categories) information on
model details, intended use, metrics, training data, and quantita-
tive analyses. Similar to datasheets [45], model cards are designed
to guide developers in documenting models in a structured way.
Model cards can be and should be augmented with information
more similar to nutritional labels [142] that also include infor-
mation about fairness and bias in the data (models). They can be
further enriched with lineage and security related documenta-
tion [48] such as adversarial attack and related defense measure
policies, which are outlined in FactSheets for AI services [8].In
addition to research on enhancing the completeness of model
documentation, there remains a critical gap in the verification of
model cards. There is a danger that people could intentionally
misinform model users with malicious intent [130]. The state-of-
the-art in verifying the documentation of a model is notably in
its infancy [83]. Mithril AICert [129] is developing a certification
initiative that verifies whether a model was trained using the
specified algorithms and data sets. However, this initiative has
some limitations. First, as it is still in development, it is not yet
available for production use. Second, the certification process
depends on the voluntary participation of the model creators.
Furthermore, the AICert website [131] highlights several critical
limitations, including the inability to audit training code or data
for risks such as backdoors or data poisoning.
Model Search and Discovery. In Example 1.1, we present a
potential scenario for the Model Search Problem. The current
solution pipeline involves a user searching for a relevant model
by naming specific models or by typing related keywords like
legal to find models that either have that word in their name

or in their model card. In other words, the search relies on the
model’s name and documentation. Hence, any sorting of the
answer by relevance is just the relevance (prevalence) of the
keywords and is not a semantic notion based on the model itself.
Of course, this search may fail if the documentation is incomplete
or inaccurate.

Within open data and enterprise data, researchers have learned
that they cannot rely on metadata for datasets to be accurate,
complete, or consistent within a data lake [106]. As a result,
there is a great deal of work on semantic or content-based
search in data lakes including join search [30, 68, 164, 165], union
search [39, 59, 67, 107], and related dataset search [14, 40]. Ma-
chine learning models have revolutionized content-based dataset
search. Important and impactful work has shown howwe can use
machine learning to create meaningful semantic representations
of tuples, columns, and full tables to enhance dataset search and
other semantic tasks like data integration and alignment.

But what about content-based model search? To the best of
our knowledge, this is an area within ML that is in its infancy.
Recent techniques for image models leverage meta learning [79,
85]. HuggingGPT [133] uses an LLM (in their case, ChatGPT)
as a controller to decide which models to use based on a user’s
prompt. This metadata-based search differs from content-based
approaches, as the LLM parses the user’s prompt into tasks and
uses model descriptions to select relevant models. While it allows
queries across any modality or domain, it is limited by the LLM’s
capabilities and the quality of model documentation. Additionally,
it may fail when object-centric tags do not fully capture themodel.
Our vision emphasizes that content-based model search must
cover all models in model lakes, including large language models,
while ensuring usability through speed and accuracy.

Another important problem is related model search. One ap-
proach to addressing related model search was explored by Lu
et al. [85], who search for image generative models by using the
behavior of another image model as a query. We propose extend-
ing such model as query searches to all models in a model lake to
help users identify related models when exploring the model in
question.

Attribution. An important line of inquiry considers questions
related to provenance or attribution [91, 102]. These issues pose
similar questions to those studied in the database community [18]:
from where did a generated fact derive or why was a predica-
tion made? Building on the concept of data provenance [17], we
can extend the notions of why-, where-, and how-provenance
to models, under the name of model attribution. Similar research
questions are also posed in model interpretability as part of lo-
cal and global explanations. As in data provenance, the main
issue is in whittling down all the provenance associated with
some process (such as a full model) into simple, but useful ex-
planations [18]. More than two decades of research in the data
management community have produced elegant and simple, yet
powerful, models for data provenance when the process is a
query [15, 16] or workflow [98, 99]. In large model attribution,
the goal cannot be to understand and track all inputs (data, hyper-
parameters, code, training regimes, ...) that were used to create a
specific model output. Hence, the challenge is to find meaningful
sets of concepts that can be tracked efficiently and that provide
important insights into model behavior.

The training data attribution problem is nontrivial because
every aspect of training has the potential to impact every decision
of a model. A variety of methods have been developed to estimate
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influence of training data on model behavior [52, 70, 153]. The
current approaches require extensive use of training data as well
as costly analysis of model intrinsics. Another approach to the
problem is to apply techniques such as membership inference
analyses, or membership inference attacks [134] that ask the
question of whether a specific training data item 𝑑 is present in
the training dataD, or training data reconstruction methods that
extract sets of items from the training data [19, 128].

Insight about the attribution of model behavior can also be
studied through model interpretability methods: extraction of
relevant knowledge from a model concerning relationships ei-
ther contained in data or learned by a model [104]. Several
works have surveyed techniques and research questions in this
area [31, 47, 88, 103, 117, 138, 160]. These approaches can be
broadly categorized into the following areas. Local model expla-
nations explain the sensitivity of individual output predictions to
local changes in inputs using gradients [143], masks [42, 114], lo-
cal models [120], or Shapley values [21, 87]. Global explanations
explain the mechanisms of the overall model at the level of at-
tention patterns [23], representations [11, 166], circuits [36, 152],
or neurons [9, 10, 46]. Models can also be designed to be inher-
ently interpretable [122]. Lastly, datasets can be explained using
natural language explanations [105], data visualizations [28], or
by training inherently interpretable models [137, 148].

Model Versions.Models are valuable assets that can be adapted
and reused to create new versions. The original or base ver-
sion is typically a foundation model — a pre-trained model that
learns general features from its training dataset, denoted as D.
By making further adjustments to the training algorithm (A),
architecture (𝑓∗), or dataset (D), subsequent versions of the base
model can be developed. Common A-based modifications in-
clude fine-tuning, parameter-efficient tuning, preference tun-
ing, model stitching, and model editing. Model stitching, for ex-
ample, involves altering 𝑓∗ by combining the architectures of
two or more models to create a hybrid model [76]. Model edit-
ing [44, 92, 93, 96, 111, 139] focuses on updating certain facts (e.g.,
changing the name of the current President of a country), mak-
ing localized adjustments without retraining the entire model.
Fine-tuning involves further training a model’s parameters,𝜃 , to
improve performance on specific task(s) or domain(s). For in-
stance, T5 [116] is a pre-trained model that has been trained on
a collection of large collection of text (about 750 GB) to perform
well on a diverse set of tasks. This has been further fine-tuned
with the MIMIC-III [65] and IV [64] dataset to form Clinical-
T5 [86] to perform better for medical domain-related tasks. In
addition to the traditional fine-tuning strategy, parameter-efficient
fine-tuning methods have emerged to reduce computational over-
head by freezing most of the model’s parameters, only updat-
ing a small subset necessary for fine-tuning. For instance, Low
Rank Adaption (LoRA) [58] is a parameter-efficient fine-tuning
method to adapt various models by only updating a low-rank
subset [58]. Preference tuning is another advanced technique,
as seen in ChatGPT [109] and InstructGPT [113], which inte-
grates human feedback into the fine-tuning process [156]. Lastly,
due to the emergent ability of models to perform tasks without
training [29, 82], newer models leverage prompting as a way to
control content generation without needing further updates to
their parameters.

Information about model versioning can be inferred even if
the model history is unavailable. For example, Mu et al. [102]
propose a data- and model-driven method to encode “Model

DNA" for identifying if a model is a pre-trained version of an-
other, assuming both share the same architecture and training
data. However, more challenging cases arise when the target
model has a different architecture or is trained on only a subset
of the source model’s parameters. Hugging Face recently intro-
duced new metadata fields in their model cards, enabling users
to specify the base model and explain how it has been modified.
This metadata generates a model tree, linking related models
by their extensions. However, its accuracy depends on reliable
documentation, and older models lack this data. Research on
reconstructing relationship is emerging, such as Horwitz et al.
[56]’s approach using weight similarities, though this approach
is limited to known models with a single base version.

Privacy and Safety. Models are vulnerable to the disclosure of
private information [19, 135] and adversarial results [78, 167]
when attacked. Hence, initiatives such as Privacy Preserving
Machine Learning [123] exist to understand, measure, and miti-
gate such risks. As a result, techniques such as differential pri-
vacy [33, 158], data sanitization [32, 141] and robust prompt
optimization [162] have been utilized to defend against such
attacks. These methods generally aim to obscure or eliminate
private information while detecting and preventing attempts to
jailbreak or manipulate the model and its output. However, this
can create a false sense of privacy as defense techniques can
continue to be compromised with other attack schemes [157].

Beyond privacy, ensuring AI systems are fundamentally safe
is another critical challenge. Community-driven efforts focus
on building safe AI [112], aiming to specify, verify, and ensure
that the models behave as intended. A recent approach leverages
neuroscience concepts, such as representation engineering, to
enhance AI transparency [5, 95] and improve our understanding
of traits like honesty, power seeking tendencies, and morality in
models. However, this direction is still in its early stages, with
open challenges including the scope of representations that can
be explored and the development of effective evaluation methods
to better inform users about model safety.

Benchmarking. Benchmarking plays a crucial role in evaluat-
ing model performance for specific tasks and remains a well-
established research area, however benchmarks for newer topics
such as model attribution and versioning are urgently needed.
Developers frequently report model performance using standard-
ized benchmarks, making it a routine part of model assessment.
Broadly, there are two primary types of benchmarking: (1) evalu-
ating howwell a model,M, approximates a ground truth distribu-
tion, and (2) assessing a model’s performance against a targeted
evaluation metric. In classification tasks, models are typically
evaluated using accuracy, as ground-truth labels provide a di-
rect assessment of the model’s output. Additionally, confusion
matrices offer insights into the types of errors made. For text
generation tasks, perplexity is a widely used metric, and several
popular benchmarks exist to assess performance [53, 54, 119].
In the case of image generation, the Fréchet Inception Distance
(FID) [55] is a common metric and COCO [81] and VQAv2 [51]
are some notable benchmarks in this domain. Beyond traditional
performance metrics, benchmarking also considers biases related
to protected attributes [126], as well as the environmental im-
pact [75] of model training and deployment. Model lake bench-
marks lack large-scale, publicly available datasets that mimic
realistic conditions of diverse models in model lakes. There has
been preliminary efforts by Lu et al. [85], where they released a
benchmark for model search with 259 publicly available image
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generative models and 1000 customized text-to-image diffusion
models. Model Zoo [127] is another relatively large-scale dataset,
but it is limited to vision models. Creating large-scale model
lake benchmark that integrates various modalities (such as text,
images, and audio) remains a research challenge.

5 RESEARCH ROADMAP
Building on current research and identified gaps outlined in Sec-
tion 4, this section presents a vision to address these challenges.
A model lake is illustrated in Figure 2, where rather than APIs, we
envision data scientists interaction with the lake using queries.
Benchmarking. As discussed in Section 4, benchmarking, while
a well-established research area, is under-explored in model
lakes. An important topic is the development of lifelong bench-
marks [115] that can address increasingly complex and novel
scenarios as models continue to evolve in capability and diver-
sity. In addition, there is a need to develop benchmarks specific
to model lake tasks. For instance, to advance research in model
attribution, a comprehensive benchmark dataset is needed—one
that includes labeled model parameters, architectures, and de-
tailed transformation records (e.g., fine-tuning, model editing).
This benchmark can be extended to model versioning by adding
data that tracks the previous and subsequent versions of models.
Model Inference. Deploying effective solutions for model lake
tasks is a challenge with respect to usability and scalability. To
improve usability, the model inference component involves iden-
tifying appropriate benchmarks and generating relevant prompts,
as well as selecting suitable models (target models or meta-models)
to address a user query. While users can manually run prompts
and select models, this approach is prone to errors and subopti-
mal outcomes, especially if users lack the expertise to use models
effectively. For example, a classifier’s behavior may be misinter-
preted if a user does not understand the type of data is was trained
or the input it expects. To mitigate this, the proposed model lake
tasks can incorporate additional perspectives, such as intrinsic
model properties (e.g., weights), to provide insights and guide
users towards a more accurate interpretations and applications.
This search and generation process can also be automated using
an AI agent. By applying benchmarks and model(s) in question,
we combine research efforts of benchmarking and attribution
questions, which are used to explain the behavior and output of
a model.
Indexer. A central component of a model lake is the indexer,
which would be used to embed and provide scalable sublinear
search over the model embeddings. The indexer can use different
ranking functions tailored to the task. Achille et al. [1], Wang
et al. [154] have introduced an approach for generating model
and task embeddings. However, search methods must scale to
handle millions of models and adapt to newer models with ad-
vanced capabilities [155]. Indices like HNSW (Hierarchical New
Small World) [89], have proven effective in practice in indexing
high-dimensional embeddings enabling fast nearest-neighbor
search (including over data lakes [39]. However, HNSW provides
no formal guarantees on correctness and its use in model lakes
remains under-explored. Effective embedding of models is cru-
cial for accurate comparison and ranking by the indexer. Wang
et al. [154] explores this but there work is not inclusive of all
model types. A robust system should support diverse embed-
dings to ensure indexing effectiveness. Many of the model lake
tasks will benefit from hybrid approach, that indexes both meta-
data and model embeddings – for example, related model search

can combine well-chosen model embeddings representing impor-
tant intrinsic model features with search over verified models
cards. Similarly, in versioning, embeddings and their associated
rankings can aid in identifying parent-child relationships and
assessing the distinctiveness of each model relative to others.
Weight-Space Modeling. Weight-Space modeling is a hyper-
representation learning approach where a neural network is
trained to process weights of other models [34]. This method can
be useful for making distinctions between models, especially in
complex scenarios like model stitching, where similar models
with multiple shared parent models need to be distinguished.
This is a promising direction. Zhou et al. [163], for instance,
reveals a linear connection between fine-tuned models. This ap-
proach could also facilitate dynamic selection of benchmarks for
performance measurement by learning from previous relation-
ships between datasets and models. The primary challenge in
weight-space modeling is identifying the most relevant aspects
of the model for training another model to uncover patterns,
while simultaneously considering the weight-space model archi-
tecture [108]. It is also crucial to ensure sufficient data diversity
to avoid overfitting or underfitting.
Interpretability. Interpretability methods can be most use-
ful for the model attribution task where users must under-
stand the origin of model behavior, for example, when detecting
knowledge changes [159], or when unlearning learned knowl-
edge [12, 35, 43, 62, 72]. Attribution questions also apply to
the source model’s architecture. Approaches like circuit discov-
ery [24, 36, 152] can help identify the computational origin of
model behavior. Model inversion can be used to recover an input
prompt given an output [60, 100, 101]. These methods are also a
promising route for understanding the impact of training data on
internal model states. In recent work, Sharkey et al. [132] present
a list of open questions in interpretability, many of which are
relevant to the problem of model lakes.
Holistic Management of Models and Data. Effective model
lakes need to integrate advances in data lakes in a holistic way
given the reliance of models on data as their fuel. Many model
management tasks include (in part) an analysis of training or
input data. Hence, traditional data lake concerns such as data
provenance, data versioning, and related issues still apply. Thus,
in addition to new tasks specific to model lakes, we must also
account for data lake tasks when dealing with the data used by
or generated from these models. And integrating these tasks will
be important. As a simple example, when searching for models
trained on a dataset, users may want to find models trained on
versions of the dataset.

6 MODEL LAKE TASKS: APPLICATIONS
Documentation Generation. To streamline the creation of de-
tailed model cards, engineers can leverage model lake tasks to
generate a rough draft of the required documentation. This appli-
cation is similar to discovering and annotating metadata in data
lakes [4, 38, 71, 124, 161]. Here’s how the process might work:
upon uploading a model to the model lake, state-of-the-art tech-
niques for tasks like attribution, versioning, benchmarking, and
others can automatically analyze and map the model’s relation-
ships to other models in the model lakes. The engineer can review
and either accept or modify these generated mappings, especially
if any information appears inaccurate, creating an initial version
of the model details section. Additionally, the engineer can as-
sess the model’s robustness by testing its performance against
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relevant benchmarks, including metrics like task accuracy, en-
vironmental impact, and more. Based on these test results, key
sections of the model card, such as intended use and performance
metrics, can be auto-populated for a faster, more reliable drafting
process. It can alert developers to model risks, as shown byWang
et al. [151], who demonstrate how model versioning helps warn
downstream model users of upstream model risks.
Auditing. Policymakers have recently proposed AI safety and
compliance regulations [57, 144, 145] aimed at fostering more
responsible and accountable AI models [20]. The model docu-
ment generation application procedure can be repurposed for
auditing by creating a template questionnaire [48] and using the
information from the model lake to generate a draft response
with proof or explanation about how a requirement is fulfilled.
This process can incorporate privacy-related technical solutions,
where insights frommodel lake tasks help identify vulnerabilities
across related models and their successor versions. It can also
aid in attributing sensitive data that the model may have access
to, highlighting potential exposure risks.
Data and Model Citation. Data citation helps stakeholders
identify the source, ownership, and authorship of the data used
for a particular analysis. It is important to use proper data citation
because the structure and contents of the database can evolve [16].
Hence, this problem is also extended to machine learning, since a
large part of model training is its dataset. Thus, the task of citing
data for data lakes remains relevant for documenting the training
data used in the creation of the model. Similarly,model citation is
essential, as users can further train the model or use its outputs
for consumption or additional training. One proposed solution
to identify generated output is the use of watermarks [69]. In
addition, model versioning tasks provide crucial documentation,
allowing researchers, engineers, and developers to refer to the
exact version of themodel used for training or content generation.
If a particular model is used, the platform would refer to its
versioning graph and generate a citation with the model version
and timestamp of the graph. Upon any updates of the graph, a
new citation would be generated with the updated version and
timestamp. This would be useful for also citing any generated
content from this model.
Model Search. In Example 1.1, we illustrate a potential scenario
where a user seeks the most suitable model for summarizing and

simplifying legal documents. As the model search task within the
model lake evolves, we aim for users to be able to write declara-
tive queries and retrieve a set of models ranked by their suitability
for the specified task. Query example include "Find all models
trained on this corpus of US Supreme Court cases" or "Find mod-
els that out perform Model X on Benchmark Y". Given a search
task, the model lake framework can map the task function to a
suitable indexer and run that indexer to retrieve top-ranked mod-
els. Whether the user is a technical or non-technical consumer,
researcher, or engineer, they would be able to click on a model
to view its model card. Attribution reveals how training data or
learned concepts influence outputs, while version management
clarifies the model’s training process, lineage, and differences,
enhancing transparency. Benchmarking evaluates the model’s
robustness on related tasks, addressing completeness. Together,
these allow users to make informed decisions about the models
they use.

7 CONCLUSION
The database community has responded to the “Big Model" rev-
olution by proposing platforms like Agora [146], that manage
data-related assets, includingmodels, datasets, software, and com-
pute resources in a coherent ecosystem. But the model-specific
support in such an ecosystem must be expanded to include gen-
eral methods for managing and finding models, support that can
make such systems fully functional model lakes. It will be im-
portant that the methods generalize, irrespective of how many
models we are trying to understand, what architectures the mod-
els use, how they are trained, or how we wish to query or search
the models. We call on the database community to contribute
to the vision of model lakes, supporting users to more easily
find relevant models and to better understand those models. Our
vision is for a fundamentally new platform that extends and inte-
grates work on data/model attribution, data/model search, and
data/model version management.
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