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ABSTRACT
Due to their high velocity, data streams pose additional challenges

for analysis and quality assurance compared to static data. To

select a suitable computational model to analyze a data stream,

or the right data quality tool to clean it, it is important to have

benchmark data that reflects the characteristics of the stream

such as trends and seasonality, but also potential data errors.

Although several data polluters have been developed to inject

errors into existing data, none of them supports the creation of

temporal data errors as they occur in data streams.

Therefore, we propose Icewafl, a data polluter that allows the

injection of temporal errors to create benchmark datasets. Icewafl

is built on top of Apache Flink to enable seamless integration

with existing data stream pipelines and efficient processing of

large-scale data. We show that Icewafl can be used to evaluate

(1) the error detection capabilities of data quality tools and (2) the

robustness of forecasting methods.

1 INTRODUCTION
With the growing amount of data collected by sensors, the pro-

cessing and analysis of data streams is becoming increasingly

important [14]. Sensor data plays a key role in many different

areas, such as healthcare [42], manufacturing [25], or environ-

mental monitoring [26, 33]. As these sensors are often managed

by different parties (e.g., crowdsensing [5, 30]), this can lead to

great heterogeneity and contamination within the collected data.

However, data streams can originate not only from sensors, but

also from simulation programs, such as those used for climate

models [21] or digital twins [41]. The requirement to efficiently

process data streams has led to the development of special pro-

cessing frameworks such as Apache Flink [6], Apache Spark

Streaming [2, 44], Kafka Streams [38], or Hazelcast [18].

Data streams are often analyzed with machine learning (ML)

or online forecasting methods. An important criterion in the

selection of a suitable method for a specific task is the robustness

of this method against various types of data errors, such as those

resulting from defective or miscalibrated sensors [26]. The wide

range of potential data errors also makes it essential to measure

the quality or clean data streams, either with dedicated data

quality (DQ) tools [15] or specific cleaning algorithms (including

ML models [23]). In both cases, it is essential to have suitable

benchmark data to evaluate the effectiveness of DQmeasurement

and data cleaning tasks, as well as the robustness of ML models.
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Figure 1: Motivating scenario with data error dependencies

Data polluters1 allow users to deliberately insert errors into

data to enable the systematic evaluation of how algorithms per-

form against different types of data errors [37]. In contrast to

static benchmark datasets, data polluters allow the creation of

customized benchmark data that matches specific use cases, align-

ing with the fitness for use principle of data quality [40]. Al-

though several data polluters have been proposed in the past

(e.g., [3, 10, 20, 36, 39]), none of them support the pollution of

streaming data or can generate errors that affect the temporal

characteristics of data streams.

Motivating example. As outlined in Figure 1, errors in data

streams often depend on parallel or previously processed tuples

and the errors associated with them (as also discussed in [4, 12]).

In our scenario, the measurements of the two weather sensors

S1 and S2 are influenced by the same confounding factors (the

shadow of the mountains and clouds) due to their spatial prox-

imity. As these clouds drift, they subsequently impact the mea-

surements from sensor S4 after a time delay. Sensor S3, being a

logical sensor that derives its values from S1 and S2, inherits any

measurement errors present in these source sensors, creating a

chain of error propagation.

Challenges. Based on the shortcomings of benchmark data in

general [36], we identified the following key challenges for data

pollution in streams: (C1) the characteristics of data streams can

introduce temporal errors that do not occur in static databases,

and the severity of these errors can vary over time [4]. (C2) As

the motivating example shows, real-world errors can have com-
plex dependencies that are neither easy to model nor to gener-

ate. (C3) The configuration requirements for a data polluter vary
greatly between users, making it challenging to balance ease of

use with the power to generate complex error scenarios.

1
Note that we distinguish between data pollution and data synthesis. While the

latter refers to the creation of a benchmark dataset from scratch [37], the former

refers to injecting errors into an existing dataset.
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Figure 2: The configurable pollution process of Icewafl

Contribution. In this paper, we present Icewafl
2
(Inserting

Customizable Errors with Apache Flink), a configurable polluter

for data streams. Our contributions are:

(1) Temporal error types that are either temporal by definition

(e.g., a delayed tuple) or result from combining static error

types with change patterns (e.g., time-depending noise). By in-

troducing these types (cf. Figure 3), we address Challenge C1.

(2) A novel pollution model for data streams based on simple

polluters that can be combined into pollution pipelines. Each

polluter introduces specific errors based on given conditions.

This modular approach balances simplicity for inexperienced

users (who can use predefined error types and standalone

polluters) with high expressiveness for experts who need

to model complex real-world error patterns. Expert users

can create sophisticated error scenarios through composite

polluters, nested conditions, and integrated sub-pipelines

(Challenge C3), while also modeling temporal dependencies

between errors (Challenge C2).

(3) A comprehensive set of experiments to demonstrate the utility

of Icewafl in the generation of benchmark data streams for

the evaluation of DQ tools and forecasting methods.

We implemented Icewafl on top of the popular data stream pro-

cessing framework Apache Flink
3
to enable distributed pollution

and a simple integration into existing data streaming pipelines.

Structure. In Section 2, we formally define our novel pollu-

tion model for data streams. The correctness and suitability of

Icewafl’s pollution capabilities are evaluated in Section 3 and

a comparison to existing benchmark generators is provided in

Section 4. Section 5 concludes the paper and gives an outlook on

future work.

2 DATA STREAM POLLUTION
Figure 2 illustrates Icewafl’s end-to-end pollution process. Its

major objective is to allow the reproducible creation of temporal
and diverse data errors such that the resulting benchmark datasets

reflect typical data stream characteristics. However, it can also be

used to pollute batch data. The pollution workflow is divided into

three steps: (1) the input is parsed and prepared, (2) the actual

pollution is executed and optionally logged to reproduce it, and

(3) the polluted data stream(s) are integrated in case of multiple

streams and persisted. The input to the first two steps are the

schema of the data stream and the error configurations used to

pollute the data. Our formal definitions for the pollution process

are based on Ioannou and Velegrakis [24] and Foroni et al. [16].

2
https://github.com/chri-schi/Icewafl

3
https://flink.apache.org
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Figure 3: Error types supported by Icewafl

2.1 Data Stream Handling
The pollution process can either take a real data stream or a data

stream split into small batches (i.e., micro-batching) as input.

Within our framework, each input is treated tuple-wise as a data

stream. Based on Oliveira et al. [34] and Davari et al. [13], we

define a multivariate data stream 𝐷 as a sequence of tuples:

𝐷 = 𝑡1, 𝑡2, . . . , 𝑡𝑛 (1)

where |𝐷 | = 𝑛 is the number of tuples inside the data stream. In

the case of unbounded streams, 𝑛 is unknown. The schema of the

stream consists of 𝑘 attributes 𝐴 = 𝐴1, . . . , 𝐴𝑘 where each tuple

has a value for each attribute. We refer to data as multivariate if

𝑘 > 1, and assume that each attribute𝐴𝑖 has a domain𝑑𝑜𝑚(𝐴𝑖 ). It
holds 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝐴1) × . . .×𝑑𝑜𝑚(𝐴𝑘 ). As it is a data stream,

we expect the schema to also contain a timestamp attribute.

In the preparation step, tuples receive a unique identifier (ID)

and a replicated timestamp 𝜏 , which are not affected by the pollu-

tion process and used to identify the tuples throughout the entire

pollution process. The assigned ID enables direct comparison

between the original (clean) data and its polluted version, serving

as a ground truth reference for each tuple. While the original

timestamp may be subject to pollution and is used for the output

stream, 𝜏 is used as event time during the pollution process and

is not part of the final output.

2.2 Data Stream Pollution Model
Icewafl uses data polluters to inject errors into the input data.

Each polluter 𝑝 is defined by a triple ⟨𝑒, 𝑐, 𝐴𝑝 ⟩ where 𝑒 is an error

function, 𝑐 is a condition that determines whether an error is

injected or not, and𝐴𝑝 ⊆ 𝐴 is the subset of attributes targeted for

pollution. To capture the temporal characteristics of data streams,

Icewafl provides the event time as an additional argument to these

polluters which can affect the error function and the condition.

Thus, an error function 𝑒 : 𝑑𝑜𝑚(𝐴) × 2𝐴 ×𝑇 → 𝑑𝑜𝑚(𝐴) takes a
tuple, a set of attributes and the event time 𝜏 ∈ 𝑇 as input and

outputs a transformed tuple. In summary, a polluter 𝑝 can also

be defined as:

𝑝 (𝑡, 𝜏) =
{
𝑒 (𝑡, 𝐴𝑝 , 𝜏), if 𝑐 (𝑡, 𝜏) = 𝑡𝑟𝑢𝑒

𝑡, else,

(2)

where depending on the condition 𝑐 , input tuple 𝑡 is either pol-

luted with the error 𝑒 or returned unchanged.

As shown in Equation 2, we use conditions to control the pol-

lution behavior. In alignment with Schelter et al. [39], data errors

can be inserted (i) completely at random (ii) depending on the

values to be polluted [29], or (iii) depending on the values of
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the input tuple that are not to be polluted. In addition, Icewafl

supports temporal conditions based on the event time and com-

posite conditions that allow to conjoin any of the aforementioned

conditions.

Icewafl distinguishes between static and temporal error types
(see Figure 3). Static errors types are independent of the event

time. Temporal errors types are either native or derived. While

native error types are special error functions that are temporal

by definition (e.g., a delayed tuple), derived error types result

from combining a static error type with a pattern of change

over time (based on the changed patterns introduced in [17]).

In the latter case, the event time is used as an additional input

argument for the otherwise static error function (e.g., noise is

added based on the hour of the day) or a static error is applied

with an increased/decreased probability during a specific time

interval [4] (e.g., over the next five minutes, the probability of

missing values increases from 40% to 90%).

2.2.1 Pollution pipelines. Since a single polluter is usually

not sufficient to model real-world error patterns, we allow the

composition of multiple polluters within a pollution pipeline. In
Icewafl, we distinguish between two different types of polluters:

(1) standard polluters that introduce specific data errors and (2)

composite polluters that structure the pollution pipeline. Com-

posite polluters can register an arbitrary number of standard pol-

luters that actually insert the errors. Through nesting, composite

polluters allow modeling more complex pollution strategies, for

example, two error types that always occur together or a set of

errors that are mutually exclusive.

A pollution pipeline 𝑃 is a sequence of 𝑜 polluters 𝑝1, 𝑝2, ..., 𝑝𝑜 .

The pipeline applied to an input tuple 𝑡 results in an output

tuple 𝑡 ′ = 𝑃 (𝑡, 𝜏) = 𝑝𝑜 (𝑝𝑜−1 (. . . 𝑝1 (𝑡, 𝜏) . . . , 𝜏), 𝜏). A polluted

data stream 𝐷𝑝
consists of tuples from the original data stream

𝐷 that have passed the entire pollution pipeline 𝑃 , i.e., 𝐷𝑝 =

{𝑃 (𝑡, 𝜏) | 𝑡 ∈ 𝐷}.

2.2.2 Integration scenarios. To simulate scenarios where mul-

tiple data streams are integrated, Icewafl is able to split the pol-

lution pipeline into a predefined number of independent sub-

pipelines which can finally be merged again. By applying differ-

ent polluters to each sub-pipeline, we are able to model stream-

specific error patterns. In addition, merging several pipelines can

lead to additional error types, such as fuzzy duplicates [32, 34].

2.3 Algorithmic Discussion
The entire pollution workflow is summarized in Algorithm 1. In

the preparation step, each tuple is assigned a new ID (Line 2)

and the timestamp 𝑡𝑠 is replicated, with the replica denoted as 𝜏

(Line 3). Subsequently,𝑚 (overlapping) sub-streams are extracted

from the previously enriched data stream (Line 4). In the pollu-

tion step, each tuple of each sub-stream is passed through the

sub-stream’s corresponding pollution pipeline (Lines 5-9) and

polluted by an individual polluter (Line 9) if it meets the required

condition (Line 8). In the final step (Lines 10-11), the𝑚 polluted

sub-streams are combined by the union of their tuples (with-

out 𝜏 but with an additional sub-stream identifier) and both the

clean and polluted data stream are returned. The complexity of

the individual steps is O(𝑛) (Step 1), O(𝑛 ·𝑚 · 𝑙) (Step 2) and

O(𝑛 ·𝑚 · 𝑙𝑜𝑔(𝑛 ·𝑚)) (Step 3), which leads to a total complexity of

O(𝑛 ·𝑚 · ( 1𝑚 + 𝑙 + 𝑙𝑜𝑔(𝑛 ·𝑚))) with 𝑛 = |𝐷 | and 𝑙 being the size

of the largest pollution pipeline. The algorithm is deterministic

Algorithm 1: Icewafl’s data stream pollution process

Input: data stream 𝐷 ,𝑚 pollution pipelines 𝑃1, . . . , 𝑃𝑚
Output: clean data stream 𝐷𝑐 , polluted data stream 𝐷𝑝

#Step 1: Prepare data

1 for 𝑡 = (𝑎1, . . . , 𝑎𝑘 , 𝑡𝑠) ∈ 𝐷 do
2 𝑡 ← newIdentifier(𝑡 ) ⊕ (𝑎1, . . . , 𝑎𝑘 , 𝑡𝑠);
3 𝑡 ← (𝑖𝑑, 𝑎1, . . . , 𝑎𝑘 , 𝑡𝑠) ⊕ 𝜌𝜏 (𝑡𝑠);
4 𝐷1, . . . , 𝐷𝑚 ← createOverlappingSubStreams(𝐷 ,𝑚);

#Step 2: Pollute data

5 for 𝑖 ← 1 to𝑚 do
6 for 𝑡 = (𝑖𝑑, 𝑎1, . . . , 𝑎𝑘 , 𝑡𝑠, 𝜏) ∈ 𝐷𝑖 do
7 for 𝑝 = (𝑒, 𝑐, 𝐴𝑝 ) ∈ 𝑃𝑖 do
8 if 𝑐 (𝑡, 𝜏) == 𝑡𝑟𝑢𝑒 then
9 𝑡 ← 𝑒 (𝑡, 𝐴𝑝 , 𝜏);
#Step 3: Integrate and output pipeline results

10 𝐷𝑝 ←
⋃𝑚

𝑖=1{(𝑖𝑑, 𝑖, 𝑎1, . . . , 𝑎𝑘 , 𝑡𝑠) | (𝑖𝑑, 𝑎1, . . . , 𝑎𝑘 , 𝑡𝑠, 𝜏) ∈𝐷𝑖 };
11 𝐷𝑝 ← sortByTimestamp(𝐷𝑝 );

12 return 𝐷, 𝐷𝑝

(and thus reproducible) if the same seeds are used for polluters

using random error functions and/or conditions.

3 EXPERIMENTAL EVALUATION
In this section, we show the usefulness of Icewafl in two ways:

by evaluating the functionality of a DQ tool in Section 3.1 and

by analyzing the robustness of three different forecasting meth-

ods against data errors in Section 3.2. Finally, we demonstrate

that Icewafl’s pollution process introduces only minimal runtime

overhead in Section 3.3. We used the following two datasets for

these experiments:

The Beijing Multi-Site Air-Quality Dataset [8] contains data
from 12 air-quality monitoring sites located in China and weather

data from their closest weather stations. The dataset consists of

420,768 tuples and 18 attributes. It was collected every hour for

almost four years, from March 1, 2013 to February 28, 2017.

TheWearable Device Dataset [27] contains sensor data from
activity trackers worn by volunteers in their everyday lives. It

consists of multiple tables that present the sensor data in dif-

ferent levels of detail. For our experiments, we combined the

HRTable table (containing heart rate recordings) and the activity

data stored in the MainTable for the volunteer with ID 0216-

0051-NHC. We re-sampled the HRTable data to match the time

granularity of the MainTable data. The final dataset spans over

a period of nearly 11 days (264.75 hours) from February 26 to

March 7, 2016.

3.1 Experiment 1: Data Quality Tools
In the first experiment, we show that Icewafl can be used to eval-

uate the functionality of DQ tools. In other words, Icewafl can

pollute data streams such that the injected errors can be success-

fully detected with these DQ tools. Note that there is a mutual

dependency between the evaluation of data polluters and DQ

tools. On the one hand, the correctness of a pollution strategy

(i.e., data error creation) can only be verified with a proper error

detection mechanism (e.g., implemented in a DQ tool). On the

other hand, the accuracy of a DQ tool’s error detection mech-

anism can only be verified using a polluted dataset. Thus, this
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experiment shows not only the usefulness of Icewafl to evalu-

ate DQ tools, but also that the configured pollution strategy is

correctly applied on the input data.

We used the widely used DQ tool Great Expectations
4
(GX)

to analyze the introduced error patterns. GX is a DQ monitoring

platform that supports a user in defining constraints (so called

expectations) on the data. Expectations can be viewed as data

characteristics that are expected to be found in clean data and

hence can be used to identify DQ issues. For our experiment,

we used GX OSS (Open Source Software), which is available as

Python package.

We evaluated three different pollution scenarios that we cre-

ated using the wearable device dataset. The experiment shows

that Icewafl allows to define complex error scenarios on data

streams, which can be successfully detected by GX. For all error

scenarios, we repeated the pollution process 50 times since Ice-

wafl’s error conditions introduce probabilities and are therefore

non-deterministic. Each resulting output data stream is checked

independently with GX and the overall result is the average ob-

tained by all evaluations.

3.1.1 Random temporal errors. In the first scenario, we used

temporal conditions to model an error pattern that changes over

the time of a day (𝑡 ) using a sinusoidal function [7]: 𝑝 (𝑡) = 0.25 ·
𝑐𝑜𝑠 ( 𝜋

12
·𝑡) +0.25. Here, 𝑐𝑜𝑠 ( 𝜋

12
·𝑡) is one daily cycle, the 0.25multi-

plier reduces the error probability, and +0.25 sets the probability
to [0, 0.5]. The polluter introduces null values in the Distance

attribute.We used expect_column_values_to_not_be_null as
expectation to detect attribute values set to null. In total, we

discovered an average of 259.6 errors with GX, leading to an aver-

age error proportion of 24.58% with a variance of 1.22%. Figure 4

shows the detected number of polluted tuples measured with

GX (orange) as well as the expected number of polluted tuples

(blue) per hour. We can see that the polluted data errors fit the

data errors detected with GX very well, which means that the

expectation-based error detection mechanism of GX is expressive

enough to find these errors.

3.1.2 Software update. In this scenario, an erroneous update

of the operating system installed on the wearable device is simu-

lated. The scenario consists of multiple pollution types occurring

together based on shared conditions. Thus, the concept of com-

posite polluters is used. Figure 5 shows the Icewafl configuration

used in this setup. A composite polluter (“Software Update”) re-

sides at the top of the hierarchical pollution pipeline, which uses

a condition that indicates the date when the software update was

4
https://greatexpectations.io
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installed on the device. For tuples recorded after the software

update, the top-level polluter delegates the pollution process to

three registered polluters: (1) one that transforms the unit of the

Distance values from km to cm, (2) one that rounds the values

of the CaloriesBurned attribute to a precision of 2, and (3) an-

other composite polluter that manipulates the values of BPM if

they exceed a value of 100. This composite polluter harbors two

polluters that are executed in series. The first polluter sets a BPM

value to 0 and the second polluter (activated with a probability

of 20%) sets BPM values to null.

The evaluation of the generated data with GX turned out to be

more complex for this experiment than it was in the random error

experiment. Since more different pollution types were configured,

more expectations were necessary to detect them: (i) We used

expect_column_pair_values_a_to_be_greater_than_b to de-
tect tuples were the value of the Step attribute is lower than the

value of the Distance attribute. We assumed that after chang-

ing the unit of the Distance values from km to cm they be-

come greater than the Step values. (ii) For the detection of the

reduced precision in the CaloriesBurned attribute, we used

the expect_column_values_to_match_regex expectation. We

specified a regex pattern for validCaloriesBurned values that al-

lows a precision 𝑝 ≤ 3. (iii) Tuples whose BPM values were set to

0 were detected using the expect_multicolumn_sum_to_equal
expectation and (iv) tuples with BPM=null were detected using

the expect_column_values_to_not_be_null expectation. The
former expectation applies to tuples that have a valid BPM value

of 0. Here we assume that the sum of the values from the at-

tributes ActiveMinutes, Distance, and Steps is also 0, i.e., the

activity tracker was not worn. In the case a BPM value greater

than 100 was set to 0 during the pollution process, the values of

the other attributes usually still contain values that are greater

than 0 and thus the expectation fires. Interestingly, the original

data stream already contains two tuples that violate this con-

straint. In addition to the expected 26.4 dirty tuples (80% of 33),

GX therefore detected twomore tuples. Table 1 shows the number

of errors that were expected to be inserted by Icewafl (including

the already prevalent errors) along with the average number of

errors that were measured with GX. As we can see, there are only

minor differences.

3.1.3 Bad network connection. Data errors caused by a bad

network connection were simulated using a polluter that delays

tuples for an hour. The data stream was polluted only between

01:00 pm and 02:59 pm, controlled by a temporal condition that

ensured the polluter activation only in this time interval. Within

this temporal condition, an additional nested condition added a

20% probability of activating the time delay. The defined timespan

includes 88 tuples, from which we expect 20% to become polluted

by Icewafl. Thus, there should be around 17.6 delayed tuples in the

polluted data stream. The evaluation was again evaluated using

GX.We applied the expect_column_values_to_be_increasing
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Table 1: No. of errors expected in the polluted data stream
and no. of errorsmeasuredwithGX for the software update
scenario

Attribute No. of Errors No. of Errors

Expected after Pollution Measured with GX

BPM=0 (Prob. 0.8) 26.4 (+2) 28

BPM=null (Prob. 0.2) 6.60 6

Distance 374 374

CaloriesBurned 960 960

expectation on the Time attribute to detect late tuples, since de-

layed tuples disturb the strictly increasing order of timestamps

inside the data stream. Indeed, this expectation worked quite

well as the average number of detected errors was 17.02 which is

very close to the expected number of 17.6 tuples.

3.2 Experiment 2: Forecasting Methods
The objective of the second experiment was to show that Ice-

wafl can be used to evaluate the susceptibility of forecasting

methods to data errors. We selected three methods specifically

suited for online analysis: ARIMA [22], ARIMAX [9], and Holt-

Winters [22] and used the implementations from the Python

library River
5
[31].

3.2.1 Data and pollution setup. The goal of the forecasting
task was to predict the NO2 concentration for a period of 12 hours

in three different Chinese regions Gucheng, Wanshouxigong, and

Wanliu using the Beijing Air-Quality dataset. In total, there are

35,064 tuples per region without any missing tuples. Prior to

the analysis, we imputed missing values for each region in the

NO2 attribute using the forward/backward fill method ffill of

Python Pandas
6
. We refer to each data stream per region in the

following as 𝐷𝑟 . Table 2 describes all data splits we performed

to properly train, validate and test the models. The testing was

performed on 𝐷𝑒𝑣𝑎𝑙 , 𝐷𝑛𝑜𝑖𝑠𝑒 , and 𝐷𝑠𝑐𝑎𝑙𝑒 respectively.

We evaluated the three forecasting methods by means of two

different pollution scenarios: (i) noise that increased over time

and (ii) scaling of numerical values that increased over time.

Temporally increasing noise. In the first scenario, multiplicative

uniform noise was added to the data, yielding 𝐷𝑛𝑜𝑖𝑠𝑒 . First, a

value was picked from the uniform distribution 𝑈 (𝑎, 𝑏), with 𝑎

being the lower and 𝑏 being the upper bound of the distribution.

Thereafter, depending on the result of a fair coin toss, the picked

value is used as a factor to either increase or decrease the values of

the polluted attribute. By updating 𝑎 and 𝑏 for each encountered

tuple (event time 𝜏𝑖 ), we ensured that the magnitude of the noise

introduced into the data increased as time progressed:

𝜋 (𝑡𝑠𝑖 ) =
𝜋𝑚𝑎𝑥 · ℎ𝑜𝑢𝑟𝑠 (𝜏𝑖 − 𝜏0)

ℎ𝑜𝑢𝑟𝑠 (𝜏𝑛 − 𝜏0)
(3)

where 𝜋 acts as a placeholder for either 𝑎 or 𝑏, 𝜏0 and 𝜏𝑛 are the

event time of the first and the last tuple of the data stream, and

the constant 𝜋𝑚𝑎𝑥 is the upper bound for the magnitude of the

noise, i.e., the value of a parameter when processing the last tuple

in a data stream. The function ℎ𝑜𝑢𝑟𝑠 converts the difference of

two timestamps to hours.

Temporally increasing scale error. In the second pollution sce-

nario (see 𝐷𝑠𝑐𝑎𝑙𝑒 ), we scaled numerical attribute values with the

factor 0.125 for four-hour intervals. The applied polluter depends

5
https://riverml.xyz/

6
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ffill.html

Table 2: Data splits to evaluate the forecasting methods

Data Stream Description

𝐷𝑡𝑟𝑎𝑖𝑛 1st year of 𝐷𝑟 minus the last 12h

𝐷𝑣𝑎𝑙𝑖𝑑 last 12h of 1st year of 𝐷𝑟

𝐷𝑒𝑣𝑎𝑙 last year of 𝐷𝑟

𝐷𝑠𝑐𝑎𝑙𝑒 𝐷𝑒𝑣𝑎𝑙 with all numerical attributes scaled by 0.125

𝐷𝑛𝑜𝑖𝑠𝑒 𝐷𝑒𝑣𝑎𝑙 with all numerical attributes polluted with

univariate noise

on two conditions (a probability condition and a temporal con-

dition) and is only activated if both evaluate to true. The first

condition activates the polluter with a prior probability of 0.01.

The second condition actives the polluter according to

𝑝 (𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 |𝜏𝑖 ) =
ℎ𝑜𝑢𝑟𝑠 (𝜏𝑖 − 𝜏0)
ℎ𝑜𝑢𝑟𝑠 (𝜏𝑛 − 𝜏0)

(4)

where 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is the probability of pollution and 𝜏 the event

time of the first (𝜏0), current (𝜏𝑖 ) and last (𝜏𝑛) tuple. Thus, activa-

tion probability increases over event time.

3.2.2 Model configuration and hyperparameter determination.
Prior to the experiments, we determined suitable settings for the

hyperparamters of the evaluated forecasting methods using grid

search in combination with a 5-fold time series cross validation

from the Python library scikit-learn
7
. The resulting parameter

settings can be found in our GitHub-repository.

Holt-Winters andARIMAbelong to the class of auto-regressive

models and rely only on previous measurements of the target

variable when making forecasts. Thus, the input for these models

during training and prediction were only the values of the NO2

attribute. ARIMAX, on the other hand, also considers correlations

between attribute values in the same tuple. Thus, in addition to

NO2 attribute, the ARIMAX models also received the attributes

TEMP, PRESM, and WSPM as input as well as the sine and cosine

encodings of the month and the hour of the event timestamp.

3.2.3 Model execution. The generalization error of the three

forecasting models, or more precisely, its evolution over time,

was examined on each of the three data streams 𝐷𝑒𝑣𝑎𝑙 , 𝐷𝑛𝑜𝑖𝑠𝑒 ,

and 𝐷𝑠𝑐𝑎𝑙𝑒 using the same procedure. The models received data

tuple-wise in an online fashion. The training periods span 504

hours (= 3 weeks). After each learning period, a model made a

forecast for the next 12 hours, yielding the evaluation data stream.

After evaluation, the data collected in the evaluation period was

released to be used for the next training period. Because the

applied polluters are non-deterministic (through conditions and

nesting), we repeated the evaluation of each model for ten dif-

ferent data streams, each polluted using the same configuration

and reported mean values.

3.2.4 Results and discussion. Figure 6 (𝐷𝑛𝑜𝑖𝑠𝑒 ) and Figure 7

(𝐷𝑠𝑐𝑎𝑙𝑒 ) show the results for the region of Wanshouxigong. In

both cases, the mean average error (MAE) generally increases as

time progresses (with some exceptions). For the noise, however,

this trend is much more significant than for the scale errors.

Although ARIMAX performs slightly better at the beginning,

all three forecasting methods behave very similarly on 𝐷𝑠𝑐𝑎𝑙𝑒 .

The situation is different when we introduce noise into the data

stream. Here, ARIMAX is significantly more robust than its two

competitors. The results for the other regions are similar. In

7
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

TimeSeriesSplit.html
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Figure 6: MAE for the data stream of the
Wanshouxigong region polluted with
temporally increasing noise
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Figure 7: MAE for the data stream of the
Wanshouxigong region polluted with
temporally increasing scale errors
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Figure 8: Runtime overhead (in ms) for
the pollution scenarios from Section 3.1
compared to unpolluted baseline

summary, the experiment illustrates that the choice of themethod

should be made depending on the types of errors contained in

the data stream.

3.3 Experiment 3: Runtime Overhead
In the third experiment, we took a look at the runtime overhead

of Icewafl to see its effects on data stream processing frameworks.

For this, we executed each scenario from Section 3.1 50 times

on a cluster compute node with 2 Intel Xeon Gold 5220S CPU

cores and 3 GB main memory. We compare the scenarios to a

pipeline in which the same data stream was loaded and written

to disk without polluting it. Figure 8 shows the results as box

plots, yielding a small runtime increase of 3–7% for all pollution

scenarios when compared to the pipeline without pollution. Thus,

the overhead is marginal.

4 RELATEDWORK
Over the past decades, various tools have been developed to

generate structured (relational) [3, 10, 11, 16, 20, 39] and semi-

structured [1, 36] benchmark datasets. While tools such as da-

tumPIPE [1], Deimos [19], and GouDa [36] create new data from

scratch before injecting errors in it, most other tools, such as

BART [3], DWreck [10], and Jenga [39], pollute existing datasets

with additional errors. However, almost all of these tools are

limited to static data. The only tool that takes temporal aspects

into account is EMBench++ [24]. Unlike Icewafl, however, it does

not support temporal error patterns based on the event time

as error argument or within error conditions. Instead, it offers

simple modifiers to evolve tuples over time (e.g., by replacing

a categorical value), resulting in a set of sequential snapshots

of these tuples. In other words, it transforms a static tuple set

into a data stream. DaPo [20] and F4U [16] are the only two tools

that, like Icewafl, are able to distribute the pollution process. In

contrast to Icewafl, however, they are based on Apache Spark

and therefore do not provide a native data stream interface. Thus,

to the best of our knowledge, Icewafl is the first data polluter that

generates suitable benchmark data for data streaming scenarios.

5 CONCLUSION AND OUTLOOK
In this paper, we introduced Icewafl, a configurable data polluter

that allows to inject temporal errors into data streams using a

novel pollution model. To parallelize the pollution process in

distributed environments and integrate it easily into existing

streaming pipelines, we implemented Icewafl on top of Apache

Flink. We evaluated the pollution capabilities and usefulness of

Icewafl with two experiments: (1) to evaluate the error detection

capability of a DQ tool, and (2) to analyze the robustness of three

different forecasting methods against data errors. In addition, we

demonstrated that the pollution process of Icewafl introduces

only minimal runtime overhead.

We are planning the following steps for future work:

(1) A key challenge in generating realistic errors for data streams

is modeling their complex temporal dependencies. Icewafl’s

current pollution model can handle some of these depen-

dencies through the event time (e.g., in the error condition)

and by polluting dependent tuples in the same sub-pipeline.

However, modeling more sophisticated dependency patterns

requires knowledge about the data stream’s history and mod-

eling of arbitrary relationships between past events. To ad-

dress this, we plan to extend our model to incorporate time-

dependent states of the data stream and dependencies be-

tween tuple-specific random variables.

(2) Managing inter-tuple dependencies is particularly challeng-

ing in distributed pollution scenarios. Here, we plan to lever-

age Flink’s keyed process functions [35], as they enable the

computation of (current and past) states of the data stream

across individual computing nodes.

(3) After implementing these first two steps, we will conduct

comprehensive performance evaluations, since the loss of

tuple independence will make efficient parallelization con-

ceptually and technically more challenging.

(4) To demonstrate the broad utility of Icewafl, we plan to deepen

our study on DQ tools and explore new fields of application,

such as testing whether existing approaches to time series

synthesis [28, 43] are agnostic to different temporal error

types and patterns. Such an analysis will reveal the suitability

of synthesis approaches for different use cases: synthesis

approaches that do not adopt errors from the real data stream

are beneficial for applications that require clean data. On the

other hand, approaches that preserve error patterns from the

real data stream can be used to generate synthetic data that is

suitable for error analysis tasks, such as training ML models

for error detection.
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