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ABSTRACT
Data processing systems are increasingly deployed in the cloud.
While monolithic systems run fully on virtual servers, recent sys-
tems embrace cloud infrastructure and utilize the disaggregation
of compute and storage to scale them independently. The intro-
duction of serverless compute services, such as AWS Lambda,
enables finer-grained and elastic scalability within these systems.
Prior work shows the viability of serverless infrastructure for
scalable data processing, but sees limitations due to performance
variance and cost overhead, especially in networking and storage.

In this paper, we perform a detailed analysis of the perfor-
mance and cost characteristics of serverless infrastructure in the
data processing context. We base our analysis on a large series
of microbenchmarks across different compute and storage ser-
vices, as well as end-to-end workloads. To enable our analysis,
we propose the Skyrise serverless evaluation platform. For the
widely used serverless infrastructure of AWS, our analysis re-
veals distinct boundaries for performance variability in serverless
networks and storage. We also present cost break-even points for
serverless compute and storage. These insights provide guidance
on when and how serverless infrastructure can be used efficiently
for data processing.

1 INTRODUCTION
Serverless infrastructure is an increasingly popular foundation
for applications in the cloud [56, 60]. Multiple cloud providers
offer compute and storage services that abstract from the provi-
sioning and management of servers [3, 42, 69, 92]. Services such
as AWS Lambda [16] and S3 [14] allocate fine-grained resources
based on consumption, providing more elastic scalability and
operational simplicity than conventional cloud infrastructure.
The promise of cost efficiency for sporadic usage has spurred the
adoption of serverless infrastructure for infrequent and short-
running applications. Common examples are web, mobile, and
IoT application backends that require little coordination and state
management [29, 62, 105].

∗Work partially done at Hasso Plattner Institute.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Although large-scale, data-intensive applications benefit from
the elasticity of cloud infrastructure [45, 59] and aim for finer-
grained elasticity [86, 112], only few build on serverless resources
in practice. We attribute this to the sub-optimal performance and
cost for data access and communication, as indicated by prior
work [100, 106, 114] and elaborated by this work. The elasticity
of serverless architectures is enabled by storage disaggregation,
which requires access to persistent and ephemeral state via the
network. Today, serverless compute is offered as functions as a
service (FaaS) [16, 66]. Serverless functions are small and short-
lived compute units restricted to keep no state and communicate
with one another only indirectly via shared cloud storage.

Despite the limitations, data analysis systems have been built
on serverless resources. The FaaS-based systems PyWren [75,
100], Starling [98], and Lambada [93] show scalable performance
and cost efficiency for analytical workloads with low query vol-
umes, i.e., inter-arrival times in minutes. For more frequent work-
loads, they are not cost-competitive. To make serverless infras-
tructure a viable foundation for more sustained workloads, we
need a better understanding of production serverless systems
based on thorough evaluation. While some aspects have been
studied well, e.g., CPU performance, FaaS platform overheads,
and workload concurrency [58, 103, 118], the factors of perfor-
mance of storage and networking, and variability for processing
large data require more attention.

Existing work [93, 95, 100] lacks a detailed analysis of the
network performance of serverless functions and does not con-
sider all serverless storage options (cf. [41]). Most experiments
are executed at small scale and it is unclear how performance
translates to system components. Performance variance is a well-
known issue in cloud environments [102, 111] and intensified in
the serverless setting. Prior work only studies facets of serverless
performance variability [61, 98, 110]. We need a holistic view
at the application level across different locations and extended
timeframes. Additionally, we need a better understanding of
the economic tradeoffs for using serverless cloud resources for
data processing. Serverless resources meet demand quickly and
closely, but they come with higher unit costs [13, 30].

In this paper, we analyze the performance and cost factors
of serverless infrastructure for large-scale data processing with
a focus on previously overlooked characteristics. We introduce
Skyrise, a framework designed to facilitate experimentation in
serverless data processing.1

1Skyrise is open-source and available at https://github.com/hpides/skyrise.
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In summary, we make the following contributions:

(1) We present Skyrise, a framework to analyze the perfor-
mance and cost of serverless cloud infrastructure for large-
scale data processing. Skyrise includes a suite of micro-
benchmarks and a serverless query engine to run end-to-
end workloads.

(2) Using Skyrise, we perform an extensive evaluation of
serverless networking and storage to characterize bursting
and warming effects in the AWS infrastructure and show
their impact on analytical applications. Factoring out these
effects, we quantify remaining sources of variability.

(3) We compare the cost of query processing in Skyrise with
cloud functions versus VMs and identify break-even points
for economic viability of serverless compute and storage.

The rest of the paper is structured as follows. In Section 2, we
cover important background on serverless infrastructure. Then,
we introduce the Skyrise framework in Section 3. In Section 4, we
present our performance evaluation results. Section 5 addresses
the economic viability of serverless resources. We discuss our
findings in Section 6 and related work in Section 7. We conclude
in Section 8.

2 SERVERLESS INFRASTRUCTURE
Serverless infrastructure services, such as AWS Lambda and S3,
provide access to large multi-tenant pools of resources. They
enable their users to consume these resources quickly, so upfront
provisioning is often unnecessary to meet workload performance
requirements. They bill the resources at fine granularities to
minimize the cost of idle capacity. Users do not need to over-
provision resources at excessive cost to prevent performance
disruptions from demand spikes in dynamic workloads.

This is possible through the pervasive usage of multi-tenancy.
Providers of serverless infrastructure place many user workloads
on the same physical resources, e.g., CPUs or drives, to achieve
high resource utilization and efficiency. They colocate uncor-
related workloads from separate applications and industries to
improve the elasticity and economy of their services. Workload
decorrelation enables providers to provision for predictable long-
term and cross-tenant average demand. It allows users to employ
excess capacity of co-tenants to handle demand spikes [51].

Sharing resources between tenants, however, leads to con-
tention which causes variance in performance. To enhance the
robustness of their services, providers use multiple techniques,
including admission control, adaptive tenant placement [117],
and tenant isolation [52]. While every provider implements these
techniques differently, serverless infrastructure services possesses
inherent bursting, warming, and variability characteristics. Well-
documented examples include:

• AWS Lambda Function Scaling: Users can start up to
3,000 function instances in an initial burst, after which
Lambda scales tenant slots at a rate of 500 per minute [35].

• AWSDynamoDB IOPS: Users get burst throughput from
up to 5 minutes of unused capacity. Partitions of tenants
that constantly exceed capacity are migrated [33, 63].

• Google Cloud Storage: Users need to gradually increase
request rates to warm up their buckets for load spikes [65].
They must expect high tail latencies for requests [110].

The rest of this section presents the two types of infrastructure
that are most essential for data processing, namely FaaS platforms
providing compute capacity and serverless storage.

Table 1: Sizing and pricing of AWS compute services.

Resource Lambda (ARM) EC2 (C6g2)

Memory Configurable [38] Configurable3
Capacity [GiB] 0.125 – 10 2 – 128
Price [¢/GiB-h]4 3.84 – 4.80 0.65 – 1.70

Compute Memory-based5 Configurable
Capacity [vCPU] 0.07 – 5.79 1 – 64
Price [¢/vCPU-h] 6.79 – 8.49 1.30 – 3.40
Network Constant Compute-based [20]
Bandwidth [Gbps]6 0.63 0.375 – 25
Price [¢/Gbps-h] 0.48 – 0.60 3.27 – 8.70
Storage Configurable Configurable
Capacity [GiB] 0.5 – 10 0 – 3,800
Price [¢/GiB-mo] 8.12 2.33 – 5.41
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Figure 1: Architecture of the AWS Lambda FaaS platform
with control (dotted) and data (solid) paths.

2.1 Function as a Service Platforms
All prominent cloud vendors provide FaaS platforms, such as
AWS Lambda, Google Cloud Functions [66], Microsoft Azure
Functions [89], and Alibaba Cloud Function Compute [2]. Users
of cloud function services upload their application binaries as
ZIP archives or container images. They configure function sizes
and how functions are invoked.

Current FaaS platforms limit their configuration, as shown
in Table 1. Function sizing is usually done based on memory
capacity, which determines the number of virtual CPU cores.
Compared to VMs, functions are restricted to be about an order
of magnitude smaller. FaaS platforms further disallow hour-long
lifetime, persistent state, and direct communication. Functions
with these characteristics are small, short, and ephemeral tasks
that are easy to manage.

Cloud functions are invoked by either users via HTTP requests
or triggers on events from queues [28, 76], streams [25, 54], and
storage services. The architecture and invocation procedure of
the widely used FaaS system Lambda is depicted in Figure 1 [1].
A user request enters the system via a load-balanced frontend
service, which coordinates function invocations. The frontend
retrieves the function metadata and checks with the admission
service (in red) if the invocation exceeds the user’s quota for
concurrent function executions. Then, the frontend asks the as-
signment service for a sandboxed environment in the worker
fleet to execute the function binary. Sandboxes (in green) are

2ARM-based Lambda functions [36] and compute-oriented EC2 C6g instances [10]
use Graviton2 processors [115] and have comparable CPU-to-RAM capacity ratios.
3The resource capacity ratios and limits depend on the EC2 instance type [12].
4We provide ranges for the pricing tiers of Lambda [30] and the prices of EC2
on-demand and reserved instances [13]. All prices are for the AWS us-east-1 region.
5A Lambda function gets 1 vCPU equivalent per 1,769 MiB of memory [37, 38].
6AWS only provides partial information [10, 38]. We report the baseline bandwidth
from Section 4.2. Lambda network bandwidth is constant over instance sizes.
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Figure 2: Schematic architecture of a serverless storage
system with control (dotted) and data (solid) planes.

implemented with virtualization to run thousands of functions
from different users in isolation on each worker machine [1, 37].
If there is a free sandbox, the frontend routes the request payload
to this sandbox for function execution. If no sandbox is available,
the placement service is asked to create a new environment on
a worker with sufficient capacity. This involves downloading
and initializing the binary along with its dependencies and is
referred to as a coldstart (the blue path). Other than synchronous
requests, both asynchronous requests and events are received by
the polling service which polls their payloads from internal and
external queues, respectively, and invokes functions as a proxy,
adding further latency to the invocation path.

FaaS platforms charge based on the number, size, and duration
of function invocations [30]. The invocation duration is typically
tracked at a millisecond granularity, compared to the second to
minute intervals in VM billing [13]. Depending on the resource
type, Lambda functions have 2.5–5.9× higher unit prices than
EC2 VMs (cf. Table 1).

2.2 Serverless Storage Services
Cloud users have three options for serverless storage: object
stores [14, 87], key-value stores [4, 64], and distributed filesys-
tems [6, 88]. All of these services provide elastically scalable
storage capacity with high availability and durability guarantees.

Object storage, such as S3 and Azure Blob Storage, is designed
to store immutable binary objects of varying sizes and to ac-
cess these objects with scalable bandwidth. Key-value stores,
such as DynamoDB and GCP Firestore, support lower latency
key lookups at higher IOPS for kilobyte-sized values. AWS EFS,
Azure Files, and other networked filesystems with an NFS or
SMB interface provide an abstraction of files and directories.

The architecture of key-value and object storage systems is
illustrated in Figure 2 [63]. Users interact with these systems
via a simple HTTP Get/Put API. Their requests go through load-
balancing, admission (marked red), and request-routing com-
ponents before a metadata service maps the requested key to a
server in the storage fleet. Then, the storage server either receives
or sends the data. Data are partitioned and replicated on many
storage servers and servers hold shards (in green) of many users.
Partitions that outgrow their size or serve excessive load are split
and spread evenly across the fleet (marked in blue). We refer to
this process as warming and the inverse process as cooling. For
instance, S3 partitions typically serve 3.5–5.5K IOPS before they
are split [32].

7We assume no costs for data access across regions, zones, or virtual networks [5].
8We provide ranges for the pricing tiers of S3 [27] and the prices of EFS types [22].
9The S3 Express storage class charges requests for transferred data beyond 512 KiB.

Table 2: Pricing of AWS serverless storage services.

Component Requests Transfers Storage
[¢/M] [¢/GiB]7 [¢/GiB-mo]8

Read Write Read Write
S3 Standard 40 500 0 0 2.1 – 2.3
S3 Express9 20 250 0.15 0.8 16
DynamoDB 25 125 0 0 25
EFS 0 0 3 6 16 – 30

The pricing model of serverless storage services is a composite
of prices for data storage, requests, and transfers, as shown in Ta-
ble 2. In AWS, S3 is by an order of magnitude the cheapest option
to store data. S3 request cost are independent of the size (from 1 B
to 5 TiB), yet they are the highest among the services. Keeping S3
warm for 100K IOPS costs $144 per hour. The pre-warmed S3 Ex-
press variant charges requests based on size, resulting in 24–115×
higher prices for the throughput-optimal 8–16 MiB range [32].
In DynamoDB, requests are split and charged in kilobyte-scale
units. EFS has the highest data transfer fee.

3 SKYRISE EVALUATION FRAMEWORK
In this section, we introduce the Skyrise evaluation framework
for experimentation in serverless data processing. Our frame-
work includes a comprehensive suite of microbenchmarks for
serverless resources and integrates a serverless query engine to
run application-level benchmarks. The framework automates the
setup, execution, and result processing for the experiments in our
evaluation. Hence, it enables the reproduction of our experimen-
tal results. We give an overview of the design and implementation
of the framework in Section 3.1. Then, we describe our prototype
query engine for the execution of complete queries in Section 3.2.

3.1 Framework Overview
The core components of our framework (cf. Figure 3) are written
in C++ and Python. We use C++ for the performance-critical
system drivers and measurement functions. The experiment con-
figurations and result plots are in Python. We integrate our code-
base with the AWS infrastructure services Lambda and EC2 for
compute, as well as S3, DynamoDB, and EFS as storage options.
We choose the AWS environment, because Lambda is the most
widely used [60] and studied [103] FaaS platform with the fewest
performance-related restrictions [38, 67, 90]. The framework is
open-source and enables the integration of additional bench-
marks and cloud infrastructure.

Driver

Network I/O
Function

Storage I/O
Function

Minimal
Function

Query Worker

Query
CoordinatorQueries

Tasks

Parameters

Resource Level

Tasks
Experiment

Config

Plotter

Results

FaaS/IaaS Platform

Application Level

Figure 3: Architecture of the Skyrise evaluation framework
showing the experiment executionflow from config to plot.
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The framework supports experiments on two levels in the
stack. On the resource level, the framework employs micro-
benchmarks measuring performance metrics of compute and
storage services. For the application level, e.g., query operators
or full queries, the framework uses our query engine.

To execute experiments, the framework deploys and invokes
cloud function binaries. Figure 3 gives an overview of this process.
Each experiment defines a configuration, which is submitted to a
driver. Depending on the experiment level, the driver invokes a
specific function binary on its target platform. For resource-level
microbenchmarks, the driver invokes one or more instances of
the following cloud functions.
Network I/O. To analyze network performance in isolation,
the network measurement function uses iPerf3 [72], an open-
source network performance measurement tool. Our function
employs the C API, which allows fine-grained parameter tuning.
The function sends or receives randomly generated data for a
pre-specified time.
Storage I/O. The storage I/O measurement function writes or
reads randomly generated files of fixed size and number to or
from a storage service. For latency measurements, the function
calls the synchronous service APIs. For throughput measure-
ments, it calls the asynchronous APIs from a fixed thread-pool.
Minimal. This binary incorporates the minimum amount of code
for a cloud function and is a no-op. It does not link any libraries,
but random BLOBs of pre-specified sizes for startup experiments.

For application-level experiments, the driver runs queries with
our query engine by calling the query coordinator function,
which in turn breaks queries into tasks and schedules worker
functions for them. We employ the following suite of queries.
Queries. Our query suite includes TPC-H Q1, Q6, and Q12, as
well as TPCx-BB Q3. These queries are I/O-heavy and thus lend
themselves well to evaluate cloud resources.We specifically avoid
queries that benefit from sophisticated optimization or execution
techniques that hide resource aspects. Q1 and Q6 select, project,
and aggregate data. Q3 and Q12 are join queries with a broad set
of operators, including user-defined functions (UDFs).

Table 3 gives an overview of the experiment configurations.
For configurations targeting EC2, we employ a shim layer that
resembles the Lambda execution environment to run functions
on VM hosts.

When the experiment ends, the driver receives result metrics
from multiple sources: Logs, traces, and a response from the
invoked function. For resource-level experiments, the metrics
include, e.g., timestamps, request counts, latencies, and through-
puts. The driver then aggregates these results and estimates the
experiment cost using the AWS price list service, disregarding
any bulk discounts. For application-level experiments, the query
coordinator function returns high-level metrics such as query
latency and cost. Finally, the driver stores the results in a JSON
file and hands them to a plotter for visualization.

3.2 Query Execution Support
The evaluation framework integrates a serverless query engine
to support the execution of end-to-end workloads [48]. This
allows to understand how resource effects translate to applica-
tion performance. The query engine is designed to run entirely
on serverless infrastructure. Figure 4 shows an overview of its
shared-storage architecture with state kept in serverless storage.
The coordinator and worker nodes are deployed as serverless
functions and use shared serverless storage to load inputs and
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Figure 4: Execution modes of the Skyrise query engine
with cloud functions (upper path) and servers (lower path).

communicate outputs. As a deployment alternative, the query
engine can run on VMs, enabling the direct comparison of FaaS
and IaaS-based execution.

To execute a query, the framework’s driver sends a physical
query plan in JSON format to an HTTP endpoint [34]. On an
FaaS platform, this triggers a serverless function running the
coordinator. In an IaaS deployment, the request is routed to the
same coordinator binary yet running on a provisioned VM with
our shim layer. In both cases, the plan is passed to the coordinator.
A plan contains pipelines of physical operators as well as the
dependencies between the pipelines. The coordinator fetches the
metadata on the referenced pipeline input datasets, including
the number and sizes of the files. The coordinator then compiles
a distributed query plan, deciding on the number of fragments
per pipeline for data-parallel execution and on worker sizing.
This plan is the same for FaaS and IaaS deployments. Next, the
coordinator schedules the pipelines stage-wise based on their de-
pendencies. In serverless execution mode, the scheduler invokes
a worker function for each pipeline fragment. In server-based
execution, it queues and distributes the fragments across the
available worker slots. A worker parses its query fragment and
schedules the operators for execution. Workers use a vectorized
execution model. The execution includes reading input partitions
in batches from shared storage, generating partitioned outputs,
and writing them back to storage. Upon completion of the final
query pipeline, the coordinator returns a JSON response with
the location of the query result in serverless storage, the query
runtime and cost. This response is wrapped and sent back to the
HTTP client.

To isolate and analyze query subflows, such as distributed
scans and shuffles, the query engine supports the injection of
synchronization barriers into its execution. This mechanism is
implemented as an extra operator that polls a shared queue for a
barrier condition.

Moreover, the engine traces runtime information with query
context. This information can be compared between distributed
workers, as their clocks are tightly synchronized [18, 49].

Finally, the query engine adopts a number of techniques for an
execution performance that is representative of other cloud-based
data processing systems. They fall broadly into two categories.
Exploiting Serverless Compute Elasticity. To start up a large
cluster of workers quickly, the query engine employs a two-
level function invocation procedure [93]. Scheduling 256 or more
workers, the coordinator parallelizes function calls across a subset
of workers. For a query comprising𝑊 query fragments, it invokes√
𝑊 workers, each with a list of

√
𝑊 query fragments that in turn

invoke
√
𝑊 − 1 workers before executing their own fragment.
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Table 3: Overview of experiment configurations.

System under Test Driver Functions Parameters Metrics
Lambda FaaS Platform Minimal, Network I/O, Instance Size & Count I/O Throughput, Startup Latency,

Storage I/O Idle Lifetime
EC2 IaaS Platform Network I/O, Storage I/O Instance Type & Count I/O Throughput, Startup Latency
S3, DynamoDB, EFS IaaS & FaaS Storage I/O File Size & Count I/O Throughput, IOPS, Latency
Skyrise Query Engine Data System Query Coordinator, Queries, Data Size, Query Latency & Cost

Query Worker Deployment

To reduce the function invocation latency, we decrease the
duration of coldstarts and increase the probability of warmstarts.
We keep binary sizes small (< 10 MiB) by linking against the
library versions present in Lambda sandboxes and stripping off
any unneeded symbols. The deployment artifacts are not special-
ized towards any query. As such, they can be reused as long as
they are cached in the FaaS platform sandboxes.
EfficientDataAccess on Serverless Storage.To execute queries
efficiently over data stored in columnar file formats on cloud stor-
age, the engine divides large storage requests into smaller chunks
to process them in parallel. Straggling requests are retriggered
after a size-based timeout. Parquet [96] and ORC [94] file meta-
data is read to identify relevant data and push down projections
and selections.

4 PERFORMANCE EVALUATION
In this section, we present the results of our experiments using
our evaluation framework. We give insights into both low-level
and workload-specific performance of serverless infrastructure
to better understand its potential for data processing. Specifically,
we examine the following aspects in the corresponding sections:

• The dominant source of performance variability in server-
less function networking (Section 4.2)

• The choice of storage for serverless analytics and themajor
source of variable performance (Sections 4.3 and 4.4.1)

• The control of the above aspects and their translation to
application-level performance (Section 4.5)

• A quantification of the performance variability stemming
from temporal and geographical differences (Section 4.6)

4.1 Experimental Setup
We run all experiments on AWS in the availability zone (AZ)
us-east-1a [40] in a single virtual private cloud (VPC [19]) net-
work and in the time frame of February to October 2024 unless
stated otherwise. For our experiments, we deploy ARM-based
Lambda functions and on-demand VMs of the EC2 C6g family of
instances10. Our driver has low resource requirements and runs
continuously on a c6g.xlarge instance across experiments. All
other compute resources are newly created for each experiment
configuration and repetition. To run our large-scale experiments,
we asked AWS to increase our account quotas for parallel func-
tion invocations as well as vCPUs in our VM fleet to 10,000
and 5,000 [38]. As serverless storage services, we consider S3,
S3 Express [26], DynamoDB, and EFS. We do not consider the
deprecated S3 Select service [43]. In our evaluation, we do not
include VM-based container services (like the Elastic Kubernetes
Service [23]) or provisioned storage options (like ElastiCache
[24]). We also do not include the serverless offerings from other
cloud providers due to budget constraints.

10C6g instances are still much more widely deployed than the more recent C7g fam-
ily [11, 116] and thus easier to provision in large numbers (>100) for our experiments.

We track service usage via a client hook that counts requests,
including failures and retries. Based on the request counts and the
runtimes of the employed cloud functions and VMs, we calculate
and report the experiment cost. In total, our experiments perform
millions of function invocations and billions of storage requests
moving hundreds of terabytes of data, adding up to around $4,000.

4.2 Burstable Function Network Bandwidth
Distributed data systems require high network throughput. This
is especially true for serverless systems with stateless compute
and disaggregated storage, as they scan large amounts of data
from remote storage. These systems also shuffle data between
nodes via remote storage. Thus, both scanning and shuffling rely
on the network. However, the network performance of cloud
functions is usually not specified. Cloud vendors neither expose
nor guarantee the network bandwidth that functions achieve.

In this experiment, we employ network I/O functions as clients
while we deploy iPerf3 servers on EC2 instances with increased
network throughput [10, 20], so that they do not become the
bottleneck. A single server serves up to 10 clients. A well-known
limitation of EC2 is the 5 Gbps limit for single-flow network
traffic. To bypass this limitation and explore the full potential
bandwidth of functions, we establish multiple paths, i.e., TCP
connections, between each pair of endpoints. We utilize functions
with 4 vCPUs, and allocate one TCP connection per vCPU. This
allows us to measure a theoretical network bandwidth of up to
20 Gbps per function [20].

4.2.1 Network Bursting. We run the network microbench-
mark for five seconds, including an intermittent break of three
seconds with no traffic. We repeat the experiment ten times
and plot the run with the median network throughput. Figure 5
shows that a function initially delivers an inbound bandwidth
of 1.2 GiB/s and is capable of maintaining this bandwidth for
250 milliseconds. Afterwards, the bandwidth drops to zero and
shows regular spikes in which data is transferred. We observe
that this burst is renewable, i.e., it reoccurs after the 3-second
break, yet the duration of the second burst is shorter. A similar
picture emerges for the outbound bandwidth, although the band-
width is reduced and shows higher variation. We attribute this to
the additional overhead of data generation of the iPerf3 library.
We conclude that the inbound and outbound token buckets are
maintained independently of each other.

This is consistent with the rate limiting parameters of the
virtual machine monitor that Lambda builds on. According to
our throughput measurements, both buckets are configured with
an initial capacity of ∼300 MiB. Once the token bucket empties,
7.5 MiB of data can be consumed in 100 millisecond intervals,
resulting in a baseline bandwidth of 75 MiB/s. Furthermore, we
find that the token bucket refills halfway to the initial capacity
as soon as a function stops utilizing the network or terminates.
This implies that a one-off, non-rechargeable budget of ∼150 MiB
exists in addition to a rechargable bucket capacity of ∼150 MiB.
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We rerun our microbenchmark with EC2 VMs of varying sizes
as clients. The benchmark duration depends on the VM size
and ranges from three to 45 minutes. We run the experiment
three times per configuration and again report the median burst
throughput. Figure 6 shows how the network performance of
Lambda and EC2 compares. We report the initial capacity of the
token bucket for the burst mechanism in GiB. We also report the
bandwidth under burst and the sustained baseline bandwidth.
Both services employ a bursting mechanism. Lambda allows
throughput to burst for a short period of time, while the token
bucket size of EC2 instances and the duration of their burst
are substantially longer and increases with instance size. We
see a high variation for both EC2 and Lambda network burst
throughputs, yet very stable burst capacities.

4.2.2 Scalable Network Performance. To study the scaling be-
havior of Lambda’s bursting network performance, we conduct
another experiment mapping 32 to 256 functions on a cluster
of (4–26) iPerf3 servers. We measure the aggregated network
throughput in two different settings. As organizations often de-
ploy their applications in customer-owned VPCs, we restrict
parts of the experiment to a VPC within a single AZ. We omit
the customer-owned VPC in the second part of the experiment
and compare the results of both settings. Figure 7 shows that the
baseline and burst bandwidths scale horizontally. We attribute
this to the ability of Lambda to place functions effectively. How-
ever, we observe limited scalability if the experiment runs in a
customer-owned VPC within a single AZ. In particular, we see
a hard limit of ∼20 GiB/s in throughput. Restricting the service
to deploy functions within a VPC appears to either hinder its
scheduling flexibility or to introduce a network throughput quota.
We conclude that the burstable network throughput of Lambda
is significant, deterministic, and scalable (outside of VPCs). Data
processing systems should thus aim to exploit it.
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Figure 7: Aggregated network throughput at 20 ms inter-
vals for varying concurrency (32 to 256) with/without VPC.

4.3 Comparing Serverless Storage Options
Object stores, key-value stores, and distributed filesystems are
seen to be complementary in their performance characteristics
in terms of throughput, IOPS, and latency. To satisfy diverse I/O
requirements, data-intensive applications often build on a mix of
these options [46, 82]. However, there is little empirical research
on when to use which option over another [95, 101] or when
none of them are sufficient, leaving a gap in the serverless storage
landscape [81, 100]. For this reason, we conduct a comprehensive
comparison of the current serverless storage options on AWS.
We study the performance and price tradeoffs between the S3
object store, the DynamoDB key-value store, and the network
filesystem EFS in the context of large-scale data processing. We
evaluate these storage services for throughput of up to hundreds
of gigabytes and hundreds of thousands of requests per second.
In addition, we analyze their latency distribution over millions
of requests.

For these experiments, we employ our storage I/O function.
The function runs on EC2VMs, because EC2 burst capacity allows
for sustained high bandwidth throughout the experiments. We
use c6gn.2xlarge instanceswith eight vCPUs, 16 GiBmemory, and
burstable network bandwidth of up to 25 Gbps. In experiments
with distribution, all instances synchronize via a shared queue
upon startup to ensure concurrent execution. To reduce storage-
side scaling and caching effects, we keep repetition durations
short (<5 minutes) and intervals between repetitions long (>12
hours). Unless otherwise noted, we present the median out of
three repetitions. In our comparison, we consider the S3 Standard
and Express storage classes. We further include DynamoDB with
on-demand capacity [8] and strongly consistent reads [7], as well
as EFS with elastic throughput and synchronous writes [21]. All
services only charge for consumption and provide at least the
read-after-write consistency model of S3 [15, 80].

4.3.1 Throughput. Serverless systems scan and shuffle data
through storage. Both scanning and shuffling are throughput-
heavy operations. In this experiment, we study the scalability of
throughput of the storage services with the number of compute
nodes generating load. We schedule up to 128 nodes running
32 I/O threads. For S3, we generate and access 64 MiB objects,
allowing for roughly 250 GiB/s of throughput on an unpartitioned
bucket [32]. For DynamoDB, we employ the largest possible item
size of 400 KiB. We access a single table, since sharding over
multiple new on-demand tables does not yield higher throughput.
We write 4 MiB files to EFS and read them back with no caching.
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Figure 8: Aggregated read/write throughput of serverless
storage services for varying numbers of client VMs.

Our results in Figure 8 show that both the S3 variants scale
linearly up to the generated load of ∼250 GiB/s. We attribute
the difference in their write throughput to the less consistent
IOPS performance of standard S3. The serverless versions of
DynamoDB and EFS fall short of the target throughput. They each
start rejecting requests under contention at different degrees of
concurrency. EFS serves up to 64 client VMs with its throughput
converging to the quotas (20 and 5 GiB/s [21]) for an individual
filesystem instance. DynamoDB’s throughput is already saturated
by a single client VM and stays at ∼380 MiB/s for reading and
∼30 MiB/s for writing until most requests get throttled or time
out at around 16 clients.

Taking price (cf., Table 2) into account, S3, DynamoDB, and
EFS cost 0.00064, 6.55, and 3.00 ¢/GiB/s for reading, respectively.
This makes S3 also the by far most cost-efficient option.

4.3.2 Operations per Second. To process queries on large
datasets, cloud analytics systems need to access many individual
objects or files. This requires to send large numbers of concurrent
requests to the storage services. We measure the IOPS perfor-
mance of S3, DynamoDB, and EFS on newly created buckets,
tables, and filesystems. We again run up to 128 nodes, each with
32 dedicated threads sending 1 KiB requests for a total of >250K
requests per second. For DynamoDB, we asked AWS to increase
the table and account-level IOPS quotas to 250K. Our results are
shown in Figure 9. The standard S3 performance is just above
the target IOPS for an individual prefix partition [32] with 8K
reads and 4K writes per second. S3 Express is not subject to the
partition quota, providing the highest IOPS in our comparison
with 220K for reads and 42K for writes. DynamoDB also pro-
vides slightly more IOPS than defined by the quotas for new
on-demand tables [8], with 16K read IOPS and 9.6K write IOPS.
We miss the per-filesystem quotas of EFS by more than an order
of magnitude, despite closely following the documentation [21].
The read IOPS double via sharding over two filesystems, but do
not scale further.

4.3.3 Latency. Compared to compute local storage, disaggre-
gated cloud storage entails orders of magnitude higher latency.
While analytics are usually throughput-bound, latency is still
important and compensated via increased request size or con-
currency [61, 93]. To determine the latency distributions of S3,
DynamoDB, and EFS, we send one million 1 KiB read and write
requests to every service. To keep the experiment duration mod-
erate and the load on the services low, we employ 10 clients using
the synchronous APIs [17]. We present our results in Figure 10.
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Figure 9: Operations per second and container-level quotas
for each serverless storage system. For EFS, we present con-
figurations with one (EFS-1) and two (EFS-2) filesystems.

Figure 10: Latency distribution of each serverless storage
system for one million read/write requests.

We observe that S3 Standard has the highest median (27 ms for
reads and 40 ms for writes) and tail latencies. Out of 1M read
requests, 95% completed in 75 ms and the slowest requests took
just over 10 s (374X of the median). S3 Express benefits from
its zonal deployment [26] and provides significantly lower and
less variable latencies with the median and 95th percentile read
latencies at around 5 ms. DynamoDB exhibits slightly lower yet
more variable latencies than S3 Express. Finally, EFS provides
similarly low and consistent read request latencies as S3 Express
and DynamoDB, but shows 2–3× higher write latencies.

4.3.4 Choosing Storage for Data Processing. Our results al-
low us to differentiate between the available serverless storage
options. The option that provides the most economic scalable
throughput is S3. Standard S3, however, offers the lowest out-
of-the-box IOPS performance at the highest request latency. For
these reasons, the recent S3 Express variant is an attractive al-
ternative. S3 Express offers the highest IOPS throughput at con-
sistent low latency, but at higher cost. DynamoDB provides the
lowest latency, yet also the lowest throughput. Finally, EFS shows
a balanced performance, but it is inferior to S3 Express in every
evaluated dimension at a higher price point. We conclude that S3
is the most suited option for scalable data processing and focus
the rest of our evaluation on methods based on object storage.

4.4 Object Storage IOPS Scaling
Object stores provide scalable throughput at request latencies
that are acceptable for many analytical workloads [53, 107]. One
major performance limitation of object stores is their low default
IOPS, making them reject requests under spiking load. This is
problematic for concurrent query workloads on the same datasets.
Similarly, it is a challenge to serverless data analytics systems
that shuffle intermediate data through object storage [100]. Every
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Figure 11: S3 IOPS scaling from one to five prefix partitions.

serverless worker node has to read all relevant columns of all
assigned partitions of all workers in the preceding stage. For
terabyte-scale queries, even advanced shuffle strategies [93, 98]
require thousands of requests. In this experiment, we show how
to scale up IOPS in S3 both reliably and efficiently. We also de-
scribe how S3 scales down partitions and IOPS when idle.

In the S3 object store, user data is horizontally partitioned on
the object key namespace. Objects are organized in string key
prefixes, which can span from an entire bucket to an individual
object [39]. The prefixes are backed by physical partitions on S3
storage nodes and serve 3.5K writes and 5.5K reads per second
[32]. To account for workload changes, prefixes are split and
merged automatically and gradually over time (cf. Section 2.2).

4.4.1 IOPS Scaling. We examine the fraction of successful
requests under carefully controlled increasing load to understand
object storage IOPS scaling. This is necessary, because S3 throttles
requests quickly when load spikes [32, 100]. For this experiment,
we reuse the microbenchmark from the previous section with
Lambda for compute and S3 for storage. The S3 client is config-
ured with a request timeout of 200 ms for retries and exponential
backoff [50]. This results in an eager but not aggressive retry
behavior. We start with 20 Lambda instances that each read one
thousand 1 KB objects concurrently. An instance has four vCPUs
and generates ∼250-350 asynchronous requests per second, so
the overall cluster saturates an S3 partition (with ∼5–7K IOPS).
We run 10 repetitions with this configuration. Then, we continue
to run more configurations the same way, each incrementally
adding two cluster instances (and ∼600 IOPS load) up to a total
of 100 instances and around 30K requests per second.

The results are depicted in Figure 11. We plot the average
successful and failed (throttled or timed out) read operations per
second for each repetition over time. Our results show that S3
scales nearly linearly from ∼5–27.5K IOPS with this load pattern.
While scaling out, IOPS performance has a high variance with
a relative standard deviation of up to 29% for individual config-
urations. In addition, we observe three significant performance
drops about 16–19 minutes into the experiment. Although the
overall error rate is constant at just above 10% throughout the
experiment, few S3 clients see their requests repetitively being
rejected. These clients then wait exponentially longer after every
attempt and turn into stragglers in their respective repetition.
Hence, the drops in IOPS are due to our client configuration and
not S3’s scaling behavior.

In our experiment, we observe S3 scaling from one partition
serving 5.5K IOPS to five partitions providing 27.5K IOPS. This
process takes about 26 minutes and 63 million requests costing
$25. To determine what it would take to make S3 partition our
prefixes further for higher IOPS performance, we extrapolate
time and cost based on our measurements. In Figure 12, we show
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Figure 13: S3 scaling down fromfive to one prefix partitions
under hourly and daily load patterns.

our measured and extrapolated data points for up to 20 prefix
partitions totaling 110K IOPS. Given our load pattern and poly-
nomial fitting method, we see that it would take 2 hours and $228
to reach 50K IOPS. Further, it would require 9 hours and $1,094
to get 100K IOPS. This makes IOPS scaling a quickly growing
expense for users while S3 only allocates resources linearly and
with delay as a form of admission control (cf. Section 2).

4.4.2 Downscaling Behavior. After scaling up IOPS in S3, we
study the process of scaling back down in periods of low load.
This is to better understand when S3 begins to throttle requests
and merge prefix partitions. We conduct this experiment in direct
succession to the experiment in Section 4.4.1. We first wait for
an extended period of time before we run three repetitions of
the last (and largest scale) employed configuration of the storage
microbenchmark. We repeat this procedure until performance
drops down to the level of a single partition and stays there.
Since our experiment generates load against S3, it potentially
influences its own outcome. There is a tradeoff between the
frequency and accuracy of the measurements. For this reason, we
run the experiment on two separately scaled buckets with hourly
and daily measurement intervals, respectively. In Figure 13, we
see the results of scaling down our S3 buckets from five partitions
to one. We plot the band of IOPS across all three repetitions per
interval for each series of measurements. We take the highest
IOPS per interval as an indication for the number of the remaining
partitions in the buckets. Our results indicate that the overall
downscaling process takes between four and five days. After a
full day of inactivity, all five partitions remain available to serve
load. Two out of the five partitions continue to be available for
an additional three days before IOPS performance returns to
the level of a single partition. Since IOPS performance scales
linearly and remains high over extended periods of low load,
we conclude that IOPS scaling is a relevant optimization for
analytical workloads, even if they are infrequent (with hourly or
daily load patterns).
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Figure 14: Query worker throughput for given input sizes
within and beyond network burst budget with TPC-H Q6.

4.5 Exploiting Serverless Characteristics
We now study how the described performance characteristics
of serverless resources translate to data-intensive applications.
Since the translation is complex, we first show the impact on
data system components and then on full analytical queries. In
the following experiments, we use queries and datasets from the
TPC-H [108] and TPCx-BB [109] benchmarks. We run all queries
on the tables of scale factor 1.000. The tables are partitioned into
Parquet files and stored on S3.We employ the standard generators
and do not partition or sort on any specific keys. We provide
details in Table 4. We run the queries on the Skyrise query engine.
Query workers have 4 vCPUs and 7.076 MiB RAM.

4.5.1 Network Bursting for Scan-heavy Queries. In our net-
work analysis, we determine a budget of 300 MiB for unthrottled
throughput, which benefits throughput-heavy tasks like table
scanning. We show the benefit of burst-awareness by running the
scan query TPC-H Q6. We assign workers an increasing number
of partitions, gradually exceeding their budgets. We present our
results in Figure 14. We plot the expected throughput per worker
according to our network model and the actual throughput of the
Skyrise engine’s I/O stack, the scan operator, and the complete
query. We see the performance impact of S3 request handling,
decompression and deserialization, and the scan and full query
logic. Across the partitioning settings, we see that queries fully
exploiting the network burst are up to 53% faster. We derive that
serverless data systems benefit from calibrating and managing
the network ingress/egress of their compute nodes.

4.5.2 IOPS Scaling for Queries with Shuffles. Our analysis
of object storage shows that IOPS performance scales under
sustained load. We replicate and exploit this behavior at the
query level. We run the I/O-heavy TPC-H Q12 join query with
320 workers. At this degree of parallelism, the shuffling for the
join requires about 42.000 read operations and is constrained by
default rate limiting. For shuffling, we employ three different
storage setups. We use a new S3 Standard bucket, another bucket
that has just been used for query execution for 15 minutes, and

Table 4: Datasets used in the experiments. Partition sizes
are the mean Parquet file size with ZSTD compression.

TPC Table @ SF1000 Partitions
Size [GiB] # Size [MiB]

H-Lineitem 177.4 996 182.4
H-Orders 44.9 249 176.1
BB-Clickstreams 94.9 1,000 92.7
BB-Item 0.08 1 75.8
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Figure 15: IOPS throughput of various S3 classes and their
performance impact on TPC-H Q12 and its shuffle.

an S3 Express bucket. Our results are shown in Figure 15. For
reference, we plot the read IOPS throughput for all setups, as
measured in Sections 4.3.1 and 4.3.2. We see that the runtime of
the shuffle and the entire query are generally reduced by about
50% and 20%, respectively. While scaling IOPS of object storage
takes too long to do as part of interactive queries, throughput
should be considered when planning query parallelism.

4.6 Query Performance Variability
Now that we better understand network bursting in serverless
functions and object storage scaling, we quantify the impact of
geographical, temporal, and other local aspects on the variance
of query performance. For this set of experiments, we add two
queries that implement scan-heavy aggregation (TPC-H Q1) and
I/O-bound MapReduce jobs (TPCx-BB Q3). We specifically use
these queries on synthetic data to avoid data and computational
skew. We further ensure that the Skyrise query workers stay
within their network burst budgets and consistently use either
cold or warm function instances and storage buckets. We deploy
and run our query suite in the AWS regions us-east-1, eu-west-1,
and ap-northeast-1. We conduct one experiment by running our
query suite over a workday with 15 minute intervals between
runs, dubbed cold. We then carry out a second experiment with
the queries run with no wait time, i.e. warm, over three hours.

We present our results in Table 5. We report two metrics,
namely the median to base median ratio (MR) and the coefficient
of variation (CoV). MR normalizes the query suite runtime with
the median of the us-east-1 (US) region. We use CoV [102] as a
measure of variation within a region. We see a mixed picture.
The variance is low across the US and AP regions, but significant
compared to the EU (∼50%). In the EU, the start of large function
clusters takes significantly longer, likely due to contention within
the region. For the US and AP regions, the local variability is
higher, with the cold experiment showing yet higher variance
than the warm one. We deduce that more frequent usage leads
to pre-provisioning of resources and thus to more robustness.
Localized factors continue to considerably impact variability in
performance, necessitating further examination.

Table 5: Performance variability between and within re-
gions in short experiments and over a weekday.

Measure US EU AP
Cold MR (US) 1 1.48 0.95
Cold CoV (24h) 22.65 4.76 7.65
Warm MR (US) 1 1.52 0.96
Warm CoV (3h) 5.23 8.96 6.44

943



5 ECONOMIC VIABILITY
In this section, we discuss the economic implications of building
data processing systems on serverless infrastructure. We explain
the assumptions for our discussion in Section 5.1. We then exam-
ine the cost-saving potential of FaaS-based query execution in
Section 5.2. In Section 5.3, we determine the break-even points
for scanning and shuffling data on serverless storage.

5.1 System Architecture and Cloud Pricing
In our examination, we assume a distributed architecture that dis-
aggregates both persistent and ephemeral storage and uses small
and stateless compute nodes. This is the inherent architecture
of serverless data processors [93, 98] and also the target design
for some commercial cloud systems [86, 112]. While serverless
systems use this architecture due to the restrictions discussed in
Section 2, industrial systems adopt it for elasticity. Making this
assumption, we factor out the inefficiencies of disaggregation and
distribution [77, 104] compared to monolithic and single-node
systems, which can cache and process data entirely in memory.

Beyond this, we assume the current service pricing models
of AWS (cf. Tables 1 and 2, [9]). They are comparable to those
of Microsoft Azure [91] and GCP [68] and are reasonably stable
over time [31].

5.2 Breaking Even with Serverless Compute
FaaS platforms have higher compute unit prices and performance
overheads [103] than IaaS platforms. In return, they offer auto-
matic, elastic, and fine-grained scalability. In this section, we
study the economic tradeoff of IaaS and FaaS deployment of data
processing systems. We determine the performance overhead
and cost of FaaS-based execution for selected queries. In addition,
we identify the cost-savings potential enabled by elasticity.

For this experiment, we rerun our query suite from Section 4.6
in two configurations. We first run the queries on Skyrise in
Lambda with each function having 4 vCPUs and 7.076 MiB RAM.
Then, we deploy Skyrise on a cluster of 284 EC2 C6g.xlarge VMs
with 4 vCPUs and 8 GiB RAM. The functions are warmed up
and the VMs are started before the experiment begins. For both
configurations, the query plans and physical resources are the
same. The Skyrise workers employ S3 to read the base tables and
shuffle intermediate results.We run the query suite ten times each
and collect statistics from the run with the median runtime. The
statistics include the runtime, the accumulated function lifetime,
and the number and size of the storage requests per query. We
present our results for the queries TPC-H Q6 and Q12 in Table 6.

Table 6: Execution statistics and derived economic metrics:
Break-even FaaS query throughput for peak-provisioned
IaaS and intra-query peak-to-average node ratio.

Query H-Q6 H-Q12
IaaS Runtime [s] 5.2 18.1
IaaS Hourly Cost [$/h] 27.34 38.62
Storage Requests 1,401 30,033
Shuffle I/O Size [KiB] 0.4 1.1–2,078
Query I/O Cost [¢/Q] 0.16 1.39
FaaS Runtime [s] 5.7 19.2
Cumulated Time [s] 515.9 2,227.3
FaaS Query Cost [¢/Q] 4.87 21.19
Break-Even [Q/h] 558 182
Peak-to-Average-Nodes 2.21× 2.43×

Table 7: Pricing and performance of AWS server storage.
SSD (NVMe) and EBS (gp3) numbers are of 950GiB volumes.

RAM Price [¢/MiB/h] 0.00022
SSD Price [¢/h] 7.04
SSD Throughput [MiB/s] 2,000
SSD IOPS 215,000
EBS Price [¢/h] 21.88
EBS Throughput [MiB/s] 593.75
EBS IOPS 16,000

Query Runtime Slowdown. In the FaaS deployment, the
end-to-end latencies for Q6 and Q12 are 10% and 6% higher. The
primary reason is the startup time of the functions for every query
stage compared to no startup overhead in the IaaS deployment
with pre-provisioned VMs. In addition, there are occasional cold
start stragglers, in particular for the coordinator. These stragglers
do not impact cost, because other functions do not idle waiting
for them.

Query Cost and Break-Even Throughput. We calculate
the FaaS cost of a query based on the aggregated lifetimes of
both the coordinator and worker functions in all stages. We re-
late the query cost to the cost of a peak-provisioned VM cluster
to determine the break-even throughput. A C6g.xlarge instance
costs 0.136 $/h. The peak number of instances used for Q6 is
201 and for Q12 is 284. Thus, FaaS deployment is economical
for up to 558 runs per hour of Q6 or 128 runs of Q12. For adap-
tively provisioned clusters with higher utilization, the break-even
throughput decreases proportionally.

Intra-Query Elasticity.Analytical queries consist of multiple
stages that may have very different input sizes and computational
requirements. Skyrise schedules 283 nodes in the first stage of
Q12 to scan and filter 222.3 GiB and a single node to aggregate
105.5 KiB (six orders of magnitude smaller) into the final result
in the last stage (cf. Figure 16). We calculate the peak-to-average
node ratio across stages as potential cost-savings factor compared
to static peak provisioning for queries. For Q12, this ratio is 2.43×.

5.3 Breaking Even with Serverless Storage
Cloud functions can neither cache data beyond their short life-
times nor can they communicate directly. Thus, FaaS-based query
workers need to access remote cloud storage to scan and ex-
change data. This section studies the cost implications of these
limitations. In our discussion, we exclude performance concerns
and assume scans overlap with computation and shuffles are
throughput-bound.

5.3.1 Reads in the Cloud Storage Hierarchy. We build our
caching discussion on Gray’s regularly revisited five-minute rule
for trading off memory and disk accesses [44, 71]. We introduce
two variations of the rule to account for different cloud storage
pricing models. We use the first variant for cloud storage that
is priced by capacity only, such as VM-based RAM and SSDs, as
well as network drives (cf. Table 7). We calculate the break-even
interval (BEI) in seconds as follows.

𝐵𝐸𝐼 =
𝑃𝑎𝑔𝑒𝑠𝑃𝑒𝑟𝑀𝐵

𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝑃𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑃𝑒𝑟𝐷𝑖𝑠𝑘
× 𝑅𝑒𝑛𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑃𝑒𝑟𝐷𝑖𝑠𝑘

𝑅𝑒𝑛𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑃𝑒𝑟𝑀𝐵𝑜 𝑓 𝑅𝐴𝑀

The second variant reflects pricing by the number of requests,
as in serverless object storage and key-value stores.

𝐵𝐸𝐼 = 𝑃𝑎𝑔𝑒𝑠𝑃𝑒𝑟𝑀𝐵 × 𝑃𝑟𝑖𝑐𝑒𝑃𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑇𝑜𝑇𝑖𝑒𝑟2
𝑅𝑒𝑛𝑡𝑃𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑃𝑒𝑟𝑀𝐵𝑜 𝑓𝑇𝑖𝑒𝑟1
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Figure 16: Skyrise query execution plan for TPC-H Q12.

Table 8: Break-even intervals for different data access sizes
and storage combinations in AWS (us-east-1) in July 2024.

Access Size 4 KiB 16 KiB 4 MiB 16 MiB
RAM/SSD 38s 31s 31s 31s
RAM/EBS 27min 7min 3min 3min
RAM/S3 Standard 2d 12h 3min 41s
RAM/S3 Express 23h 6h 36min 39min
RAM/S3 X-Region 2d 20h 9h 9h
SSD/EBS 13h 3h 1h 1h
SSD/S3 Standard 59d 15d 1h 21min
SSD/S3 Express 29d 7d 18h 20h
SSD/S3 X-Region 70d 26d 11d 11d

For our comparison along the hierarchy of cloud storage for
query workers, we include RAM, SSDs, EBS network drives, and
S3 object storage. These are the established options for cloud
data systems [107]. We assume workers to run on EC2 C6gd VMs
with NVMe SSDs [12]. We further assume on-demand prices.
Lower reserved prices would increase the break-even intervals
proportionally, whereas higher Lambda prices would decrease
them. Table 8 shows the results of our calculations. We draw the
following conclusions.

Relevance of SSDs. The break-even for RAM versus SSD
with 4 KiB accesses is 38s, one order of magnitude less than
a decade ago [44]. This is due to increased IOPS performance
and decreased prices. The interval for larger accesses does not
get shorter because the SSD bandwidth in EC2 of 2 GiB/s [83]
becomes the bottleneck, limiting the SSD IOPS in above formula.
Conversely, the break-even for SSD and object storage is hours
to days for all but very large (≥16 MiB) accesses. As a result,
caching on SSD is economical for a wide range of access sizes
and frequencies. This explains the prevalence of SSD caches in
VM-based systems [46, 59]. While cloud functions support SSDs,
caches are bound to the short lifetime of seconds to minutes at
most, limiting their cost effectiveness. Cloud functions do not
support network drives, which potentially outlive them.

Analytics on Cold Data. Query workers do not benefit from
SSD caches when accesses occur at most on an hourly basis
and are in the megabyte scale, e.g., one 4 MiB access per hour.
Furthermore, these caches may have low hit rates, as workers
lose their state when they are removed in idle times and are
readded later. This resembles the cold data analytics workload
that serverless systems target [93].

Pricing Model. RAM/SSD break-even intervals are constant
within an EC2 instance family (e.g., C6g). This is due to SSD IOPS
performance growing with its instance and price, and both pa-
rameters being on opposite sides of above equation. Data transfer
fees, as for S3 Express and cross-region access, invalidate the
initial rule that the break-even is inversely proportional to the
access size.

Table 9: Break-even data access sizes for different instance
types and storage systems in AWS (us-east-1) in July 2024.

Instance ElastiCache C6g C6gn C6gn
Type on-demand on-demand on-demand reserved
S3 Standard 0.9 MiB 2 MiB 6.5 MiB 15.1 MiB
S3 Express – – – –

5.3.2 Impact of Shuffle I/O Size. To shuffle intermediates in a
serverless system, every worker reads its respective partition(s)
from every object of the preceding stage(s) from object storage.
For large queries, the cost of the resulting read requests dominate
the overall query cost. For this reason, many systems employ
key-value stores on provisioned VM clusters [81, 97, 100] to
shuffle intermediates. The shuffle capacity of a cluster is the
aggregated network throughput of the VMs and its cost is the
combined cost of the VMs. Since object storage requests are priced
independently of their size, there is a break-even access size at
which object storage becomes more economical for shuffling. We
calculate this access size (BEAS) in MB as follows.

𝐵𝐸𝐴𝑆 = 𝑃𝑟𝑖𝑐𝑒𝑃𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠 × 𝑀𝐵𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑃𝑒𝑟𝑆𝑒𝑟𝑣𝑒𝑟

𝑅𝑒𝑛𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑃𝑒𝑟𝑆𝑒𝑟𝑣𝑒𝑟

Table 9 shows our results for different cluster VM types from
EC2 and ElastiCache, as well as the S3 Standard and Express
storage classes. The EC2 VMs are from the C6g family, including
the network-optimized C6gn variant with four times the network
throughput at both on-premise and reserved pricing [13]. We
derive the following insights.

Case for Large Accesses. Object storage is the cheaper shuf-
fle medium when average accesses are larger than ∼1–15 MiB,
depending on the VM type and pricing model. In distributed
query execution, intermediates are highly partitioned and in-
dividual I/Os tend to be small. In our query experiments, they
are ∼1 KiB–2 MiB (cf. Table 6). There, however, is a range of
techniques to increase I/O sizes, including write combining and
staged shuffling [93, 98].

Price of VM-based Services. Even basic key-value stores,
such as ElastiCache have 2× higher prices than the EC2 VMs
that they run on. There is additional potential for workload-
optimized VMs and long-term pricing models. This motivates the
construction of shuffle systems on self-managed VMs. For S3 or
another serverless service to be competitive for small accesses,
request prices need to be orders of magnitude lower (cf. Table 2).

Pricing Model. The break-even access sizes are constant
within EC2 and ElastiCache VM families, since network through-
put grows proportionally with VM size and price. The S3 Express
storage class never breaks even with VM clusters due to its data
transfer cost component.
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6 DISCUSSION
In this section, we present key takeaways from our evaluation of
the performance and cost efficiency of serverless infrastructure.

Serverless Performance. Our results show that the key tech-
niques of serverless systems (e.g., tenant isolation and placement,
as well as rate limiting) have a large impact on performance. We
identify four aspects that have not yet been studied in detail.

(1) Network rate limiting: We show that cloud functions
and VMs are subject to network bandwidth limiting once
they consumed a deterministic burst capacity. Thus, their
ingress/egress should be aligned to maximize bandwidth.
The accelerated bandwidth can benefit scan-heavy queries.

(2) Storage IOPS scaling: Object storage is the most suited
option for serverless data analysis. We demonstrate that
the strict request rates of object storage deterministically
increase under sustained load and decrease in extended
idle periods. This process can accelerate join queries.

(3) Variability factors: Regional variance can be substantial,
but generally temporal variance is higher. More frequent
usage leads to pre-provisioning of resources and increased
robustness. Substantial sources of local variability remain
for further investigation.

(4) Security conflicts: Virtual network partitions (e. g., VPCs
commonly used in production settings) currently hinder
the elasticity of serverless networks significantly.

Serverless Economics.We observe that unit prices are higher
in serverless systems, which provision resources on behalf of the
users to provide elasticity. We see four ways to optimize cost.

(1) Infrequent and peak usage: Users pay for consumed
resources only and benefit when workloads are infrequent
or peak unpredictably. The serverless pricingmodel should
be combined with cost models for provisioned resources
to handle workloads with substantial base load.

(2) Intra-job elasticity:Analytical queries andmachine learn-
ing pipelines have varying resource demands and benefit
from intra-job elasticity enabled by serverless compute.

(3) Economic caching: Our examination suggests that cold
(hourly accessed) data should be kept in object storage
and fetched in megabyte-scale granularity. Warmer data
should be cached on VM-based SSDs.

(4) Economic shuffling: In highly distributed environments,
both serverless and provisioned storage services are sub-
optimal for data shuffling. Users should consider building
their own shuffle systems on network-optimized VMswith
discounted long-term pricing.

Transaction Processing. The request latencies and prices
of current services for disaggregated storage are inadequate for
fine-grained, high-throughput operational workloads. Users need
to build storage subsystems for efficient transaction processing.

Generality of Results. We believe that our results have a
wide relevance, since the studied performance effects are present
in VMs and object storage, which are the major building blocks
for modern commercial data analysis systems. These systems fur-
ther start to adopt serverless compute resources for functionality,
such as UDFs and ETL. We acknowledge that concrete numbers
may change between major cloud providers, over time, and be-
tween different geographies. We offer our open-source tooling
and methods to validate and revalidate our results.

7 RELATEDWORK
This section summarizes relatedwork on serverless infrastructure
and data processing systems.

Analysis of Serverless Infrastructure. Prior work includes
benchmark frameworks and studies for serverless systems from
all major cloud providers [85, 99, 103, 113]. On the application
level, they focus on web, IoT, and media applications that require
little coordination and state [58, 70, 78, 118]. On the resource
level, they cover aspects including the performance and isolation
of cloud function CPUs, memory, and disk storage. They provide
insights into FaaS platform overheads and scalability. There has
been evaluation of the network characteristics of VMs [102, 111]
and serverless functions [93, 114]. Serverless storage has been
studied in [61, 81, 95, 100, 101]. An additional area of research
focuses on performance variability within IaaS platforms [102,
111] and FaaS platforms [98, 110].

We instead evaluate the performance of serverless resources
for large-scale and stateful applications. We perform a detailed
analysis in AWS running millions of serverless functions and
billions of storage requests moving hundreds of terabytes of data.
We characterize the burstable network performance of serverless
functions and the scalability of various serverless storage sys-
tems, including the recent S3 Express. We demonstrate that these
properties translate to application performance and quantify the
remaining sources of performance variability. We present cost
break-even points for serverless compute and storage in the data
processing context.

Serverless Data Systems and Applications. Recently, there
have been several system prototypes to explore the viability
of serverless infrastructure for data processing. Some support
general-purpose, MapReduce-style processing [57, 73, 75, 79, 84,
100], and some are SQL query execution engines [47, 93, 97,
98]. Other works evaluate serverless resources for different I/O-
intensive workloads, such as machine learning training [55, 74].
Most systems are closed-source, and none allow for the analysis
of the impact of resource-level properties on system components
and full queries.

In contrast, Skyrise is open-source and allows to explore server-
less infrastructure properties across the stack with a suite of
microbenchmarks and an integrated serverless query engine.

8 CONCLUSION
We perform an in-depth analysis of serverless network, stor-
age, and compute behavior for data processing in an extensive
series of large-scale cloud experiments. Our results provide a
detailed understanding of network performance bursting and
I/O warming and their influence on query processing. Using our
analysis framework, Skyrise, we execute full queries and compare
serverless and VM-based execution. We derive several cost break-
even points to determine when serverless query processing is
economical.
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