
Breaking Down the Data-Metadata Barrier for Effective
Property Graph Data Management

Sepehr Sadoughi
TU Eindhoven

Eindhoven, The Netherlands
s.sadoughi@tue.nl

Nikolay Yakovets
TU Eindhoven

Eindhoven, The Netherlands
hush@tue.nl

George Fletcher
TU Eindhoven

Eindhoven, The Netherlands
g.h.l.fletcher@tue.nl

ABSTRACT
The ISO standard Property Graph model has become increasingly
popular for representing complex, interconnected data. However,
it lacks native support for querying metadata and reification,
which limits its abilities to deal with the demands of modern
applications. We introduce the vision of Meta-Property Graph, a
backwards compatible extension of the property graph model ad-
dressing these limitations. Our approach enables first-class treat-
ment of labels and properties as queryable objects and supports
reification of substructures in a graph. We propose MetaGPML, a
backwards compatible extension of the Graph Pattern Matching
Language forming the core of the ISO standard GQL, to query
these enhanced graphs. We demonstrate how these foundations
pave the way for advanced data analytics and governance tasks
that are challenging or impossible with current property graph
systems.

1 INTRODUCTION
Modern data engineering applications increasingly demand flexi-
bility and agility in handling data and metadata more than ever
before. During exploratory analytics, structure emerges gradually
without a predefined schema. Heterogeneity in what is a data
value versus what is an attribute name is inherent during discov-
ery, profiling, and exploration. In data integration scenarios, such
as building knowledge graphs, data and schema heterogeneity is
inevitable: what appears as a data value in one source might be
a node label or property name in another, while a subgraph in
one source might correspond to a single node elsewhere. Modern
data management solutions must therefore fully support hetero-
geneity and fluid boundaries between data and metadata.

Metadata is commonly understood in two distinct ways. The
first is attribute metadata - characteristics associated with data
objects, such as column names in relational databases or node
labels in graphs. For instance, when storing contact information,
attributes like name and email are metadata. The second form is
reification- representing an aggregation of complex relationships
or structures into a new entity or data object, making it easier
to manage and analyze. In the context of entity-relationship
modeling, reification is often used to transform relationship sets
into entity sets, allowing for more effective data modeling and
manipulation. For example, in an e-commerce system, reifying
the relationship between customers and orders creates an order
history entity that can be analyzed and queried.1

The ISO standard Property Graph (PGs) model has gained
popularity in graph data management and is widely adopted,
1Other more complex types of metadata, such as reflective or active data [7, 9, 19],
are beyond the scope of our current discussion.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

e.g., in graph DB systems such as Neo4j, Tigergraph, and Ama-
zon Neptune, as well as relational DB systems such as DuckDB
which implement the ISO extensions to SQL for PG querying.
In a property graph nodes and edges are labeled and also have
associated sets of property name/value pairs (e.g., a node labeled
Person with property Birthdate having data value 11-11-2001;
here Person and Birthdate are attribute metadata). While PGs
offer a model closely aligned with domain representations, the
model (1) strictly separates metadata from data and (2) lacks sup-
port for reification. In contrast, the W3C’s RDF graph model [18]
treats everything as data, including node and edge attributes, and
natively supports reification. This makes RDF particularly useful
for applications requiring metadata validation, verification, and
governance. There is an opportunity to bring these powerful
features to PGs while preserving their core design principles and
inherent strengths in handling data heterogeneity.

In this paper, we present a vision for overcoming barriers
to flexible management of data-metadata heterogeneity in PG
data management applications. Towards this, we introduce Meta-
Property Graph (MPG), a fully backwards compatible extension
of the PG model that addresses limitations in representing and
querying metadata. Our approach enables first-class treatment
of labels and properties as queryable data objects, as well as
reification of subgraphs. On this foundation, we further propose
MetaGPML, a fully backwards compatible extension of the Graph
Pattern Matching Language (GPML), the core language at the
heart of the ISO standard GQL for PG querying. We give a com-
plete formal specification of MPG and MetaGPML, providing the
foundations for our vision. Furthermore, we demonstrate how
these contributions facilitate advanced data analytics, integra-
tion, and governance tasks that are challenging or impossible
with current PG systems.

2 RELATEDWORK
The PG model represents a design point on the continuum be-
tween the Relational (fixed metadata) and RDF (no fixed meta-
data) data models. Of course, all points along this design con-
tinuum are equally important, finding their applications and
use-cases. And indeed, data cleaning, wrangling, integration, and
exchange are very often about moving (meta)data along the con-
tinuum. What has been missing is an appropriate design for PGs
to fully meet the modeling and querying needs of data manage-
ment scenarios such as these (see Chapter 2 of [5] for a survey
of design approaches for PG modeling).

In the research literature, dealing with the challenges of data-
metadata heterogeneity was studied in the context of relational
data integration and data integration on the web, leading to
solutions for relational and XML data-metadata mapping and ex-
change (e.g., [4, 10, 15]) and seminal work such as the SchemaSQL
and FISQL data-metadata query languages for relational databases
[16, 22]. Our work approaches these challenges in the new con-
text of the ISO standards for graph data management.

Vision Paper

Series ISSN: 2367-2005 978 10.48786/edbt.2025.80

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.80

In another direction, there is a growing body of work on map-
pings between graph data models [1, 6, 14, 20, 21] and gener-
alizing both PG and RDF [3, 13, 17]. Our vision is orthogonal
and complementary to these investigations, aiming at extending
the PG model and the standardized GQL and SQL/PGQ query
languages with seamless data-metadata functionalities.

3 A GUIDED TOUR OF WORKINGWITH
MPGS

Figure 1 illustrates a sample MPG database of publications, in-
dexing databases, and persons. Unlike standard PGs, our model
treats four types of data objects as first-class citizens: edges (𝐸𝐺),
nodes (𝑁𝐺), properties (𝑃𝐺), and labels (𝐿𝐺). Table 1 introduces
the pattern notation used in our examples, which will be formally
defined in Section 5.

Table 1: Data objects pattern notation

Nodes

(x:l) node variable (nv) x with label l
(x:l).z nv x with label l and property variable z
(x::𝜋) nv x with a pattern 𝜋 in its reified substruc-

ture

Edges

-[x:l]-> edge variable x with label l
-[x:?y]-> edge variable x with label set variable y
-[x].z-> edge variable x with property variable z

Properties

{x} property variable x
KEY(x), VAL(x) key and value of property variable x

Labels

|x| label set variable x
c ELEMENTOF x check if label c exists in label set variable x

3.1 Working with Data, Labels, and Properties
Meta-Property Graph allows direct querying of label sets as first-
class data objects, independent of their associated nodes or edges.
This enables powerful analytics over class structures in the data-
base. For example, query 𝑄1 retrieves all label sets containing
Publication to discover co-occurring tags:

𝑄1: Which label sets contain the label Publication?

MATCH |l|

WHERE "Publication" ELEMENTOF l

RETURN l AS "Publication_Co_Tags"

Result table of 𝑄1

Publication_Co_Tags
{"Publication", "Journal"}
{"Publication", "Conference"}

With MetaGPML we can also query properties as independent
data objects. Query 𝑄2 demonstrates this by retrieving the val-
ues of all Name properties, regardless of whether the property is
attached to a node or an edge.

𝑄2: What are the values of Name properties?

MATCH {p}

WHERE KEY(p) = "Name"

RETURN VAL(p) AS "Names"

Result table of 𝑄2

Names
Lee

Scopus
Rose

PubMed

MetaGPML’s ability to bind properties and label sets to vari-
ables enables fluid movement between data and metadata. 𝑄3
demonstrates this by matching relationships between publica-
tions and indexing databases and treating metadata of LABEL(y)
as data in the return clause. 𝑄4 shows how treating metadata as
queryable data helps identify potential reviewers by matching re-
searchers’ fields with publication properties—data and metadata
comparison, which is a task difficult with standard PG queries.

𝑄3: Which relationships does each publication have
with each indexing databases?

MATCH (x:Publication) -[:?y]->(z:

Indexing_DB)

RETURN x.Title AS "Title", LABEL(y) AS

z.Name

Query results are shown below, where LABEL resolves label sets
bound to y, while z.Name values form column headers:

Result bindings of 𝑄3

{ (Title ↦→ "Nature Studies", Scopus ↦→ {"Archived"}) ,
(Title ↦→ "Nature Studies", PubMed ↦→ {"Indexed"}) ,
(Title ↦→ "Biology Advancements", PubMed ↦→ {"Indexed"}) }

𝑄4: Finding reviewers based on research fields

MATCH (x:Person), (y:Publication).z

WHERE x.ResearchField = KEY(z)

RETURN x.Name AS "Reviewer candidate",

y.Name AS "Publication venue",

KEY(z) AS "Research field"

Result table of 𝑄4

Reviewer candidate Publication venue Research field
Lee Nature Studies Biology
Lee Biology advancement Biology
Rose Nature Studies Ecology

The graph structure treats publication fields as metadata, allow-
ing us to match a publication’s research fields with potential
reviewers’ expertise through their ResearchField property.

979

n3

n7

e5

l3

p7

�����������������������

Biology: since 1989

p6 Title: Biology

 Advancements

l10 ��������

p12 Name: PubMed

l6 ������

n2

l2

p4

�������������	������

Biology: since 1941

p3 Title: Nature Studies

p5 Ecology: since 1978

n6

l9 ��������

p11 Name: Scopus

e4

l5 ������

e3
l7 ��������

n5

l8

p10

������

Name: Rose

p9ResearchField:
Ecology

n1

l1

p2

������

Name: Lee

�������

�����

�������

p1

ResearchField:
Biology

e1

n4

l4

e6

l8

e2l4

p8
 Date:
05-11-2024

���������� l11

Figure 1: Example meta-property graph 𝐺

3.2 Working with Reification
MPG and MetaGPML enable reification as the second type of
metadata on property graphs. A sub-structure of an MPG can
be reified as a node, thereby making it a first-class citizen. This
enables annotating part of the graph by assigning properties and
labels to a node that reifies that part. It is worth mentioning that
the part of the graph that is being reified may or may not be
a proper graph, which means that a node can reify some data
objects without their assigned relationships in the graph, e.g., a
set of specific properties or relationships, can be reified without
the nodes they are associated with.

In Figure 1, we represent the statement “Rose assigned Lee
as a reviewer on 5th November 2024” by reifying the review
relationship into a node. Query𝑄5 retrieves the assigning editor’s
name:

𝑄5: Who assigned Lee as a reviewer and when?

MATCH (x:Person) -[:assigns]->

(y::(z:Person) -[:reviews]->())

WHERE z.Name = "Lee"

RETURN z.Name AS "reviewer name",

y.Date AS "Date",

x.Name AS "Assigning editor"

Note that in the MATCH clause we have a graph pattern embedded
in a node pattern, to denote a query to be executed on the sub-
structure reified by the node which is bound to variable y.

Result table of 𝑄5

Reviewer name Date Assigning editor
Lee 05-11-2024 Rose

While it may look that MPG is a hypergraph model it’s impor-
tant to note that hypergraphs focus on complex relationships,
while reification focuses on complex objects. In MPG, edges still
connect exactly two nodes. Nodes can act as meta-nodes, with
other data objects (nodes, edges, properties, label sets) assigned
for reification.

4 META-PROPERTY GRAPH MODEL
We next formalize Meta-Property Graphs. Let I,L,K, and V be
pairwise disjoint sets of object identifiers, labels, property keys,
and property values, respectively.

Definition 4.1. A meta-property graph is a directed and undi-
rected vertex- and edge-labeled graph𝐺 = (𝑁, 𝐸, 𝑃, 𝐿, 𝜆, 𝜇, 𝜎,𝜐, 𝜂, 𝜌),
where:

• 𝑁, 𝐸, 𝑃, 𝐿 ⊆ I are finite, pairwise disjoint sets,

• 𝜇 : 𝐿 → 2L assigns a finite set of labels to each label set
identifier,

• 𝜆 : 𝑁 ∪ 𝐸 → 𝐿 is a bijective labeling function assigning a
label set identifier to each node and edge,

• 𝜐 : 𝑃 → K × V assigns key-value pairs to properties,

• 𝜎 : 𝑁 ∪𝐸 → C assigns compatible property sets to nodes and
edges, such that for each pair of distinct objects 𝑜1, 𝑜2 ∈ 𝑁 ∪
𝐸, it holds that 𝜎 (𝑜1) ∩ 𝜎 (𝑜2) = ∅ and

⋃
𝑜∈𝑁∪𝐸 𝜎 (𝑜) = 𝑃 ,

i.e., every and each property 𝑝 ∈ 𝑃 is assigned to exactly one
node or edge.

• 𝜂 = (𝜂𝑠 , 𝜂𝑡 , 𝜂𝑢) where:
– 𝜂𝑠 , 𝜂𝑡 : 𝐸𝑑 → 𝑁 assign source and target nodes to directed
edges,

– 𝜂𝑢 : 𝐸𝑢 → {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑁 } assigns node pairs to
undirected edges,

• 𝜌 : 𝑁 → 2𝑁∪𝐸∪𝑃∪𝐿 assigns finite sets of objects to nodes,
such that for each 𝑛 ∈ 𝑁 , it holds that 𝑛 ∉ 𝜌∗ (𝑛), where
𝜌∗ (𝑛) is the closure of 𝜌 (𝑛),2 ensuring that the sub-structure
associated with each node is well-founded.

where 𝐸 = 𝐸𝑑∪𝐸𝑢 , and the set of compatible property setsC = {𝐶 ⊆
𝑃 | ∀𝑝1, 𝑝2 ∈ 𝐶, 𝑝1 ≠ 𝑝2 ⇒ 𝐾𝑒𝑦 (𝑝1) ≠ 𝐾𝑒𝑦 (𝑝2)}, 𝐾𝑒𝑦 (𝑝) =

𝜋1 (𝜐 (𝑝)), 𝑉𝑎𝑙 (𝑝) = 𝜋2 (𝜐 (𝑝)).

Design decisions. The constraints we have imposed in our
design of MPGs are minimalistic, ensuring only that all properties
are uniquely assigned to edges and nodes, and that reification
is well-founded. For instance, there is no constraint preventing
a node from having an outgoing edge to a subgraph contain-
ing one of the node’s own properties. This flexibility allows for

2Formally, 𝜌0 (𝑛) = 𝜌 (𝑛) , 𝜌𝑖 (𝑛) = 𝜌𝑖−1 (𝑛) ∪ ⋃
𝑛′ ∈𝑁∩𝜌𝑖−1 (𝑛) 𝜌 (𝑛′) , and

𝜌∗ (𝑛) = ⋃∞
𝑖=0 𝜌

𝑖 (𝑛) .

980

representing scenarios such as “Mary legally changed her first
name” or “Mary audits all names in the database (including her
own)”. Similarly, there is no constraint requiring that for each
edge in 𝜌 (𝑛), the source and target of the edge must also be in
𝜌 (𝑛), which, for instance, can be particularly valuable in appli-
cations with privacy preservation concerns. As an example, this
permits representations like “Mary is confident that Bob edited a
book, but not confident about which book”, where only the node
representing Bob and Bob’s outgoing edge labeled ’edited’ are
included, without the target of this edge. Of course, such addi-
tional constraints can be added (or existing constraints can be
removed) as appropriate to the specific application domain. It is
worth noting that MPGs support meta-properties, i.e., properties
on properties. For instance, we can represent “John’s birthdate
was entered on 23 March 2020” since 𝜌 can consist of just a sin-
gleton containing a property. For simplicity, we have omitted
special treatment of meta-properties in our main presentation.
We next define the graph substructure associated with a node.

Definition 4.2. (Sub-Structure) Let𝐺 = (𝑁, 𝐸, 𝑃, 𝐿, 𝜆, 𝜇, 𝜎,𝜐, 𝜂, 𝜌)
be a meta-property graph and 𝑛 ∈ 𝑁 . The sub-structure of 𝐺
induced by 𝑛 is 𝐺𝑛 = (𝑁𝑛, 𝐸𝑛, 𝑃𝑛, 𝐿𝑛, 𝜆𝑛, 𝜇𝑛, 𝜎𝑛, 𝜐𝑛, 𝜂𝑛, 𝜌𝑛) where:

• 𝑁𝑛 = 𝑁∩𝜌 (𝑛), 𝐸𝑛 = 𝐸∩𝜌 (𝑛), 𝐿𝑛 = 𝐿∩𝜌 (𝑛), 𝑃𝑛 = 𝑃∩𝜌 (𝑛)
• 𝜐𝑛 = 𝜐 |𝑃𝑛 , 𝜇𝑛 = 𝜇 |𝐿𝑛 (domain restrictions)

• 𝜆𝑛 (𝑜) = 𝜆(𝑜) for 𝑜 ∈ 𝑁𝑛 ∪ 𝐸𝑛 if 𝜆(𝑜) ∈ 𝜌 (𝑛), undefined
otherwise

• 𝜎𝑛 (𝑜) = 𝜎 (𝑜) ∩ 𝜌 (𝑛) for 𝑜 ∈ 𝑁𝑛 ∪ 𝐸𝑛
• 𝐸𝑑𝑛, 𝐸𝑢𝑛 ⊆ 𝐸𝑛 are directed and undirected edge subsets

• 𝜂𝑛 = (𝜂𝑠𝑛, 𝜂𝑡𝑛, 𝜂𝑢𝑛) where:
– For 𝑒 ∈ 𝐸𝑑𝑛 :

∗ 𝜂𝑠𝑛 (𝑒) = 𝜂𝑠 (𝑒) if 𝜂𝑠 (𝑒) ∈ 𝜌 (𝑛), undefined otherwise
∗ 𝜂𝑡𝑛 (𝑒) = 𝜂𝑡 (𝑒) if 𝜂𝑡 (𝑒) ∈ 𝜌 (𝑛), undefined otherwise

– 𝜂𝑢𝑛 (𝑒) = 𝜂𝑢 (𝑒) ∩ 𝜌 (𝑛) for 𝑒 ∈ 𝐸𝑢𝑛
• 𝜌𝑛 (𝑛′) = 𝜌 (𝑛) ∩ 𝜌 (𝑛′) for 𝑛′ ∈ 𝑁𝑛 , satisfying the same
well-foundedness property as in Definition 4.1.

Intuitively, the sub-structure𝐺𝑛 is a "view" of themeta-property
graph 𝐺 focused on node 𝑛. It includes only nodes, edges, prop-
erties, and labels explicitly linked to 𝑛 through 𝜌 , maintaining
their relationships within this subset. This enables analysis of
complex nested structures while preserving their context in the
larger graph.

5 META-PROPERTY GRAPH PATTERN
MATCHING LANGUAGE

We next formalize our Graph Pattern Matching Language for
Metaproperty Graphs (MetaGPML) as an extension to the Graph
Pattern Matching Language (GPML) [8, 11, 12]. GPML is the core
element of both SQL/PGQ and GQL languages standardized by
ISO. By extending GPML we ensure backward compatibility in
the sense that every GPML query is a MetaGPML query.

5.1 Syntax
LetX be a countable infinite set of variables. We introduce de-
scriptors 𝛿𝑛𝑜𝑑𝑒𝑠 and 𝛿𝑒𝑑𝑔𝑒𝑠 in MetaGPML, consistent with GPML
[12]. For x, y, z ∈ X, ℓ ∈ L, k ∈ K, and v ∈ V, we have

Descriptors:

𝛿𝑛𝑜𝑑𝑒𝑠 := 𝛿𝑒𝑑𝑔𝑒𝑠 | ::𝜋 | :ℓ::𝜋 | x::𝜋 | x:ℓ::𝜋
| :?y::𝜋 | x:?y::𝜋

𝛿𝑒𝑑𝑔𝑒𝑠 := x | :ℓ | :?y | x:ℓ | x:?y
(1)

The descriptors in (1) will be used in the following patterns to
assign variables and constants to different data objects. A pattern
𝜋 inMetaGPML and operations on it can be formulated as follows:

Patterns:

𝜋 := (𝛿𝑛𝑜𝑑𝑒𝑠) | () (node pattern)
| (𝛿𝑛𝑜𝑑𝑒𝑠).x | ().x
| -[𝛿𝑒𝑑𝑔𝑒𝑠]-> | <-[𝛿𝑒𝑑𝑔𝑒𝑠]- (edge pattern)
| -[𝛿𝑒𝑑𝑔𝑒𝑠]-
| -[]-> | <-[]- | -[]-
| -[𝛿𝑒𝑑𝑔𝑒𝑠].x->
| <-[𝛿𝑒𝑑𝑔𝑒𝑠].x-
| -[𝛿𝑒𝑑𝑔𝑒𝑠].x-
| {x} | {} (property pattern)
| |x| | || (label pattern)
| 𝜋𝜋 (concatenation)
| 𝜋+𝜋 (union)
| 𝜋 WHERE Φ (conditioning)

Π := 𝜋 | Π,Π (graph pattern)

(2)

We define E as the expression for condition Φ that can be used
in a pattern after the WHERE keyword as follows, considering
𝑐 ∈ K ∪ V ∪L.

Expressions and conditions:

E := x | x.k | v | k | ℓ (expressions)| KEY(x) | VAL(x) | LABEL(x)
Φ := E = E | E < E | x : ℓ

(conditions)| SUBSETEQ(x, y)
| 𝑐 ELEMENTOF y
| Φ AND Φ | Φ OR Φ | NOT Φ

(3)

It is important to note that KEY(x) and VAL(x) operate on prop-
erties as first-class data objects, similar to nodes and edges. The
same applies to LABEL(x), which operates on label sets. These
functions should not be confused with similar functions in other
PG query languages like OpenCypher, which only simulate these
capabilities at the query language level within the conventional
PG data model. Finally, based on (2) and (3), we formulate the
definition of clauses and queries.

Clauses and queries:

C := MATCH Π
| FILTER Φ

Q := CQ

| RETURN E1 AS 𝑥1, ... , E𝑛 AS 𝑥𝑛

(4)

MetaGPML syntax builds on GQL, using familiar patterns: nodes
in parentheses and edges in brackets, with labels prefixed by
colons. The double-colon operator (::) enables querying of rei-
fied subgraphs. Variables are distinguished from constants using
question mark prefixes. Set operations on labels and properties
use predicates like ELEMENTOF and SUBSETEQ.

981

5.2 Semantics
Next, we present the semantics of our language as a clear, un-
ambiguous foundation for further study and implementation. To
avoid unnecessary complexity, we presented the most vital se-
mantics to illustrate the concept to understand how MetaGPML
works.

Definition 5.1. (Bindings) A binding 𝛽 : X → V assigns vari-
ables 𝑥 ∈ X to values 𝑣 ∈ V, whereV = I∪L∪K∪V. We denote
this as (𝑥1 ↦→ 𝑣1, ..., 𝑥𝑛 ↦→ 𝑣𝑛), where 𝑥1, ..., 𝑥𝑛 are the variables
in the domain of 𝛽 (Dom(𝛽)) and 𝑣1, ..., 𝑣𝑛 are their corresponding
values. We denote the empty binding as () .

Definition 5.2. (Compatibility of Bindings and their Join) Two
bindings 𝛽1, 𝛽2 are compatible, denoted by 𝛽1 ∼ 𝛽2, if they agree
on their shared variables. Specifically, for every 𝑥 ∈ Dom(𝛽1) ∩
Dom(𝛽2), it holds that 𝛽1 (𝑥) = 𝛽2 (𝑥).

When 𝛽1 ∼ 𝛽2, their join 𝛽1 Z 𝛽2 is defined as follows: Dom(𝛽1 Z
𝛽2) = Dom(𝛽1) ∪ Dom(𝛽2). For any variable 𝑥 , (𝛽1 Z 𝛽2) (𝑥) =
𝛽1 (𝑥) if 𝑥 ∈ Dom(𝛽1) \ Dom(𝛽2), and (𝛽1 Z 𝛽2) (𝑥) = 𝛽2 (𝑥) if
𝑥 ∈ Dom(𝛽2).

A pattern matching semantic J𝜋K𝐺 in meta-property graph is
a set of bindings 𝛽 that assign variables to values.

Node pattern matching:

J()K𝐺 = {() | 𝑛 ∈ 𝑁 } (5)

J(x)K𝐺 = {(x ↦→ 𝑛) | 𝑛 ∈ 𝑁 } (6)

J(x:ℓ)K𝐺 = {(x ↦→ 𝑛) | 𝑛 ∈ 𝑁, ℓ ∈ 𝜇 (𝜆(𝑛))} (7)

J(x:?y)K𝐺 = {(x ↦→ 𝑛, y ↦→ 𝑙) | 𝑛 ∈ 𝑁, 𝑙 = 𝜆(𝑛)} (8)

J(x).zK𝐺 = {(x ↦→ 𝑛, z ↦→ 𝑝) | 𝑛 ∈ 𝑁, 𝑝 ∈ 𝜎 (𝑛)} (9)

Equation 5 matches any node 𝑛 ∈ 𝑁 in graph 𝐺 . Equation
6 assigns a node to variable x. Equation 7 matches nodes with
specific labels, where 𝜇 (𝜆(𝑛)) determines the node’s labels. Equa-
tion 8 assigns a node’s label set to variable y. Finally Equation 9
assigns property 𝑝 of node 𝑛 to variable z.

Meta-nodes are a key concept in MetaGPML, defined as nodes
to which diverse elements are assigned based on the concept of
sub-structure. This feature enables reification within the Meta-
Property Graph, allowing for a more nuanced representation of
complex relationships and structures.

Equation 10 demonstrates the matching of nodes with labels
to patterns within their associated sub-structure:

Meta-node pattern matching:

J(x:ℓ::𝜋)K𝐺 = J(x:ℓ)K𝐺 Z J𝜋K𝐺𝑛
(10)

The meta-node semantic definition involves a full join op-
eration between two patterns divided by :: in the node pat-
tern descriptor. Here, J(x:ℓ)K𝐺 represents a simple node pattern
matching, while J𝜋K𝐺𝑛

is a patternmatching within the𝐺𝑛 which
is a sub-structure reified by node 𝑛 that assigned to variable x.
We define the semantics of edges in our model, supporting both
directed and undirected edges.

Edge pattern matching:

J-[]->K𝐺 = { () | 𝑒 ∈ 𝐸𝑑 } (11)
J-[x]->K𝐺 = { (x ↦→ 𝑒) | 𝑒 ∈ 𝐸𝑑 } (12)

J-[:ℓ]->K𝐺 = { () | 𝑒 ∈ 𝐸𝑑 , ℓ ∈ 𝜇 (𝜆 (𝑒)) } (13)
J-[x:ℓ]-K𝐺 = { (x ↦→ 𝑒) | 𝑒 ∈ 𝐸𝑢 , ℓ ∈ 𝜇 (𝜆 (𝑒)) } (14)

J-[x:?y]->K𝐺 = { (x ↦→ 𝑒, y ↦→ 𝑙) | 𝑒 ∈ 𝐸𝑑 , 𝑙 = 𝜆 (𝑒) } (15)
J-[x].z->K𝐺 = { (x ↦→ 𝑒, z ↦→ 𝑝) | 𝑒 ∈ 𝐸𝑑 , 𝑝 ∈ 𝜎 (𝑒) } (16)

Equations 11-14 match various edge patterns, including di-
rected and undirected edges with or without labels. Equation
15 allows assigning the edge’s label set to variable y, while 16
enables assigning the edge’s properties to variable z.

The meta-property graph model enables defining specific se-
mantics for property and label objects, enhancing query capabili-
ties on these elements.

Property and label objects:

J{x}K𝐺 = {(x ↦→ 𝑝) | 𝑝 ∈ 𝑃} (17)
J|x|K𝐺 = {(x ↦→ 𝑙) | 𝑙 ∈ 𝐿} (18)

Pattern concatenation, union, and conditioning:

J𝜋1𝜋2K𝐺 = {𝛽1 Z 𝛽2 | 𝛽𝑖 ∈ J𝜋𝑖K𝐺 , 𝑖 = 1, 2 and 𝛽1 ∼ 𝛽2} (19)

J𝜋1+𝜋2K𝐺 = {𝛽 ∪ 𝛽 ′ | 𝛽 ∈ J𝜋1K𝐺 ∪ J𝜋2K𝐺 } (20)

J𝜋 WHERE ΦK𝐺 = {𝛽 ∈ J𝜋K𝐺 | JΦK𝛽
𝐺

= 𝑇𝑟𝑢𝑒 } (21)

In (20), 𝛽′ maps any variable in J𝜋1+𝜋2K𝐺 not in 𝛽’s domain to
𝑁𝑢𝑙𝑙 .

Graph patterns:

JΠ1,Π2K𝐺 = {𝛽1 Z 𝛽2 | 𝛽𝑖 ∈ JΠ𝑖K𝐺 , 𝑖 = 1, 2 and 𝛽1 ∼ 𝛽2}
(22)

The semantics JEK𝛽
𝐺
of an expression E is computed with respect

to binding 𝛽 over graph𝐺 . For a variable x in 𝛽’s domain, JxK𝛽
𝐺
=

𝛽 (𝑥).

Node and property values:

Jx.kK𝛽
𝐺

=

{
𝑉𝑎𝑙 (𝑝) if 𝛽 (x) ∈ 𝑁 ∪ 𝐸, 𝑝 ∈ 𝜎 (𝛽 (x)), 𝐾𝑒𝑦 (𝑝) = k

𝑁𝑢𝑙𝑙 otherwise
(23)

Property and Label set operations:

JKEY(x)K𝛽
𝐺
= 𝐾𝑒𝑦 (JxK𝛽

𝐺
) for JxK𝛽

𝐺
∈ 𝑃 (24)

JVAL(x)K𝛽
𝐺
= 𝑉𝑎𝑙 (JxK𝛽

𝐺
) for JxK𝛽

𝐺
∈ 𝑃 (25)

JLABEL(x)K𝛽
𝐺
= 𝜇 (JxK𝛽

𝐺
) for JxK𝛽

𝐺
∈ 𝐿 (26)

The semantics JΦK𝛽
𝐺

of a condition Φ is an element in
{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝑁𝑢𝑙𝑙}, computed with respect to 𝛽 as follows.

982

Conditions:

JE1 = E2K
𝛽

𝐺
=

𝑁𝑢𝑙𝑙 if JE1K

𝛽

𝐺
= 𝑁𝑢𝑙𝑙 or JE2K

𝛽

𝐺
= 𝑁𝑢𝑙𝑙

𝑇𝑟𝑢𝑒 if JE1K
𝛽

𝐺
= JE2K

𝛽

𝐺

𝐹𝑎𝑙𝑠𝑒 otherwise
(27)

JE1 < E2K
𝛽

𝐺
=

𝑁𝑢𝑙𝑙 if JE1K

𝛽

𝐺
= 𝑁𝑢𝑙𝑙 or JE2K

𝛽

𝐺
= 𝑁𝑢𝑙𝑙

𝑇𝑟𝑢𝑒 if JE1K
𝛽

𝐺
< JE2K

𝛽

𝐺

𝐹𝑎𝑙𝑠𝑒 otherwise
(28)

Jx:ℓK𝛽
𝐺

=

{
𝑇𝑟𝑢𝑒 if JxK𝛽

𝐺
∈ 𝑁 ∪ 𝐸 and ℓ ∈ 𝜇 (𝜆 (JxK𝛽

𝐺
))

𝐹𝑎𝑙𝑠𝑒 if JxK𝛽
𝐺

∈ 𝑁 ∪ 𝐸 and ℓ ∉ 𝜇 (𝜆 (JxK𝛽
𝐺
))
(29)

Logical operations:

JΦ1 AND Φ2K
𝛽

𝐺
= JΦ1K

𝛽

𝐺
∧ JΦ2K

𝛽

𝐺
(30)

JΦ1 OR Φ2K
𝛽

𝐺
= JΦ1K

𝛽

𝐺
∨ JΦ2K

𝛽

𝐺
(31)

JNOT ΦK𝛽
𝐺
= ¬JΦK𝛽

𝐺
(32)

Set operations:

J𝑐 ELEMENTOF yK𝛽
𝐺
=

{
𝑇𝑟𝑢𝑒 𝑐 ∈ 𝜇 (JyK𝛽

𝐺
)

𝐹𝑎𝑙𝑠𝑒 otherwise
(33)

JSUBSETEQ(x, y)K𝛽
𝐺
=

{
𝑇𝑟𝑢𝑒 𝜇 (JxK𝛽

𝐺
) ⊆ 𝜇 (JyK𝛽

𝐺
)

𝐹𝑎𝑙𝑠𝑒 otherwise
(34)

Definition 5.3. MetaGPML evaluates queries and clauses using
working tables, ensuring consistency with GQL standards. A table
T comprises bindings with shared domains.

Finally, we define the semantics of clause C and query Q as
functions operating on table T for graph 𝐺 .

Clauses and queries:

JMATCH ΠK𝐺 (𝑇) =
⋃
𝛽∈𝑇

{𝛽 Z 𝛽′ | 𝛽′ ∈ JΠK𝐺 , 𝛽 ∼ 𝛽′}

(35)

JFILTER ΦK𝐺 (𝑇) = {𝛽 ∈ 𝑇 | JΦK𝛽
𝐺
= 𝑇𝑟𝑢𝑒} (36)

JC QK𝐺 (𝑇) = JQK𝐺 (JCK𝐺 (𝑇)) (37)

JRETURN E1 AS 𝑥1, . . . , E𝑛 AS 𝑥𝑛K𝐺 (𝑇) =⋃
𝛽∈𝑇

{(𝑥1 ↦→ JE1K
𝛽

𝐺
, . . . , 𝑥𝑛 ↦→ JE𝑛K

𝛽

𝐺
)} (38)

The semantics of MetaGPML extend GPML to enable query-
ing meta-property graphs through: matching nodes and edges
with labels/properties, handling meta-nodes with subgraphs, and

treating property and label objects as first-class citizens. The lan-
guage supports pattern operations, set predicates, and standard
clauses for metadata-aware analytics.

6 FUTURE RESEARCH VISION FOR THE
MPG

In this paper, we highlighted the critical need to break down bar-
riers between data and metadata in property graph management.
As the first concrete steps towards this vision, we introduced a
fully specified data model and query language for meta-property
graphs, enabling seamless modeling and interoperation of data
and metadata. While this work lays the foundation for flexible
property graph management for contemporary applications, fur-
ther research is needed to fully realize this vision.

(1) Physical implementation and technical challenges. A
key challenge is implementing the MPG data model efficiently.
Since label sets and properties are treated as data objects with
identifiers, they may need dedicated storage and indexing strate-
gies. Alternatively, approaches like concatenated IDs could main-
tain existing storage structures but may impact query evaluation.
Research is needed on physical representations and indexing
strategies that optimize MPG performance.

(2) Meta-Property Graphs in practice. It’s important to fur-
ther investigate how Meta-Property Graph can enhance knowl-
edge engineering and management in practice. Understanding
how metadata awareness and sub-structure reification can con-
tribute to improving tasks like auditing and human-in-the-loop
validation of knowledge graphs or data cleaning, wrangling, in-
tegration, and exchange is crucial. Furthermore, studies should
be conducted on how the capabilities that MPG introduce, such
as subgraph annotation and querying different forms of meta-
data, can enhance knowledge reasoning and facilitate advanced
analysis within knowledge graphs. Additionally, developing effec-
tive educational approaches and training resources for students
and professionals working with MPGs and MetaGPML requires
further study.

(3) Improvements and integration. Meta-Property Graph
and MetaGPML can be enhanced through: (1) extending
MetaGPML with additional functions to leverage better metadata
awareness and also including other currently existing abilities
such as paths and repetition which we did not include in this
proposed vision of MetaGPML for the sake of simplicity, (2) de-
veloping schema and constraint languages for MPG building on
PG-SCHEMA [2], and (3) incorporating other forms of metadata
such as reflection to expand the metadata awareness in MPG.

REFERENCES
[1] Ghadeer Abuoda, Daniele Dell’Aglio, Arthur Keen, and Katja Hose. 2022.

Transforming RDF-star to Property Graphs: A Preliminary Analysis of Trans-
formation Approaches – extended version. In QuWeDa Workshop on Storing,
Querying and Benchmarking Knowledge Graphs.

[2] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip
Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda,
Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi
Wu, and Dusan Zivkovic. 2023. PG-Schema: Schemas for Property Graphs.
Proc. ACM Manag. Data 1, 2 (2023), 198:1–198:25.

[3] Renzo Angles, Aidan Hogan, Ora Lassila, Carlos Rojas, Daniel Schwabe, Pedro
Szekely, and Domagoj Vrgoč. 2022. Multilayer Graphs: A Unified Data Model
for Graph Databases. In Proceedings of the 5th ACM SIGMOD Joint International
Workshop on Graph Data Management Experiences & Systems (GRADES) and
Network Data Analytics (NDA). Association for Computing Machinery, Article
11, 6 pages.

983

[4] Angela Bonifati, Elaine Qing Chang, Terence Ho, Laks V. S. Lakshmanan,
Rachel Pottinger, and Yongik Chung. 2010. Schema mapping and query
translation in heterogeneous P2P XML databases. VLDB J. 19, 2 (2010), 231–
256.

[5] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.
Querying graphs. Morgan & Claypool.

[6] Julian Bruyat, Pierre-Antoine Champin, Lionel Médini, and Frédérique Lafor-
est. 2021. PREC: semantic translation of property graphs. 1st workshop on
Squaring the Circles on Graphs (2021). https://doi.org/arXiv:2110.12996v1

[7] Jan Van den Bussche, Dirk Van Gucht, and Stijn Vansummeren. 2007. A
crash course on database queries. In Proceedings of the Twenty-Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM,
143–154.

[8] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid
Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip
Murlak, Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Do-
magoj Vrgoč, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching
in GQL and SQL/PGQ. In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22). Association for Computing Machinery,
2246–2258. https://doi.org/10.1145/3514221.3526057

[9] George Fletcher. 2014. On reflection in Linked Datamanagement. InWorkshops
Proceedings of the 30th International Conference on Data EngineeringWorkshops,
ICDE 2014, Chicago, IL, USA. IEEE Computer Society, 269–271.

[10] George Fletcher and Catharine Wyss. 2009. Towards a General Framework for
Effective Solutions to the Data Mapping Problem. Journal on Data Semantics
XIV (2009), 37–73.

[11] Nadime Francis, Amelie Gheerbrant, Paolo Guagliardo, Libkin Leonid, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,
and Domagoj Vrgoč. 2023. A Researcher’s Digest of GQL. In 26th International
Conference on Database Theory (ICDT 2023), Vol. 255. https://doi.org/10.4230/
LIPIcs.ICDT.2023.1

[12] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,
and Domagoj Vrgoc. 2023. GPC: A Pattern Calculus for Property Graphs. In
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS ’23). Association for Computing Machinery, 241–
250. https://doi.org/10.1145/3584372.3588662

[13] Ewout Gelling, George Fletcher, andMichael Schmidt. 2024. Statement Graphs:
Unifying the Graph Data Model Landscape. In Database Systems for Advanced
Applications - 29th International Conference, DASFAA 2024. 364–376.

[14] Olaf Hartig. 2014. Reconciliation of RDF* and Property Graphs.
arXiv:1406.3399v3 (2014). https://doi.org/10.48550/ARXIV.1409.3288

[15] Mauricio A. Hernández, Paolo Papotti, and Wang Chiew Tan. 2008. Data
exchange with data-metadata translations. Proc. VLDB Endow. 1, 1 (2008),
260–273.

[16] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian. 2001.
SchemaSQL: An extension to SQL for multidatabase interoperability. ACM
Transactions on Database Systems (TODS) 26, 4 (2001), 476–519. https://doi.
org/10.1145/503099.503102

[17] O. Lassila, M. Schmidt, B. Bebee, D. Bechberger, W. Broekema, A. Khandelwal,
K. Lawrence, R. Sharda, and B. Thompson. 2023. The OneGraph Vision:
Challenges of Breaking the Graph Model Lock-In. Semantic Web Journal 14
(2023). Issue 1.

[18] Ora Lassila and Ralph R. Swick. 1999. Resource Description Framework
(RDF) Model and Syntax Specification. World Wide Web Consortium (W3C)
Recommendation. https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[19] Divesh Srivastava and Yannis Velegrakis. 2007. Intensional associations be-
tween data and metadata. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, 401–412.

[20] Radu Stoica, George Fletcher, and Juan F. Sequeda. 2019. On Directly Mapping
Relational Databases to Property Graphs. In AMW.

[21] Dominik Tomaszuk, Renzo Angles, and Harsh Thakkar. 2020. PGO: Describing
Property Graphs in RDF. IEEE Access 8 (2020), 118355–118369. https://doi.
org/10.1109/access.2020.3002018

[22] Catharine M. Wyss and Edward L. Robertson. 2005. Relational languages for
metadata integration. ACM Transactions on Database Systems 30, 2 (2005).
https://doi.org/10.1145/1071610.1071618

984

