
Path-based Algebraic Foundations of GraphQuery Languages
Renzo Angles

Universidad de Talca & IMFD Chile
Chile

renzoangles@gmail.com

Angela Bonifati
Lyon 1 Univ., Liris CNRS & IUF

France
angela.bonifati@univ-lyon1.fr

Roberto García
Universidad de Talca & IMFD Chile

Chile
roberto.garcia@utalca.cl

Domagoj Vrgoč
PUC Chile & IMFD Chile

Chile
vrdomagoj@uc.cl

ABSTRACT
Graph databases are gaining momentum thanks to the flexibility
and expressiveness of their data models and query languages. A
standardization activity driven by the ISO/IEC standardization
body is also ongoing and has already conducted to the specifica-
tion of the first versions of two standard graph query languages,
namely SQL/PGQ and GQL, respectively in 2023 and 2024. Apart
from the standards, there exists a panoply of concrete graph query
languages provided by current graph database systems, each of-
fering different query features. A common limitation of current
graph query engines is the absence of an algebraic approach for
evaluating path queries. To address this, we introduce an abstract
algebra for evaluating path queries, allowing paths to be treated
as first-class entities within the query processing pipeline. We
demonstrate that our algebra can express a core fragment of path
queries defined in GQL and SQL/PGQ, thereby serving as a for-
mal framework for studying both standards and supporting their
implementation in current graph database systems. We also show
that evaluation trees for path algebra expressions can function as
logical plans for evaluating path queries and enable the applica-
tion of query optimization techniques. Our algebraic framework
has the potential to act as a lingua franca for path query evalu-
ation, enabling different implementations to be expressed and
compared.

1 INTRODUCTION
Graph databases are becoming a widely spread technology, lever-
aging the property graph data model, and exhibiting great expres-
siveness and computational power [4]. The success of graph data
systems such as Neo4j, TigerGraph, MemGraph, Oracle PGX,
AWS Neptune and RedisGraph had led to a standardization ac-
tivity around graph query languages, carried out by the ISO/IEC
standardization body. The ISO/IEC has already finalized the first
version of SQL/PGQ [17] as part of the 2023 version of the SQL
standard and has recently finalized GQL [18], a native graph
query language that will eventually not only return tables but
also paths and graphs.

Finding and returning paths is a fundamental part of every
graph query language as witnessed by the rich set of features for
manipulating paths in the SQL/PGQ and GQL standard. How-
ever, while the ISO standards do prescribe mechanisms for path
manipulation, current engines are severely lagging in their imple-
mentation. Indeed, to the best of our knowledge, there is currently

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

no engine that fully supports the path features prescribed by the
two standards, and most solutions deploy their own definitions
to express and evaluate path queries [8]. We believe that one
reason for this is the lack of a common algebra that allows one to
express the multitude of path query features required by graph
engines and prescribed by the SQL/PGQ and GQL standards.

Therefore, in this paper, we lay the foundations of a path-based
algebraic framework for evaluating path queries. Our effort is
relevant from both a theoretical viewpoint and a system perspec-
tive. In fact, a standard graph query algebra is missing, while it is
a core component of next-generation graph ecosystems and their
user cases [30]. Our framework is expressive as it encompasses the
fundamental path features of current graph query languages and
the ISO standards while precisely formalizing their semantics. It
also offers query composability, allowing one to specify algebraic
expressions that can be arbitrarily nested and returns sets of
paths that are consumed by other queries. It also exhibits strict
adherence to the standard graph query languages in terms of the
covered query operators and the different variants of the query
semantics supported by them. It also embodies a blueprint for the
algebra-based implementation of graph queries across systems,
since it directly compiles into logical plans to evaluate graph
queries, paving the way to the final adoption of the graph query
language standards themselves. Additionally, our formalization
of the path-based algebra anticipates the future versions of the
query language standards, expressing several properties outside
of their current scope.

To illustrate the expressiveness of our path-based algebraic
framework, we introduce an example below.

Path algebra by example. Consider the property graph shown
in Figure 1, which is a snippet of the graph provided by the
LDBC Social Network Benchmark [31], a popular benchmark for
graph database systems. The graph contains two types of nodes
(identified by the labels Person and Message) and three types of
edges (identified by the labels Knows, Likes and Has_creator). An
essential characteristic of this graph is the capability to employ
recursion, due to the presence of cycles. Specifically, there is an
inner cycle that involves edges Knows and an outer cycle that
traverses the concatenation of edges Likes and Has_creator.

An example of a path query (in GQL-like syntax) leveraging
the cyclic structure of the underlying graph data is reported
below. The query computes all the paths from the node n1 (Moe)
to the node n4 (Apu), either across the inner cycle with label Knows
or across the outer cycle with labels Likes and Has_creator.

MATCH p = (x {name:"Moe"})-[(Knows+)|
(Likes/Has_creator)+]->(y {name:"Apu"})

In this paper, we introduce a comprehensive path algebra that
allows us to evaluate path queries as relational database systems

Series ISSN: 2367-2005 783 10.48786/edbt.2025.63

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.63

txt: "Msg1"

txt: "Msg2" txt: "Msg3"

Knows

Edge Labels

Has CreatorLikes

e8:Likes

e9:Has_creator e6:Likes

e11:Has_creator e7:Likes

e10:Has_creator

e1:Knows e4:Knows

e2:Knows e3:Knows

name: "Moe" name: "Bart" name: "Apu"

name: "Lisa"

n1:Person n2:Person n4:Person

n3:Person

n5:Message

n6:Message n7:Message

e5:Likes

Figure 1: A graph representing a social network (drawn
from the LDBC SNB benchmark).

do for SQL queries. Specifically, given a path query expression,
we are able to create a logical query plan, and then a physical
query plan. For example, Figure 2 shows an evaluation tree that
represents a logical query plan for the query presented above.

In general, our algebra mimics the standard relational algebra
in terms of symbols used, but it operates on sets of paths instead
of relations. As such, it uses the set of nodes and the set of edges
(i.e. paths of length zero and one, respectively) as its atoms, and
combines them to construct and filter out paths. Our algebra
is divided into three groups: core path algebra, recursive path
algebra, and extended path algebra.

The core algebra includes three operators: selection, join and
union. The selection operator (𝜎) filters a set of paths according to
a specific selection condition. For example, 𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1)) = Likes

filters the paths whose first edge has the label Likes. The union
operator (∪) computes the union of two sets of paths, eliminating
duplicates. The join operator (⊲⊳) combines paths from two sets
by generating a new path for each pair of paths 𝑝1,𝑝2 satisfying
that the final node of 𝑝1 is equal to the first node of 𝑝2, thus
mimicking the concatenation of paths.

The recursive path algebra is based on the recursive operator
𝜙 , which computes a recursive self-join over a set of paths, allow-
ing the construction of paths of arbitrary length. Returning to
the example shown in Figure 2, the underlying semantics of the
𝜙𝑊𝑎𝑙𝑘 operator is to construct paths by applying a recursive con-
catenation of paths, starting with paths of the form (𝑎, Knows, 𝑏),
without any type of restriction on the resulting paths. In this
case, due to the presence of the two cycles in the graph shown
in Figure 1 (the inner loop formed by the label Knows, and the
outer loop formed by the concatenation of the label Likes with
the label Has_creator), the query will never halt, since it can keep
on looping and returning longer and longer paths.

To cope with the issue of infinite results, GQL and SQL/PGQ
impose a tight policy on paths that can be returned through
the concept of restrictors, that control the type of paths that are
matched to the query (for instance, shortest walks or simple
paths). Our algebra mimics this behavior by specializing the 𝜙
operator according to different semantic restrictions that must be

imposed. Specifically, in addition to the Walk semantics (𝜙𝑊𝑎𝑙𝑘),
our algebra provides recursive operators for the Acyclic, Sim-
ple, Trail, and Shortest path semantics. All these semantics are
included in the core pattern matching fragment of both GQL
and SQL/PGQ, which is common to the two standards. Hence,
if we change the recursive operators in our example query tree
with 𝜙𝑆𝑖𝑚𝑝𝑙𝑒 , then the result of the query will only contain the
following two paths:

𝑝𝑎𝑡ℎ1 = (𝑛1, 𝑒1, 𝑛2, 𝑒4, 𝑛4)
𝑝𝑎𝑡ℎ2 = (𝑛1, 𝑒8, 𝑛6, 𝑒11, 𝑛3, 𝑒7, 𝑛7, 𝑒10, 𝑛4),

where we denote a path as an interchanging sequence of nodes
and edges, starting and ending with a node.

The extended path algebra introduces the notion of a solution
space and defines three operators (similar to those in SQL but
designed for path manipulation): group-by, order-by and projec-
tion. A solution space is a data structure used to organize a set of
paths into groups which are further organized into partitions.

The group-by operator receives a set of paths and generates a
solution space where the paths, groups, and partitions can be or-
ganized in 8 different ways (e.g. multiple partitions, with a single
group per partition, such that all the paths in a group have the
same initial node). The order-by operator sorts the paths, groups,
and partitions of a solution space based on the length of the paths.
The projection operator returns a set of paths extracted from a
solution space according to a given criterion. The components of
the extended algebra were designed to support different types of
Selectors (e.g. ANY SHORTEST), which is a novel feature introduced
in GQL and SQL/PGQ.

A key feature of our algebra is query composability, as a set
of paths serves as the primary data structure for input and out-
put in the algebra operators (with solution spaces as secondary
data structures). It is important to note that current graph query
languages are unable to manipulate a set of paths, and query
composability is often lost when returning paths as bindings.

Overall, our contributions can be summarized as follows:

• We introduce an abstract algebra for evaluating regular
path queries, allowing paths to be treated as first-class
entities within the query processing pipeline.
• We demonstrate that our algebra can express a core frag-
ment of path queries defined in GQL and SQL/PGQ, and
can therefore serve as a formal framework for studying
both standards.
• We provide precise and concrete semantics for the se-
lectors and restrictors introduced in GQL and SQL/PGQ.
Additionally, we include several operators missing from
the two proposals (e.g. projection), providing space for
future additions to the standard.
• We also show that evaluation trees for path algebra ex-
pressions can function as logical plans for evaluating path
queries and enable the application of query optimization
techniques. Concretely, once we have an algorithm for
each operator in the algebra, a sound proof of concept
implementation of the GQL and SQL/PGQ standards can
be provided with ease.
• We provide an open-source parser of the algebra and we
make it publicly available for the wider community.
• Our algebraic framework has the potential to act as a
lingua franca for path query evaluation, enabling different
implementations to be expressed and compared.

784

𝜎𝑓 𝑖𝑟𝑠𝑡 .𝑛𝑎𝑚𝑒="Moe" ∧ 𝑙𝑎𝑠𝑡 .𝑛𝑎𝑚𝑒="Apu"

∪

𝜙𝑊𝑎𝑙𝑘

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

𝜙𝑊𝑎𝑙𝑘

⊲⊳

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Likes

Paths1(𝐺)

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Has_creator

Paths1(𝐺)

Figure 2: Example of a query tree based on a path algebra expression that allows the evaluation of a recursive path query.

2 PRELIMINARIES
The path algebra proposed in this article has been designed to
return and manipulate sets of paths. In this sense, each algebra
operator takes one or two sets of paths as input, and its evaluation
returns a single set of paths. Next, we introduce basic concepts
associated to property graphs and paths.

2.1 Property graphs
Informally, a property graph is a directed labeled multigraph with
the special characteristic that each node or edge could maintain
a (possibly empty) set of property-value pairs [1]. From a data
modeling point of view, a node represents an entity, an edge rep-
resents a relationship between entities, and a property represents
a specific feature of an entity or relationship.

Formally, let O be an infinite set of object identifiers, L be an
infinite set of labels, and V be an infinite set of values. Labels will
be represented as unquoted strings without whitespace. Values
will be represented as quoted strings.

Definition 2.1 (Property graph). A property graph is defined as
a tuple G = (𝑁, 𝐸, 𝜌, 𝜆, 𝜈) where:

(1) 𝑁 ⊂ O is a finite set of node identifiers;
(2) 𝐸 ⊂ O is a finite set of edge identifiers where 𝑁 ∩ 𝐸 = ∅;
(3) 𝜌 : 𝐸 → (𝑁 × 𝑁) is a total function that defines the pairs

of nodes connected by each edge;
(4) 𝜆 : (𝑁 ∪ 𝐸) ⇀ L is a partial function that assigns labels to

nodes and edges;
(5) 𝜈 : (𝑁 ∪ 𝐸) × L ⇀ V is a partial function that defines

properties for nodes and edges.
As an illustration, consider the graph shown in Figure 2. Ac-

cording to the above definition, wewill have that𝑁 = {𝑛1, . . . , 𝑛7}
is the set of node identifiers, and 𝐸 = {𝑒1, . . . , 𝑒11} is the set of
edge identifiers. Nodes and edges are considered objects in a
graph. We see that 𝜆(𝑛1) = Person defines the node label of 𝑛1,
and 𝜆(𝑒1) = Knows defines the edge label of 𝑒1. Given an object 𝑜
(node or edge), if 𝑜 ∉ Domain(𝜆) then 𝜆(𝑜) = ∅. Given the edge
𝑒1 with 𝜌(𝑒1) = (𝑛1, 𝑛2), we say that 𝑛1 and 𝑛2 are the source
node and the target node of 𝑒1, respectively. The assignment
𝜈(𝑛1, name) = "Moe" indicates that the node 𝑛1 has a property with
the label name whose value is "Moe".

2.2 Paths
A path 𝑝 in a property graph 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜈) is a sequence of
node and edge identifiers of the form

𝑝 = (𝑛1, 𝑒1, 𝑛2, 𝑒2, 𝑛3, 𝑒3, . . . , 𝑒𝑘 , 𝑛𝑘+1)

where𝑘 ≥ 0,𝑛𝑖 ∈ 𝑁 , 𝑒𝑖 ∈ 𝐸, and 𝜌(𝑒𝑖) = (𝑛𝑖 , 𝑛𝑖+1) for 1 ≤ 𝑖 ≤ 𝑘+1.
The last condition ensures that for each pair of edges 𝑒𝑖 , 𝑒 𝑗 in 𝑝 ,
the target node of 𝑒𝑖 is equal to the source node of 𝑒 𝑗 .

The length of a path 𝑝 is the number of edge identifiers in 𝑝 .
The label of a path 𝑝 , denoted as 𝜆(𝑝), is the sequence of edge
labels obtained from 𝑝 , that is, 𝜆(𝑝) = (𝜆(𝑒1), . . . , 𝜆(𝑒𝑘)).1 If the
length of 𝑝 is 0 then 𝜆(𝑝) = (), i.e., an empty sequence of labels.

Given a graph𝐺 = (𝑁, 𝐸, 𝜌, 𝜆), the function Paths0(𝐺) returns
the paths of length 0 in 𝐺 , that is, Paths0(𝐺) = {(𝑛) | 𝑛 ∈ 𝑁 }.
The function Paths1(𝐺) returns the paths of length 1, that is,
Paths1(𝐺) = {(𝑛, 𝑒, 𝑛′) | 𝑒 ∈ 𝐸 ∧ 𝜌(𝑒) = (𝑛, 𝑛′)}. The function
Paths∗(𝐺) returns all the paths in 𝐺 .2

Two paths are equal if they have the same sequence of node
and edge identifiers. A path 𝑝 = (𝑛1, 𝑒1, . . . , 𝑒𝑘 , 𝑛𝑘+1) is called
acyclic, if 𝑛𝑖 ≠ 𝑛 𝑗 , for all 𝑖 ≠ 𝑗 , and it is called simple if 𝑛𝑖 ≠ 𝑛 𝑗 for
all 𝑖 ≠ 𝑗 , except that we allow 𝑛1 = 𝑛𝑘+1, which means that the
start and end nodes can be the same. A path is a trail, if 𝑒𝑖 ≠ 𝑒 𝑗 ,
for all 𝑖 ≠ 𝑗 . Finally, we remark that, following the theoretical
graph literature, GQL and SQL/PGQ use the termwalk to indicate
an arbitrary path.

2.3 SQL/PGQ and GQL
In this section, we provide a concise recap of the formalization of
GQL [18] and SQL/PGQ [17] path queries. Path queries in both
standards are based on path patterns, which are an extension of
regular path queries (RPQs) [7], which are expressions of the
form (𝑥, 𝑟,𝑦), where 𝑥,𝑦 are variables or constants, and 𝑟 is a
regular expression. This query then returns all pairs of nodes
(𝑛, 𝑛′) in a property graph that are linked by a path whose edge
labels form a word that matches the regular expression 𝑟 .

Although in the research literature, RPQs only look for nodes
and not for paths [2], in GQL and SQL/PGQ, it is also important
to retrieve paths witnessing these connections. Of course, as il-
lustrated in the introductory example, in the presence of cycles
there is a potentially infinite number of such paths. To cope with
this issue, GQL and SQL/PGQ introduce selectors and restrictors
as a way to select the paths to be returned and to specify the se-
mantics used for computing the paths, respectively. For example,
consider the following path query in GQL,

ANY SHORTEST WALK p = (x)-[Knows]->+(y),

where ANY SHORTEST is the selector clause and WALK is the restric-
tor clause. In this case, the restrictor indicates that the query

1We use this definition because a path query is based on exploring edge labels.
2Breadth First Search (BFS) and Depth First Search (DFS) are two well-know algo-
rithms that can be used to obtain all the paths in a graph. However, they need to
assume specific “path semantics” to ensure finiteness.

785

will compute the paths between any pair of people, connected
by edges labeled Knows, one or more times, without any kind of
restriction (i.e. arbitrary path semantics). Additionally, the selec-
tor indicates that among all the retrieved paths, the query must
return just a single shortest path, selected randomly. The allowed
selectors and restrictors, and their corresponding semantics are
presented in Table 1 and Table 2 respectively.

Following [8, 10], we can define a path query in GQL and
SQL/PGQ as an expression of the form

selector? restrictor (𝑥, 𝑟𝑒𝑔𝑒𝑥,𝑦).

In general terms, a query will return all the paths that match
the specified selector-restrictor combination while at the same
time being an answer to the underlying path pattern. We remark
that the selector part is optional, with the restriction that for the
WALK restrictor the selector must be specified in order to ensure
a finite answer set.

In addition to plain path queries, GQL and SQL/PGQ allow con-
catenating two path queries into a sequence. For instance we can
write 𝑠 𝑟 [𝑠1 𝑟1 (𝑥, 𝑟𝑒𝑔𝑒𝑥1, 𝑦)] · [𝑠2 𝑟2 (𝑧, 𝑟𝑒𝑔𝑒𝑥2,𝑤)], where 𝑠, 𝑠1, 𝑠2
are selectors, 𝑟, 𝑟1, 𝑟2 restrictors, and the query basically concate-
nates (when possible) paths in the answer of 𝑠1 𝑟1 (𝑥, 𝑟𝑒𝑔𝑒𝑥1, 𝑦)
and 𝑠2 𝑟2 (𝑧, 𝑟𝑒𝑔𝑒𝑥2,𝑤) and applies the 𝑠 𝑟 selector-restrictor com-
bination to that set. This in particular means that we can ask for
all trails connecting nodes 𝑛1 and 𝑛2, then all shortest walks con-
necting 𝑛2 to 𝑛3, and require that the entire concatenated path
between 𝑛1 and 𝑛3 be a shortest trail. Another option allowed
by GQL is taking the union of such answer sets, with the usual
set-union semantics.

Finally, we remark that some functionalities of GQL such as
group variables [10] are not covered in this paper, but given that
these are used to collect nodes or edges along a path into a list,
incorporating them into our framework is rather straightforward.

3 CORE PATH ALGEBRA
Given the sample graph shown in Figure 1, suppose that we
would like to obtain the paths containing the friends and friends-
of-friends of "Moe", i.e. the 1-hop and 2-hop paths. This question
can be answered using the following GQL-like query:

MATCH p = (x {name:"Moe"})-[Knows|(Knows/Knows)]->(y).

In the above expression: (x {name:"Moe"}) denotes the source
node, Knows|(Knows/Knows) is a regular expression, (y) denotes
the target node, and p is a variable used to contain the resulting
paths. The above declarative query can be transformed into an
algebra expression whose evaluation tree is shown in Figure 3.
Next, we explain the operators that conform the core of the path
algebra proposed in this article. These are: selection, join and
union.

Given a set of paths 𝑆 , the selection operator (𝜎) allows us
to filter the paths in 𝑆 according to a filter condition. In our
example, the algebra expression 𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows filters the
paths in Paths1(𝐺) (i.e. the paths of length one in 𝐺) such that
the first edge of each path has the label Knows.

Given two sets of paths S1 and S2, the join operator (⊲⊳) re-
turns a set of new paths where each new path is the result of
concatenating a path 𝑝1 from S1 and a path 𝑝2 from S2 such that
the last node of 𝑝1 is equal to the first node of 𝑝2. In our example,
the join operator for paths is used to obtain the paths with the
structure (𝑛1, Knows, 𝑛2, Knows, 𝑛3).

Following the usual semantics of the set theory, the union
operator (∪) combines two sets of paths into a single set of paths
that includes all paths from the input sets. In our example, we use

the union operator to combine the paths of the form (𝑛1, Knows, 𝑛2)
with the paths of the form (𝑛1, Knows, 𝑛2, Knows, 𝑛3).

Finally, the selection expression 𝜎𝑓 𝑖𝑟𝑠𝑡 .𝑛𝑎𝑚𝑒="Moe" in the root
node of the evaluation tree allows filtering the paths returned
by the union operator, such that each final path satisfies that its
first node has a property name with value "Moe".

Note that the core algebra is closed under sets of paths, mean-
ing that the input and the output of every operator is always a set
of paths. It is very important because it allows compositionality
and ensures that the output of every algebra expression is a set of
paths. Next, we provide a formal definition of this core algebra.

3.1 Core Algebra - Formal definition
Given a path 𝑝 = (𝑛1, 𝑒1, 𝑛2, 𝑒2, . . . , 𝑒𝑘 , 𝑛𝑘+1), we define the fol-
lowing path operators:

• First(𝑝): returns the identifier of the first node occurring
in 𝑝 , e.g. First(𝑝) = 𝑛1;
• Last(𝑝): returns the identifier of the last node occurring
in 𝑝 , e.g. Last(𝑝) = 𝑛𝑘+1;
• Node(𝑝, 𝑖): returns the identifier of the node occurring in
the position 𝑖 of the path 𝑝 , e.g Node(𝑝, 2) = 𝑛2;
• Edge(𝑝, 𝑗): returns the identifier of the edge occurring in
the position 𝑗 of the path 𝑝 , e.g Edge(𝑝, 1) = 𝑒1;
• Len(𝑝): returns the length (number of edges) of the path
𝑝 , e.g. Len(𝑝) = 𝑘 ;
• Label(𝑜): returns the label of an object (node or edge) 𝑜
occurring in 𝑝 , e.g. Label(First(𝑝)) = Person.
• Prop(𝑜, 𝑝𝑟): returns the value of a property 𝑝𝑟 of an object
𝑜 , e.g. Prop(First(𝑝), 𝑛𝑎𝑚𝑒) = "Lisa".

Let 𝑖 ≥ 1 be an integer, 𝑝 be a path, 𝑜 ∈ 𝑂 be an object, 𝑣
be a value, and 𝑝𝑟 be a property name. A selection condition is
defined recursively as follows. A simple selection condition is
any of the expressions3 𝑙𝑎𝑏𝑒𝑙(𝑛𝑜𝑑𝑒(𝑖)) = 𝑣 , 𝑙𝑎𝑏𝑒𝑙(𝑒𝑑𝑔𝑒(𝑖)) = 𝑣 ,
𝑙𝑎𝑏𝑒𝑙(𝑓 𝑖𝑟𝑠𝑡) = 𝑣 , 𝑙𝑎𝑏𝑒𝑙(𝑙𝑎𝑠𝑡) = 𝑣 , 𝑛𝑜𝑑𝑒(𝑖).𝑝𝑟 = 𝑣 , 𝑒𝑑𝑔𝑒(𝑖).𝑝𝑟 = 𝑣 ,
𝑓 𝑖𝑟𝑠𝑡 .𝑝𝑟 = 𝑣 , 𝑙𝑎𝑠𝑡 .𝑝𝑟 = 𝑣 and 𝑙𝑒𝑛() = 𝑖 . If 𝑐1 and 𝑐2 are selection
conditions, then (𝑐1∧𝑐2), (𝑐1∨𝑐2), and¬(𝑐1) are complex selection
conditions.

The evaluation of a selection condition 𝑐 on a path 𝑝 , denoted
𝑒𝑣(𝑐, 𝑝), returns True or False. A simple condition 𝑐 is evaluated
as True in the following cases:

• if 𝑐 is 𝑙𝑎𝑏𝑒𝑙 (𝑛𝑜𝑑𝑒(𝑖)) = 𝑣 and Label(Node(𝑝, 𝑖)) returns 𝑣 ;
• if 𝑐 is 𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(𝑖)) = 𝑣 and Label(Edge(𝑝, 𝑖)) returns 𝑣 ;
• if 𝑐 is 𝑙𝑎𝑏𝑒𝑙 (𝑓 𝑖𝑟𝑠𝑡) = 𝑣 and Label(Node(𝑝, 1)) returns 𝑣 ;
• if 𝑐 is 𝑙𝑎𝑏𝑒𝑙 (𝑙𝑎𝑠𝑡) = 𝑣 and Label(Node(Len(𝑝) + 1)) returns
𝑣 ;
• if 𝑐 is 𝑛𝑜𝑑𝑒(𝑖).𝑝𝑟 = 𝑣 and Prop(Node(𝑝, 𝑖), 𝑝𝑟) returns 𝑣 ;
• if 𝑐 is 𝑒𝑑𝑔𝑒(𝑖).𝑝𝑟 = 𝑣 and Prop(Edge(𝑝, 𝑖), 𝑝𝑟) returns 𝑣 ;
• if 𝑐 is 𝑓 𝑖𝑟𝑠𝑡 .𝑝𝑟 = 𝑣 and Prop(Node(𝑝, 1), 𝑝𝑟) returns 𝑣 ;
• if 𝑐 is 𝑙𝑎𝑠𝑡 .𝑝𝑟 = 𝑣 and Prop(Node(𝑝, Len(𝑝)+ 1), 𝑝𝑟) returns
𝑣 ;
• if 𝑐 is 𝑙𝑒𝑛() = 𝑖 and Len(𝑝) returns 𝑣 .

The evaluation of a complex selection condition is defined by
following the usual semantics of propositional logic.

Let 𝑝1 and 𝑝2 be two paths satisfying Last(𝑝1) = First(𝑝2).
The path concatenation of 𝑝1 and 𝑝2, denoted 𝑝1 ◦ 𝑝2, returns
a new path composed by the sequence of 𝑝1 followed by the
tail of 𝑝2 (i.e. the sequence of 𝑝2 without the first node). For

3Our definition of simple selection conditions can be easily extended to support
inequalities (≠ <, >, ≤ and ≥) and other build-in functions (e.g., 𝑠𝑢𝑏𝑠𝑡𝑟 or𝑏𝑜𝑢𝑛𝑑).

786

Expression Informal semantics
ALL Returns all paths, for every group, for every partition.
ANY SHORTEST Returns one path with shortest length from each partition. Non-Deterministic.
ALL SHORTEST Returns all paths in each partition that have the minimal length in the partition. Deterministic.
ANY Returns one path in each partition arbitrarily. Non-Deterministic.

ANY 𝑘
Returns arbitrary 𝑘 paths in each partition (if fewer than 𝑘 , then all are retained).
Non-Feterministic.

SHORTEST 𝑘 Returns the shortest 𝑘 paths (if fewer than 𝑘 , then all are retained). Non-Deterministic.

SHORTEST 𝑘 GROUP

Partitions by endpoints, sorts each partition by path length, groups paths with the same length, then
returns all paths in the first 𝑘 groups from each partition (if fewer than 𝑘 , then all are retained).
Deterministic.

Table 1: Informal semantics of the Selectors defined in GQL.

Expression Informal semantics
WALK Is the default option, corresponding to the absence of any filtering.
TRAIL Returns paths that do not have any repeated edges.
ACYCLIC Returns paths that do not have any repeated nodes.
SIMPLE Returns paths with no repeated nodes, except for the first and last node if they are the same.

Table 2: Informal semantics of the Restrictors defined in GQL.

𝜎𝑓 𝑖𝑟𝑠𝑡 .𝑛𝑎𝑚𝑒="Moe"

∪

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

⊲⊳

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

Figure 3: Example of query tree obtained from a core path algebra expression.

example, if 𝑝1 = (𝑛1, 𝑒1, 𝑛2) and 𝑝2 = (𝑛2, 𝑒3, 𝑛3) then 𝑝1 ◦ 𝑝2 =

(𝑛1, 𝑒1, 𝑛2, 𝑒3, 𝑛3).

Definition 3.1 (Core Path Algebra). Let S and S′ be sets of
paths and 𝑐 be a selection condition. The Core Path Algebra is
composed by the following operators:
• Selection: 𝜎𝑐 (S) = {𝑝 ∈ S | 𝑒𝑣(𝑝, 𝑐) = True}
• Join: S ⊲⊳ S′ = {𝑝1 ◦ 𝑝2 | 𝑝1 ∈ S ∧ 𝑝2 ∈ S′ ∧ Last(𝑝1) =
First(𝑝2)}
• Union: S ∪ S′ = {𝑝 | 𝑝 ∈ S ∨ 𝑝 ∈ S′}

The intuition behind the above definition lies in the path ma-
nipulation operators. For instance, a classical operator such as
the relational join whose semantics and algorithmic aspects have
been widely studied in the database community would not be
applicable to paths. Indeed, the conditions on the endpoints of
the paths and the returned paths are not easily expressible in a
relational setting. Finally, the above core algebra operators corre-
spond to the fundamental operators of Codd’s relational algebra
[6] under a revised semantics.

4 RECURSIVE PATH ALGEBRA
The core algebra described in Section 3 allows us to express fixed-
length path queries. In this section, we extend the core algebra
with a recursive operator that allows retrieving paths of any

length. For example, consider that we want to obtain all the paths
from the node Person named "Moe" to the node Person named
"Apu", through the label Knows one or more times, or through the
concatenation of the labels Likes and Has_creator, zero or more
times. This question can be answered by using the following
GQL-like query:

MATCH p = (x {name:"Moe"})-[(Knows+)|
(Likes/Has_creator)*]->(y {name:"Apu"})

In the above query, (Knows+) is a regular expression that allows
us to obtain all the paths, of length one or more, that contain
edges having the label Knows, and connecting the nodes corre-
sponding to "Moe" and "Apu". Similarly, the regular expression
(Likes/Has_creator)* obtains the paths that combine the edge
labels Likes and Has_creator, the one following the other, an
undefined number of times (including paths of zero length). This
is an example of a recursive regular path query.

Note that a naive evaluation of the above query does not
terminate due to the infinite number of solutions produced by
the existence of cycles in the graph, particularly those induced by
the edges Knows and Has_creator. This problem can be managed
by using a specific path semantics, as we explain below.

First, we define a recursive operator that allows us to evalu-
ate recursive regular path queries and return the entire paths,
without any kind of restriction.

787

𝜎𝑓 𝑖𝑟𝑠𝑡 .𝑛𝑎𝑚𝑒="Moe" ∧ 𝑙𝑎𝑠𝑡 .𝑛𝑎𝑚𝑒="Apu"

∪

𝜙

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

∪

𝜙

⊲⊳

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Likes

Paths1(𝐺)

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Has_creator

Paths1(𝐺)

Paths0(𝐺)

Figure 4: Evaluation tree of a recursive path algebra query.

Definition 4.1 (Recursive operator). Given a set of paths S, the
recursive operator 𝜙 is defined inductively as follows:

(1) Base case: 𝜙0(S) = S.
(2) Recursive case: 𝜙𝑖 (S) = (𝜙𝑖−1(S) ⊲⊳ 𝜙0(S)) ∪ 𝜙𝑖−1(S) while

𝑖 > 0 and |𝜙𝑖−1 | ≠ |𝜙𝑖 |.

The recursive operator 𝜙(S) applies a chain of join operations
by using the initial set of paths S until the fix-point condition is
reached. Specifically, in the base case,𝜙0(S) = S. For the recursion
step 1, 𝜙1(S) = (𝜙0(S) ⊲⊳ S) ∪ 𝜙0(S). For the recursion step 2,
𝜙2(S) = (𝜙1(S) ⊲⊳ S) ∪ 𝜙1(S), and so on. The recursion stops in
step 𝑛 when 𝜙𝑛(S) is equal to 𝜙𝑛−1(S), that is, when no new paths
have been produced, reaching the fix-point.

For example, Figure 4 shows an evaluation tree that includes
the recursive operator 𝜙 twice. In the first case (left branch),
the recursive operator receives as input the paths of length one,
having the label Knows, which were obtained by filtering the set
Paths1(𝐺), that is, all the paths of length one obtained from 𝐺 .
Hence, the recursive operator returns the paths containing one or
more edges, all of them having the label Knows. This is equivalent
to the result of the evaluation of the regular expression (Knows)+.

In the second case (right branch), the recursive operator re-
turns paths of length 2, 4, 6, etc., such that they repeat the combi-
nation of edge labels Likes and Has_creator. Additionally, the set
of paths returned by the recursive operator is united with the set
Paths0(𝐺), which contains the paths of length zero (i.e. the nodes
of the graph). The result of such union is equivalent to the seman-
tics of the Kleene star regular expression (Likes/Has_creator)*.

It is worth mentioning that the above definition of the recur-
sive operator has a non-halting problem when the input graph
contains cycles (see the inner loop formed by the label Knows in
the graph of Figure 1). In such a case, the recursive operator will
never stop, thereby triggering infinite results. This problem can
be solved by filtering the paths generated during the recursion,
that is, by using a specific semantics for evaluating paths.

Inspired by GQL [18], we defined five versions of the recursive
operator, each associated with a specific path semantics, named
Walk, Trail, Acyclic, Simple, and Shortest. Given a set of paths S,
we introduce the following operators:
• 𝜙𝑊𝑎𝑙𝑘 (S), that returns all the paths without any restric-
tion;
• 𝜙𝑇𝑟𝑎𝑖𝑙 (S), that returns paths without repeated edges;
• 𝜙𝐴𝑐𝑦𝑐𝑙𝑖𝑐 (S), that returns paths without repeated nodes;

• 𝜙𝑆𝑖𝑚𝑝𝑙𝑒 (S), that returns paths without repeated nodes,
with exception of the first and the last node;
• 𝜙𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 (S), that returns the pathswith the shortest length
between the first and the last node.

The formal definition of 𝜙𝑊𝑎𝑙𝑘 (S) is given by the inductive
method presented in Definition 4.1, that is, the recursive operator
without restrictions. The formal definition of 𝜙𝑇𝑟𝑎𝑖𝑙 (S) extends
Definition 4.1 by adding a filter operation in the recursive case.
Specifically, the set of paths produced during each recursion
step is filtered by eliminating those with repeated edges. The
formal definitions of 𝜙𝐴𝑐𝑦𝑐𝑙𝑖𝑐 (S) and 𝜙𝑆𝑖𝑚𝑝𝑙𝑒 (S) are similar to
the definition of 𝜙𝑇𝑟𝑎𝑖𝑙 (S), but filtering the paths according to
the corresponding semantics.

The formal definition of 𝜙𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 (S) is also based on Defini-
tion 4.1, but is extended to filter the shortest paths. Specifically,
for every step 𝑖 , two actions must be applied after computing the
set of paths 𝜙𝑖 (S): (1) for every path 𝑝 = (𝑛𝑠 , . . . , 𝑛𝑡) in 𝜙𝑖 (S), if
there is a path 𝑝′ = (𝑛′𝑠 , . . . , 𝑛′𝑡) in 𝜙𝑖−1(S) satisfying that 𝑛𝑠 = 𝑛′𝑠
and 𝑛𝑡 = 𝑛′𝑡 , then the path 𝑝 is removed from the set 𝜙𝑖 (S); (2) if
it applies that for every path 𝑝 = (𝑛𝑠 , . . . , 𝑛𝑡) in 𝜙0(S) there is a
path 𝑝′ = (𝑛′𝑠 , . . . , 𝑛′𝑡) in 𝜙𝑖 (S) satisfying that 𝑛𝑠 = 𝑛′𝑠 and 𝑛𝑡 = 𝑛′𝑡 ,
then the recursion stops. The first action eliminates paths that
are not the shortest paths. The second action stops the recursion
when, for every pair of nodes 𝑛𝑠 and 𝑛𝑡 occurring in the initial set
of paths 𝜙0(S), we have obtained all the shortest paths between
them. Both actions are based on the fact that the paths produced
in step 𝑖 are larger than those produced in step 𝑖 − 1.

It is important to mention that each path semantics induces a
different set of solutions. For example, given the graph shown in
Figure 1 and the regular expression Knows+, in Table 3 we show
some of the paths returned for each path semantics. Note that,
under Walk semantics, there is an infinite number of solutions
due to the cycle between nodes 𝑛2 and 𝑛3.

There are no criteria to say which one of the above recur-
sive operators is the best, but the corresponding semantics have
been studied in theory and are implemented by practical graph
query languages. Specifically, Gremlin allows arbitrary seman-
tics, SPARQL uses acyclic path semantics, Cypher implements
trail semantics, and G-CORE follows the shortest path semantics.
GQL supports the above five semantics, even allowing multiple
semantics in a single query. Next, we describe how this feature
is supported by our algebra.

5 EXTENDED ALGEBRA
As described in Section 2.3, GQL and SQL/PGQ introduce path
modes (i.e. selectors and restrictors), which allow us to decide
which paths are returned and how the paths are computed, re-
spectively. In this section, we provide a formal definition of both
concepts and describe their implementation in our algebraic
framework.

Consider the following GQL query where ANY SHORTEST is the
selector keyword and TRAIL the restrictor keyword:

MATCH ANY SHORTEST TRAIL p = (x)-[Knows]->+(y).

According to the (informal) definition for selectors (Table 1)
and restrictors (Table 2), the above query is evaluated as follows:

(1) Compute the paths that satisfy the regular expression
Knows+ by complying with the Trail semantics (i.e., paths
without repeated edges).

(2) Create groups of paths where each group contains only
paths with the same source and target nodes (i.e., the nodes
bound to variables 𝑥 and 𝑦 respectively).

788

ID Path W T A S Sh
𝑝1 (𝑛1, 𝑒1, 𝑛2) ✓ ✓ ✓ ✓ ✓
𝑝2 (𝑛1, 𝑒1, 𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2) ✓ ✓
𝑝3 (𝑛1, 𝑒1, 𝑛2, 𝑒2, 𝑛3) ✓ ✓ ✓ ✓ ✓
𝑝4 (𝑛1, 𝑒1, 𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2, 𝑒2, 𝑛3) ✓
𝑝5 (𝑛1, 𝑒1, 𝑛2, 𝑒4, 𝑛4) ✓ ✓ ✓ ✓ ✓
𝑝6 (𝑛1, 𝑒1, 𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2, 𝑒4, 𝑛4) ✓ ✓
𝑝7 (𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2) ✓ ✓ ✓ ✓
𝑝8 (𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2) ✓
𝑝9 (𝑛2, 𝑒2, 𝑛3) ✓ ✓ ✓ ✓ ✓
𝑝10 (𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2, 𝑒2, 𝑛3) ✓
𝑝11 (𝑛2, 𝑒4, 𝑛4) ✓ ✓ ✓ ✓ ✓
𝑝12 (𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2, 𝑒4, 𝑛4) ✓ ✓
𝑝13 (𝑛3, 𝑒3, 𝑛2, 𝑒4, 𝑛4) ✓ ✓ ✓ ✓ ✓
𝑝14 (𝑛3, 𝑒3, 𝑛2, 𝑒2, 𝑛3, 𝑒3, 𝑛2, 𝑒4, 𝑛4) ✓

Table 3: Given the graph shown in Figure 1, this table shows
some (of an infinite number of) paths satisfying the regular
expression Knows+, this under different semantics (Walk,
Trail, Acyclic, Simple and Shortest).

𝜋(∗,∗,1)

𝜏A

𝛾ST

𝜙𝑇𝑟𝑎𝑖𝑙

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

Figure 5: A query plan including order-by, group-by and
projection.

(3) Pick a single shortest path (ANY SHORTEST) from each group,
randomly (recall that there might be several trails of the
same shortest length in each group).

Hence, the restrictor allows us to define the path semantics used
to compute the paths, and the selector allows us to filter out the
resulting paths.

To support the query mentioned above, we introduced three
algebraic operators: group-by (𝛾), order-by (𝜏) and projection (𝜋).
To explain these operators, we will use the evaluation tree shown
in Figure 5, which emulates the GQL query described above. In
the following, we enumerate the steps from the leaf to the root
of the algebraic tree.

Step 1. The operator Paths1(𝐺) returns the paths of length one
(i.e., the edges in 𝐺).

Step 2. The selection operator 𝜎 filters the edges to those having
label Knows (i.e. 𝑒1, 𝑒2, 𝑒3 and 𝑒4).

Step 3. The recursive operator 𝜙𝑇𝑟𝑎𝑖𝑙 computes the paths that
satisfy the regular expression Knows+ applying the trail semantics.
It results in the set of paths {𝑝1, 𝑝2, 𝑝3, 𝑝5, 𝑝6, 𝑝7, 𝑝9, 𝑝11, 𝑝12, 𝑝13}
shown in Table 3 (column T).

Group-by expression Solution space organization
𝛾 1 partition, 1 group
𝛾S 𝑁 partitions, 1 group per partition
𝛾T 𝑁 partitions, 1 group per partition
𝛾L 1 partition,𝑀 groups per partition
𝛾ST 𝑁 partitions, 1 group per partition
𝛾SL 𝑁 partitions,𝑀 groups per partition
𝛾TL 𝑁 partitions,𝑀 groups per partition
𝛾STL 𝑁 partitions,𝑀 groups per partition

Table 4: Group-by expressions and the corresponding solu-
tion space organizations. Note that 𝑁 > 0 and𝑀 > 0.

Partition 𝑃 Group 𝐺 Path 𝑝 MinL(𝑃) MinL(𝐺) Len(𝑝)
𝑝𝑎𝑟𝑡1 𝑔𝑟𝑜𝑢𝑝11 𝑝1 1 1 1

𝑝2 3
𝑝𝑎𝑟𝑡2 𝑔𝑟𝑜𝑢𝑝21 𝑝3 1 1 1
𝑝𝑎𝑟𝑡3 𝑔𝑟𝑜𝑢𝑝31 𝑝5 2 2 2

𝑝6 4
𝑝𝑎𝑟𝑡4 𝑔𝑟𝑜𝑢𝑝41 𝑝7 2 2 2
𝑝𝑎𝑟𝑡5 𝑔𝑟𝑜𝑢𝑝51 𝑝9 1 1 1
𝑝𝑎𝑟𝑡6 𝑔𝑟𝑜𝑢𝑝61 𝑝11 1 1 1

𝑝12 3
𝑝𝑎𝑟𝑡7 𝑔𝑟𝑜𝑢𝑝71 𝑝13 2 2 2

Table 5: Example of solution space produced by the group-
by operator 𝛾ST. The parameter ST implies many partitions,
one group per partition, and many paths per group.

Step 4. The group-by operator 𝛾ST transforms the above set of
paths into a solution space, a special data structure composed of
partitions and groups. Specifically, a solution space is composed
of one or more partitions, each partition is composed of one
or more groups, and each group contains one or more paths.
A partition organizes the paths based on their endpoints (i.e.
the source and target nodes of a path), and a group organize
the paths based on their length. Hence, a given combination of
Source, Target and Length induces a solution space with a specific
organization of partitions and groups as shown in Table 4.

Recalling our example, the operator𝛾ST (Source-Target) implies
a solution space with 𝑁 partitions, where each partition contains
a single group with the paths having the same source and target
nodes. Hence, there will be one group for each pair of people
connected by a path satisfying the regular expression knows+. A
tabular representation of this solution space is shown in Table 5.
Step 5. The order-by operator (𝜏𝜃) allows us to sort the partitions,
the groups and the paths composing a solution space. The pa-
rameter 𝜃 indicates the ordering criterion, allowing the values P,
G, A, PG, PA, GA and PGA. Specifically, 𝜏P (order-by partition) means
that the partitions are sorted by the length of their shortest path,
in ascending order; 𝜏G (order-by group) means that the groups
inside each partition are sorted by the length of their shortest
path; 𝜏A (order-by path) means that the paths inside each group
are sorted by length; 𝜏PG (order-by partition-group) sorts by both,
partition and group; similarly for the remaining cases.

Following our example, the operation 𝜏A sorts the paths inside
each group of the solution space produced by the group-by op-
erator. It can be observed in Table 5, where the column MinL(𝑃)
indicates the length of the shortest path in a partition 𝑃 , MinL(𝐺)
indicates the length of the shortest path in a group𝐺 , and Len(𝑝)

789

indicates the length of a path 𝑝 . Note that these columns can be
used to sort partitions, groups and paths.

Step 6. The projection operator (𝜋) allows us to transform a
solution space into a set of paths. To do this, the projection
operator receives as parameter a tuple of the form (#𝑃 , #𝐺 , #𝐴)
where each # can be either the symbol ∗ or a positive integer.
Hence, #𝑃 indicates the number of partitions to be returned, #𝐺
indicates the number of groups (per partition) to be returned,
and #𝐴 indicates the number of paths (per group) to be returned.

Returning to our example, the expression 𝜋(∗,∗,1) returns one
path per group (the first one in the group; that is, the shortest
one since in the previous step we sorted the paths by length), for
every group inside each partition. Hence, the final output of the
query will be the set of paths {𝑝1, 𝑝3, 𝑝5, 𝑝7, 𝑝9, 𝑝11, 𝑝13}.

In the remainder of this section, we study the formal semantics
for the algebraic operators group-by, order-by and project, all of
which use the notion of solution space.

Definition 5.1. A Solution Space is a tuple 𝑆𝑆 = (S,G, P, 𝛼, 𝛽, △)
where: S is a set of paths; P is a set of partitions; G is a set of
groups; 𝛼 : S→ G is a total function that assigns each path to a
group; 𝛽 : G→ P is a total function that assigns each group to a
partition; and △ : (S ∪ G ∪ P) → Z+ is a total function used to
assign a positive integer to paths, groups and partitions.

The concept of a solution space involves a data structure that
organizes a set of paths into groups (function𝛼), which are further
organized into partitions (function 𝛽). In addition, the function
△ is used to sort the elements within the solution space. For
example, assume that 𝑥 , 𝑦, and 𝑧 are paths within a group 𝑔. If
△(𝑥) = 1, △(𝑦) = 2 and △(𝑧) = 3, then we establish a virtual order
of the paths inside 𝑔. On the other hand, if the three paths have
the same value for △, then there is no order among them. The
same approach is used to sort groups within a partition and to
sort the partitions within the solution space.

5.1 Group by
Given a set of paths S, the group-by operator is represented as
𝛾𝜓 (S) where𝜓 ∈ {∅, S, T, L, ST, SL, TL, STL} (S = Source, T = Target,
L = Length, ST = Source-Target, SL = Source-Length, TL = Target-
Length, STL = Source-Target-Length). The evaluation of 𝛾𝜓 (S)
returns a solution space 𝑆𝑆 = (S,G, P, 𝛼, 𝛽, △) defined as follows:

• If𝜓 is ∅ then P = {𝑃1}, G = {𝐺1}, 𝛽(𝐺1) = 𝑃1, and ∀𝑝 ∈ S
it applies that 𝛼(𝑝) = 𝐺1.
• If 𝜓 is S then ∀𝑠 ∈ {First(𝑝) | 𝑝 ∈ S} there will be a
partition 𝑃𝑠 = {𝐺𝑠 } where 𝐺𝑠 = {𝑝′ ∈ S | First(𝑝′) = 𝑠}.
• If 𝜓 is T then ∀𝑡 ∈ {Last(𝑝) | 𝑝 ∈ S} there will be a
partition 𝑃𝑡 = {𝐺𝑡 } where 𝐺𝑡 = {𝑝′ ∈ S | Last(𝑝′) = 𝑡}.
• If𝜓 is L then P = {𝑃1}, ∀𝑙 ∈ {Len(𝑝) | 𝑝 ∈ S} there will be
a group 𝐺𝑙 = {𝑝′ ∈ S | Len(𝑝′) = 𝑙} with 𝛽(𝐺𝑙) = 𝑃1.
• If𝜓 is ST then ∀(𝑠, 𝑡) ∈ {(First(𝑝), Last(𝑝)) | 𝑝 ∈ S} there
will be a partition 𝑃𝑠𝑡 = {𝐺𝑠𝑡 } where 𝐺𝑠𝑡 = {𝑝′ ∈ 𝑆 |
First(𝑝′) = 𝑠 ∧ Last(𝑝′) = 𝑡}.
• If 𝜓 is SL then ∀𝑠 ∈ {First(𝑝) | 𝑝 ∈ S} there will be a
partition 𝑃𝑠 , and ∀𝑙 ∈ {Len(𝑝) | 𝑝 ∈ S ∧ First(𝑝) = 𝑠}
there will be a graph 𝐺𝑠𝑙 = {𝑝′ ∈ S | First(𝑝′) = 𝑠 ∧
Len(𝑝′) = 𝑙} with 𝛽(𝐺𝑠𝑙) = 𝑃𝑠 .
• If 𝜓 is TL then ∀𝑡 ∈ {Last(𝑝) | 𝑝 ∈ S} there will be a
partition 𝑃𝑡 , and ∀𝑙 ∈ {Len(𝑝) | 𝑝 ∈ S∧Last(𝑝) = 𝑡} there
will be a graph𝐺𝑡𝑙 = {𝑝′ ∈ S | Last(𝑝′) = 𝑡 ∧Len(𝑝′) = 𝑙}
with 𝛽(𝐺𝑡𝑙) = 𝑃𝑡 .

𝜃 ∀𝑃 ∈ P ∀𝐺 ∈ G ∀𝑝 ∈ S
P △′(𝑃) = MinL(𝑃) △′(𝐺) = △(𝐺) △′(𝑝) = △(𝑝)
G △′(𝑃) = △(𝑃) △′(𝐺) = MinL(𝐺) △′(𝑝) = △(𝑝)
A △′(𝑃) = △(𝑃) △′(𝐺) = △(𝐺) △′(𝑝) = Len(𝑝)
PG △′(𝑃) = MinL(𝑃) △′(𝐺) = MinL(𝐺) △′(𝑝) = △(𝑝)
PA △′(𝑃) = MinL(𝑃) △′(𝐺) = △(𝐺) △′(𝑝) = Len(𝑝)
GA △′(𝑃) = △(𝑃) △′(𝐺) = MinL(𝐺) △′(𝑝) = Len(𝑝)
PGA △′(𝑃) = MinL(𝑃) △′(𝐺) = MinL(𝐺) △′(𝑝) = Len(𝑝)

Table 6: Semantics of the order-by operator 𝜏𝜃 . Given a
solution space 𝑆𝑆 = (S,G, P, 𝛼, 𝛽, △), the evaluation of 𝜏𝜃 (𝑆𝑆)
returns a solution space 𝑆𝑆 ′ = (S,G, P, 𝛼, 𝛽, △′) where func-
tion △′ is the only change. For each value of the parameter
𝜃 , this table shows the assignments for function △′.

• If 𝜓 is STL then ∀(𝑠, 𝑡) ∈ {(First(𝑝), Last(𝑝)) | 𝑝 ∈ S}
there will be a partition 𝑃𝑠𝑡 , and ∀𝑙 ∈ {Len(𝑝) | 𝑝 ∈
𝑆 ∧ First(𝑝) = 𝑠 ∧ Last(𝑝) = 𝑡} there will be a graph
𝐺𝑠𝑡𝑙 = {𝑝′ ∈ S | First(𝑝′) = 𝑠 ∧ Last(𝑝′) = 𝑡 ∧ Len(𝑝′) =
𝑙} with 𝛽(𝐺𝑠𝑡𝑙) = 𝑃𝑠𝑡 .

Furthermore, it applies that: △(𝑝) = 1 for every path 𝑝 ∈ S,
△(𝐺) = 1 for every group𝐺 ∈ G, and △(𝑃) = 1 for every partition
𝑃 ∈ P. Recall that function △ can be used to introduce a virtual
order of the elements (paths, groups and partitions) within a
solution space. In this case, there is no such order as all elements
have the same value for △.

5.2 Order by
Let 𝑆𝑆 = (S,G, P, 𝛼, 𝛽, △) be a solution space. Given a group 𝐺 ∈
G, we will use the function MinL(𝐺) to obtain the length of the
shortest path in 𝐺 . Similarly, for a given partition 𝑃 ∈ P, the
function MinL(𝑃) returns the minimum length among all the
groups in 𝑃 .

Given a solution space 𝑆𝑆 , the order-by operator is repre-
sented as 𝜏𝜃 (𝑆𝑆) where 𝜃 ∈ {P, G, A, PG, PA, GA, PGA} (P = Partition,
G = Group, A = Path, PG = Partition-Group, PA = Partition-Path,
GA = Group-Path, PGA = Partition-Group-Path). The evaluation
semantics of 𝜏𝜃 (𝑆𝑆) is presented in Table 6. Given a solution space
𝑆𝑆 = (S,G, P, 𝛼, 𝛽, △), the operator 𝜏𝜃 (𝑆𝑆) redefines the function △
to a new function △′ depending on the parameter 𝜃 . For example,
if 𝜃 is P then, for each partition 𝑃 it applies that △′(𝑃) = MinL(𝑃),
for each group 𝐺 in 𝑃 it applies that △′(𝐺) = △(𝐺), and for each
path 𝑝 in 𝐺 it applies that △′(𝑝) = △(𝑝).

Note that the order-by operator uses the function △′ to intro-
duce a virtual ordering of paths, groups and partitions. The order
of a path, inside a group, is given by its length. The order of a
group, inside a partition, is given by the length of its shortest
path. The order of a partition, inside a solution space, is given by
the length of the shortest path contained in its groups.

5.3 Projection
Given a solution space 𝑆𝑆 = (S,G, P, 𝛼, 𝛽, △), the projection oper-
ator is represented as 𝜋(#𝑃 ,#𝐺 ,#𝐴)(𝑆𝑆) where each # is either the
symbol ∗ or a positive integer. Here, #𝑃 indicates the number
of partitions to be projected, #𝐺 indicates the number of groups
(per partition) to be projected, and #𝐴 indicates the number of
paths (per group) to be projected.

The evaluation of 𝜋(#𝑃 ,#𝐺 ,#𝐴)(𝑆𝑆) returns a set of paths accord-
ing to Algorithm 1. The final set of paths will be stored in the

790

variable S𝑜𝑢𝑡 . First, the algorithm transforms the set of parti-
tions P into the sequence 𝑆𝑒𝑞𝑃 where the partitions are sorted
in ascending order according to their length defined by function
△ (line 2). The number of partitions to be processed is defined
in variable𝑚𝑎𝑥𝑃 according to the parameter #𝑃 (lines 3 and 4).
For each partition 𝑃 (up to processing of partitions𝑚𝑎𝑥𝑃 , the
algorithm creates a sequence 𝑆𝑒𝑞𝐺 that contains the groups of 𝑃
(lines 6 to 8). The groups in 𝑆𝑒𝑞𝐺 are sorted in ascending order
according to the function △. The variable 𝑚𝑎𝑥𝐺 indicates the
number of groups to be processed according to the parameter
#𝐺 (lines 9 and 10). For each group 𝐺 (up to processing groups
𝑚𝑎𝑥𝐺 , the algorithm gets the paths of𝐺 and creates the sequence
𝑆𝑒𝑞𝑆 , where the paths are sorted according to their length (lines
12 to 14). The variable𝑚𝑎𝑥𝑆 indicates the number of paths to be
processed according to the parameter #𝐴 (lines 15 and 16). For
each path 𝑝 (up to processing of𝑚𝑎𝑥𝑆 paths), the algorithm adds
𝑝 to the final set of paths S𝑜𝑢𝑡 (lines 17 to 20).

Note that the procedure shown inAlgorithm 1 can be improved
in several ways: the 𝑆𝑜𝑟𝑡 function can implement a special sorting
algorithm; indexes can be used to facilitate the retrieval of paths
inside a group, as well as the groups inside a partition; the calls
to ordering functions (lines 2, 8 and 14) are unnecessary when
the input solution space comes from the group-by operator (i.e.
the query does not include the order-by operator). Moreover,
Algorithm 1 can be easily extended to support the projection of
partitions, groups, and paths in descending order.

input :A solution space 𝑆𝑆 = (S,G, P, 𝛼, 𝛽, △) and the
projection parameters #𝑃 , #𝐺 and #𝐴 .

output :A set of paths S𝑜𝑢𝑡 .
1 S𝑜𝑢𝑡 ← ∅;
2 𝑆𝑒𝑞𝑃 ← 𝑆𝑜𝑟𝑡 (P); //Sort P based on function △
3 if #𝑃 is "*" ∨ #𝑃 > 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑒𝑞𝑃) then

𝑚𝑎𝑥𝑃 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑒𝑞𝑃);
4 else 𝑚𝑎𝑥𝑃 ← #𝑃 ;
5 for 𝑖 ← 1 to𝑚𝑎𝑥𝑃 do
6 𝑃 ← 𝑆𝑒𝑞𝑃 [𝑖];
7 𝑆𝑒𝑡𝐺 ← {𝐺 ∈ G | 𝛽(𝐺) = 𝑃}; //Get the groups of 𝑃
8 𝑆𝑒𝑞𝐺 ← 𝑆𝑜𝑟𝑡 (𝑆𝑒𝑡𝐺); //Sort the groups of 𝑃 based on △
9 if #𝐺 is "*" ∨ #𝐺 > 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑒𝑞𝐺) then

𝑚𝑎𝑥𝐺 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑒𝑞𝐺);
10 else 𝑚𝑎𝑥𝐺 ← #𝐺 ;
11 for 𝑗 ← 1 to𝑚𝑎𝑥𝐺 do
12 𝐺 ← 𝑆𝑒𝑞𝐺 [𝑗];
13 𝑆𝑒𝑡𝑆 ← {𝑝 ∈ 𝑆 | 𝛼(𝑝) = 𝐺}; //Get the paths of 𝐺
14 𝑆𝑒𝑞𝑆 ← 𝑆𝑜𝑟𝑡 (𝑆𝑒𝑡𝑆); //Sort the paths of𝐺 based on

△
15 if #𝐴 is "*" ∨ #𝐴 > 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑒𝑞𝑆) then

𝑚𝑎𝑥𝑆 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑒𝑞𝑆);
16 else 𝑚𝑎𝑥𝑆 ← #𝐴;
17 for 𝑘 ← 1 to𝑚𝑎𝑥𝑆 do
18 𝑝 ← 𝑆𝑒𝑞𝑆 [𝑘];
19 𝐴𝑑𝑑(𝑝, S𝑜𝑢𝑡) //Add the path 𝑝 to the set 𝑆𝑜𝑢𝑡
20 end
21 end
22 end

Algorithm 1: Projection function 𝜋(#𝑃 ,#𝐺 ,#𝐴)(𝑆𝑆)

GQL expression Path algebra expression
ALL WALK 𝑝𝑝𝑒 𝜋(∗,∗,∗)(𝛾 (𝜙𝑊𝑎𝑙𝑘 (RE)))
ANY SHORTEST WALK 𝑝𝑝𝑒 𝜋(∗,∗,1)(𝜏A(𝛾ST(𝜙𝑊𝑎𝑙𝑘 (RE))))
ALL SHORTEST WALK 𝑝𝑝𝑒 𝜋(∗,1,∗)(𝜏G(𝛾STL(𝜙𝑊𝑎𝑙𝑘 (RE))))
ANY WALK 𝑝𝑝𝑒 𝜋(∗,∗,1)(𝛾ST(𝜙𝑊𝑎𝑙𝑘 (RE)))
ANY 𝑘 WALK 𝑝𝑝𝑒 𝜋(∗,∗,𝑘)(𝛾ST(𝜙𝑊𝑎𝑙𝑘 (RE)))
SHORTEST 𝑘 WALK 𝑝𝑝𝑒 𝜋(∗,∗,𝑘)(𝜏A(𝛾ST(𝜙𝑊𝑎𝑙𝑘 (RE))))
SHORTEST 𝑘 GROUP WALK 𝑝𝑝𝑒 𝜋(∗,𝑘,∗)(𝜏G(𝛾STL(𝜙𝑊𝑎𝑙𝑘 (RE))))

Table 7: For each GQL selector-restrictor expression, this
table shows the corresponding path algebra expression.

6 COMPARISONWITH GQL
Previously, we have described the seven types of selectors and
the four types of restrictors supported by GQL. According to the
GQL specification, it is possible to combine every selector with
every restrictor, resulting in 28 combinations. An important fact
is that every selector-restrictor combination can be translated
into a path algebra expression, whose evaluation satisfies the
informal semantics defined in Table 1 and Table 2.

In Table 7, we present the GQL expressions produced by com-
bining the seven selectors with the restrictor WALK, and show the
corresponding path algebra expressions. Note that: RE denotes
the regular expression obtained from the path pattern expres-
sion 𝑝𝑝𝑒; every selector (e.g. ALL) is translated to an expression
containing the group-by (𝛾), order-by (𝜏) and projection (𝜋) opera-
tors; and the restrictor WALK is translated to the recursive operator
𝜙𝑊𝑎𝑙𝑘 . The path algebra expressions shown in Table 7, can be
replicated to translate the rest of restrictors by just replacing the
term WALK with TRAIL, ACYCLIC or SIMPLE.

For instance, the GQL expression
MATCH ALL SHORTEST ACYCLIC p = (x)-[Knows]->+(y)

can be translated to the path algebra expression

𝜋(∗,1,∗)(𝜏G(𝛾STL(𝜙𝐴𝑐𝑦𝑐𝑙𝑖𝑐 (𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows(Paths1(𝐺))))))

where: 𝜙𝐴𝑐𝑦𝑐𝑙𝑖𝑐 returns a set of paths where each path 𝑝 satisfies
the regular expression Knows+ and 𝑝 does not have any repeated
nodes; 𝛾STL transforms the set of paths into a solution space
where, for each source-target combination there is a partition 𝑃𝑖 ,
and each partition 𝑃𝑖 contains a group 𝐺𝑖 𝑗 containing the paths
with the same length; 𝜏G sorts the groups inside each partition, in
increasing order, according to their length (in this case, the length
of each group is given by the length of the shortest path inside
it); and 𝜋(∗,1,∗) returns the paths contained in the first group of
each partition (i.e. all the shortest paths for each source-target
combination).

On the other hand, there exist path algebra expressions that
are not supported by GQL. It is given by the 8 types of group-by,
7 types of order-by, the 7 types of projection, and the 5 types of
recursion, which results in 1960 combinations, surpassing the
28 combinations defined by GQL. For instance, the following
algebra expression is not supported by GQL:

𝜋(∗,∗,1)(𝜏G(𝛾L(𝜙𝑇𝑟𝑎𝑖𝑙 (𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows(Paths1(𝐺)))))).

Note that 𝜙𝑇𝑟𝑎𝑖𝑙 computes the trails satisfying Knows+; 𝛾L cre-
ates a solution space with a single partition and many groups
where each group contains the paths with the same length; 𝜏G
sort the groups in ascending order according to their length (i.e.,
the length of a group is equal to the length of the paths contained
in the group); and 𝜋(∗,∗,1) returns a single path from each group.

791

Therefore, the above algebra expression returns a sample trail of
each possible length.

Another issue is the practical use of some path algebra expres-
sions. For instance, the expression

𝜋(∗,∗,1)(𝜏PG(𝛾 (𝜙𝑊𝑎𝑙𝑘 (𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows(Paths1(𝐺))))))
is somehow redundant and unnecessarily complex as we just like
to return a single path (Non-Deterministic), without imposing
any condition. Note that the order-by operator 𝜏PG is unnecessary,
as operator 𝛾 returns a solution space with a single partition and
a single group. Hence, the above expression can be replaced by

𝜋(∗,∗,1)(𝛾 (𝜙𝑇𝑟𝑎𝑖𝑙 (𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows(Paths1(𝐺))))).
For the sake of space, we are not presenting a complete analysis

of the equivalences among the path expressions supported by
our path algebra and GQL. However, the above examples give
an intuition of the expressive power of our algebra, and show
that it supports more types of queries that the ones supported by
GQL. In terms of completeness, our algebra allows for all possible
combinations of its operators, leaving the responsibility of using
them correctly to the user. This approach is also followed in
practical query languages like SQL and Cypher.

7 CONNECTING THE PATH ALGEBRAWITH
GQL

Our main motivation to define a path algebra is to allow for-
mulating logical plans for the evaluation of path queries in a
fashion similar to the usage of relational algebra for evaluating
SQL queries. Most notably, having a path algebra at our disposal
allows for a quick formulation of logical plans in any engine
wishing to support queries that involve complex conditions over
paths. To aid with this process, we extended the GQL syntax to
support all the features provided by the algebra, and implemented
a query parser for it.

7.1 GQL Extension
According to the GQL specification, the structure of a path query
is given by the following grammar:
<pathQuery> ::= MATCH <selector> <restrictor>

<pathPattern>
<selector> ::= ALL | ANY SHORTEST | ALL SHORTEST |

ANY | ANY <number> |
SHORTEST <int> | SHORTEST <int> GROUP

<restrictor> ::= WALK | TRAIL | SIMPLE | ACYCLIC
<pathPattern> ::= <var> = <pathExp> WHERE <condition>

where <pathExp> is an expression of the form (var)-[RegExp]->(var),
and <condition> is a selection condition.

In order to support the operators of our path algebra, we
propose to modify the above structure as follows:
<pathQuery> ::= MATCH <projection> <restrictor_ext>

<pathPattern> <groupby>? <orderby>?
<projection> ::= <partProj> <groupProj> <pathProj>
<partProj> ::= (ALL | <number>) PARTITIONS
<groupProj> ::= (ALL | <number>) GROUPS
<pathProj> ::= (ALL | <number>) PATHS
<restrictor_ext> ::= WALK | TRAIL | SIMPLE | ACYCLIC | SHORTEST
<groupby> ::= (SOURCE)? (TARGET)? (LENGTH)?
<orderby> ::= (PARTITION)? (GROUP)? (PATH)?

Hence, if we want to compute all the trails for each pair of
nodes in the graph, and return a single path for each target node,
we can use the query

MATCH ALL PARTITIONS ALL GROUPS 1 PATHS
TRAIL p = (x)-[(Knows)*]->(y)

GROUP BY TARGET ORDER BY PATH

which corresponds to the path algebra expression
𝜋(∗,∗,1)(𝜏A(𝛾T(𝜙𝑇𝑟𝑎𝑖𝑙 (𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows(Paths1(𝐺)))))).

7.2 Query Parser
Wehave developed4 an open-source parser that transforms declar-
ative queries into logical query plans. Our parser is a Java ap-
plication with two main components: the query parser and the
logical plan generator. The query parser reads a path query ex-
pression and returns a parse tree. This is achieved by using the
ANTLR5 library. The logical plan generator traverses the parse
tree, extracting all the algebraic operations, and generates a query
tree.

The query parser has a command-line interface where users
can write a path query expression and get the corresponding
parse tree. For example, if we input the sample query shown
above in this section, the parser generates the following query
plan:
Projection (ALL PARTITIONS ALL GROUPS 1 PATHS)
OrderBy (Path)
Group (Target)
Restrictor (TRAIL)
-> Recursive Join (restrictor: TRAIL)
-> Select: (label(edge(1)) = Knows , Paths(G,1))

The output of the parser displays the query plan as a textual
tree. The initial lines (1 to 4) display the selected parameters
for the projection, order by, group by, and restrictor statements.
Subsequently, lines 5 and 6 present the query, with indentation
indicating the depth of each instruction and its corresponding
branch.

Notice that our logical plans pave the way for building im-
plementations of GQL and SQL/PGQ standards, or for general
engines wishing to support path queries. Namely, to build a refer-
ence implementation, one only needs to specify an algorithm for
each operator of the algebra, as these suffice to define any path
query in the two standards (and some additional ones as well).
Notice that algorithms for specific algebra operations we support
are independent research topics of their own [8, 32, 37], so we
find building such a reference implementation to be outside of
the scope of the current paper.

7.3 Query optimization
A well-know advantage of having a query algebra is that it fa-
cilitates query optimization. In particular, the query engine can
perform logical optimizations (e.g., predicate pushdown, column
pruning) and physical optimizations (e.g., better join strategies).

The classic example of logical optimization is pushing fil-
ters [14]. For example, the query plan shown in Figure 6a can
be optimized by pushing down the selection 𝜎𝑓 𝑖𝑟𝑠𝑡 .𝑛𝑎𝑚𝑒="Moe".
The optimized query plan is shown in Figure 6b. Note that this
change allows us to reduce the number of intermediate results
(paths) in advance, and consequently, to reduce the number of
join comparisons.

The introduction of selectors and restrictors have opened the
door to new types of rewritings. For instance, the expression

𝜋(1,1,∗)(𝜏G(𝛾L(𝜙𝑊𝑎𝑙𝑘 (𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows(Paths1(𝐺)))))))
can be used to obtain the shortest paths that satisfy the regular ex-
pression Knows+. However, this expression just works well when
the target graph does not contain cycles for the edges labeled
4https://github.com/pathalgebra/AlgebraParser
5ANTLR (ANother Tool for Language Recognition), https://www.antlr.org

792

𝜎𝑓 𝑖𝑟𝑠𝑡 .𝑛𝑎𝑚𝑒="Moe"

⊲⊳

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

(a) A basic query plan.
⊲⊳

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

𝜎𝑓 𝑖𝑟𝑠𝑡 .𝑛𝑎𝑚𝑒="Moe"

Paths1(𝐺)

𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows

Paths1(𝐺)

(b) A basic optimized query plan.

Figure 6: A basic optimized query plan for a query with
basic algebra expression.

with Knows. The equivalence also applies if the implementation
of 𝜙𝑊𝑎𝑙𝑘 limits the recursion to a given length of paths, long
enough to return all the shortest paths. Otherwise, equivalence
does not apply. Instead of the above, the optimization engine can
produce the algebra expression

𝜋(1,1,∗)(𝛾 (𝜙𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 (𝜎𝑙𝑎𝑏𝑒𝑙 (𝑒𝑑𝑔𝑒(1))=Knows(Paths1(𝐺))))))
where the recursive operator and the group-by operator have
been changed, and the order-by operator has been removed. The
change of 𝜙𝑊𝑎𝑙𝑘 by 𝜙𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is very important because now
the query returns a finite number of solutions, i.e. it always
terminates.

Overall, such manipulations are a standard part of any cost-
based query execution plan in SQL databases, and have a high
potential to be used over graphs. Indeed, some engines already
considered such optimizations for restricted versions of path
algebra, or for simply detecting, but not returning paths [34, 37],
and there is a rich body of literature on query rewriting for path
queries [5].

8 RELATEDWORK
Since the pioneering work of Edgar Codd [6], relational algebra
has been a hallmark of data management research focusing on re-
lational query processing and optimization. Despite the fact that
graph databases have established themselves as a data-driven
technology with high demand in industry, a counterpart of rela-
tional algebra is absent in graph database research. In this paper,
we fill this gap and propose a path-based algebraic framework,
that seamlessly work for recursive graph queries.

In the following, we discuss related work in this area, focusing
primarily on extensions of relational algebra to support path
queries, algorithmic approaches for computing path queries, and
the methods used by current database systems.

8.1 Extensions of relational algebra
First, we review extensions of relational algebra that support
the evaluation of path queries. 𝜇-RA [19] extends the relational
algebra with a recursive operator 𝜇 that enables the recursive

computation of joins. Although this extension can be used to sim-
ulate the evaluation of path queries, there is no way to implement
different path semantics.

Francis et al. [11] proposed GPC, a declarative non-procedural
calculus for property graphs similar in spirit to TRC (tuple-
relational calculus) for relational data. Graph patterns in GPC
generalize conjunctive two-way regular path queries [4] to prop-
erty graphs. Despite supporting restrictors among the set of
simple, trail (used by default if none is given), and shortest, a
GPC query returns tuples containing assignments of variables to
values. Hence, GPC does not manipulate paths as we propose in
our algebraic framework.

There exist early attempts to define non-recursive algebras
for property graph queries [4, 13, 27]. All these attempts closely
resemble relational algebra as they redefine selection, node-based
join, edge-based join, and union in a similar fashion and add
a path navigation operator, which is meant to encode linear
recursion in RPQ. They disregard the definition of a path-oriented
algebraic framework equipped with a projection operator and a
solution space allowing for full expressiveness, covering recent
standard graph query languages and beyond. Moreover, they
disregard several features of standard graph query languages,
such as restrictors and selectors, and do not map to concrete and
practical standard query languages.

There exist other pieces of work where the notion of path
algebras is used, such as case studies of graph problems involv-
ing paths [15] (connectivity, shortest path, path enumeration,
among others). The search for paths between a pair of nodes
using operators for paths such as join and product has also been
studied [23], along with recursive operators for paths with their
evaluation based on automata [29]. However, these studies are
prior to the appearance of property graph-related languages and
are tailored to plain labeled graphs and non-recursive queries.

It is worth mentioning that there is a substantial body of
work on processing SPARQL property path using an algebraic
approach. Some of these [22, 28, 37] include defining an inter-
mediate algebra that supports recursion. However, apart from
the inherent differences between RDF and property graphs, they
are not considering how paths should be returned, since this is
not supported in SPARQL, and they do not allow any path mode
besides ANY WALK.

8.2 Algorithmic approaches for computing
path queries

The literature presents several algorithmic approaches for com-
puting path queries in graph databases. The most basic approach
is to extend a graph traversal algorithm, such as depth-first
search or breadth-first search, by incorporating regular expres-
sion matching during the traversal. This approach can be im-
proved by using several techniques, including parallelism [26],
approximation [35], distributed processing [16], and compact
structures [3].

Automata-based approaches traverse the graph while tracking
the states of an automaton constructed from the regular expres-
sion, as a set of transitions maps directly to paths in the graph
[25]. Index-based approaches precompute and index paths based
on their edge labels or combinations of labels, which reduces the
search space and can accelerate path computation [9, 20]. Matrix-
based methods represent the graph as an adjacency matrix, en-
abling the use of matrix multiplication to find paths between
nodes [3].

793

Works such as [8, 24] describe specialized algorithms for exe-
cuting a single path query, or compressing the paths in the result
set, but they do not discuss on how these solutions can be in-
corporated into a larger query pipeline, nor how to specify an
algebra to manipulate the output paths, unlike our approach.

These algorithmic approaches vary in efficiency, scalability,
and complexity, and are often selected based on the specific
characteristics of the graph and the query workload. For instance,
automata-based approaches are particularly effective for graphs
with clear label patterns, while index-based and matrix-based
methods tend to be more efficient for large-scale graphs.

An important disadvantage of using an algorithm is that we
are not able to apply query optimization techniques. For doing
so, we need a query algebra like the one described in [37] and
[19]. A common issue of these algebras is that they do not return
the entire paths, just the source and target nodes for each path.

8.3 Path query evaluation in current database
systems

We conducted a brief review of current database systems to under-
stand the methods used for evaluating path queries. Our revision
included the following systems: Amazon Neptune, ArangoDB,
DuckDB, GraphScope, MemGraph, MillenniumDB, NebulaGraph,
Neo4j, OraclePGX, OrientDB, RedisGraph, TigerGraph, and Kuzu.
Next, we present key representative findings from our review.

DuckPGQ [32] is one of the few systems beyond Oracle PGX
implementing SQL/PGQ path queries, the first version of one of
the standard query languages for property graphs. It relies on a
relational backend and deals with recursion either by unfolding
it to several joins depending on the length of the paths or by
resorting to multi-source BFS as an external module. However,
the supported fragment of SQL/PGQ path queries is rather lim-
ited and it includes only the ANY SHORTEST WALK path mode.
DuckPGQ implements a version of relational algebra enhanced
with UDFs (user-defined functions) to support path queries eval-
uation.

MillenniumDB [34] supports all path modes of GQL with full
RPQs, but only on the level of a single path. Combining sets of
paths according to a formal algebraic framework goes beyond
the current scope of MilleniumDB.

Neo4j [36] offers full support for finding trails and walks,
but does not support arbitrary regular expressions to define all
regular path queries. On the other hand, since the Cypher query
language supports post-processing of the returned paths (viewed
as lists) [12], non-recursive algebraic operations can be simulated
in the system, but are not natively implemented.

Oracle/PGX [33] is a graph extension of the Oracle relational
backend. It relies on Compressed Sparse Row storage and is
capable of evaluating conjunctive RPQs underWalk, Trail, Simple
and Acyclic semantics.

Kùzu [21] fully supports the walk semantics, but not for all
regular expressions, and it limits the path length to 30. Trails and
Acyclic walks are also supported. Similarly to Cypher, some post
processing can be done on retrieved paths (which are stored as
lists) in order to simulate non-recursive algebraic operations.

In conclusion, none of the current database systems incorpo-
rates a path-based algebraic query evaluation as presented in this
work. Supporting such an algebra would facilitate the implemen-
tation of logical plans and the application of query optimization
techniques in current and future graph database systems.

9 CONCLUSIONS AND FUTUREWORK
One of the key characteristics of graph queries is the ability to
return paths instead of relations. Future versions of graph query
languages, defined as part of the ISO/IEC standardization activi-
ties, will be able to manipulate paths and to ensure composability
of queries. Our work is a considerable milestone towards this di-
rection by providing a graph algebra that lays the foundations of
composable graph queries. Such an algebra contains fundamental
operators as in Codd’s relational algebra but goes significantly be-
yond them by defining recursive operators and coverage of path
modes (selectors and restrictors) defined in GQL and SQL/PGQ.
The latter are defined by specifying grouping, order by and pro-
jection operators on path variables. Our work is accompanied by
a parser implementing the algebraic operators.

Our work paves the way for further research on graph query
algebraic optimizations leading to efficient implementations of
graph query engines. While current graph databases including
open-source and commercial ones are adding features from the
standards (GQL and SQL/PGQ), they also need to provide inter-
nals for logical and physical plans inspired by a formal algebraic
framework, as the one proposed in our paper.

ACKNOWLEDGMENTS
This work was supported by ANID FONDECYT Chile through
grant 1221727. R. García was supported by CONICYT-PFCHA /
Doctorado Nacional / 2019-21192157. A. Bonifati was supported
by ANR VeriGraph (nr. ANR-21-CE48-0015). D. Vrgoč was sup-
ported by FONDECYT Regular grant number 1240346.

REFERENCES
[1] Renzo Angles. 2018. The Property Graph Database Model. In Proc. Alberto

Mendelzon InternationalWorkshop on Foundations of Data Management (AMW),
Vol. 2100. CEUR Workshop Proceedings.

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,
and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for
Graph Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40. https://doi.
org/10.1145/3104031

[3] Diego Arroyuelo, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro,
and Javierl Rojas-Ledesma. 2024. Optimizing RPQs over a Compact Graph
Representation. The VLDB Journal 33, 2 (2024), 349–374. https://doi.org/10.
1007/s00778-023-00811-2

[4] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.
Querying Graphs. Vol. 10. Morgan & Claypool Publishers. 1–184 pages. https:
//doi.org/10.2200/s00873ed1v01y201808dtm051

[5] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. 2003. Reasoning on regular path queries. SIGMOD Rec. 32, 4 (2003),
83–92. https://doi.org/10.1145/959060.959076

[6] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13, 6 (1970), 377–387. https://doi.org/10.1145/362384.362685

[7] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. 1987. A graphical
query language supporting recursion. SIGMOD Rec. 16, 3 (dec 1987), 323–330.
https://doi.org/10.1145/38714.38749

[8] Benjamín Farías, Carlos Rojas, and Domagoj Vrgoč. 2023. Evaluating Regular
Path Queries in GQL and SQL/PGQ: How Far Can The Classical Algorithms
Take Us? (2023). arXiv:2306.02194 http://arxiv.org/abs/2306.02194

[9] G. Fletcher, Jeroen Peters, and Alexandra Poulovassilis. 2016. Efficient regular
path query evaluation using path indexes. In International Conference on
Extending Database Technology. https://doi.org/10.5441/002/edbt.2016.67

[10] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Vic-
tor Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Ro-
gova, and Domagoj Vrgoč. 2023. A Researcher’s Digest of GQL. In Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 255. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, 1:1–1:0.
https://doi.org/10.4230/LIPIcs.ICDT.2023.1

[11] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,
and Domagoj Vrgoc. 2023. GPC: A Pattern Calculus for Property Graphs. In
Proceedings of the Symposium on Principles of Database Systems (PODS). Seattle,
WA, USA, 241–250. https://doi.org/10.1145/3584372.3588662

[12] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer,
and Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property
Graphs. In Proceedings of the International Conference on Management of Data

794

(SIGMOD). ACM, New York, NY, USA, 1433–1445. https://doi.org/10.1145/
3183713.3190657

[13] Roberto García and Renzo Angles. 2022. An Algebra for Path Manipula-
tion in Graph Databases. In Advances in Databases and Information Systems.
Springer International Publishing, Cham, 61–74. https://doi.org/10.1007/
978-3-031-15740-0_6

[14] Hector Garcia-Molina. 2008. Database systems: the complete book. Pearson
Education India.

[15] M. Gondran. 1975. Path Algebra and Algorithms. In Combinatorial Program-
ming: Methods and Applications. Springer Netherlands, Dordrecht, 137–148.
https://doi.org/10.1007/978-94-011-7557-9_6

[16] X. Guo, H. Gao, and Z. Zou. 2021. Distributed processing of regular path
queries in RDF graphs. Knowl. Inf. Syst. 63, 4 (2021), 993–1027. https://doi.
org/10.1007/s10115-020-01536-2

[17] ISO. 2023. ISO/IEC 9075-16:2023 Information technology — Data-
base languages SQL - Part 16: Property Graph Queries (SQL/PGQ).
https://www.iso.org/standard/79473.html.

[18] ISO. 2024. ISO/IEC 39075:2024 Information technology — Database languages
— GQL. https://www.iso.org/standard/76120.html.

[19] Louis Jachiet, Pierre Genevès, Nils Gesbert, and Nabil Layaida. 2020. On the
Optimization of Recursive Relational Queries: Application to Graph Queries.
In International Conference on Management of Data (SIGMOD). ACM, New
York, NY, USA, 681–697. https://doi.org/10.1145/3318464.3380567

[20] J. Kuijpers, G. Fletcher, T. Lindaaker, and N. Yakovets. 2021. Path indexing
in the Cypher query pipeline. In 24th International Conference on Extending
Database Technology (EDBT). Open Proceedings, 582–587. https://doi.org/10.
1145/3299869.3319882

[21] Kuzu. 2024. Recursive relationship functions. https://docs.kuzudb.com/cypher/
expressions/recursive-rel-functions/. [Accessed 06-10-2024].

[22] Leonid Libkin, Juan L. Reutter, Adrián Soto, and Domagoj Vrgoc. 2018. TriAL:
A Navigational Algebra for RDF Triplestores. ACM Trans. Database Syst. 43, 1
(2018), 5:1–5:46. https://doi.org/10.1145/3154385

[23] Robert Manger. 2004. A new path algebra for finding paths in graphs. 26th
International Conference on Information Technology Interfaces (2004), 657–662
Vol.1.

[24] Wim Martens, Matthias Niewerth, Tina Popp, Carlos Rojas, Stijn Vansum-
meren, and Domagoj Vrgoc. 2023. Representing Paths in Graph Database
Pattern Matching. Proc. VLDB Endow. 16, 7 (2023), 1790–1803. https:
//doi.org/10.14778/3587136.3587151

[25] Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple
Paths in Graph Databases. SIAM J. Comput. 24, 6 (1995), 1235–1258. https:
//doi.org/10.1137/S009753979122370X

[26] K. Miura, T. Amagasa, and H. Kitagawa. 2019. Accelerating regular path
queries using FPGA. In 10th International Workshop on Accelerating Analytics
and Data Management Systems (ADMS). ACM, 47–54.

[27] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. 2022. Evaluating Complex
Queries on Streaming Graphs. In 38th IEEE International Conference on Data
Engineering (ICDE). 272–285. https://doi.org/10.1109/ICDE53745.2022.00025

[28] Juan L. Reutter, Adrián Soto, and Domagoj Vrgoc. 2021. Recursion in SPARQL.
Semantic Web 12, 5 (2021), 711–740. https://doi.org/10.3233/SW-200401

[29] Marko A. Rodriguez and Peter Neubauer. 2011. A path algebra for multi-
relational graphs. In IEEE 27th International Conference on Data Engineering
Workshops. 128–131. https://doi.org/10.1109/ICDEW.2011.5767613

[30] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Am-
mar, Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A.
Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf
Hartig, Bernhard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana
Iamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric
Peukert, Stefan Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu,
Christian Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor
Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lucia
Varbanescu, Hsiang-YunWu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021.
The future is big graphs: a community view on graph processing systems.
Commun. ACM 64, 9 (2021), 62–71. https://doi.org/10.1145/3434642

[31] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan
Birler, Mingxi Wu, Yuchen Zhang, and Peter A. Boncz. 2022. The LDBC Social
Network Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16,
4 (2022), 877–890. https://doi.org/10.14778/3574245.3574270

[32] Daniel ten Wolde, Gábor Szárnyas, and Peter A. Boncz. 2023. DuckPGQ:
Bringing SQL/PGQ to DuckDB. Proc. VLDB Endow. 16, 12 (2023), 4034–4037.
https://doi.org/10.14778/3611540.3611614

[33] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: a property graph query language. In Proceedings of the 4th
International Workshop on Graph Data Management Experiences and Systems
(GRADES). ACM, 7. https://doi.org/10.1145/2960414.2960421

[34] Domagoj Vrgoc, Carlos Rojas, RenzoAngles,Marcelo Arenas, DiegoArroyuelo,
Carlos Buil-Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and
Juan Romero. 2023. MillenniumDB: An Open-Source Graph Database System.
Data Intell. 5, 3 (2023), 560–610. https://doi.org/10.1162/DINT_A_00229

[35] S. Wadhwa, A. Prasad, S. Ranu, A. Bagchi, and S. Bedathur. 2019. Efficiently
answering regular simple path queries on large labeled networks. In Inter-
national Conference on Management of Data (SIGMOD). ACM, 1463–1480.
https://doi.org/10.1145/3299869.3319882

[36] Jim Webber. 2012. A programmatic introduction to Neo4j. In Proceedings
of the ACM Conference on Systems, Programming, and Applications. 217–218.
https://doi.org/10.1145/2384716.2384777

[37] N. Yakovets, P. Godfrey, and J. Gryz. 2016. Query planning for evaluating
SPARQL property paths. In International Conference on Management of Data
(SIGMOD). ACM, 1875–1889. https://doi.org/10.1145/2882903.2882944

795

