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ABSTRACT

Modern data-intensive systems perform complex analytical tasks

on large datasets that keep growing at superlinear rates. Prevail-

ing system architectures mandate that persistent data is trans-

ferred across the whole memory hierarchy to the host to be

processed there. Data movement limits the system performance

and impacts scalability and resource consumption inversely.

Yet, the emergence of intelligent storage/memory technolo-

gies and the ability to o�oad processing close to data creates

new opportunities, as data movement is performed on-device

much better performance and lower overall impact on processing.

However, to date the decision of which operations to o�oad has

been mostly hard-coded in near-data processing DBMS.

In this paper, we propose hybridNDP in an attempt to auto-

mate o�oading decisions given an ad hoc query. The core idea

is to split queries into host- and on-device processing parts and

enable cooperative intervention-free execution. To this end we

propose a cost-model to determine potential splits and a cooper-

ative execution model. We evaluate hybridNDP with nKV and

the Join-Order Benchmark. Our �ndings indicate that through

the o�oading and execution scheme hybridNDP outperforms

traditional host-only executions on various queries by up to 4.2×.

1 INTRODUCTION

Motivation. Modern data-intensive systems perform complex

analytical tasks on large datasets that keep growing at exponen-

tial rates [14, 73]. Besides, datasets have poor data locality [29, 37],

which inevitably results in massive data transfers across the

whole memory hierarchy. What’s more, prevailing DBMS archi-

tectures treat storage/memory as passive components and employ

processor-centric, and data-to-code designs, mandating that the en-

gine transfers the data to CPUs �rst, to process it there. Therefore,

and because of the low data locality large portions of the dataset

are only transferred to the CPU just to be discarded. As a result,

such systems become both compute- and data-intensive, yet data

movement is slow, increases resource consumption, and impacts

system performance and scalability. Ultimately, the degree to

which modern DBMS are economical [47, 52] sinks.

Emerging smart (a.k.a. intelligent or computational) storage [25,

57–59, 61, 82], economically combining memory and processing

elements on the same device, may o�er a practicable solution.

Smart storage exhibits higher device-internal bandwidth, par-

allelism, and the lower on-device latencies [6]. Thus o�oading

DBMS operations for near-data processing (NDP) close to the
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Figure 1: hybridNDP extends the current state of the art by

combining in-situ execution of operations with a parallel

execution strategy.

physical data location, provably reduces the impact of data trans-

fers, resulting in performance improvements between 3.6× and

15× [18, 23, 29, 32, 37, 68, 81].

Brief state-of-the-art Overview. To date, several NDP-capable

DBMS engines have been proposed [2, 8, 13, 18, 26, 29, 30, 32,

34, 36, 51, 70, 71, 74, 77, 80, 81]. Systems such as IBM Netezza

[23], Oracle Exadata [71], PolarDB [13] or X-Engine [29], or

research prototypes such as [30, 36, 74, 77, 80, 81] can o�oad op-

erations like SCANs, SELECTIONs to smart storage. IBEX [80, 81]

has demonstrated an extended set of o�oadable operations in-

cluding GROUP BY and aggregate functions. ISP [36] furthermore

extended the operation-set by o�oading JOINs. Lastly, SmartSSD

[18] aims at o�oading complete QEPs to smart storage.

However, in many cases, the decision of what operations to

o�oad is hard-coded [18, 30, 36, 77], i.e. the executor o�oads

prede�ned operations statically and under all conditions, disre-

garding the speci�cs of the query execution plan, device parame-

ters or data properties. In particular, such NDP systems typically

hard-code two distinct o�oading choices: (a) to o�oad individ-

ual size-reducing and transfer-intensive operations, e.g. SCANs,

early selections, early projections, or aggregations [30, 77] that

are typically the leaves of a QEP, or (b) to o�oad whole query

execution plans (QEP) [18, 36]. While the former clearly reduces

data movement, it is not guaranteed to improve performance

nor to exploit the potential for co-execution on the host-engine

and smart storage. Whereas the latter may easily overload the

weak smart storage compute elements by o�oading too much or

too complex operations [38]. Noticeably, these are two opposite

extremes in the problem space of o�oading strategies (Fig. 1).

More recently, dynamic o�oading has been introduced in

YourSQL [32] or PolarDB [13] allowing the DBMS to decide what

to o�oad for a given query. Yet, only size-reducing operations,

like SELECTIONs are considered, which represent a conspicuous

choice for NDP, but may not necessarily improve performance.
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Figure 2: (top) hybridNDP extends the optimizer of a DBMS

to calculate possible QEP splits. Out of all possibilities the

optimizer chooses a split strategy and deploys the NDP-

and host-parts to the on-device and host execution engines.

(bottom) Confoundingly, o�loading a QEP-split (H3) in-

volving compute-intensive, non-size-reducing operations

performs best compared to host-only execution (host-only),

o�loading the obvious size-reducing operations (H0) or the

NDP execution of the whole query (full NDP).

Unfortunately large parts of the o�oading space remain un-

covered (Fig. 1). To be practical NDP-DBMS must be able to

make automated o�oading decisions, without hard-coding or

optimizer hints. In this paper we pursue the following problems.

Problems. Provided that current o�oading strategies covered

corner-cases, intermediary strategies may yield better perfor-

mance. However, they mandate splitting the QEP into an on-

device portion involving transfer-intensive, but also non-obvious

compute-intensive operations like JOIN or GROUP BY, while the

host-engine handles operations suited for host-processing. This

intuition rises the question of how to compute such QEP-splits.

After deploying both QEP portions, the host- and on-device

engines will ideally execute simultaneously and overlappingly.

Therefore, the second question is how to achieve such cooperative

execution and prevent host-engine from staling until the results

of the o�oaded operation arrive and vice versa.

hybridNDP. We present an approach called hybridNDP in an

attempt to address the above problems. The main idea is to split

a QEP into a NDP-side and a host-side parts (called partial query

execution plans – PQEP). This way both the NDP- and host-PQEP

can execute in parallel and without additional interaction except

for transferring intermediary or �nal results. hybridNDP extends

the cost-model of the query optimizer to compute potential split-

points, estimate their relative costs and choose a split-point with

low overall costs.

However, in complex queries the NDP-PQEP may grow large

and comprise multiple resource-intensive (compute, on-device

memory) operations such as multi-table JOINs or GROUP BY. To

this end, hybridNDP introduces a generalized resource-model of

smart storage hardware to improve split-point estimation.

hybridNDP investigates non-obvious cases, beyond the current

state-of-the-art of o�oading transfer-intensive size-reducing op-

erations such as SCANSs, SELECTIONs, early-selection or -projection.

To our surprise, we �nd that o�oading PQEPs involving (multi-

ple) non-size-reducing and potentially computationally intensive

operations such as JOINs may yield better performance, by re-

ducing the intermediary results in deep left plans.

hybridNDP also investigates a cooperative execution model,

allowing the on-device engine and the host engine to overlap

their executions and avoid waits. The key intuition is that the host

execution is slowed down waiting for the on-device engine to

produce results, be them intermediary or �nal, and vice versa the

on-device engine idles waiting for a host-side NDP-invocation.

Introductory Experiment.We illustrate the e�ect of hybrid-

NDP in a preliminary experiment demonstrating the execution

alternatives of a complex multi-table join query – Q8.c of the Join-

Order Benchmark [41] (full details provided later on in Listing

3, Experiment 6). O�oading the complete query for on-device

execution (Fig. 2 - full NDP) performs worse than host-only

execution (Fig. 2 - host-only), which is not surprising given its

computationally intensive nature. The obvious case of o�oading

the transfer-intensive and size-reducing leaf-nodes of the QEP

(Fig. 2 - H0), improves performance. However, the non-obvious

case (Fig. 2 - H3) of o�oading a PQEP involving multiple compu-

tationally intensive JOINs on top of size reducing early selections

and early projections indicates the potential for hybridNDP.

To the best our knowledge hybridNDP is the �rst approach for

automated query o�oading in NDP settings. Our contributions

are: (a) We develop a set of cost-models to compute QEP splits

into NDP and host-side PQEP for hybridNDP; (b) We develop a

cooperative execution model hybridNDP that allows overlapping

executions of the host- and the on-device engines. (c) Under the

Join-Order Benchmark hybridNDP yields comparable or better

performance in 47% of all 113 queries with improvements of up

to 4.2× over the host-only-stack. Overall the optimizer chooses a

suitable plan in 31.8% of the queries.

Outline. We continue with a brief background (Sect. 2). We

provide more details on the cost-model and splitting QEPs in

Sect. 3. The cooperative execution of on-device and host-engines

is described in Sect. 4. We present the evaluation in Sect. 5 and

conclude in Sect. 8.

2 BACKGROUND

2.1 Overview of nKV

hybridNDP (Fig. 3) is part of nKV [74, 77, 78], which is an NDP-

based KV-store on top of RocksDB, and is exposed as a MySQL

storage engine by means of MyRocks [21]. Main motivation be-

hind employing nKV as a platform for hybridNDP is to reduce

the LSM read-ampli�cation through NDP even further. The write-

ampli�cation has been addressed at an earlier stage by NoFTL-KV

[75]. nKV o�ers several abstractions to o�oad NDP-operations.

nKV utilizes multi-level LSM-trees [48] whereas �0 being an

in-memory skiplist-based MemTable, and �1 ...�= organized as

Sorted String Tables (SSTs) on persistent storage.

Shared State. To e�ciently process DB operations in-situ with-

out any host-interaction (in an intervention-free manner), nKV

employs a small shared-state to host all modi�cations that have

not been �ushed to persistent storage. For each DB-object modi-

�cations are accumulated in an in-memory MemTable (�0) and

passed alongside the NDP invocation to smart storage. This way

nKV can generate a transactionally consistent snapshot of the
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Figure 3: Architectural design of hybridNDP over nKV.

whole database on device, provide transactional guarantees for

the NDP-execution (update-aware NDP [78]) and autonomous

on-device processing. Furthermore, information about physical

placements, with respect to the address-mapping table, for all

involved database objects (SSTs) on �1 ...�= are sent along with

the NDP invocation.

Processing. Computations are placed on the on-device heteroge-

neous compute elements (such as ARM-cores, FPGA-units) [77]

in order to process the o�oaded operations. During processing

the required data is loaded from �ash, processed and the inter-

mediate results are stored in cache-bu�ers inside the operation

hierarchy or persisted on-device [76]. Once the processing of

the �rst block is completed, the results are fetched by the host

system and can be further processed or returned to the caller. In

the meantime the processing of the next block can be started and

results are stored in a round-robin way in several bu�er-slots.

O�loadable operations in nKV. nKV currently supports the

following o�oadable operation types: SCAN, JOIN, SELECTION,

PROJECTION, GROUP BY and aggregation functions. SCANs are

o�oaded together with �lter conditions, as well as any projec-

tion �elds, if speci�ed. A JOIN operation carries multiple join-

conditions based on the given attributes of both input tables.

nKV supports several basic on-device join-algorithms. Classical

NLJ [69] (Nested Loop Join) , BNLJ (Block Nested Loop Join) and

Grace Hash-Join (GHJ)[69] are available. However, since they

are potentially ine�cient in presence of indices, a BNLIJ (Block

Nested Loop Index Join) is available to make use of primary

and secondary indices. Furthermore, GROUP BY and aggregation

functions such as SUM, AVG, MIN/MAX are supported in-situ, which

allows nKV to execute basic, but complete NDP pipelines.

2.2 Overview RocksDB/MyRocks

Key-value stores use straightforward data structures where each

distinct key is paired with a corresponding value. Well-known

examples of key-value stores include Redis [63], Amazon Dy-

namoDB [3], Apache Cassandra [4], and LevelDB [24] / RocksDB

[20]. These systems are well-suited for applications that demand

fast read and write operations over large datasets. Unlike re-

lational databases, which support complex queries and joins,

key-value stores excel at delivering high performance by pro-

viding direct access to data via key-value lookups. This makes

them particularly suitable for real-time analytics and distributed

systems, where low latency and high throughput are essential.

RocksDB. RocksDB is a high-performance, embeddable, per-

sistent key-value store optimized for fast storage devices like

SSDs and high-speed disk drives. Initially developed by Meta, it

is based on LevelDB [24], but designed to support highly concur-

rent access and o�er improved performance. RocksDB is highly

con�gurable, allowing users to �ne-tune performance and stor-

age characteristics to meet the speci�c demands of their applica-

tions. Its ability to manage large volumes of data with minimal

latency makes it a popular choice for applications ranging from

embedded systems to large-scale web infrastructures.

Column Families. In RocksDB, column families provide a way

to logically partition data within a single database instance. Each

column family can be individually con�gured with its own set

of options, allowing for targeted optimizations based on the spe-

ci�c data it holds. This �exibility enables applications to e�-

ciently manage di�erent types of data and access patterns within

the same database. For example, one column family could be

parametrized for read-heavy workloads, while another is opti-

mized for write-intensive operations. This separation enhances

performance and scalability by allowing precise data manage-

ment policies tailored to the needs of each DB-object. Thus, dif-

ferent DB-objects are placed in separate column families.

LSM Trees. Unlike traditional data structures that update data

in-place, LSM-trees [56] are designed as an out-of-place update

mechanism to handle the high update and insertion rates seen

in modern workloads, while also providing query capabilities.

Figure 4: Conceptual organization of the multi-level LSM-

Trees in RocksDB/LevelDB.
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Classical LSM-trees [56] consist of several B-tree-like index com-

ponents (�0 to� , Fig. 4), which are stored in new locations and

maintain a constant size ratio A = |�8+1 |/|�8 |, 8 ∈ [0,  ). When

an insert or update operation is performed, it initially a�ects the

�0 component, which resides in memory. Once �0 exceeds its

size-threshold, it is �ushed to disk and merged with the �1 com-

ponent. These merging processes gradually move data from �0
to � , removing outdated key-value pairs and reclaiming space.

Modern LSM-trees [48] are multi-level structures.

nKV [74, 77, 78] and RocksDB [20] introduce a separate LSM-

tree for each column family, isolating the access patterns of dif-

ferent DB-objects. Changes to an LSM-tree are �rst placed in the

main memory component�0, which in RocksDB consists of a set

of MemTables. These MemTables are implemented as memory-

e�cient data structures like SkipLists. Once a MemTable reaches

its size limit, it becomes immutable, and a new MemTable is

created to store further modi�cations. The immutable MemTa-

bles are eventually converted into Sorted String Tables (SSTs) and

�ushed to secondary storage (Fig. 4), where each LSM-tree com-

ponent from �1 to � contains multiple SSTs. The key-value

pairs within the SSTs are stored in sorted data blocks, while a

preceding index block holds key-o�set pairs pointing to the data

blocks, creating a sparse index. This index block reduces the

complexity of accessing key-value pairs within an SST.

When �ushing to �1, no merge is performed for performance

reasons, which can result in overlapping key-value ranges in

the SSTs (e.g., (()11-(()1= , �1, Fig.4). Compactions—merge op-

erations to lower layers (�2 . . .� )—either take SSTs from the

previous level or combine them with SSTs from the target layer,

depending on the strategy (e.g., tiered or leveled). During these

compactions, all key-value pairs from the input SSTs are sorted,

outdated entries are removed, and the results are stored in new

SSTs at the target level. As a result, key ranges in SSTs below �1
no longer overlap. However, keys can still appear on multiple

levels with di�erent values (e.g.,  4~4 or  4~51) to re�ect the

temporal distribution of updates to a key-value record. For in-

stance,  4~51 may have been updated multiple times: the most

recent version is in �1, rendering the version in �2 obsolete.

To retrieve a key-value record by key, the ��) (:4~) opera-

tion �rst searches the MemTables and immutable MemTables

in �0. If the key is not found, the system reads the index block

of one or more SSTs in �1, since SSTs may overlap at this level

but not in lower levels (�2 ...� ). Using the key-o�set pair from

the index block, the system identi�es the data block that might

contain the key, which is then read from secondary storage. If

the key is still not found, the same process is repeated for layers

�2 ...� . Due to the compaction process and data organization, a

key can only exist in a single SST per level at this point. Range

scans with or without key predicates work similarly but are more

complex and are supported by additional internal structures like

fence pointers. For example, (��# ( [ 4~51,  4~70]) traverses

all levels, retrieving  4~51 from �1, and Keys 55, 70 from �2.

Yet, if a scan involves value predicates, such as (��# (0 ≤

+0; ≤ 6), the only available option is to iterate over the entire

dataset. This leads to a substantial increase in I/O operations and

a signi�cant opportunity for improvement through NDP.

Secondary Indices. Secondary indices are a standard feature in

MyRocks/RocksDB. However, most other persistent key/value

stores do not support them, as this would contradict the gen-

eral concept and access patterns, which boil down to key-based

accesses over the primary LSM-tree. In RocksDB they are main-

tained as separate column families and, therefore, result in sepa-

rate LSM-Trees. Both primary and secondary LSM-Tree employ

the same structure, but di�er in the record-format. A key in

the secondary index combines its primary key, which is the sec-

ondary key in the primary index, with the key of the primary

index and keeps the value for metadata. Lookups on the sec-

ondary index table require the DBMS to �rst perform a lookup

inside the secondary LSM-Tree and extract the target primary-

key, before performing another lookup in the primary LSM-Tree

for each matching secondary key.

Use of Bloom-Filters and Fence-Pointers. Bloom-�lters and

Min-Max �lters (also known as fence-pointers) are used by nKV’s

host-engine as in standardMyRocks/RocksDB to exclude as much

SST-�les outside of the predicate range as possible. Currently the

NDP-engine makes no use of Bloom-�lters as they have been

already probed on the host side. However, this may change in

future with more powerful smart storage devices.

3 COST-MODEL FOR hybridNDP

We now describe the details on the cost-model decision that

determines a suitable host/NDP plan, and possible QEP splits.

Certain conditions must be met in order to o�oad PQEPs con-

taining multiple JOIN operations, otherwise hybridNDP resorts

to a traditional host-only strategy:

• Each table in a query is managed by a compatible engine.

• The smart storage device must be mounted in NDP-mode.

To calculate a suitable hybridNDP plan and QEP-splits, we

utilize the parameters given in Table 1. For cardinality estimation,

we rely on the standard MySQL techniques, which in case of

MyRocks, are collected out of index samples to generate statistics

(Table 1, System Variables).

3.1 Hardware model.

As di�erent hardware cannot be compared directly to each other

since not all of actual hardware properties can be taken into

account, we introduce an abstract hardware-model. It comprises

the characteristics (Table 2) of the internal/external �ash prop-

erties, the performance of the embedded compute elements, the

available memory, and the smart storage interconnect (e.g., PCIe).

Calculation of Hardware Parameter Settings. To determine

the parameter-set for the hardware model, we create a special

hardware pro�ling benchmark that measures the basic charac-

teristics of the underlying smart storage device, which are then

translated into the parameter values in Table 2. The pro�ler is an

on-device micro-benchmark designed to be executed before the

DBMS startup. In a single run it determines the static values for

the hardware model, which are placed in the DBMS parameter

�le. The CPU and memory characteristics are determined based

on a series of memcpy- operations across various bu�ers, and

performing a set of �oating point operations, whereas the �ash

performance is determined based on a mix of random read and

write. The speed of the interconnect is determined by performing

handshake-like data transfers of di�erent sizes.

3.2 Cost calculation.

A basic approach to calculate the cost (2C>C0; ) of individual QEP’s

combines the scan, cpu and transfer costs (eq. (1)).

2C>C0; = 2B20= + 22?D + 2CA0=B (1)
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Table 1: Parameters of the cost-model

Variable De�nition

Cost-Calculation Variables – unit: costs

2C01;4 Total access costs for a table

2B20= Total scan costs for a single table

22?D Total CPU costs for a single table

2CA0=B Total transfer costs for a single table

2=>34 Total cost of a node inside a QEP with all subnodes

2C>C0; Total cost of the QEP

2 5?284 Cost function to calculate the costs of the PCIe

Intermediate Calculation Variables

20;2B4; The selectivity for a table – unit: percentage

20;2 5 AC Estimated �ash read costs utilizing the HW-Model

20;2?25 Projection cost impact factor utilizing the HW-Model

20;2CE1 Transfer volume in bytes

=>34A4= Resulting number of records for the current node

=>341A2 Costs of bu�er management of the current

node utilizing the HW-Model

=>34?1= Number of projected bytes for current node

User / Con�guration Variables

DBAA42 Row Evaluation Cost

System Variables

C1;A4= Number of table records, matching the conditions

C1;B40 Costs of accessing table-data provided by

the underlying storage engine

C1;?5 = Number of projection �elds of the current table

C1;C 5 = Number of total �elds of the current table

C1;?1= Number of projection bytes of the current table

C1;C1= Number of total bytes of this table

C1;=1B Block size of the current table/node – unit: bytes

Table 2: Parameters of the HW-model

Variable Description

FLASH

=3?_ℎF��� Flash clock frequency (device)

ℎ>BC_ℎF��� Flash clock frequency (host)

ℎF�(, Flash weighting for hybrid-idx calculation

CPU

ℎF�"� E�ciency of CPU memcpy-operations

ℎF��� CPU clock frequency

ℎF��# Number of CPU cores

MEMORY

ℎF"(� Memory size of host system

ℎF"(( Memory size of selections on device

ℎF"(� Memory size of joins on device

=3?_ℎF"(, Memory weighting for hybrid-idx calculation

INTERCONNECT

ℎF�%! Number of PCIe lanes

ℎF�%+ PCIe version

However, it is applicable only to single-table queries, but not

optimal for multi-join queries, especially on di�erent hardware.

To this end, we extend the cost calculation to respect hardware

capabilities of the hardware-model in the following paragraphs.

Scan. The scan cost (eq. (2)) is computed by adding the table

access costs C1;B40 and �ash-access overhead 20;2 5 AC . To this

end, we combine the number of �ash pages to be read with a

hardware factor that calculates the cost of accessing a single page

utilizing �ash frequency ℎ>BC_ℎF��� , =3?_ℎF��� and the cost-

factor resulting from the hardware pro�ler. The resulting costs

vary depending on the estimated number of records (C1;A4=) and

are applied to the host- and NDP-QEPs. Noticeably, the internal

smart storage bandwidth is typically higher than the external,

and therefore the host- and NDP-QEP scan costs di�er.

2B20= = C1;B40 + 20;2 5 AC (2)

CPU. The CPU cost calculation (eq. (3)), involves the records the

current table to be evaluated (C1;A4=) and the amount of bytes re-

quired for projection (=>34?1=). The former results from the total

number of table records combined with the estimated selectivity

20;2B4; , multiplied by the evaluation cost per record (DBAA42 ). The

latter (projection bytes) comprises the total table size in bytes

C1;C1= , the number of projection attributes C1;?5 = (and their bytes

=>34?1=), and the amount of processed bytes per record. Each is

normed with a compute factor 20;2?2 5 taken from the hardware

model and extends the CPU cost calculation. To account for the

lower computational power of smart storage devices, hardware-

model introduces a cost-factor for crucial operations, e.g. ℎF�"�
- memcpy.

22?D = C1;A4= · DBAA42 · =>34?1= · 20;2?2 5 (3)

Transfer. Reducing data movement is a major goal for NDP.

Both, host and device cost calculations have to estimate the

amount of data to be transferred from smart storage to the host.

The transfer cost of a single table (2CA0=B ), involves the trans-

fer volume (20;2C1=) divided in blocks (20;2CE1 ), as well as the

device-to-host latency (2 5?284 ). In turn, the transfer volume is

the product of the estimated number of records (C1;A4= · 202;B4; )

and the number of attributes (C1;?1=) in the table in bytes. In

case of NDP, the transfer volume is signi�cantly smaller due to

size-reducing techniques like early selection and early projection.

Therefore the cost model respects only the attributes (C1;?1=)

and records, required on the host. Due to a lack of cardinality

estimation, host and NDP plans utilize the number records esti-

mated through the selectivity. The transfer-time of single blocks

is part of the hardware model, which provides a cost-function

(2 5?284 ) representing the transfer speed of the underlying PCIe

connection (eq. (4)) based on PCIe properties such as bandwidth,

lane count, line encoding, step-speed, and version. Equations

(5) and (6) compute the transfer costs for a host and on-device

processing, respectively, whereas the latter are potentially lower.

2CA0=B =
(20;2B4; · C1;A4= · C1;?1=) · 2 5?284 (ℎF�%+ , ℎF�%!)

C1;=1B
(4)

20;2CE1 = 20;2B4; · C1;A4= · C1;?1= (5)

20;2CE1 = 20;2B4; · C1;A4= · C1;C1= (6)

Join. For multi-table queries, the optimizer estimates the best

access path for each table, which comprises the scan (2B20=) and

the CPU (22?D ) costs. Furthermore, available indices and their

suitability are considered. The resulting cost for the current table

is combined with the subsequent table, for which best access path

is estimated likewise. The cumulative costs for each further table

are compared to other possible join orders. However, since data

transfer occur only at the end of the processing with NDP/hybrid,

the transfer costs (2CA0=B ) are also pending at the end, depending

on their selectivity (eq. (7) and equation (8)), whereas in the host

scenario all tables are transferred.

2CA0=B =
=>34A4= · =>34?1=

C1;=1B
· 2 5?284 (ℎF�%+ , ℎF�%!) (7)

2C>C0; = 2=>34−1 + =>34A4= · DBAA42 + =>341A2 + 2CA0=B (8)

The optimizer opts host-only or NDP-only execution based

on the total QEP costs of both. Furthermore, suitable indices
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are selected and in case of NDP an execution pipeline for on-

device processing is built. As part of the join-order calculation

hybridNDP also selects appropriate join-types.

3.3 Calculation of split-points.

In addition to the �nal QEP, which provides an adequate join-

sort-order, hybridNDP optimizes the QEP by estimating a suitable

split-position. QEP splitting mandates two preconditions: (a) the

QEP must comprise at least 2 tables; and (b) the amount of data

to be transferred must be close to the maximum transfer volume

per command in order to exploit the high on-device bandwidth.

The main idea behind plan splitting is to compute a target cost

2_C0A64C , and determine the split with closest cost to 2_C0A64C

out of all potential plan splits. hybridNDP computes 2_C0A64C eq.

(12) – (9) based on the host-to-device (in %) performance-ratio

for CPU B?;8C2?D (eq. (9)) and memory B?;8C<4< (eq. (10) and eq.

(11)), with the goal of maximizing on-device resource utilization,

but avoiding overload.

Next, hybridNDP determines the intermediate costs for all

tables in the plan. These are then added cumulatively to each

other, starting with the table with the lowest cost and adding

the next higher cost. The addition of every further table marks a

potential split-point, which is marked H0 through Hn. The cumu-

lative cost at every split-point is denoted as 2=>34 . For example,

consider Fig. 5, which shows the cumulative costs 2=>34 (y-axis)

along a �ctitious QEP with 5 tables and their position in the plan,

i.e., split-point H0 – split-point H4, x-axis). Clearly H4 (Fig. 5. 1 )

marks the total cost of the QEP involving all tables.

Finally, to determine a suitable split-position in the QEP, hy-

bridNDP selects the split point with the smallest absolute dis-

tance to 2_C0A64C (Fig. 5. 3 ). Up to a certain threshold, the opti-

mizer opts for on-device processing. However, as the amount of

data increases, the device’s capabilities become insu�cient and

the optimizer tends to opt for host-only processing. Notably, in

multi-join queries involving a large number of tables, are often

computationally- and memory-intensive. Thus, hybridNDP will

potentially o�oad smaller portions of the QEP, i.e., pick an early

split-position (more on the left Fig. 5), to remain economical and

avoid over-consuming the weak smart storage.

B?;8C2?D =

100 · (=3?_ℎF��� · ℎF�(, )

(ℎ>BC_ℎF��� · ℎF�(, )
(9)

B?;8C34E = (C1;# · ℎF"(( + C1;#−1 · ℎF"(� ) (10)

B?;8C<4< =

100 · (B?;8C34E · =3?_ℎF"(, )

(ℎF"(� · =3?_ℎF"(, )
(11)

2C0A64C =
2C>C0; · (B?;8C2?D + B?;8C<4<)

(2 · 100)
(12)

3.4 Example of query plan splitting.

To clarify the procedure of plan-splitting, we provide an example

of using JOB Q1.a (Listing 1). It consists of 5 tables (lines 2-6)

linked by 4 JOIN. The query meets the preconditions, and the

optimizer identi�es the split points H0 to H3 (Fig. 6 (diamonds)):

• H0: O�oading only leaf-nodes (tables ct, it, mi_idx, t, mc) to

smart storage while the join operations remain on the host.

• H1: O�oading the leaf-nodes (tables ct, it) including the join

(C1;_2C ⊲⊳C1;_8C ) to device and handover the join results to the

host for further processing.

• H2-Hn: O�oading leaf-nodes, as well as 2-n joins to device, but

executing the remainder of the plan on the host.

1

2
3

Figure 5: Split-point calculation for a QEP with 5 tables:

The total QEP cost 1 is calculated and compared against

the target cost 2 which is computed using the HW-model.

Finally the split-point with the shortest distance 3 is de-

picted as QEP-split-point.

Figure 6: Overview of possible split-points for JOB Q1.a.

Out of 5 tables (ct, it, mi_idx, t, mc) from the QEP, the

split points (H0-H3 diamonds) are identi�ed resulting in

di�erent PQEP plans for device (dotted container) and host

(remaining).

The optimizer utilizes the cost model to �nd an appropriate split

point for theworkload distribution. Once selected, data dictionary

information is used to de�ne the necessary parameters, predi-

cates, and bu�ers for the transfer between device and host which

are added to the NDP command. As a result for H2, tables (ct, it

and mi_idx) and joins (C1;_2C ⊲⊳ C1;_8C , C1;_8C ⊲⊳ C1;_<8_83G) are

used for device execution. Insight: Splitting the QEP allows the

optimizer to consider additional optimizations on the NDP-PQEP

speci�c to the device (see Sect. 4.2).

Listing 1: JOB Q1.a

1 SELECT mc.note , t.title , t.production_year

2 FROM company_type AS ct, info_type AS it,

3 movie_info_idx AS mi_idx , title AS t

4 movie_companies AS mc,

5 WHERE ct.kind = 'production␣companies '

6 AND it.info = 'top␣250␣rank'

7 AND mc.note NOT LIKE

8 '%(as␣Metro -Goldwyn -Mayer␣Pictures )%'

9 AND (mc.note LIKE '%(co-production )%'

10 OR mc.note LIKE '%( presents )%')

11 AND ct.id = mc.company_type_id

12 AND t.id = mc.movie_id

13 AND t.id = mi_idx.movie_id

14 AND mc.movie_id = mi_idx.movie_id

15 AND it.id = mi_idx.info_type_id;
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Figure 7: Parallel processing and interaction between the

host and the device. A Initial NDP-invocation including

all relevant information for the device execution; B Pro-

viding the intermediate results and hand them over to the

host system for further processing; C the smart storage

continues processing of the next intermediate-result-set

independently of a host invocation; D mapping the incom-

ing data to host-internal structures for further processing

4 COOPERATIVE EXECUTION MODEL

We now describe the cooperative execution model and the han-

dling of multiple devices with their own PQEP based on the

example shown in Listing 1 and Fig. 6.

4.1 Host processing

As soon as the nKV optimizer provides a �nalized QEP and partial

QEPs the executor performs an NDP-invocation for the NDP-

PQEP. We extended the initial command of nKV, which already

contains information about the logical / physical data placement

and the additional information about used indices, among others

(see Fig. 7. A ). Since the host can start processing when the �rst

intermediate results are available, it waits until they are ready

on device. After fetching and transferring the intermediate result

set from device to a dedicated memory-area on the host (see Fig.

7. B ), the host system loads the PQEP of the host system and

performs a lookup for the correct entry-point to place the data. In

case there are further join operations the data will be mapped and

added to the internal join-bu�er-structures. Next, the processing

of the current intermediate result is triggered on the host side

(see Fig. 7. D ) while the device autonomously creates the next

portion of intermediate results (see Fig. 7. C ). If smart storage

provides the intermediate results faster than the host-engine can

consume them, the remaining PQEP and the remaining bu�ers

for the intermediate results on device are exhausted, the smart

storage stalls and waits for the host-engine. Vice versa, the host

execution will stall until the next portion of results is generated.

Insight: Choosing a late-split in the QEP which o�oads the

higher computational e�ort to smart storage, which could lead to

long initial execution times (i.e., the time that takes to process the

�rst intermediate results), which in turn increases the total query

execution time. On the other hand, o�oading low computational

e�ort to the device, tends towards a traditional data-to-code

architecture and therefore, the advantages of NDP processing

cannot be exploited.

4.2 On-Device processing

Hardware Architecture. To e�ciently handle the execution

on smart storage, we rely on a dual-core COSMOS+ platform.

The �rst core is dedicated to receiving and handling incoming

requests. It works as a relay for the NDP-execution and passes

the incoming NDP-request to the second core, but processes

host read/write I/O directly. Furthermore, it keeps track of the

Figure 8: Device internal NDP-command processing

through a management-core (Core 0) and a dedicated

execution-core (Core 1)

intermediate result-set provided by the second core and transfer

them to the host on demand. The second core is solely dedicated

to NDP-processing (Fig. 8). After receiving the invocation with

all necessary information from the 1st core, it will process the

NDP-request until it is �nished or interrupted. If no more result-

bu�er-slots are available, the core halts until a free bu�er is

queued up. Figure 8 (top) illustrates the core-to-core interaction.

NDP operation structure. The NDP-pipeline typically com-

prises multiple operations. Noticeably, an NDP-pipeline aims

at reducing data movement and achieving suitable NDP execu-

tion on-device and can include typical pipeline-breakers such as

GROUP BY or JOINs, rather avoid them. On device, we employ a

volcano-execution model, which means that the results of the

underlying operation(s) are used as an input to the upper-level

operation as shown in Fig. 8 (bottom). Therefore, intermediate

result bu�ering (cache) is required to store the already processed

results of each operation, to avoid the necessity of holding com-

plete tables in-memory. Each operation process the input data as

long as it’s own bu�er is capable of storing another record before

handing over to the next operation. The �nal operation stores it’s

results in bu�er-slots where they remain until they are fetched

by the host for further processing (Fig. 8 - shared bu�er). Notably,

as soon as the �rst intermediate result-set is stored inside the

result-bu�ers it is fetched by the host-system and executed in

parallel. Along the on-device pipeline, multiple bu�ers exist and

are allocated to each stage during processing:

• block-bu�er: Holds the raw pages read from the �ash storage.

• selection primary-key/secondary-key cache: Stores the

resulting data of the selection after �ltering (selectivity) and

attribute-projection (projectivity),

• join cache: Stores either the resulting record, after attribute-

�ltering, or a pointer to the underlying caches.

• group-cache: If grouping is part of the processing, the group-

cache holds the hashed grouping-valueswith it’s data or pointer

to the actual location in the underlying structure.

• shared-bu�er The shared bu�er stores on multiple slots the

�nal processed records. This allows processing remaining work
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without waiting for the host to fetch the result - as long as

there are free bu�er-slots.

As soon as the root NDP-PQEP operation has calculated the

�rst result-set and stored it in the operation-assigned cache, core1

copies the result - in case a slot is available - to the shared bu�ers.

Thus, core0 can pass the results to the host system insofar a host

request is available.

Secondary index handling. The o�oaded hybridNDP PQEP

may contain join operations, for which there are matching sec-

ondary indices. To handle them e�ciently, without falling back

to scan operations, we added on-device secondary-index process-

ing to smart storage. To the best of our knowledge, we are the

�rst to employ secondary-index as on-device processing within

an NDP-DBMS. Within RocksDB secondary index structures are

stored as separate LSM-trees. Therefore, each secondary index

has its own column family assigned. During preparation of the

NDP-command on the host side, the optimizer extracts the addi-

tional information and extends the NDP-selection with a separate

NDP-early selection. Thus, the early NDP-selection gathers the

necessary information about the physical placement of the index

and its format. The top level NDP-selection operation remains

with the primary index and its structures. However, during a

seek operation the upper NDP-selection requests the values from

the underlying selection and seeks the requested records from

the primary-keys that are stored along the secondary-key on the

secondary-index structures.

Consider the example shown in Fig. 9. The given query per-

forms a join between two simple tables: A and B. The generated

plan might include an indexed-block-nested-loop as the join-type

and a scan operation on the primary index for table A as well as

an index-lookup on a secondary index for table B. During pro-

cessing, the �rst results of table A are requested via the primary

index (1) and the resulting KV 12� remains in the result-bu�er

of selection A until pickup (2). The join operation requests a

key-lookup to table B for key 12 (3) where the request is redi-

rected to the secondary selection of table B (4). Thus, the key 12

is looked-up in the secondary index and the resulting primary

key 15 is forwarded to the primary selection of table B (5). The

primary selection of table B again performs a seek-operation

in the primary-index with the key 15 from the secondary index

before giving the resulting value *# to the join (6) where it

is combined with the data � from table A and returned to the

requester.

Insight: The utilization of secondary indices yields signi�cant

performance gains for on-device processing. Although low selec-

tivity pro�ts from scan operations, whereas it may be suboptimal

with high selectivities that are predestined for key-lookups.

Cache structure optimization. Due to a limited amount of

memory we store the intermediate results as (a) row cache format

or (b) pointer cache format. The former copies the resulting

records after �ltering and projection and stores them completely

in the operation result bu�er. The latter stores only the memory

addresses of the projected attributes in its result bu�er. Obviously,

storing the complete record requires a lot of memory in the

intermediate operations, yet limiting the total amount of tables

that can be processed. However, storing only the memory address

requires the data to be persistently stored on the lowest level

until the processing of the pipeline is �nished. In our setup, we

switch to a pointer cache setup if multiple tables (> 2) have to be

processed, otherwise using the row cache approach.

Figure 9: Enabling on-device secondary index processing

through retrieving the seek-results from the secondary

index/LSM-tree to perform a lookup of the primary-keys

in the primary-index.

5 EXPERIMENTAL EVALUATION

Experimental Setup. The experiments are carried out on a

server running MySQL 5.6 MyRocks over nKV and Debian 4.9.

The server is equipped with a 4× core 3.4 GHz Intel I5 CPU with a

6MB L3 cache and 4GB of RAM. As consumer-class smart storage,

we use COSMOS+ [59], attached over PCIe2.0 x8, containing a

Zynq 7045 SoC including an FPGA and two ARM A9 Cores run-

ning at 667 MHz. The smart storage has a 1 TBMLC Flash module

con�gured in SLC mode. Furthermore, COSMOS+ is equipped

with 1 GB of DRAM, which is common for consumer-grade SSDs,

which typically have 1GB-4GB [66, 67]. For the NDP-engine we

make the following memory reservations:

• 20 MB internal systems (e.g. program code, NVMe bu�er, �ash

controller structures),

• 520 MB for temporary storage (e.g. data-block bu�er, index-

block bu�er, result-set bu�er), and

• 100 MB for nKV internal structures (index-block-mapping, data-

block-mapping, data-dictionaries, processing-queues for core syn-

chronization, operation-states).

Thus, bu�er NDP processing is restricted to approx. 400 MB.

Our experiments are conservative and the experimental plat-

form is designed to approximate economical consumer-level de-

vices (∼150-200 e/TB), with relatively weak compute capabili-

ties. To substantiate this claim we run the CoreMark Benchmark

[19] on the host and the COSMOS+ smart storage device. The

host achieves a score of 92343 it./sec, while the single ARM core

used for NDP processing on COSMOS+ reaches only 2964 it./sec.

Enterprise-class smart storage devices [25, 82] have much more

powerful compute capabilities that can be leveraged for data

MySQL/MyRocks

RocksDB

C
O
S
M
O
S
+

GreedyFTL

Join-Order Benchmark

RocksDB

Flash

nKV

NDP-engineARM,FPGA

Ext4 file sys.

Native(baseline) NDP stackBlock (baseline)

Flash Flash

Figure 10: System setup of nKV for di�erent baselines.
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processing (e.g., 16 to 24 cores), albeit at higher cost (∼500-1000

e/TB). However, in an enterprise scenario we also expect the

host-system to have several dozens or hundreds of cores. Thus,

the resource ratios will potentially remain the same or change

for the bene�t of the host.

Baselines. The experimental design is based on the following

baselines: BLK, NATIVE and the NDP stack, which is used by

hybridNDP and is evaluated against the BLK stack and based on

the NATIVE stack, which in turn is used by nKV (Fig. 10).

Block/BLK (Baseline). As the main baseline we use the block-

stack, which utilizes the traditional �le-system stack with all it’s

abstractions. It is based on a block storage device and con�gured

as block-device with an ext4 �le-system. By default, the block-

stack is utilized by MySQL for query execution by transferring

all data from the device to the host system. The COSMOS+ board

runs GreedyFTL with 1 MB DRAM cache to maintain the block-

device compatibility.

Native. As a second baseline, native eliminate all abstraction

layers between the host and the device, which allows direct com-

munication with the device. It mounts the storage directly into

the user space of nKV through native NVMe. However, also the

native stack transfers all data from the device to the host system

in order to be processed.

NDP. The NDP-stack is based on the native-stack and extends

the NVMe interface with commands for handling NDP-requests,

which allows the execution of operations near to the data storage.

I/O requests are managed by one of the ARM-Cores of the device,

while the remaining ARM-Core is utilized for dedicated NDP-

pipeline processing. In contrast to the host system, which has

a relatively large amount of memory, the on-device memory is

limited, which may prevent tables from �tting in memory. With

respect to the number of tables to be processed on-device, the

sizes of the bu�ers along the NDP-pipeline (selection, join, group-

ing) are adjusted until a certain performance threshold is reached.

The outcome is a 17 MB bu�er assignment for each selection

through the primary index and another 17 MB for a secondary

index. For each block-nested-loop-/ and indexed-block-nested-loop-

join we assign 7 MB. This setup allows at most 12 tables with

secondary index or up to 17 tables without secondary index to

be processed in an operation-pipelined manner during a single

NDP-call. However, smaller bu�er sizes a�ect the on-device per-

formance, due to more frequent bu�er refreshes, depending on

the workload. Overall, we determined a bu�er size of ≥ 512KB

reasonable for a BNL-join, whereas a BNLI -join is less a�ected.

Workloads. The workload is based on the Join-Order Bench-

mark [41]. Due to restrictions in the current implementation we

slightly modify JOB to use �xed-sized byte-lengths for character-

based values by employing string padding or trimming longer

values. We also took the 4 byte alignment of the COSMOS+

board into account. Therefore, the length of each value relies

on the number of bytes that indicate the length of the value

(C>C0;1~C4B = ;4=6Cℎ − ;4=6Cℎ − 1~C4B). For the integer-based

values we always use a 4 byte integer for simplicity. Noticeably,

we neither determine nor inject the optimal selectivities for the

respective query in contrast to [41], which decreases the level of

accuracy of the QEP-split decision. Optimal selectivities would

result in much more accurate split predictions.

The data-set comprises around 74 million records in total, dis-

tributed over 21 tables resulting in nearly 16 GB of data including

6 GB for indices. The largest tables comprise nearly 50% of the

total records, resulting in nearly 4 GB of data, including indices.

Most of the tables have multiple secondary indices.
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Figure 11: JOB queries (A) 8c, (B) 17b and (C) 32b, executed

on the BLK, NATIVE, NDP and hybridNDP stacks. Notably,

hybridNDP outperforms all baselines, whereas full-NDP is

sub-optimal for (A) and (C), but on par for NATIVE (B).

For the detail evaluation, we rely on the queries 8c, 17b and

32b of the JOB since they query di�erent numbers of tables and

various combinations of primary-/secondary indices, which al-

lows hybridNDP to employ BNL-, as well as BNLI-joins including

utilization of secondary indices. BNL-join builds a hash table in

the bu�er [69], its use is preferred over our grace hash join and

enforced for a fair comparison. Furthermore, Q8.c (Listing 3) has

millions of intermediate results in each processing step reaching

the bu�er limitations. Q8.c is also a good example for optimal

host/device co-processing.

Experiment 1: hybridNDP enables automated o�loading

and �lls the gap between sub-optimal NDP and host-only

decisions. Our opening experiment demonstrates the gains

through hybridNDP relative to the baselines based on JOB queries

8c, 17b, 32b (Fig. 11). The depicted queries contain various num-

bers of tables to be joined, and vary the number of indices used,

as well as several possible variants of conditions on nearly all

data-types.

Figure 11 shows the execution time of three di�erent JOB

queries for each stack. While hybridNDP shows a signi�cant

performance improvement due to it’s parallel processing, it can

be seen with query (A) and query (C) that the runtime for a

complete NDP execution is signi�cantly higher than the baselines

due to the high CPU compute intensity. Even though, queries like

(B) are favorable for NDP due to the high selectivity in the early

stages of the QEP, NDP still gets outperformed by hybridNDP due

to the higher compute power that is required in the later stage

of the QEP where a higher amount of data has to be compared

and processed. Furthermore, a split of the QEP for (B) in a later

stage guarantees low waiting times on both systems since the

intermediate results in the early stages are low (see Table 3) and

can be processed e�ciently on-device, while the host evaluates

the produced results against the last table. In this case, the host

engine incurs extra but hidden costs for transferring the rest of

the tables. Notably, the optimizer does not incur any signi�cant

additional e�ort for the NDP cost calculation as well as for the

split calculation. We measured an average of 13 `s for query 17b

in the vanilla MyRocks as well as for all presented stacks.

Experiment 2: hybridNDP improves the execution time of

various queries. We continue our evaluation by executing all

113 JOB queries (33 queries with their individual number of sub-

queries a-n) on the block-stack as well as o�oading the leaf-nodes

(H0), the full NDP-execution (NDP) and each intermediate hybrid

splitsH1 to�G as shown in Fig. 12. Throughout all executions, the

same on-device parameter con�guration has been used. Overall,

hybridNDP outperforms (Fig. 12, green), or is on par (yellow) with

the baselines in nearly 47% of all cases. The performance gain

varies due to the executed query and it’s chosen QEP from the

777



Table 3: Correlation of intermediate results and execution

times for JOB - Q17.b

# records

processed exec.

stack on device time [s]

BLK – 975

NATIVE – 637

H0 1 638

H1 41.840 637

H2 41.840 637

# records

processed exec.

stack on device time [s]

H3 148.552 637

H4 148.552 632

H5 7.796.926 230

NDP 52.307 563

Figure 12: Performance of host-only, hybridNDP and full

NDP execution under JOB. The columns represent the

33 JOB-query groups, each with several speci�c queries

(rows). hybridNDP may outperform the host-only execu-

tion (green) or be on par with it (yellow), for which we

report the performance improvement in percent. Not all

query-groups contain queries from a-f (white).

MySQL-optimizer. Notably, only 1.7% of the query execution is

favorable for a complete NDP-execution, and in 7% of the queries

the o�oading of only the leaf-nodes gains the best performance,

the remaining queries are favored for a hybrid execution.

Insight: Despite conditions with higher in-situ computational

e�ort, early data-size reduction has a higher impact on the query

execution time. An optimal split of the QEP favors the parallel

processing and therefore reduces the execution time. Unfavorable

QEP-splits may prolong run-times.

Experiment 3: The cost model used by hybridNDP calcu-

lates suitable plans. So far, we showed the e�ectiveness of the

partial o�oading of queries to the device. Next we investigate

into the quality of o�oading decisions and the accuracy with

which the optimizer estimates QEP-splits for hybridNDP given by

our cost-model (see Fig. 13). In this case, we rely on the complete

set of JOB queries and compare the decision of the optimizer with

the results presented in Exp. 2. Without any user interaction, the

optimizer predicts the best suitable hybrid-execution in 20,35%

Figure 13: hybridNDP decision under JOB for all 33 query

groups (columns) with their speci�c sub-queries as rows.

hybridNDP, estimates the best suitable execution strategy

(green) or targeting nearly the optimal (yellow), but miss-

estimates the best suitable plan (gray).

and an acceptable hybrid-execution in another 11,50% of the

queries. Overall, the cost model chooses a suitable plan in 31.8%

of the queries of the JOB. These results are acceptable, compared

to accuracy of PostgreSQL-optimizer, which yields a median er-

ror of 38% for all JOB queries [41] under perfect cardinalates. The

cost model relies on the selectivity estimation performed by the

DBMS, which limits the accuracy especially in cases of complex

queries with multiple tables (cascading e�ect). In contrast to [41]

we do not determine and inject optimal selectivities.

Experiment 4: Queries without utilization of indices are

optimal for NDP operations even for non-obvious cases.

We now relax prior assumptions and consider queries, favorable

for smart storage. Given a query comprising two tables (Listing

2) joined on non-indexed columns (line 2), but shrinking the total

amount of data based on a primary key column (id - line 3). The

smart storage con�guration is the same as in Exp. 2 and the table

data is again taken from JOB. Table movie_keyword consists out

of 4.5 million records and table movie_link has up to 30k records

which result, by executing the query, in a total dataset size of

around 8.5 million records with full-projection on both tables.

The query is executed on the baselines and the NDP-stack as

shown in Fig. 14.B.

Listing 2: Query joining 2 tables on non-indexed columns

1 SELECT * FROM movie_keyword , movie_link

2 WHERE movie_link.id <= 10000 AND

3 movie_keyword.movie_id = movie_link.movie_id;
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Figure 14: The NDP-stack outperforms the baselines due to

the early-selection and early-projection with an on-device

BNL-join for (A) limited and (B) full projection queries.

The NDP-stack clearly outperforms the baselines for the full-

and limited projection despite the non-size-reducing join opera-

tion, which highlights the already existing strength of NDP.

Insight: While host-only processing mandates transferring

data from storage to the host system to process it there, NDP-

processing can directly access the requested data from the �ash

and �lter out non-matching results in-situ.

Experiment 5: In-situ index processing increases the of-

�oading potential for complex queries. So far we considered

the on-device execution without secondary-index neither on de-

vice nor on the host-engine. Now we investigate the impact of

in-situ indices on NDP-join-processing, considering the queries

from Exp. 4, with block-nested-loop-join (NDP BNL) and indexed-

block-nested-loop-join (NDP BNLI). Fig. 15 shows the results. We

observe that the block-nested-loop-join, which does not utilize

indices, is now a bottleneck for the NDP-processing. However,

the BNLI -join is on par with the host-engine despite the higher

CPU processing power on the host-side.

Insight: The current data-�ow system architectures [42] avoid

indices and target bandwidth utilization instead. On the upside

they have simpler system designs and leverage the ample band-

width in NDP settings. This experiment shows that if indices are
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Figure 15: In-situ index utilization leverages the on-device

performance and enables the device to outperform (in case

of small projection - A) or compete (in case of full projec-

tion - B) compared to the host.

available, they are bene�cial for NDP. Without the in-situ index

processing the runtime of non-obvious NDP-operations may not

keep up with host-only processing, which makes the e�cient

in-situ index handling relevant to real systems.

Experiment 6: Optimal timing for host/device co-processing

is crucial for fast cooperative-execution. We continue our

evaluation by varying the position at which hybridNDP splits the

QEP host-PQEP and NDP-PQEP to investigate the performance

impact. To this end, we consider JOB-query 8c (see Listing 3).

The query processes seven tables, which results in nine possible

execution strategies for hybridNDP (block-only, H0 through H6 as

the hybrid options and NDP-only). The given query is executed

for all stacks by forcing the cost-model to split the QEP at the

respective position. The results are shown in Fig. 16.

We observe di�erent execution times depending on the posi-

tion of the split in the QEP. On the one hand a splits H0 to H2

tend to shift most of the compute power to the host system. On

the other hand splits H4, H5 or NDP-only assigns most of the

processing e�ort to smart storage. With H3 an optimal split of

the computational work is performed.

Listing 3: Query 8c of the JOB.

1 SELECT a1.name , t.title

2 FROM aka_name AS a1, company_name AS cn,

3 cast_info AS ci, movie_companies AS mc,

4 name AS n1, role_type AS rt, title AS t

5 WHERE cn.country_code = '[us]'

6 AND rt.role = 'writer '

7 AND a1.person_id = n1.id

8 AND n1.id = ci.person_id

9 AND ci.movie_id = t.id

10 AND t.id = mc.movie_id

11 AND mc.company_id = cn.id

12 AND ci.role_id = rt.id

13 AND a1.person_id = ci.person_id

14 AND ci.movie_id = mc.movie_id;
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Figure 16: Execution time of Q8.c (JOB) for the host- and

NDP-only execution, for di�erent split-positions.
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Figure 17: Execution of JOB Q8.d showing overlapping exe-

cution o�loading 2 tables to smart storage, while executing

remainder on the host.

To illustrate an optimal example of the parallel-processing �ow

we take a closer look at query 8d of the JOB, which is struc-

turally identical to 8c, however, the rt.role condition targets

‘costume designer’ instead of ‘writer’. Within query 8d the

most suitable split position is H3. As shown in Fig. 17 once the

NDP-command is o�oaded, processing of the �rst bu�er is ini-

tiated. However, during this time, the host system waits, which

limits the performance in the order of the o�oaded computa-

tional e�ort. As soon as the �rst intermediate result is processed

and transferred to the host system, both - host and device - work

in parallel. As long as neither the host nor the device has to wait

for the other part, an optimal parallel processing is performed.

Looking into detail of the execution of Q8.d (JOB) for the

optimal parallel processing (Fig. 17 - H2), we observe that the host

has (despite the initial on-device execution) nearly no waiting

time (see table 4 (left)) since the on-device processing provides

the next results just-in-time. The on-device execution instead has

a full workload nearly throughout the total processing time. Table

4 (right) shows a detailed breakdown of the on-device execution,

highlighting the expensive memcmp operation. Insight: Early

QEP splitting requires the host to process most of the query,

while late splitting moves it to smart storage. Both could prolong

runtimes, which makes it important to �nd a suitable split-point.

6 RELATEDWORK

First approaches of o�oading operations to computational de-

vices ([16], [64]) showed a bene�cial approach to reduce data-

transfers between the computational device and the host system.

Current systems con�rm their validity and improve the imple-

mentation in modern database management systems. Several

state-of-the-art systems, like [1, 13, 15, 30, 37, 40, 51, 77, 80],

showed a bene�cial approach to reduce data-transfers between

smart storage and the host-engine, however, the optimization-

research space is barely targeted. The main focus of these ap-

proaches base on the o�oading single operations (leaf-nodes -

e.g. [32]), simple but complete pipelines to be executed on device

Table 4: Detailed evaluation of host (left) and device (right)

processing distribution JOB - Q8.d, H2

Host Device

Stage duration [ms] / [%] Operation duration [%]

NDP setup
121 / ~0.0% memcmp 45,6

(command)

Wait (initial
9.350.407 / ~21.81%

compare
13,2

device exec.) internal keys

Wait (2nd, 3rd
5.667 / ~0.01%

seek
5,36

device exec.) index block

Result
124 / ~0.0%

selection
4,56

transfer processing

Processing 33.507.442 / ~78,17%
seek

2,89
data block

�ash load 2,43

other 25,96
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or decide at a coarse-grained level. COPRAO [7] in approach

for NDP optimization, closest to our work. However, it extends

traditional optimization rules and cost models to account for

the speci�c on-device hardware capabilities, enabling hardware-

aware query optimization. It also re�nes strategies to handle

dynamic hardware changes during query execution. Additionally,

COPRAO does not rely on using general resource abstractions

as seen in cost-model based strategies, instead takes a hardware-

conscious, rule-driven approach tailored for FPGA-accelerated

environments. With ORCA [5], the optimization is even purged

from the DBMS itself and outsourced to a better Optimizer than

the implementedMySQL-Optimizer. hybridNDP optimizes on the

software-side before the actual execution. Based on [38] which

decides at a coarse-grained level (for a whole query) how to exe-

cute the given query, hybridNDP is able to analyze each query

and splits a QEP into multiple parts to o�oad only the bene�cial

operations to the device. The o�oading of partial QEPs is not

only bene�cial for obvious cases (data-intensive operations), but

also for sequences of multiple joins which is, to our knowledge,

the �rst published approach. The presented approach leads to an

interesting execution-mode: interleaved execution.

O�loading in heterogeneous systems. O�oading and query

optimization in GPU databases have been extensively studied

to exploit GPU parallelism for accelerating database operations.

Early works [72] introduced relational query co-processing on

GPUs, focusing on accelerating spatial selection and joins. Full

query processing systems followed [11, 27, 33, 50, 60, 84]. Various

approaches aim to balance computation across heterogeneous

resources [28, 39, 79, 83], with many employing cost-model-based

o�oading strategies to determine the optimal distribution [11,

27, 39, 83]. Other systems rely on data locality [10, 33], load

balancing [50, 79], or architectural di�erences [60, 62, 84] for

o�oading decisions.

Recently, Data Processing Unit (DPU) in SmartNICs [12, 49, 53–

55] have become available and are being increasingly deployed in

datacenter infrastructures. For example, they are used to reduce

the so called datacenter tax [31], improve disaggregated storage

[85], data compression [44], and serverless tasks [46], o�oad

distributed �le system [35]. The problem of making automated

SQL o�oading decisions has been discussed in [22, 43].

7 DISCUSSION

In heterogeneous systems, involving di�erent types of acceler-

ators (e.g. GPUs, SmartNICs, FPGAs) or smart storage/memory

(e.g. SmartSSDs, PIM systems like UPMEM or Samsung PIM),

the o�oading problem (determining what functionality to of-

�oad) is not speci�c to smart storage, which we address in this

work. On GPUs di�erent o�oading strategies exist like cost based

[9, 11, 27], or via load balancing [39, 50, 83] in order to avoid

scheduling work on a less suitable processing element, and opti-

mize parallel processing [65]. hybridNDP proposes a cost model

including a HW-model which can be extended to adapt to dif-

ferent types compute element. However, several extensions in

the cost model and hybridNDP have to be addressed like data

transfers to the accelerator in order to compute correct execution

cost, or selecting operations optimal for device processing to

fully utilize its compute resources.

The general goal in o�oading is both to reduce data move-

ment and exploit the available (heterogeneous) computational

capabilities of the acceleration device (GPU, FPGA, smart storage,

DPU) through appropriate data-operation co-placement. How-

ever, depending on the type of acceleration device and its capa-

bilities the balance between the compute and data movement

targets may vary. For example, the computational capabilities

of smart storage/memory are inversely impacted by economical

constraints, as these are fabricated and sold under a commodity

model. Thus the resulting relatively weak computational capa-

bilities of consumer-grade SmartSSDs (∼150-200 e/TB, like the
on used in this work) shift the balance towards reduction of data

movement and utilization of internal I/O characteristics, whereas

enterprise-class Smart-Storage devices [25, 82] (∼500-1000 e/TB)
have much more powerful compute capabilities that can be lever-

aged for more computationally-intensive data processing. At

the other side of the spectrum are acceleration devices such as

GPUs (e.g., ∼181 000 e/TB, NVIDIA A100 with 94GB HBM) or

DPUs (e.g., ∼26 000 e/TB, Blue�eld-3 SmartNIC, with 16 ARM

cores), where the balance stresses mainly leveraging the compute

capabilities, to reduce of data movement.

Given their relatively weak computational capabilities, the

goal of o�oading work on consumer-class SmartSSDs, like the

on used in this work, is exploitation of their good internal I/O

characteristics, such as high bandwidth and parallelism, and low

latencies, to reduce the movement of large and cold persistent

data. Noticeably, the reduction of data movement, yields lower

resource contention on the host and improves performance and

scalability, the host CPU utilization and the energy consumption

per unit of useful work. Prior work has demonstrated o�oading

strategies on mitigation of the impact of SSD garbage collection

on performance and longevity [75, 77, 78], improvement of com-

pactions [17, 45] in LSM KV-stores, MVCC visibility checking [8].

Furthermore, prior work has shown how operation o�oading

leverages the on-device computational resources to reduce data

movement. In this work, we propose an approach for automating

o�oading decisions, leveraging I/O and compute resources.

8 CONCLUSIONS

In this paper we introduce hybridNDP as an approach automating

o�oading decisions in Near-Data Processing (NDP) DBMS. At

present NDP-DBMS tend to hard-code such decisions ignoring

the speci�cs of the given query, selectivities, or the presence of

indices. Furthermore, either only data-intensive and size reducing

operations (leaves in a QEP), or whole query execution plans tend

to be o�oaded, both of which deliver may sub-optimal results.

hybridNDP follows a di�erent avenue and splits the QEP into

host and NDP partial query execution plans. Surprisingly, we

�nd that partial QEP may lead to much better results than the

current extreme o�oading strategies. To this end, hybridNDP

introduces a cost-model and a hardware-model of smart storage

to determine QEP-splits in an automated manner. Our evaluation

under the JOB [41] benchmark indicates that in ∼32% of JOB the

queries the optimizer chooses a suitable or better plan for NDP.

Furthermore, hybridNDP introduces a cooperative execution

model, that allows the host- and the NDP-engine to execute over-

lappingly and minimize waiting. As a result hybridNDP yields

comparable or better performance in 47% of all 113 queries with

improvements of up to 4.2× over the host-only execution.
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