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ABSTRACT
In real-world scenarios, bipartite graphs are commonly used

to reveal relationships between objects. In this sense, biclique

counting has become a fundamental issue in bipartite network

analysis and has drawn a lot of attention recently. However,

a fundamental barrier is the exponential blow-up in the search

space of large bicliques and the exponential growth of the number

of bicliques in large dense graphs. In this paper, we design a Z-
Shadow randomized algorithm for large biclique estimation,

based on Füredi’s Theorem and a more reasonable and provable

sampling threshold. We also present an unbiased online sampling

method to take full advantage of shadows and minimize memory

storage.

The numerical experiments are conducted on both real

databases and artificial networks. The results show that our

method achieves less than 0.5% error and up to 100X and 500x

speedup compared to the state-of-the-art estimate and exact al-

gorithm, respectively, which indicates that Z-Shadow is suitable

for large-scale bipartite graphs, and it is memory-saving, efficient,

and accurate.

1 INTRODUCTION
In real-world scenarios, bipartite graphs are frequently used

to model relationships between distinct groups of objects,

such as actor-movie networks, author-paper collaborations, and

consumer-product connections [19]. The widespread applicabil-

ity of bipartite graphs underscores their critical role in network

analysis.

A (𝑠, 𝑡)-biclique, denoted as 𝐾𝑠,𝑡 , is a complete bipartite sub-

graph comprising two sets of disjoint vertices with 𝑠 vertices in

one set and 𝑡 vertices in the other, where every vertex in one set

is connected to every vertex in the other. In Figure 1, for instance,

the subgraph induced by the vertex sets {𝑢2, 𝑢3, 𝑢5, 𝑣2, 𝑣3, 𝑣4}
forms a 𝐾3,3. In this paper, we focus on the fundamental problem

of estimating the number of bicliques in network analysis.

1.1 Motivation
In real-world graphs, here are many networks such as user-

content interaction networks, protein-compound networks, and

User-Product networks, which should be modeled as large and
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Figure 1: 𝐾3,3 in a bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸)

dense bipartite graphs. On the other hand, large and dense net-

works mean massive search space, and existing methods are of-

ten limited by rapid growth in computational complexity, which

makes lots of basic graph algorithms inefficient and unsuitable

for massive real-world graphs.

Densely connected subgraph searching over bipartite graphs,

such as (𝛼, 𝛽)-core [7, 26, 41, 42], bitruss [32, 38, 45], and biclique
[9, 22, 25, 48, 51], has been proved useful in many real-world ap-

plications ranging from graph neural networks (GNNs), cohesive

subgraph analysis, and so on [48]. Naturally, as a fundamental

community structure in bipartite networks, biclique counting

becomes a fundamental issue in bipartite network analysis and

has drawn a lot of attention recently.

(1) blueCohesive Subgroup Analysis. Identifying cohesive sub-

groups or communities within a network is essential to

understand its structure and function. Borgatti et al. [5]

used bicliques to identify cohesive subgroups and revealed

the embedded structure in a bipartite graph.

(2) Higher-order Clustering Coefficient. Traditional clustering
coefficients measure the density of triangles in a network

but it fails to capture higher-order structures. Benson et

al. [2] extended the concept of clustering coefficients to

higher-order structures and demonstrated that these struc-

tures provide a more comprehensive understanding of net-

work topology. The study in [52] shows that networks in

the same field usually have similar higher-order clustering

coefficients. In a bipartite graph, the higher-order cluster-

ing coefficient is defined as the ratio between the counts of

bicliques and wedges, where wedges is a special structure

close to bicliques. This ratio measures the probability of

a wedge becoming a biclique, characterizing the intrinsic

properties of a bipartite graph.
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(3) Network Embedding Learning.Network embedding aims to

map nodes into a low-dimensional vector space, preserv-

ing structural information. Similarly, the bipartite network

embedding (BNE) [49] maps each node to compact em-

bedding vectors that capture hidden topological features

surrounding the nodes, to facilitate downstream tasks.

Wang et al. [36] pushed forward the progress of Struc-

tural Deep Network Embedding (SDNE) by catching the

local and global structural properties based on biclique

counting, which provides richer structural information.

The approaches for the biclique counting problem include ex-

act counting and approximate estimation. Exact counting meth-

ods, such as BCList (BCL for short) and BCList++ (BCL++ for

short) proposed by Yang et al.[48], as well as Epivot (EP for short)

introduced by Ye et al [51], commonly based on backtracking

techniques, which involve recursive searches to complete partial

bicliques and performs well on sparse bipartite graphs. How-

ever, due to the high connectivity of dense bipartite graphs, the

search space exhibits exponential growth, Furthermore, in large

and dense graphs, the number of bicliques also grows exponen-

tially. Attempting to enumerate all bicliques requires an imprac-

tically large amount of computational time. Therefore, rendering

exhaustive enumeration is infeasible for the large and dense

graphs. Using an approximate algorithm is an efficient approach

to address this problem. Currently, the state-of-the-art approx-

imate algorithm for biclique estimation is Zigzag++ (Zz++ for

short), proposed by Ye et al [51]. The key technique in Zigzag++

involves mapping bicliques to paths based on their structure

properties and estimating the number of bicliques through path

sampling. Although Zigzag++ has an excellent performance on

sparse graphs, it necessitates recording all paths, which will be

exceedingly large in dense graphs. Thus, Zigzag++ also faces the

problem of a combinatorial explosion in the search space, which

is the problem we study in this paper.

1.2 Contributions
In this paper, we give an efficient approximate method called

Z-Shadow which maps target bicliques to smaller ones and re-

duces the task of counting bicliques in large graphs to smaller

subgraphs. Moreover, the accuracy is improved, by decompos-

ing the graph into smaller components and pruning irrelevant

sections. Compared to traditional methods that struggle with

the exponential growth of the search space in massive bipar-

tite graphs, our approach incorporates the Füredi Theorem to

terminate iterations for sufficiently dense subgraphs as soon as

possible. This integration not only mitigates the problem of com-

binatorial explosion but also establishes a solid theoretical basis

for ensuring the accuracy of our approximate algorithms. By

dynamically adjusting the termination criteria based on graph

density, our method achieves significant reductions in computa-

tional complexity. Moreover, compared to existing algorithms,

such as EPivot and Zigzag++, our approach is more feasible for

large scalability and more efficient.

Our main contributions are as follows:

(1) Integrating Extremal Graph Theory into Biclique Estimation.
Motivated by the 𝑘-clique counting randomized algorithm

proposed in [15], our algorithm Z-Shadow(Gloabl) uti-
lizes results for the Zarankiewicz problem in extremal

graph theory. Seminal results by Füredi [13] provided an

upper bound for the Zarankiewicz problem, which serves

as the theoretical basis to end the space search early. The

effect of this theorem will be shown in numeric experi-

ments in Section 6.8.

(2) Efficient and Memory-Saving Sampling. To count 𝑘-cliques,
the shadow construction algorithm presented in [15] has

a sufficient theoretical basis to construct the sample sets.

However, it requires significant memory to store shadows

for a sparse bipartite graph. To overcome this obstacle, Jain

and Seshadhri proposed an online algorithm [17] to ad-

dress this issue. However, it is not the most space-efficient.

In order to substantially reduce memory usage, we modi-

fied the online algorithm [17] with an unbiased sampling

method. Even more, we release the space storing shadows

as soon as they are fully utilized. The improved algorithm

Z-Shadow(Online) can reduce memory usage by up to

1500 times compared to Z-Shadow(Global).
(3) Efficient for Massive Graphs. For the two approximation

algorithms that perform best on dense graphs, Zz++ and

EP/Zz++, Z-S(AD) achieves a speedup of over 100 times in

the best case, with an average speedup exceeding 37 times.

For the most efficient exact algorithm, BCL++, Z-S(AD)
delivers a maximum speedup of up to 500 times and an

average speedup of 130 times. For example, it takes only

twenty minutes for (4, 4)-biclique estimation on a dataset

with 151 million edges, whereas Zz++ [51], BCL++ [48]

and other comparison algorithms take more than 24 hours.

Moreover, the variations of graph parameters have less

impact on the speed of our algorithm.

(4) Outstanding Accuracy. Our algorithm achieves accurate

results with low variance. The errors of our algorithm are

consistently below 0.5% and 1% on dense graphs and sparse

graphs, respectively, where BCL++ is used to compute the

exact results for 𝐾4,4.

In summary, our algorithm is efficient, accurate, and memory-

efficient, drawing on theoretical results from graph theory.

This paper is organized as follows. We list some related results

in the following section and present definitions and notation in

graph theory in Section 3. In Section 4, we propose the Z-Shadow
algorithm with a theoretical analysis. In Section 5, we improve

our algorithm by reordering graph vertices and modifying the

online method to address memory usage issues. Section 6 gives

several numerical experiments and Section 7 summarizes our

work.

2 RELATEDWORK
Subgraph enumeration is known to be a challenging task in

graph analysis. The literature numerical algorithms are proposed

to count the number of the subgraphs with a small order, such as

triangle [57], butterfly, diamonds, etc [31]. The 𝑘-clique problem

has received significant attention [6, 16, 50], due to its importance

in various network-based applications, such as community de-

tection [27, 54], graph partitioning [14, 55], network embedding

[29, 53], and recommendation systems [28, 35]. Exact 𝑘-clique

counting algorithms, such as those proposed in [8, 16, 24, 34, 40],

generally rely on exhaustive search tree traversals for each vertex

to identify 𝑘-cliques. In contrast, approximation methods for 𝑘-

clique estimation, particularly sampling techniques [6, 18, 33, 44],

aim to reduce computational costs by trading off some precision.

It is worth mentioning that Jain and Seshadhri developed a fast

approximation algorithm for 𝑘-clique counting using extremal

graph theory [15], which is currently one of the fastest available

methods for this task. They further extended this approach to
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near-clique estimation in [17], by proposing an online sampling

algorithm to handle large graphs more efficiently.

While cliques are fully connected subgraphs in general graphs,

the analogous structure in bipartite graphs is known as a biclique.

Butterflies, the simplest biclique, have been widely studied as

a fundamental motif in bipartite graphs. Sanei-Mehri et al. pro-

posed a fast butterfly counting algorithm in 2018 [30], spark-

ing significant interest in accelerated and parallel approaches

for butterfly counting across both CPU and GPU architectures

[23, 39, 43, 47]. Additionally, this problem has been extended to

(𝛼, 𝛽)-core queries [7, 26] and fraud detection [37, 56].

Yang et al. [48] introduced the biclique counting problem and

developed the BCList algorithm, which relies on depth-first explo-

ration through multi-layer iteration. The core of this algorithm

involves maintaining a partial biclique and iteratively expanding

it by adding vertices from a candidate set. An improved version,

BCList++, was also proposed in [48] to reduce the consumption

of finding the candidate set by constructing a 2-hop graph. How-

ever, due to the high connectivity of dense bipartite graphs, the

search space exhibits exponential growth. To reduce the search

space, Ye et al. proposed a pivot-based method in [51], called

EPivot. The search space in the algorithm is determined by the

partially ordered neighbors of each edge. Notice that the key

point is to select appropriate pivots during the process of graph

traversal, which becomes significantly more challenging.

Exhaustive enumeration for all biclique is infeasible for the

large and dense bipartite graphs. A feasible solution is to estimate

the total number. A typical example, given by Ye et al.[51], is

an approximate algorithm called Zigzag, which leverages the

structural properties of bicliques and maps each biclique to a

path with specified lengths. The enhanced version, Zigzag++,

introduces a more efficient sampling space construction. It is

noteworthy that Zigzag and Zigzag++ can estimate all (𝑠, 𝑡)-
bicliques in a graph where 𝑠, 𝑡 < 10 and represent a remarkable

achievement. However, when it comes to dealing with dense

graphs, they also face significant computational challenges in

collecting all paths of the specified length making the task highly

resource-intensive.

3 PRELIMINARIES
This section outlines some concepts and formal definitions.

A graph 𝐺 = (𝐿, 𝑅, 𝐸) is called bipartite if its vertices set can be

divided into two disjoint sets 𝐿 and 𝑅 such that every edge in the

edge set 𝐸 has one end in 𝐿 and the other in 𝑅. Let 𝑒 (𝐺) = |𝐸 |
be the number of edges in a graph 𝐺 . For a vertex 𝑣 ∈ 𝐿 ∪ 𝑅, let
𝑁𝐺 (𝑣) be the neighborhood of 𝑣 in𝐺 and 𝑑𝐺 (𝑣) = |𝑁𝐺 (𝑣) | be the
degree of 𝑣 in 𝐺 . The set of 2-hop vertices of 𝑣 in 𝐺 , denoted by

𝑁 2+
𝐺
(𝑣), is the collection of vertices of distance 2 with 𝑣 . A graph

𝐻 = (𝐿′, 𝑅′, 𝐸′) is called a subgraph of 𝐺 = (𝐿, 𝑅, 𝐸), denoted by

𝐻 ⊆ 𝐺 , if 𝐿′ ⊆ 𝐿, 𝑅′ ⊆ 𝑅 and 𝐸′ ⊆ 𝐸.

Definition 3.1. For positive integers 𝑠, 𝑡 , a (𝑠, 𝑡)-biclique 𝐾𝑠,𝑡
is a bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) with |𝐿 | = 𝑠 , |𝑅 | = 𝑡 and 𝐸

consisting of all edges with one end in 𝐿 and the other in 𝑅.

For a bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) and 𝑆 ⊆ 𝐿 ∪ 𝑅, 𝐺 [𝑆] is the
subgraph of𝐺 induced by 𝑆 , whose vertex set is 𝑆 and the edge

set consists of all edges of 𝐺 with two ends in 𝑆 . Let N(𝐾𝑠,𝑡 , 𝑆)
denote the number of 𝐾𝑠,𝑡 in 𝐺 [𝑆] with 𝑠 vertices in 𝐿 and 𝑡

vertices in 𝑅. We use N(𝐾𝑠,𝑡 ,𝐺) to denote N(𝐾𝑠,𝑡 , 𝐿 ∪ 𝑅) for
convenience. The problem of estimating bicliques in bipartite

graphs can be formally defined as follows: Given a bipartite

graph 𝐺 = (𝐿, 𝑅, 𝐸) and parameters 𝑠, 𝑡 , estimate the number of

(𝑠, 𝑡)-bicliques with 𝑠 vertices in 𝐿 and the 𝑡 vertices in 𝑅.

4 PROPOSED ALGORITHM: GLOBAL
SAMPLING FROM A SHADOW

Finding special substructures in discrete structures is a clas-

sical topic in extremal graph theory, which was initiated as a

separate subarea of combinatorics by Turán in 1941. Given a

forbidden subgraph 𝐻 , the classical Turán-type question is to

determine the maximum number of edges in an 𝑛-vertex graph

that does not contain 𝐻 as a subgraph, which is denoted by

ex(𝑛, 𝐻 ). The Erdős-Stone Theorem gives an asymptotic formula

for ex(𝑛, 𝐻 ) when the chromatic number of 𝐻 is at least 3. On

the other hand, the Kővári-Sós-Turán Theorem implies that for

any bipartite graph 𝐻 , there is a positive constant 𝛿 such that

ex(𝑛, 𝐻 ) = 𝑂 (𝑛2−𝛿 ).
Turán type problems forbidding bipartite graphs are often

called degenerate. Determining the growth rate of ex(𝑛, 𝐻 ) for a
bipartite graph 𝐻 is a central and notoriously difficult topic in

Extremal Combinatorics, and it remains open for most families.

For example, the Even Cycle Problem, proposed by Erdős [4, 12],

asks for the exponent of ex(𝑛,𝐶
2𝑘 ) is open for every 𝑘 not in

{2, 3, 5} (see e.g. [3, 11, 20, 21, 46]).
To study the degenerate Turán type problems, we usually

reduce it to find some specific structures in a bipartite graph,

which is called Zarankiewicz type problems.

Definition 4.1. For positive integers𝑚,𝑛, 𝑠, 𝑡 , the Zarankiewicz
number 𝑍 (𝑚,𝑛, 𝑠, 𝑡), is defined as the maximum number of edges

in a bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) with |𝐿 | = 𝑚 and |𝑅 | = 𝑛 that

does not contain any complete bipartite subgraph 𝐾𝑠,𝑡 such that

𝑠 vertices in 𝐿 and 𝑡 vertices in 𝑅.

Determining 𝑍 (𝑚,𝑛, 𝑠, 𝑡) is known to be notoriously hard in

general. In [13], Füredi gave an upper bound of 𝑍 (𝑚,𝑛, 𝑠, 𝑡), on
which our algorithm relied.

Theorem 4.2 ( Füredi(1996) [13]). For positive numbers𝑚 ≥
𝑠, 𝑛 ≥ 𝑡, 𝑠 ≥ 𝑡 ≥ 2,

𝑍 (𝑚,𝑛, 𝑠, 𝑡) < (𝑠 − 𝑡 − 1)1/𝑡𝑛𝑚1−1/𝑡 + (𝑡 − 2)𝑛 + (𝑡 − 1)𝑚2−2/𝑡 .

Definition 4.3. Let𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph. A shadow

S for 𝐾𝑠,𝑡 is a multi-set of tuples (𝑆, 𝑞) for some 1 ≤ 𝑞 ≤ 𝑡 − 1 and
𝑆 ⊆ (𝐿 ∪ 𝑅) such that |𝑆 ∩ 𝐿 | ≥ 𝑠 , |𝑆 ∩ 𝑅 | ≥ 𝑞 and𝐺 [𝑆] contains
a copy of 𝐾𝑠,𝑞 with 𝑠 vertices in 𝐿 and 𝑞 vertices in 𝑅.

Following Jain and Seshadhri’s strategy in [15], the key idea

of the proposed algorithm is to find a proper shadow S for 𝐾𝑠,𝑡
in a given bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) such that∑︁

(𝑆,𝑞) ∈S
N(𝐾𝑠,𝑞, 𝑆) = N(𝐾𝑠,𝑡 ,𝐺).

and sample randomly from it. Note that for 𝑆 ⊆ 𝐿 ∪ 𝑅, the
existence of 𝐾𝑠,𝑞 is guaranteed by Theorem 4.2. Let 𝑆𝐿 = 𝑆 ∩ 𝐿
and 𝑆𝑅 = 𝑆 ∩ 𝑅 and |𝑆𝐿 | = 𝑚, |𝑆𝑅 | = 𝑛. We define the threshold
function as

𝛼 (𝑆, 𝑠, 𝑞) = (𝑠 − 𝑞 − 1)1/𝑞𝑛𝑚1−1/𝑞 + (𝑞 − 2)𝑛 + (𝑡 − 1)𝑚2−2/𝑞 .

The threshold function,𝛼 (𝑆, 𝑠, 𝑞) can be used to detect whether
a subgraph definitely contains 𝐾𝑠,𝑞 . If the number of edges for

𝐺 [𝑆] exceeds 𝛼 (𝑆, 𝑠, 𝑞), it can tell that the subgraph 𝐺 [𝑆] must

contain 𝐾𝑠,𝑞 , and it can enter the sampling stage. In the sampling

stage, we pick a set of vertices of size 𝑠 + 𝑞 randomly for each

element (𝑆, 𝑞) ∈ S and check whether (𝑠, 𝑞)-biclique could be

formed.
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Figure 2: An example of shadow S for 𝑘4,2

4.1 Vertex-based Shadow Constructor
Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph with labeled vertices

in 𝑅 as {𝑣1, · · · , 𝑣 |𝑅 | }. For a subset 𝑆 ⊆ 𝐿 ∪ 𝑅 and a vertex 𝑣𝑖 ∈
𝑆𝑅 , let 𝑁𝑆 (𝑣𝑖 ) = 𝑁𝐺 (𝑣𝑖 ) ∩ 𝑆 , and 𝑁 2+

𝑆
(𝑣𝑖 ) be the set of 2-hop

neighbors of 𝑣𝑖 in 𝑆𝑅 , whose label is greater than 𝑣𝑖 . Denote

𝑁 +
𝑆
(𝑣𝑖 ) = 𝑁𝑆 (𝑣𝑖 ) ∪ 𝑁 2+

𝑆
(𝑣𝑖 ) and 𝐺𝑣𝑖𝑆 as the subgraph induced

by 𝑁 +
𝑆
(𝑣𝑖 ). We call 𝐺

𝑣𝑖
𝑆

as the subgraph deriving from 𝑣𝑖 in 𝑆 .

And the subgraph induced by 𝑁 +
𝐺
(𝑣𝑖 ) is denoted as 𝐺𝑣𝑖 . Figure 3

shows a concrete example of these notations.

Algorithm 1 Z-Shadow-Finder (𝐺, 𝑠, 𝑡)
Input: A bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸), integer 𝑠, 𝑡
Output: A shadow S for 𝐾𝑠,𝑡 in 𝐺
1: if 𝑠 < 𝑡 then
2: 𝑠 ⇔ 𝑡, 𝐿 ⇔ 𝑅

3: T = {(𝑉 (𝐺), 𝑡)} and S = ∅
4: while ∃(𝑆, 𝑞) ∈ T do
5: Delete (𝑆, 𝑞) from T
6: for each 𝑣𝑖 ∈ 𝑆𝑅 with 𝑑𝑆 (𝑣𝑖 ) ≥ 𝑠 do
7: if 𝑞 > 3 then
8: if 𝑒 (𝐺𝑣𝑖

𝑆
) ≥ 𝛼 (𝑁 +

𝑆
(𝑣𝑖 ), 𝑠, 𝑞 − 1) then

9: Add (𝑁 +
𝑆
(𝑣𝑖 ), 𝑞 − 1) to S

10: else
11: Add (𝑁 +

𝑆
(𝑣𝑖 ), 𝑞 − 1) to T

12: if 𝑞 = 3 then
13: Select the two vertices 𝑣 𝑗 , 𝑣𝑘 ∈ 𝑁 2+

𝑆
(𝑣𝑖 ) of maxi-

mal degree in 𝐺
𝑣𝑖
𝑆

14: if |𝑁𝑆 (𝑣 𝑗 ) ∩ 𝑁𝑆 (𝑣𝑘 ) | > 𝑠 − 1 then
15: Add (𝑁 +

𝑆
(𝑣𝑖 ), 2) to S

16: else
17: Add (𝑁 +

𝑆
(𝑣𝑖 ), 2) to T

18: if 𝑞 = 2 ∧ there is a 𝐾𝑠,1in 𝐺𝑣𝑖𝑆 then
19: Add (𝑁 +

𝑆
(𝑣𝑖 ), 1) to S

Z-Shadow-Finder is the shadow construction, which aims

to get a reasonable sample set S. First, the threshold function

requires 𝑠 ≥ 𝑡 , as we can swap 𝐿 and 𝑅, and 𝑠, 𝑡 , respectively (line

1-2) if 𝑠 < 𝑡 . Then we are given a temporary set T and initialize it

to T = {𝑉 (𝐺), 𝑡} (line 3). And the sample set S is initialized to an

empty set (line 3). Each tuple (𝑆, 𝑞) ∈ T needs to be iterated down

L

R

Figure 3: Examples of notations mentioned in section 4.1

L

R

G

does not satisfy line 6

Obviously and
cannot contain

According to line(12 - 17),
Add to

It does not satisfy line 18 It does not satisfy line 6

Figure 4: An example of an implementation of Z-Shadow-
Finder (𝐺, 3, 3)

to get new tuples by decomposing 𝐺 [𝑆], and the original tuple

will be deleted (lines 4-5). For each 𝑣𝑖 ∈ 𝑆𝑅 , only if 𝑑𝑆 (𝑣𝑖 ) > 𝑠 , it
is possible for𝐺

𝑣𝑖
𝑆

to contain a 𝐾𝑠,𝑞−1 (line 6). Here, we divided
the value of 𝑞 into three cases in the algorithm:

Case 1: q > 3 The threshold function is used to determine

whether 𝐺
𝑣𝑖
𝑆

could enter the sample set S (lines 7-11).
Case 2: q = 3 The threshold function cannot play a good role in

this case, because 𝛼 (𝑆, 𝑠, 𝑞) is not tight for a small 𝑞. Therefore,

we directly verify whether the two vertices with the largest de-

grees and their neighbors in 𝐺
𝑣𝑖
𝑆

contain a biclique 𝐾𝑠,2 by (lines

12-17).

Case 3: q = 2 It is equivalent to verifying 𝐺
𝑣𝑖
𝑆

contains 𝐾𝑠,1 in

the induced subgraph (lines 18-19). And it could be determined

by line 6.

Figure 4 shows an example of constructing a shadow for 𝐾3,3
in G.

For a tuple (𝑆, 𝑞) ∈ S, if 𝑆 contains a copy of 𝐾𝑠,𝑞 = (𝑃,𝑄, 𝐸′)
with 𝑄 =

{
𝑣𝑖1 , 𝑣𝑖2 , · · · , 𝑣𝑖𝑞

}
, where 𝑖1 < 𝑖2 < · · · < 𝑖𝑞 . Then 𝐺

𝑣𝑖
𝑆

contains a copy of 𝐾𝑠,𝑞−1.

Theorem 4.4. Let S be the shadow of 𝐾𝑠,𝑡 constructed in Z-
Shadow-Finder. Then, for any (𝑆, 𝑞) ∈ S,𝐺 [𝑆] contains a copy of
𝐾𝑠,𝑞 and

∑
(𝑆,𝑞) ∈SN(𝐾𝑠,𝑞, 𝑆) = N(𝐾𝑠,𝑡 ,𝐺).

Proof. The existence of 𝐾𝑠,𝑞 in 𝐺 [𝑆] is guaranteed by Theo-

rem 4.2 if 𝑞 > 3 and is trivial for the other case. Now it suffices

to show that, there exists a unique 𝐾𝑠,𝑡 in 𝐺 corresponding to

any 𝐾𝑠,𝑞 in 𝑆 . In fact, for a copy 𝐵 of 𝐾𝑠,𝑡 in𝐺 , the vertices in the

𝑡-part of 𝐵 have been ordered. In Z-Shadow-Finder, we check
the vertices in the 𝑡-part one by one in this order according to
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the threshold function 𝛼 (·) and 𝑞, and output a unique (𝑆, 𝑞) ∈ S.
Then 𝑆 ∩𝑉 (𝐵) forms a 𝐾𝑠,𝑞 . The process is reversible and we are

done. □

4.2 Sample Procedure
To count the number of 𝐾𝑠,𝑡 in a bipartite graph 𝐺 , it suffices

to count the number of 𝐾𝑠,𝑞 in each (𝑆, 𝑞), which belongs to

the shadow constructed in Z-Shadow-Finder(𝐺, 𝑠, 𝑡). Referring
to the strategy for estimating the number of 𝑘-cliques in [15],

we propose a theoretical probability distribution for the biclique

sampling and modify the sampling method in [15] slightly, which

are shown in Algorithm 2 and 3.

Algorithm 2 Sample (S)

Output: A set of vertices 𝐴

1: For each (𝑆, 𝑞) ∈ S, set 𝜔 (𝑆) =
( |𝑆𝐿 |
𝑠

) ( |𝑆𝑅 |
𝑞

)
and 𝑝 (𝑆) =

𝜔 (𝑆)/∑(𝑆 ′,𝑞) ∈S 𝜔 (𝑆 ′)
2: Sample (𝑆, 𝑞) independently from Swith the probability 𝑝 (𝑆)
3: Uniformly random choose 𝑠 vertices from 𝑆𝐿 and 𝑞 vertices

from 𝑆𝑅 to form a vertex subset 𝐴.

Algorithm 3 Z-Shadow(Global)

Input: number of samples 𝜏

Output: An estimated value 𝐾̂ =

∑
𝑖 𝑋𝑖

𝜏

∑
(𝑆 ′,𝑞) ∈S 𝜔 (𝑆 ′) for 𝐾

1: S← Z-Shadow-Finder(𝐺, 𝑠, 𝑡)
2: for 𝑖 = 1, 2, . . . , 𝜏 do
3: 𝐴← Sample(S)
4: if 𝐺 [𝐴] is an (𝑠, 𝑞)-biclique then
5: 𝑋𝑖 = 1

6: else
7: 𝑋𝑖 = 0

The algorithm Sample (S) firstly samples the tuple (𝑆, 𝑞) ∈ S
with the probability 𝑝 (𝑆) and then selects certain vertices from

the vertices set 𝑆 to verify whether it forms a biclique. Conse-

quently, Z-Shadow(Global) results in a complete biclique esti-

mation algorithm by calling Z-Shadow-Finder and Sample (S).
The effect of this algorithm is guaranteed by the following result.

Theorem 4.5. Suppose that 𝜖, 𝛿 are positive real numbers with
𝛿 < 1, and 𝐺 = (𝐿, 𝑅, 𝐸) is a bipartite graph with 𝐾 = N(𝐾𝑠,𝑡 ,𝐺).
Let S be the shadow of 𝐾𝑠,𝑡 constructed in Z-Shadow-Finder. If

𝜏 >
3

𝜖2𝛾
log

2

𝛿
, where 𝛾 = min

(𝑆,𝑞) ∈S
1( |𝑆𝐿 |

𝑠

) ( |𝑆𝑅 |
𝑞

) ,
then Algorithm 3 outputs an estimate 𝐾̂ for 𝐾 such that |𝐾̂ − 𝐾 | ≤
𝜖𝐾 with probability > 1 − 𝛿 .

The proof of Theorem 4.5 is given in Appendix A.1.

4.3 Implementations
In our experiments, we mainly use compressed sparse rows

(CSR) format, which is the most common for the graphs. It re-

veals the adjacency relationship between vertices in a graph and

contains three arrays:

(1) 𝑉𝑎𝑙 index: stores the weight of edges in 𝐺 ;

(2) 𝐶𝑜𝑙 index: stores the indices of the neighbors for a vertex;

(3) 𝑅𝑜𝑤𝑝𝑡𝑟 : the 𝑖-th element records the total number of

neighbors of the previous vertices.

In this paper, the default value of the weights for an edge is

always equal to 1, so the𝑉𝑎𝑙 array is an all-one array, which can

be ignored.

Coordinate format (COO), a sparse matrix storage format, is

also used in our experiments. As we know, the COO format is

the predecessor of the CSR. In the COO format, the non-zero

elements of the matrix are stored as coordinates and consist of

three arrays:

(1) 𝐷𝑎𝑡𝑎 index: stores the weight of an edge in 𝐺 ,

(2) 𝐶𝑜𝑙 and 𝑅𝑜𝑤 index: Used to store the two endpoints of an

edge.

Similarly, the Data index also can be ignored in our exper-

iments. It is worth mentioning that the COO’s data have no

concern with the order of the vertices. With respect to the vertex

labels, We reorder the 𝑅𝑜𝑤 index 𝐶𝑜𝑙 index, with the neighbors

of the same vertex to get the sorted 𝐶𝑜𝑙 , which is the 𝐶𝑜𝑙 in CSR.

𝑅𝑜𝑤𝑝𝑡𝑟 can be obtained by compressing 𝑅𝑜𝑤 .

Theorem 4.6. Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph and 𝑆 ⊆
(𝐿 ∩ 𝑅). For 𝑣 ∈ 𝑆𝑅 , the running time of finding 𝐺𝑣

𝑆
is

𝑂
©­«𝑑𝐺 (𝑣) log2 |𝑆𝐿 | +

∑︁
𝑢∈𝑁𝑆 (𝑣)

𝑑𝐺 (𝑢)
ª®¬ .

Proof. The running time of finding all neighbors of 𝑣 in 𝑆

(finding all neighbors of 𝑣 and take a intersection with 𝑆𝐿 ) is

𝑂 (𝑑𝐺 (𝑣) log2 |𝑆𝐿 |). Then we need to collect all neighbors of 𝑢 for

each𝑢 ∈ 𝑁𝑆 (𝑣), whose running time is𝑂

(∑
𝑢∈𝑁𝑆 (𝑣) 𝑑𝐺 (𝑢)

)
. □

4.4 Algorithm Analysis
The cost of Z-Shadow-Finder mainly includes the cost of in-

ducing subgraphs and verifying the existence of a (𝑝, 𝑞)-biclique
when 𝑞 = 2. The running time of the remaining operations in the

algorithm is 𝑂 (1). We therefore analyze the runtime by dividing

it into two parts as follows.

Since the consuming time for inducing subgraphs is related to

|T| = | {(𝑆, 𝑞) | (𝑆, 𝑞) has existed in T} |,

we calculate the upper bound of |T|, before analyzing the cost of

Z-Shadow-Finder.

Definition 4.7. A subgraph 𝐻 = (𝐿′, 𝑅′, 𝐸′) of 𝐺 = (𝐿, 𝑅, 𝐸)
is called a (𝛼, 𝛽)-core candidate, if for any 𝑢 ∈ 𝐿′, and 𝑣 ∈ 𝑅′,
𝑑𝐻 (𝑢) ≥ 𝛼 and 𝑑𝐻 (𝑣) ≥ 𝛽 . Moreover, 𝐻 is a (𝛼, 𝛽)-core of 𝐺 if

𝐻 is a maximal (𝛼, 𝛽)-core candidate.

Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph and 𝐻 be its (𝑠, 𝑡)-core.
Note that to find all copies of 𝐾𝑠,𝑡 , it suffices to find them in 𝐻 .

Let

𝑅′ = 𝑉 (𝐻 ) ∩ 𝑅, T𝑖 = {(𝑆, 𝑖) | (𝑆, 𝑖) has existed in T}

and

Δ2+
𝑅 = max

{
|𝑁 2+
𝐺 (𝑣) |, 𝑣 ∈ 𝑅

}
.

Theorem 4.8. For 𝑖 ≥ 1, |T𝑡−𝑖 | ≤ |𝑅′ | (Δ2+
𝑅
)𝑖−1.

Proof. By induction on 𝑖 , it is trivial if 𝑖 = 1. Assume that the

inequality holds for 𝑖−1. Note that each tuple (𝑆, 𝑡−𝑖+1) ∈ T𝑡−𝑖+1
generates at most Δ2+

𝑅
subgraphs. So |T𝑡−𝑖 | ≤ |T𝑡−𝑖+1 |Δ2+

𝑅
≤

|𝑅′ | (Δ2+
𝑅
)𝑖−1. □

Corollary 4.9. |T| ≤ |𝑅′ |∑𝑡−1𝑖=1 (Δ2+
𝑅
)𝑖−1.
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Theorem 4.10. The runtime for constructing a shadow is

𝑂 ( |𝑅′ |Δ𝑅 (Δ2+
𝑅 )

𝑡−1 (log
2
Δ𝑅 + Δ𝐿)),

where Δ𝑅 = max {𝑑𝐺 (𝑣), 𝑣 ∈ 𝑅} and Δ𝐿 = max {𝑑𝐺 (𝑣), 𝑣 ∈ 𝐿}.

Proof. For a tuple (𝑆, 𝑞) that exists in T, we need to pick one

vertex 𝑣 ∈ 𝑆𝑅 and check the number of edges in 𝐺𝑣
𝑆
. Thus the

total running time of finding subgraphs in Z-Shadow-Finder is

𝑊1 =
∑︁
(𝑆,𝑞) ∈𝑇

∑︁
𝑣∈𝑆𝑅
(the running time of inducing 𝐺𝑣𝑆 ) .

By Theorem 4.6, the running time of inducing 𝐺𝑣
𝑆
for a vertex

𝑣 ∈ 𝑆𝑅 is 𝑂 (𝑑𝐺 (𝑣) log2 𝑆𝐿 +
∑
𝑢∈𝑁𝑆 (𝑣) 𝑑𝐺 (𝑢)). Therefore,

𝑊1 =
∑︁
(𝑆,𝑞) ∈𝑇

∑︁
𝑣∈𝑆𝑅
(𝑑𝐺 (𝑣) log2 |𝑆𝐿 | +

∑︁
𝑢∈𝑁𝑆 (𝑣)

𝑑𝐺 (𝑢))

≤
∑︁
(𝑆,𝑞) ∈𝑇

|𝑆𝑅 | (Δ𝑅 log2 Δ𝑅 + Δ𝐿Δ𝑅)

≤ |𝑇 |Δ2+
𝑅 (Δ𝑅 log2 Δ𝑅 + Δ𝐿Δ𝑅) .

(1)

On the other hand, we need to calculate the consuming time

for verifying the existence of (𝑠, 2)-bicliques, which is

𝑊2 =
∑︁

(𝑆,𝑞) ∈T2

Δ𝑅 log2 Δ𝑅 = |T2 | (Δ𝑅 log2 Δ𝑅) .

𝑂 (𝑊1 +𝑊2) = 𝑂 ( |𝑇 |Δ2+
𝑅 (Δ𝑅 log2 Δ𝑅 + Δ𝐿Δ𝑅))

= 𝑂 ( |𝑅′ |Δ𝑅 (Δ2+
𝑅 )

𝑡−1 (log
2
Δ𝑅 + Δ𝐿))

(2)

This completes the proof.

□

Theorem 4.11. The memory complexity of Z-Shadow(Global)
is 𝑂 (Δ𝐿Δ𝑅 |𝑅′ | (Δ2+

𝑅
)𝑡−2).

Proof. It can be easy to obatain by Δ𝐿Δ𝑅 |𝑇 |. □

5 ALGORITHM OPTIMIZATIONS
In this section, we optimize our algorithm by reordering the

vertices in the graphs to adjust the structure of the graphs. Fur-

thermore, we proposed a modified online method to solve the

memory occupation problem.

5.1 Graph Reordering
Actually, the upper bound in Theorem 4.10 is not tight, even

much larger than the number of edges in the induced subgraph

before reordering. Therefore, for most tuples (𝑆, 𝑞), the condi-
tion in line 8 of Z-Shadow-Finder is hard to be satisfied. For

example, for a fixed graph, we choose 10 vertices randomly to

form the induced subgraph 𝐺𝑣
𝑆
. Table 1 shows the different sit-

uations of selected vertices before and after reordering. From

observation, 𝑒 (𝐺𝑣
𝑆
) is much smaller than 𝛼 (𝑁 +

𝑆
(𝑣), 3, 4) before

reordering. By Theorem 5.2, we note that |𝑁 2+
𝑆
(𝑣) | plays a de-

cisive role in 𝛼 (𝑁 +
𝑆
(𝑣), 𝑠, 𝑞). In order to reduce the value of

𝛼 (𝑁 +
𝑆
(𝑣), 𝑠, 𝑞), we are going to reduce |𝑁 2+

𝑆
(𝑣) |. To solve this

problem, we reorder the vertices in 𝑅 in increasing degree, such

that 𝑑 (𝑣1) ≤ 𝑑 (𝑣2) · · · ≤ 𝑑 (𝑣 |𝑅 | ), i.e. reorder in ascending order

of degree. Take Figure 1 for example, the graph after reordering

is shown as Figure 10.

There are two benefits to this:

• Assume that 𝑣1 ∈ 𝑅 𝐺𝑣1𝑆 is likely to be a dense graph and

it is easy to achieve the upper bound 𝛼 (𝐺𝑣
𝑆
, 𝑠, 𝑞). That will

cause more shadow in 𝑠 .

L

R

Figure 5: An example for graph reordering

Table 1: The information before and after reordering 10
vertices in a graph, according to the degrees.

Before After
id |N2+

G (v) | e(Gv) 𝛼 (Gv, 3, 4) id |N2+
G (v) | e(Gv) 𝛼 (Gv, 3, 4)

7110 2374 61116 156760 8829 918 102870 63677

8012 1250 8004 44002 8005 1741 55672 58285

8435 923 5145 28496 7822 1923 50090 53731

8757 499 973 6255 6897 2690 17658 31318

7558 1949 34491 121724 8758 989 95644 63941

9192 262 480 7142 7572 2174 43948 48079

8490 942 5588 32885 7940 1807 65111 56981

7187 2376 95188 289924 9469 278 97442 38039

7127 2383 73358 170980 8950 797 111680 61094

8774 615 1303 11246 7271 2442 22667 40353

• For the last 𝑡 − 1 vertices in 𝑅, the iteration will be in-

terrupted in the pruning process due to the inadequate

number of 2-hop neighbors. It effectively avoids the in-

crease of the size of T.

5.2 Online Sampling
In Z-Shadow(Global), most of the time is spent on construct-

ing the shadow, and storing the shadow takes up a lot of storage

space. Such defects make our hardware load quite high, which

impedes us from dealing with large graphs. To solve this prob-

lem, Jain and Seshadhri proposed the online sampling algorithm

in [17]. We modify the online sampling algorithm, called Z-
Shadow(online) , by setting the probability of a vertex 𝑣 ∈ 𝑅 is

chosen equal to 𝑝 (𝑣) = Φ𝑣

Φ , where Φ𝑣 =
( |𝑁𝐺 (𝑣) |

𝑠

) ( |𝑁 2+
𝐺
(𝑣) |
𝑞

)
and

Φ =
∑
𝑣∈𝑅 Φ𝑣 . With this probability, the online shadow construc-

tion method is with an unbiased sampling. Moreover, we also use

the vertex sampling sequences 𝑃 (line 6) to determine whether a

shadow can be reused or abandoned. In this way, the modified

online sampling algorithm substantially reduces memory usage

and releases the space storing shadows as soon as they are fully

utilized. The following two results guarantee the effect of our

algorithm.

Theorem 5.1. 𝐺 = (𝐿, 𝑅, 𝐸) is a bipartite graph with 𝐾 =

N(𝐾𝑠,𝑡 ,𝐺). The value 𝐾̂ returned by Algorithm 4 satisfies E(𝐾̂) =
𝐾 .

Theorem 5.2. Suppose that 𝜖, 𝛿 are positive real numbers with
𝛿 < 1, and 𝐺 = (𝐿, 𝑅, 𝐸) is a bipartite graph with 𝐾 = N(𝐾𝑠,𝑡 ,𝐺).
If 𝜏 ≥ 3Φ

𝜖2𝐾
ln

2

𝛿
, then Algorithm 4 outputs an estimate 𝐾̂ for 𝐾 such��𝐾̂ − 𝐾 �� < 𝜖𝐾 with probability > 1 − 𝛿 .

We will leave the proof of these two theorems in Appendix

A.2 and A.3, respectively. Meanwhile, we can obtain the memory

complexity of online sampling as follows, by the similar discus-

sion as Theorem 4.10.
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Algorithm 4 Z-Shadow(Online)

Input: A bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) and integer 𝑠, 𝑡, 𝜏

Output: An estimate 𝐾̂ = 𝑊
𝜏 Φ for 𝐾

1: Order 𝑅 by degree

2: 𝑊 = 0

3: Set the probability of a vertex 𝑣 be chosen is 𝑝 (𝑣) = Φ𝑣

Φ ,

where Φ𝑣 =
( |𝑁𝐺 (𝑣) |

𝑠

) ( |𝑁 2+
𝐺
(𝑣) |
𝑞

)
and Φ =

∑
𝑣∈𝑅 Φ𝑣

4: Independently sample 𝜏 vertices in 𝑅, say𝑤1, · · · ,𝑤𝜏 , with
probability 𝑝 (𝑤𝑖 )

5: for 𝑖 = 1, 2, . . . , 𝜏 do
6: 𝑣 ← 𝑤𝑖
7: if 𝑤𝑖 ≠ 𝑤𝑖−1 then
8: S← Z-Shadow-Finder (𝐺𝑣, 𝑠, 𝑡 − 1)
9: Let 𝜔𝑣 =

∑
(𝑆,𝑞) ∈S

( |𝑆𝐿 |
𝑝

) ( |𝑆𝑅 |
𝑞

)
10: if Sample(S) is a biclique then
11: Set 𝑋𝑖 = 𝜔𝑣/Φ𝑣
12: else
13: Set 𝑋𝑖 = 0

14: 𝑊 =𝑊 + 𝑋𝑖
15: if 𝑤𝑖+1 ≠ 𝑤𝑖 then
16: Delete S

Theorem 5.3. The memory complexity of Z-Shadow(Online)
is 𝑂 (Δ𝐿Δ𝑅 (Δ2+

𝑅
)𝑡−2).

6 EXPERIMENTS
In this section, we elaborate on our experiments, including the

experiment setup, and evaluation results for running time, accu-

racy, and memory consumption. Moreover, we also conduct the

ablation study for sample size and the effect of vertex reordering.

The datasets and demo code are publicized at Github
1
.

6.1 Experiments Setup
We will conduct our algorithms in C++ and on a machine

equipped with an E5-2697v3(2.30GHz, 3.6GHz turbo) with 16

cores and 36 threads, 4.5MB L2 cache, 45MB L3 cache, and 64GB

quad-channel memory. The real datasets are all from KONECT
2
,

which is bipartite and dense. Moreover, the number of vertices on

one side is significantly larger than on the other. We also generate

a bunch of artificial graphs with a given number of vertices and

edges, whose degrees are in a normal distribution. The statistics

of the real and artificial datasets are presented in Table.2, where

|𝐸 | is the number of edges, |𝐿 | and |𝑅 | represent the number of

vertex in 𝐿 and 𝑅, respectively. And 𝑑 , 𝑑𝐿 and 𝑑𝑅 represent the

average degree of 𝐿 ∪ 𝑅, 𝐿 and 𝑅, respectively.

Table 2: Basic properties of the dataset

dataset |E| |L| |R| d dL dR origins
movielens-10m 10M 69878 10677 248 143 936 KONECT

flickr 8M 395979 103631 34 21 82 KONECT

movielens-1m 1M 6040 3706 205 165 270 KONECT

movielens-100k 100K 943 1682 76 106 59 KONECT

FilmTrust 35K 1508 2071 20 24 17 KONECT

WikiLens 27k 326 5111 10 83 5 KONECT

moreno-hens 496 32 32 31 31 31 KONECT

S-151M 151M 300000 1000 1007 505 151672 Synthetic

S-2M 2M 10000 1000 364 200 2006 Synthetic

S-917k 917K 3000 500 524 305 1834 Synthetic

1
https://github.com/Sarabeacon/ZS

2
http://konect.cc/

Algorithms. In this experiment, we evaluate the following

algorithms.

• Z-S(AD): Z-Shadow(Online) proposed in Section 5.2,

which adopts ascending order of degree.

• EP++: An enhanced version of EPivot incorporates addi-

tional optimizations such as degree-ordering, which was

proposed in [51].

• Zz: A dynamic programming-based approximation algo-

rithm is proposed in [51].

• Zz++: An improved version of Zigzag proposed in [51].

• EP/Zz : A hybrid framework combining EPivot and Zigzag.

• EP/Zz++ : A hybrid framework combining EPivot with

Zigzag++ is proposed in [51].

• BCL: The baseline method proposed in [48].

• BCL++: The state-of-the-art biclique counting algorithm

proposed in [48].

• PMBE: Adapted algorithm from maximal biclique enu-

meration proposed in [1].

• VSample: A vertex-based estimation algorithm designed

concerning section 5.1 in [30].

• ESample: An edge-based estimation algorithm designed

concerning section 5.2 in [30].

• ESpar: An estimation algorithm based on edge sparsifica-

tion, which is designed concerning section 6.1 in [30].

Algorithm 4 VSamp

Input: A bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸)
Output: An estimated value 𝐾̂ of 𝐾

1: for 𝑖 = 1, · · · , 𝜏 do
2: Choose a vertex𝑤 from 𝑅 uniformly at random

3: 𝐴𝑖 ← BCL++(𝐺𝑤 , 𝑠, 𝑡 − 1)
4: 𝐾̂ ← |𝑅 |∑𝜏

𝑖=1𝐴𝑖

𝜏

Algorithm 6 ESamp

Input: A bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸)
Output: An estimated value 𝐾̂ of 𝐾

1: for 𝑖 = 1, · · · , 𝜏 do
2: Choose an edge 𝑒 = (𝑢, 𝑣) from 𝐸 uniformly at random,

which 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅.
3: 𝑁>𝑣 (𝑢) = {𝑤 |𝑤 ∈ 𝑁 (𝑢) ∧𝑤 > 𝑣}, 𝐺 [𝑁 + (𝑒)] =

𝐺 [𝑁>𝑣 (𝑢) ∪ 𝑁>𝑢 (𝑣)]
4: 𝐴𝑖 ← BCL++(𝐺 [𝑁 + (𝑒)], 𝑠 − 1, 𝑡 − 1)
5: 𝐾̂ ← |𝐸 |∑𝜏

𝑖=1𝐴𝑖

𝜏

Algorithm 7 ESpar

Input: A bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸), parament 𝑝, 0 ≤ 𝑞 ≤ 1

Output: An estimated value 𝐾̂ of 𝐾

1: for 𝑖 = 1, · · · , 𝜏 do
2: Construct 𝐸′

𝑖
by including each edge 𝑒 ∈ 𝐸 independently

with probability 𝑝

3: 𝐴𝑖 ← BCL++((𝐿, 𝑅, 𝐸′
𝑖
), 𝑠, 𝑡)

4: 𝐾̂ ←
∑𝜏

𝑖=1𝐴𝑖

𝜏𝑝𝑠𝑡

Wewill leave the analysis related to VSample, ESample, and ESpar

in the Appendix A.4.
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6.2 Running Time
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Figure 6: Quantitative evaluation of running time in terms
of second ↓

In this subsection, we evaluate the performance of algorithms

on the parameter pair (𝑠, 𝑡), where 𝑡 is fixed at 4 and 𝑠 varies

from 2 to 6. In these experiments, the sampling size is set to 10𝑀 .

The experimental results are presented in Figure 6. If the runtime

exceeds 24 hours, it is recorded as OOT and the corresponding

bars are not shown.

In this article, the speedup is defined as a multiple of time re-

duction. As observed, Z-Shadow outperforms other algorithms

in most cases, particularly on large, dense graphs. The accelera-

tion results for each comparison algorithm are shown in Table 3.

It is shown that compared to two approximation algorithms Zz++

Table 3: The speedup of Z-S(AD) compared to other algo-
rithms.

Zz++ EP/Zz++ Zz EP++ BCL++ BCL
MAX 108.9 113.4 1179.5 23622.1 511.2 23622.1

AVERAGE 38.1 37.1 274.9 4953.4 130 4997.9

and EP/Zz++, Z-S(AD) achieves a speedup of over 100 times in

the best case, with an average speedup exceeding 37 times. For

the most efficient exact algorithm, BCL++, Z-S(AD) delivers a
maximum speedup of up to 500 times and an average speedup

of 130 times. Furthermore, the results demonstrate that our algo-

rithm is not sensitive to variations 𝑠 with fixed 𝑡 . However, this

is not the case for BCL, which is shown in Figure 6a.

6.3 Accuracy of Z-Shadow
To evaluate the accuracy of Z-Shadow, we compared it with

VSample, ESample, and ESpar. The sampling sizes of all algo-

rithms are set to be 10𝑀 . Recalling that 𝐾 is the exact value of

N(𝐾𝑠,𝑡 ,𝐺) given by BCL++ and 𝐾̂ is the estimated value, the

accuracy of 𝐾̂ is defined as 1 − |𝐾−𝐾̂ |
𝐾

. The results, presented in

Figure 7, show that Z-Shadowmaintains a relatively stable accu-

racy, with an error rate of always within 0.5% on all experimental

data sets.

6.4 Memory Reduction
We investigate the memory usage of the Z-Shadow algorithm

with online sampling and global sampling. Table 4 illustrates

the multiple of memory reduction comparing Z-S(AD) and Z-
Shadow(Global), which is mentioned in Section 4.2 and with

ascending degree ordering.

Table 4: Z-S(AD) The multiple of memory reduction com-
pared to Z-S(G)

M-10M Flickr M-1M M-100K S-151M S-2M S-917K

(2,4) 2493.36 5294.42 774.62 391.45 505.95 25.45 330.60

(3,4) 2528.33 4634.42 773.75 392.83 505.95 30.78 28.18

(4,4) 2672.52 3869.48 832.22 405.62 505.95 49.82 18.91

(5,4) 2813.07 3357.85 951.85 406.91 505.96 65.45 22.50

(6,4) 2947.56 2766.17 988.01 399.12 505.96 73.79 16.40

It is easy to see that the Z-Shadow algorithm with online

sampling is much more memory-saving than without online

sampling. For example, it can be up to 5,000 times for counting

the number of 𝐾2,4 in the dataset movielens-10m.

6.5 Impact of Sampling Times
In this subsection, we will explore the effect of sample size on

both accuracy and running time. The experiments are conducted

on the same five datasets used in Section 5.3.We adjust the sample

size 𝜏 ∈ {100𝐾, 1𝑀, 10𝑀, 100𝑀}. Figure 8 shows the results on
the accuracy. Two datasets, movielens-1m and movielens-100k,

are used as examples to investigate the effect of sample size on

the run time, whose results are presented in Figure 9.

As shown in Figure 8, when the sample size is down to 100𝐾 ,

all error rates fall within 5%. Furthermore, as the sample size

increases to 10𝑀 , the error rate stabilizes within 1%. When the

sample size reaches 100𝑀 , the error rate further reduces to below

0.5%. Overall, accuracy improves with increasing sample size,

and it tends to stabilize when the sample size becomes sufficiently

large.

As shown in Figure 9, when the sampling size is between 100𝐾

and 10𝑀 , the running time remains stable with minimal variation.

However, a significant increase is observed when the sampling

size reaches 100𝑀 .

The growth in time is primarily due to the additional sampling

time. To illustrate this, Table 5 shows the time consumption for

datasets M-1m and M-100k. The second to last row shows the

difference in the time consumption when we do 100M samplings

and 100K sampling. The last row shows the difference of 10M
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Figure 8: Effect of sample size on accuracy

and 100K samplings. They are both approximately 10 times of

the difference in the sampling size. It is evident that most of

the shadows are already constructed with 100𝐾 samplings, and

increasing the sampling size further does not significantly affect

the time required for shadow construction.

In summary, setting the sampling size to 10𝑀 is appropriate

to balance the accuracy and the time consumption.

Table 5: Effect of Sample Size on Time

M-1m 𝑲4,4 𝑲5,4 𝑲6,4 M-100k 𝑲4,4 𝑲5,4 𝑲6,4
100K 84.46 54.363 78.016 100K 5.841 4.507 4.877

1M 89.158 59.686 83.004 1M 6.532 5.321 5.731

10M 110.723 87.493 105.309 10M 10.367 14.118 14.33

100M 223.121 345.276 363.634 100M 56.42 107.385 104.852

100M-100K 138.661 290.913 285.618 100M-100K 50.579 102.878 99.975

10M-100K 26.263 33.13 27.293 10M-100K 4.526 9.611 9.453

6.6 Impact of reordering
Recalling that T is the temporary set when we construct the

shadow and

|T| = | {(𝑆, 𝑞) | (𝑆, 𝑞) has existed in T} |.
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Figure 9: Effect of sample size on time

We define T̃ = {(𝑆, 𝑞) | (𝑆, 𝑞) ∈ T and |𝑆 | ≥ 𝛼 (𝑆, 𝑠, 𝑞)}. The hit
ratio of the thresholds function is defined by

𝜃 =
|T̃|
|T| .

In this subsection, we explore the effect of vertex reordering on

acceleration, which is illustrated in two aspects. First, Table 6
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shows the hit ratio of the thresholds function before and after

the ascending degree reordering. It is easy to see that the effect

is very significant. The higher the hit ratio, the earlier the graph

traversal terminates. On the other hand, Figure 10 shows the

effects of different types of vertex reordering applied on Z-S,
including ascending degree ordering, descending degree order-

ing, descending core ordering, and random ordering, which are

denoted by Z-S(AD), Z-S(DD), Z-S(C), and Z-S(R), respectively.
From the observation, Z-S(AD) dominates. Although Z-S(C) is
similar to Z-S(AD), core ordering is an expensive process. It also

can be observed that, for some synthetic graphs, such as S-151M,

S-2M, and S-917K, there is no significant influence by the vertex

reordering. That is because the degree of synthetic graphs are

generated by normal distribution and the edge distribution is

more evenly distributed. However, the real dataset is not the case.

Therefore, vertex ordering is more effective on graphs with high

degree heterogeneity.
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Figure 10: The running time of various reorderingmethods
is quantitatively evaluated in seconds↓

6.7 Evaluation for Sparse Graph
As shown in Figure 12, Z-Shadow achieves outstanding per-

formance in accuracy. However, BCL++ has an absolute advan-

tage in efficiency as shown in Figure 11. From the perspective of

Act
or-M

ovi
e

Occ
upat

io
ns

Rec
ord

la
bel

Sta
rri

ng
IM

DB

YouTube

0.001

0.01

0.1

1

10

100

1000

Dateset

R
u

n
n

in
g

ti
m

e
(s

)

Z-S(AD)

Zz++

Zz

EP/Zz

EP/Zz++

BCL++

BCL

EP++

Figure 11: Efficiency evaluation of algorithms on sparse
graphs
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graph theory, here are the reasons: 1) Sampling algorithms fail to

play a pruning role on sparse graphs but cause redundant time

consumption. 2) There are fewer bicliques in the sparse graphs

which causes the probability of extracting biclique to be smaller.

This wastes a lot of sampling time.

6.8 Impact of the Threshold Function
Even for butterfly, determining its Zarankiewicz number is a

notoriously hard. Füredi’s Theorem [13] gives a reasonable upper

bound in general. In this subsection, we will evaluate the effect

of threshold functions by reducing the exponent of𝑚 and 𝑛 of

𝛼 (𝑆, 𝑠, 𝑞). For 0 ≤ 𝑖 ≤ 5, define

𝛽 (𝑆, 𝑠, 𝑞, 𝑖) = (𝑠−𝑞−1)1/𝑞𝑛
20−𝑖
20 𝑚

𝑞−1
𝑞+𝑖 +(𝑞−2)𝑛

20−𝑖
20 +(𝑞−1)𝑚

2𝑞−2
𝑞+𝑖 .

In the experiment, we selected 6 datasets with different densi-

ties and sizes to count (4, 4)-bicliques and recorded the perfor-

mance when applying different threshold functions. Observing

Figures 14, it can be seen that the threshold function has a sig-

nificant impact on the accuracy of the algorithm: the threshold

function value is reduced, and its accuracy also decreases. On the

other hand, as shown in Figure 13, the reduction of the thresholds

has less positive effect on the efficiency. It seems that Füredi’s

Theorem, the theoretical basis, has played a practical role.
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Table 6: The Effect of Vertex Reordering on the Hit Ratio of Bounds

movielens-1m movielens-10m movielens-100k flickr S-151M S-917K S-2M
Z-S(AD) Z-S(R) Z-S(AD) Z-S(R) Z-S(AD) Z-S(R) Z-S(AD) Z-S(R) Z-S(AD) Z-S(R) Z-S(AD) Z-S(R) Z-S(AD) Z-S(R)

(2,4) 0.779295 0.086654 0.845974 0.020166 0.708452 0.03067 0.061223 0.000637 1 0.532172 1 0.271429 0.556059 0.044055

(3,4) 0.557439 0.070317 0.623576 0.012547 0.436735 0.023486 0.051396 0.000884 1 0.514071 0.990765 0.265896 0.47631 0.057733

(4,4) 0.519205 0.035783 0.560764 0.005585 0.403616 0.006272 0.042911 0.000256 1 0.517996 0.964497 0.251057 0.411262 0.072459

(5,4) 0.498581 0.019913 0.534148 0.003044 0.383442 0.00146 0.041365 0.000027 1 0.492105 0.965866 0.239822 0.327948 0.077176

(6,4) 0.479953 0.01201 0.485802 0.001911 0.365389 0.000287 0.042272 0.000028 1 0.464111 0.933751 0.23808 0.267023 0.080347

Table 7: Basic properties of the sparse dataset

Dataset |𝑳 | |𝑹 | |𝑬 | 𝒅 𝒅𝑳 𝒅𝑹 Origins
Actor-Movie 127823 383640 1470404 5.75 11.50 3.83 KONECT

Occupations 127577 101730 250945 2.19 1.97 2.47 KONECT

Recordlabel 168337 18421 233286 2.50 1.38 12.66 KONECT

Starring 76099 81085 281396 3.58 3.69 3.47 KONECT

IMDB 685568 186414 2715604 6.23 3.96 14.56 KONECT

YouTube 94238 30087 293360 4.72 3.11 9.75 KONECT
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Figure 13: Effect of threshold function reduction on the
efficiency of Z-S(AD)
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Figure 14: Effect of threshold function reduction on the
accuracy of Z-S(AD)

7 CONCLUSION AND FUTUREWORK
This paper presents a provable method for estimating bicliques

in massive bipartite graphs using the classical Füredi’s Theo-

rem and a novel online sampling method. Our algorithm offers

substantial improvements in both computational efficiency and

memory usage, achieving up to 100x and 500x speedup over the

state-of-the-art approximate and exact methods in experiments,

respectively. Its combination of speed, accuracy, and memory

efficiency makes it a useful tool in network analysis, particularly

in domains where large bipartite structures are common, such as

bioinformatics, social networks, and recommendation systems.

The experimental results, conducted on both real-world and

synthetic datasets, further validate the robustness and practi-

cality of our approach. The significant reduction in memory

consumption, combined with the ability to handle dense datasets,

highlights the scalability and effectiveness of Z-Shadow in real-

world graph analysis tasks. This work provides a practical tool

for the large-scale analysis of bipartite networks, with potential

applications across fields where such structures are prevalent.

Looking forward, there are several avenues for future research.

Firstly, only simple bipartite graphs without loops and multiple

edges are considered in this paper. We believe Z-Shadow also

works on weighted graphs with a minor revision. Another pos-

sibility is to extend the Z-Shadow algorithm to other types of

motif, such as near-biclique, which would broaden its applicabil-

ity to a wider range of network analysis problems. Additionally,

Z-Shadow is still an iteration-based algorithm. For small biclique

estimation, few number of iterations is sufficient. However, it be-

comes an obstacle when estimating large bicliques. A reasonable

solution is to integrate parallel and distributed computing tech-

niques to further enhance the scalability of Z-Shadow. Finally,

investigating potential optimizations in the sampling process

could further reduce computational overhead, making the algo-

rithm even more efficient.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program

of China (Grant No. 2023YFA1010202), the Central Guidance

on Local Science and Technology Development Fund of Fujian

Province (Grant No. 2023L3003), the National Natural Science

Foundation of China (No.11901094). We are particularly grate-

ful to the authors of [48] for providing the code for BCL and

BCL++ and the EDBT reviewers for their insightful comments

and constructive suggestions.

A MISSING PROOFS
In this section, we present all the missing proofs from the main

sections.

A.1 Proof of Theorem 4.5
Recall that𝜔 (𝑆) =

( |𝑆𝐿 |
𝑠

) ( |𝑆𝑅 |
𝑞

)
and𝛾 = min(𝑆,𝑞) ∈S

1( |𝑆𝐿 |
𝑠

) ( |𝑆𝑅 |
𝑞

) .
For (𝑆, 𝑞) ∈ S, the probability (𝑆, 𝑞) be chosen is 𝑝 (𝑆) =

𝜔 (𝑆 )∑
(𝑆,𝑞) ∈S𝜔 (𝑆 )

. Note that for 1 ≤ 𝑟 ≤ 𝜏 ,

P[𝑋𝑟 = 1] (3)

=
∑︁
(𝑆,𝑞) ∈S

(P[(𝑆, 𝑞) is chosen] × P[𝐺 [𝐴] is an (𝑠, 𝑞)-biclique])

=
∑︁
(𝑆,𝑞) ∈S

𝜔 (𝑆)∑
(𝑆,𝑞) ∈S 𝜔 (𝑆)

×
N (𝐾𝑠,𝑞,𝐺 [𝑆])

𝜔 (𝑆)

=
∑︁
(𝑆,𝑞) ∈S

N(𝐾𝑠,𝑞,𝐺 [𝑆])∑
(𝑆,𝑞) ∈S 𝜔 (𝑆)

= 𝜃 :=
N(𝐾𝑠,𝑡 ,𝐺)∑
(𝑆,𝑞) ∈S 𝜔 (𝑆)
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where the last equation holds by Theorem 4.4. Again, by Theorem

4.4, we know N(𝐾𝑠,𝑞,𝐺 [𝑆]) ≥ 𝛾𝜔 (𝑆), which implies that∑︁
(𝑆,𝑞) ∈S

N(𝐾𝑠,𝑞,𝐺 [𝑆]) ≥ 𝛾
∑︁
(𝑆,𝑞) ∈S

𝜔 (𝑆). (4)

Combining (3) and (4) yields that P[𝑋𝑟 = 1] ≥ 𝛾 . Let 𝑋 =∑
1≤𝑖≤𝜏 𝑋𝑖 . Then by the linearity of the expectation, we have

E [𝑋 ] =
∑︁

1≤𝑟≤𝜏
E[𝑋𝑟 ] ≥ 𝛾𝜏 .

Note that all𝑋𝑟 are independent. Applyingmultiplicative Cher-

noff bound [10] for 𝑋 yields that

max {P[𝑋 > (1 + 𝜖)E[𝑋 ]], P[𝑋 < (1 − 𝜖)E[𝑋 ]]} ≤ exp

(
−𝜖

2𝛾𝜏

3

)
.

Recall that 𝜏 > 3

𝜖2𝛾
log

2

𝛿
. Thus,

max

{
P
[∑

1≤𝑟≤𝜏 𝑋𝑟

𝜏
< 𝜃 (1 − 𝜖 )

]
, P

[∑
1≤𝑟≤𝜏 𝑋𝑟

𝜏
> 𝜃 (1 + 𝜖 )

]}
≤ 𝛿

2

,

(5)

and then P
[
𝜃 (1 − 𝜖) ≤

∑
1≤𝑟≤𝜏 𝑋𝑟

𝜏 ≤ 𝜃 (1 + 𝜖)
]
≥ 1 − 𝛿

2
. Recall

that 𝐾̂ =

∑
1≤𝑟≤𝜏 𝑋𝑟

𝜏

∑
(𝑆,𝑞) ∈S

( |𝑆𝐿 |
𝑠

) ( |𝑆𝑅 |
𝑞

)
. We conclude that

P

𝜃 (1 − 𝜖)
∑︁
(𝑆,𝑞) ∈S

𝜔 (𝑆) ≤ 𝐾̂ ≤ 𝜃 (1 + 𝜖)
∑︁
(𝑆,𝑞) ∈S

𝜔 (𝑆)
 ≥ 1 − 𝛿.

which is equivalent P
[
(1 − 𝜖)𝐾 ≤ 𝐾̂ ≤ 𝐾 (1 + 𝜖)

]
≥ 1 − 𝛿. This

completes the proof.

A.2 Proof of Theorem 5.1
In this subsection, we prove Theorem 5.1. Let 𝑞 be a integer

and 1 ≤ 𝑞 < 𝑡 . Recall that 𝜔𝑣 =
∑
(𝑆,𝑞) ∈S

( |𝑆𝐿 |
𝑠

) ( |𝑆𝑅 |
𝑞

)
, where S

is the shadow constructed in 𝑁 +
𝐺
(𝑣) (line 6). In each sampling,

P[𝑋𝑖 ≠ 0] = N(𝐾𝑠,𝑞−1,𝐺𝑣 )
𝜔𝑣

.

Given a vertex 𝑣 , let S be the shadow constructed in 𝐺𝑣 and

𝐵 be a particular (𝑠, 𝑡 − 1)-biclique in 𝐺𝑣 . By Theorem 4.6, there

must exist a pair (𝑆 ′, 𝑞′) ∈ S corresponding to 𝐵. Therefore,

P[𝐵 is chosen]
= P[𝑣 is chosen] · P[(𝑆 ′, 𝑞′) is chosen] · P[𝑆 ′ ∩𝑉 (𝐵) is chosen]

=
Φ𝑣
Φ
·

(𝑆 ′
𝐿
𝑠

) (𝑆 ′
𝑅

𝑞′
)

𝜔𝑣
· 1(𝑆 ′

𝐿
𝑠

) (𝑆 ′
𝑅

𝑞′
) =

Φ𝑣
Φ𝜔𝑣

,

which implies that

E[𝑋𝑖 ] =
∑︁
𝑣∈𝑅

P[𝐾𝑠,𝑡−1 ∈ 𝐺𝑣 is sampled] · 𝑋𝑖

=
∑︁
𝑣∈𝑅
N(𝐾𝑠,𝑡−1,𝐺 − 𝑣) ·

Φ𝑣
Φ𝜔𝑣

· 𝜔𝑣
Φ𝑣

=
N(𝐾𝑠,𝑡 ,𝐺)

Φ
.

Since𝑊 =
∑𝜏
𝑖=1 𝑋𝑖 , we get

E[𝑊 ] = 𝜏𝐾

Φ
.

Recall that 𝐾̂ = 𝑊Φ
𝜏 , which implies that E[𝐾̂] = 𝐾 .

A.3 Proof of Theorem 5.2
Now we prove Theorem 5.2. Note that 𝐾̂ = 𝑊

𝜏 Φ =

∑
1≤𝑖≤𝜏 𝑋𝑖

𝜏 Φ,

E
[∑𝜏

𝑖=1 𝑋𝑖
]
= 𝜏𝐾

Φ in A.2. Let 𝑋 =
∑
1≤𝑖≤𝜏 𝑋𝑖 . Then

P
[
|𝐾̂ − 𝐾 | ≤ 𝜖𝐾

]
= 1 − P

[
𝐾̂ > (1 + 𝜖)𝐾

]
− P

[
𝐾̂ < (1 − 𝜖)𝐾

]
= 1 − P

[
𝑋 > (1 + 𝜖)𝐾𝜏

Φ

]
− P

[
𝑋 > (1 − 𝜖)𝐾𝜏

Φ

]
= 1 − P [𝑋 > (1 + 𝜖) [𝑋 ]] − P [𝑋 > (1 − 𝜖)E[𝑋 ]]

Applying multiplicative Chernoff bound [10] for 𝑋 yields that

max {P[𝑋 > (1 + 𝜖)E[𝑋 ]], P[𝑋 < (1 − 𝜖)E[𝑋 ]]} ≤ exp

(
−𝜖

2𝜏𝐾

3Φ

)
.

This together with 𝜏 ≥ 3Φ
𝜖2𝐾

ln
2

𝛿
yields that

P
[
|𝐾̂ − 𝐾 | ≤ 𝜖𝐾

]
≥ 1 − 𝛿.

A.4 Analysis Related to Other Sampling
Algorithms

Lemma A.1. Let 𝐺 = (𝐿, 𝑅, 𝐸) is a bipartite graph with 𝐾 =

N(𝐾𝑠,𝑡 ,𝐺) and 𝐾̂ be the output of VSamp, then 𝐸
[
𝐾̂
]
= 𝐾 .

Proof. Let 𝑅 =
{
𝑣1, · · · , 𝑣 |𝑅 |

}
. Suppose a biclique 𝐻 =

(𝐿′, 𝑅′, 𝐸′), and 𝑅′ = {𝑣𝑖1, · · · , 𝑣𝑖𝑡 }. We denote 𝑣𝑖 as start vertices

of a biclique 𝐻 = (𝐿′, 𝑅′, 𝐸′) if 𝑣𝑖 = 𝑣𝑖1. Let 𝑋𝑖 be the number of

bicliques where 𝑣𝑖 is a start vertex. Then
∑ |𝑅 |
𝑖=1

𝑋𝑖 = 𝐾 .

For 1 ≤ 𝑖 ≤ 𝜏 , E [𝐴𝑖 ] =
∑|𝑅 |

𝑖=1
𝑋𝑖

|𝑅 | = 𝐾
|𝑅 | . Therefore,

E[𝐾̂] = E
[ |𝑅 |∑𝜏𝑖=1𝐴𝑖

𝜏

]
=
|𝑅 |
𝜏

𝜏∑︁
𝑖=1

E[𝐴𝑖 ] = 𝐾

□

Lemma A.2. Let 𝐺 = (𝐿, 𝑅, 𝐸) is a bipartite graph with 𝐾 =

N(𝐾𝑠,𝑡 ,𝐺) and 𝐾̂ be the output of ESamp, then 𝐸
[
𝐾̂
]
= 𝐾 .

By analogous analysis with Lemma A.1, we also can the fol-

lowing result.

Lemma A.3. Let 𝐺 = (𝐿, 𝑅, 𝐸) is a bipartite graph with 𝐾 =

N(𝐾𝑠,𝑡 ,𝐺) and 𝐾̂ be the output of ESpar, then 𝐸
[
𝐾̂
]
= 𝐾 .

Proof. For each 𝐴𝑖 , 𝑖 = 1, . . . , 𝜏 , let 𝑋𝑖 𝑗 be a random variable

indicating the 𝑗-th 𝐾𝑠,𝑡 , 𝑗 = 1, · · · , 𝐾 , such that 𝑋𝑖 𝑗 = 1 if and

only if the 𝑗-th 𝐾𝑠,𝑡 exists in the fixed sampled graph (𝐿, 𝑅, 𝐸′
𝑖
)

and 0 otherwise. We have E[𝐴𝑖 ] =
∑𝐾
𝑗=1 P[𝑋𝑖 𝑗 = 1], Then

E[𝐾̂] = 1

𝜏𝑝𝑠𝑡

𝜏∑︁
𝑖=1

𝐾∑︁
𝑗=1

P[𝑋𝑖 𝑗 = 1] = 1

𝜏𝑝𝑠𝑡

𝜏∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑝𝑠𝑡 = 𝐾.

□
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