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ABSTRACT
Graph data structures are essential for representing complex rela-
tionships in various domains, including life sciences, social media,
healthcare, finance, security, and planning. With the increasing
reliance on graph databases—particularly property graphs—for
capturing semantic relationships, ensuring data integrity and
quality has become crucial. Traditional methods for maintaining
consistency, such as expert-defined rules and data-mined con-
straints like functional and entity dependencies, face challenges
in scalability, adaptability, and comprehensibility. In this paper,
we explore how Large Language Models (LLMs) can be utilized to
automatically generate and refine consistency rules for property
graphs through guided prompts. Leveraging the reasoning capa-
bilities of LLMs over expressive graph models, we conduct an
exploratory empirical study to assess the extent to which LLMs
can extract rules that enforce data consistency. Our evaluation
spans different real-world datasets and various graph encoding
methods. Our results demonstrate that LLMs show promising
abilities in extracting consistency rules, primarily identifying
schema-based constraints such as primary keys, attribute unique-
ness, and label enforcement. Additionally, LLMs occasionally
capture more complex patterns, including temporal constraints
where certain events cannot occur simultaneously.
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1 INTRODUCTION
Graph data has become widespread in various domains [24] such
as life sciences, social media, healthcare, finance, security, and
planning due to its ability to represent complex relationships be-
tween entities.With the growing reliance on graph data, ensuring
data integrity and quality has become essential. Graph databases
leveraging property graphs have been extensively adopted to
capture the semantics of these complex relationships. However,
ensuring consistency within large evolving property graphs is
challenging. One of the approaches to ensure the quality of the
graph is through consistency rules, such as functional dependen-
cies [13] and entity dependencies [11]. These rules help maintain
data integrity by enforcing specific constraints and relationships
among the entities.

For example, consider a graph representing a social media
platform like Twitter, where users, tweets, and hashtags are rep-
resented as nodes and edges represent relationships such as men-
tions, posts, follows, or tags. A consistency rule in this context
could enforce temporal constraints—for instance, a retweet can
occur only after the original tweet has been posted. Another rule
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might ensure that users cannot follow themselves or that every
tweet must be associated with a valid user who posted it. These
rules are crucial for maintaining the logical consistency of the
data and preventing anomalies that could affect analytics and
user experience.

Traditionally, these rules are either provided by domain ex-
perts [20], reflecting business logic related to the data, or mined
directly from the data by considering the co-occurrence of el-
ements [17, 26]. However, both approaches have limitations.
Expert-defined rules may not cover all edge cases or adapt quickly
to new data patterns, while data-mined rules can generate an
overwhelming number of constraints, some of which may be
redundant, irrelevant, or difficult to understand by the domain
expert.

Given the recent advent of Large Language Models (LLMs),
many works have started to investigate their capabilities to rea-
son over structured data, both relational and graphs. In the con-
text of graph data, LLMs have shown promising results in basic
graph computational tasks on simple labeled graphs [14], graph
mining [16], and reasoning [6]. They also enable non-experts to
interact with these rich data structures through conversational
interfaces [21].

For these reasons, in this paper, we explore how Large Lan-
guage Models can be used to automatically generate and refine
rules for property graphs by guiding them through designed
prompts. By leveraging the capabilities of LLMs to understand
and reason about graph data structures, we aim to provide an
intuitive method to maintain data integrity in graph databases.

In this paper, we contribute with a exploratory study to
investigate to what extent LLMs can reason over expressive
graph models - such as property graph - to extract rules that can
be used to enforce consistency in the data. To this end, we perform
an empirical study evaluating how different LLMs perform in
extracting consistency rules, on various real-world datasets using
different graph encoding methods. Our preliminary results show
that LLMs have promising capabilities in extracting consistency
rules, mainly consisting of schema-based constraints (e.g, primary
keys, uniqueness of attributes, or forcing specific node or edge
labels), but sometimes also extracting constraints related to more
complex patterns or considering the temporality of data (e.g., two
events cannot happen simultaneously).

2 RELATEDWORK
Rules Mining. Rule mining has been widely studied, especially
in the context of knowledge bases (KBs) and relational databases [3].
AMIE [15, 17] is one of the most widely used systems to mine
rules in large knowledge bases, such as DBpedia and Wikidata.
It uses various optimization and pruning techniques that allow
it to find exact rules without needing to estimate or sample.
Specifically for property graphs, Cambria et al., [6] introduce op-
erator embeds Cypher that works with Neo4j to process queries
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efficiently. On the other hand, Xu et al., [26] use a transformer-
based architecture to encode subgraph structures and generate
reasoning rules, treating the rule mining process as a sequence
generation task. Fan et al., [12] introduces the concept of Graph
Association Rules to find relationships between elements in a
graph. The proposed algorithms in this work focus on scalability
and efficiency, providing polynomial speedups over traditional
methods. While the previous methods are relevant to this work,
they focus on either association or logical rules. However, in this
paper, we are interested in mining consistency rules - i.e., rules
enforcing quality constraints over data.
LLMs for Graph Processing. In recent years, the integration of
Large Language Models with graph processing has gained signif-
icant attention. These models, originally designed for natural lan-
guage tasks, are being adapted to enhance various graph-related
applications. Ren et al., [23] provides a detailed overview of the
current state-of-the-art on the use of LLMs in graph learning.
The authors classify current methods into frameworks such as
directly combining LLMs with graph tasks or prefixing themwith
Graph Neural Networks (GNNs). While some frameworks effec-
tively leverage GNNs for tasks like link prediction, others struggle
with data sparsity and generalization. The study also identifies
promising avenues for future research, such as creating multi-
modal LLMs that can handle different kinds of data, which might
greatly improve reasoning powers over graphs. Guo et al., [16]
explore the capacity of LLMs to comprehend graph-structured in-
formation. The empirical study shows that although LLMs seem
promising, there are still obstacles in their way when it comes to
efficiently analyzing the relational and multi-dimensional nature
of graph data. This poses significant issues on how to improve
LLMs’ comprehension and manipulation of network structures,
especially in situations that call for complex thinking. Peng et
al., [21] offers a compelling perspective on user interaction with
graphs. By allowing users to query graphs through natural lan-
guage, this LLM-based framework significantly lowers the barrier
to entry for graph analysis. Traditional methods often require
specialized programming skills or knowledge of query languages,
but this work shows LLMs can facilitate a more intuitive interac-
tion model. This democratization of graph analysis is particularly
valuable, as it opens up opportunities for non-experts to engage
with complex data structures. Another relevant study is [18].
This research presents a framework for using LLMs to generate
logical rules based on the semantics and structure of knowledge
graphs (KGs). The current approaches, which frequently suffer
from computational inefficiencies and a lack of scalability, have
a fundamental gap that our study fills. The proposed method
allows for efficient rule generation and ranking, enhancing the
interpretability and scalability of reasoning tasks on KGs. This
has important implications for improving the interpretability
of reasoning tasks within KGs, suggesting that LLMs might be
key to unlocking deeper insights into knowledge representation.
LLMs and conventional methods have been applied in a num-
ber of works that have investigated rule mining. However, most
research employing LLMs in graph-based rule mining [18] has
focused primarily on knowledge graphs, with an emphasis on
generating logical rules and reasoning based on relationships
between entities. Nonetheless, there has yet to be any compre-
hensive research exploring the potential of LLMs for rule mining
in property graphs. This highlights a significant research gap
and an opportunity to investigate the capabilities of LLMs in
automating and enhancing rule-mining processes for this type
of graph.

3 LARGE LANGUAGE MODEL FOR RULE
MINING

A property graph [5] is a flexible and expressive way to represent
complex data involving entities and the relationships between
them. In this data model, both nodes and edges can have multiple
labels, which are descriptive tags indicating the type or category
of nodes and edges. In addition to labels, nodes, and edges can
have properties, which are key-value pairs storing additional
information.

Defining property graph consistency rules and translating
them into Cypher queries can be a complex task requiring great
human effort. Our research investigates using large language
models to automate the generation and conversion of these rules.
Figure 1 shows a pipeline to mine consistency rules from a prop-
erty graph using an LLM. First, the property graph 𝐺 is encoded
into a text format that LLMs can understand, and then it is input
along with a prompt. The latter is specifically crafted to ask the
LLM to infer the consistency rules. Based on the structure and re-
lationships of the graph, the LLM generates the consistency rules
in natural language. In the second step, natural language rules
are converted into Cypher queries. This two-step procedure can
ensure clarity to those may not be familiar with Cypher [22, 25].
In the following, we detail each step of the pipeline.

Property Graph G
Encoded graph

LLMs

User

Prompt

Step 1

Step 2
Consistency

Rules

LLMs

Cypher query 

Step 3

Step 4

Figure 1: Overview of the pipeline.

3.1 Encoding the graph
The first step in our pipeline is to encode the property graph.
Unlike typical encoding methods in deep learning models that
convert data into numerical vectors, the graph is represented in
text format that LLMs can understand in the prompt (First step
- Figure 1). This encoding must ensure that the structure and
important information of the property graph are preserved. In
this study, we use the incident encoder based on its demonstrated
effectiveness in prior research [14]. However, when using LLMs
to generate consistency rules for property graphs, the size of
the prompt of LLMs becomes an important challenge. To over-
come the input size limitation, we propose two methods: sliding
window attention and retrieval augmented generation (RAG).

3.1.1 SlidingWindowAttention. As shown in Figure 2(a), after
the graph has been converted into text, the text-encoded graph is
divided into smaller sections called windows. In our experiments,
we empirically chose a window size to reduce the probability of
a pattern exceeding the windows. For example, when dividing
a graph into windows, the last part of a window might contain
the text "Node node_id," while the next starts with "with label
Label has properties (key: value)" (i.e., the node element is broken
in two strings). Without overlap, such boundary splitting can
lead to a loss of context, making it challenging for LLMs to fully
understand the data. Overlapping between sections is necessary
to ensure that the meaning of the data at the boundaries of the
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windows is not lost. For this reason, we set the window size and
the overlap as the maximum allowed by the LLMs limit, that is
8000 tokens for the window size, and 500 tokens overlap [4]. After
the encoded windows have been created, each window is paired
with a specific prompt that guides the LLMs on how to generate
consistency rules. This prompt acts as an instruction, helping
the LLMs focus on important aspects of the graph within each
window. Next, the encoded windows along with the prompts
are fed into the LLM for processing. Based on the information
from the windows and the instructions from the prompts, the
LLM generates consistency rules for the corresponding part of
the graph. Finally, the rules generated from each window are
combined to create a comprehensive set of rules that apply to
the entire graph.

As stated before, this method may have limitations related to
the fragmentation of context, which may lead to the loss of global
information and boundary issues between windows, which could
cause conflicts or omissions in the generated rules, a challenge
that could be mitigated in future work by employing advanced
NLP techniques to detect and merge patterns across windows
effectively.

3.1.2 Retrieval Augmented Generation (RAG). As illustrated in
Figure 2(b), the RAG framework combines information retrieval
with text generation to enhance the accuracy and consistency
of rule generation. While the graph is initially encoded as text
in Step 1 (Figure 1), in this case, it undergoes a further transfor-
mation into vector embeddings. These embeddings are a critical
component of the RAG method (Step 2 - Figure 2.b), as they en-
able storage in a vector database and retrieval of information.
For this transformation, we utilized GPT4AllEmbeddings from
the langchain_community library, ensuring high-quality embed-
dings tailored to the task. The prompting process occurs in two
phases. In the first phase, a prompt requesting consistency rules
directs the LLM to retrieve the most pertinent parts of the graph
from the vector database. In the second phase, the LLM generates
the rules by utilizing the graph data retrieved from the database.

3.2 Prompt Design
Prompts play an important role in guiding the LLM to generate
relevant and accurate rules. In this paper, we used two types
of prompts to generate consistency rules for property graphs:
zero-shot and few-shot prompts. Each approach serves a different
purpose and impacts how the LLMs generate the rules.

In the zero-shot method, shown in Figure 3(a), the LLM re-
ceives the encoded graph and instruction to generate consistency
rules (in terms of graph functional and entity dependency rules).
With the few-shot methods - shown in Figure 3(b) - instead, the
LLM is also provided with rule examples. Once the consistency
rules are generated, the LLM is prompted to generate the corre-
sponding Cypher queries. The prompt included generated rules
and information about the property graph including nodes edge
labels, and properties, and asked the LLM to write the Cypher
query matching the rule in natural language.

4 EXPERIMENTS
In the experimental study, we evaluate the capability of LLMs
in generating consistency rules considering the two methods
to encode the graph (Sliding Attention Window and RAG), and
the two types of prompting (zero-shot and few-shot). To explore
the ability to generate consistency rules for property graphs, we
use Mixtral [7] and LLaMA-3 [19]. We opted for these models

because they are open-source large language models and can be
deployed locally, unlike other non-open-source LLMs.

We implemented the project using Python 3.10 and Neo4j
was used for the underlining graph database operations. The
experiments were executed on a MacBook M2 with 16GB of
RAM and a 512GB SSD. All the code to replicate the experiments
is available at this GitHub repository [1]

4.1 Datasets

Nodes Edges Node Labels Edge Lagels

WWC2019 2468 14799 5 9
Cybersecurity 953 4838 7 16
Twitter 43325 56493 6 8

Table 1: Size of the datasets in term of number of nodes,
edges, and labels

We conduct experiments on three different property graphs,
summarized in Table 1. WWC20219 [8]: This graph depicts infor-
mation related to the 2019 Women’s World Cup, including nodes
such as teams, persons, matches, tournaments, squads, and the
relationships between them. Cybersecurity [9]: This graph is
related to cybersecurity, including systems, security events and
their interconnections. It represents an active directory envi-
ronment with users, groups, domains, policies, and computers.
Twitter [10]: This dataset represents the interaction between
users on the Twitter social network. Nodes represent entities
such as users, tweets, hashtags, links, and sources, while edges
represent various interactions and relationships between these
entities.

4.2 Metrics
To evaluate the effectiveness of the consistency rules generated
for property graphs we use some ranking measures used in the
state-of-the-art of rules mining [15], support, coverage and con-
fidence, and adapted it for property graph. Support measures
the number of elements in the graph that satisfy a given rule.
A higher support indicates that the rule is applicable to more
facts. Coverage evaluates the proportion of facts related to the
rule’s head relation that are covered by the rule. It normalizes the
support by the total number of facts for the relation in question.
Confidence assesses the reliability of the rule by comparing the
number of facts that satisfy the rule to the number of times the
rule’s body conditions are met. This measure indicates the rule’s
accuracy and how often the rule leads to the expected outcomes.
The metrics for a given rule were computed by executing the
corresponding Cypher query generated by the LLM, as explained
in Section 3.2. For the Cypher queries that were generated in-
accurately, we manually corrected them to ensure an accurate
evaluation of the generated rules. More details in Section 4.4.

4.3 Rules Generation
In this section, we present the results in terms of the metrics
obtained by the rules generated by the LLMs. For space reasons,
the complete list of rules extracted by the LLMs is reported in
the supplementary materials [2]. Tables 2, 3 and 4 report the
score after correcting the Cypher queries. The details on how the
correction was done are described in Section 4.4.

The results from applying consistency rule generation meth-
ods on the WWC2019 property graph dataset reveal a clear dis-
tinction between the models LLaMA-3 and Mixtral, as shown in
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Figure 2: Sliding Window Attention Flow (a) and RAG (b)
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Figure 3: Zero-shot (a) and Few-shot prompting (b)

Slide Window Attention RAG

#rules Supp% Cov% Conf% #rules Supp% Cov% Conf%

Zero-shot

Llama-3 12 513 98.67 98.69 7 1604 100 91.57
Mixtral 9 1257 97.81 89.5 6 923 73.75 67.83

Few-shot

Llama-3 8 716 92.22 100 6 1002 73.75 73.5
Mixtral 8 622 92.81 95.75 5 6364 63.12 80

Table 2: Support, coverage and confidence score for the
WWC2019 dataset with Zero-Shot and Few-Shot Prompts

Sliding Window Attention RAG

#rules Supp% Cov% Conf% #rules Supp% Cov% Conf%

Zero-shot

Llama-3 10 406 92.6 100 7 159 45.64 45.50
Mixtral 10 351 67.36 67.6 6 315 52.7 51.5

Few-shot

Llama-3 9 1113 89.38 97.86 7 651 75.43 99.71
Mixtral 5 635 71.9 91.96 5 1501 99.96 100

Table 3: Support, coverage and confidence score for
the Cybersecurity dataset with Zero-Shot and Few-Shot
Prompts

Table 2. In the Zero-Shot approach, LLaMA-3 performs better with
higher scores for support, coverage, and confidence compared to
Mixtral using both Slice Window Attention and RAG methods.
Specifically, LLaMA-3 achieves a support score of 513 with Slid-
ing Window Attention and 1604 with RAG, coverage of 98.67%
and 100%, and confidence of 98.69% and 91.57% respectively. In

contrast, Mixtral shows lower support scores but demonstrates
the ability to discover more interesting rules that consider more
complex patterns, such as "A player should be associated with
a squad, and that squad should belong to the tournament for
which the player has played a match". In the Few-Shot approach,
LLAMA-3 continues to excel with superior coverage and confi-
dence, with support scores of 716 and 1002 for Sliding Window
Attention and RAG respectively, coverage of 92.22% and 73.75%,
and confidence of 100% and 73.5%. Mixtral achieves support
scores of 622 and 6364 for the two methods, with coverage of
92.81% and 63.12% and confidence of 95.75% and 80%.

Table 3 presents the results for the Cybersecurity dataset.
With Zero-Shot, LLaMA-3 performs better with Sliding Window
Attention, achieving a support of 406, coverage of 92.6%, and con-
fidence of 100%, compared to Mixtral’s support of 351, coverage

Sliding Window Attention RAG

#rules Supp% Cov% Conf% #rules Supp% Cov% Conf%

Zero-shot

Llama-3 8 12177 72.27 86.14 8 981 70.62 78.75
Mixtral 10 10789 81.20 81.20 7 7698 67.3 76

Few-shot

Llama-3 7 25201 85.72 85.72 9 8994 71.34 77.78
Mixtral 7 15262 78.79 83.25 8 11593 100 100

Table 4: Support, coverage and confidence score for the
Twitter dataset with Zero-Shot and Few-Shot Prompts
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of 67.36%, and confidence of 67.6%. However, with RAG, Mixtral
shows a much higher support compared to LLaMA-3, though the
latter still maintains a slightly better coverage (45.64%) and con-
fidence (45.50%) than Mixtral. In the Few-Shot setting, LLaMA-3
continues to lead in terms of coverage and confidence using both
Sliding Window Attention (89.38% coverage, 97.86% confidence)
and RAG (75.43% coverage, 99.71% confidence). Mixtral, on the
other hand, shows higher support with RAG but lower coverage
and confidence compared to LLaMA-3. RAG shows slight improve-
ments in the Few-shot scenario over Zero-shot. Table 4 shows
the results for the Twitter dataset. LLaMA-3 outperforms Zero-
shot in terms of support, coverage, and confidence compared
to Mixtral. Meanwhile, both models demonstrate significant
improvement in Few-shot. Specifically, Mixtral shows a great
improvement with RAG, achieving an average of 100% of cover-
age and confidence. LLaMA-3 still dominates the other cases with
coverage and confidence values ranging from 70% to 85%.

Rule Mining Time Analysis: We analyzed the time required
for the LLMs to mine rules. Table 5 summarizes the results across
all datasets, considering the two types of prompting and the
methods used for encoding the graph. Our analysis revealed that,
while the Sliding Window Attention encoding method produces
better rules, it incurs significant mining times for larger graphs
(e.g., Twitter), with times reaching approximately 500 seconds.
This is because the Sliding Window Attention approach requires
the LLM to be prompted multiple times, depending on the num-
ber of windows. We noticed that Few-Shot prompting increases
the performance of the Sliding Window method in the case of
larger graphs. In contrast, the RAG method offers substantial
improvements, as the LLM is prompted only once with a partial
representation of the graph. Future research on efficient rule
mining with LLMs should focus on parallelizing the prompting
process (e.g., distributing different parts of the graph to multi-
ple LLMs) or developing methods to prompt a single LLM using
subgraphs most relevant to the mining task.

Model Sliding Window Attention RAG

Zero-shot Few-shot Zero-shot Few-shot

WWC2019

Llama-3 251.36 227.74 5.16 4.39
Mixtral 219.28 216.38 3.10 4.34

Cybersecurity

Llama-3 445.66 336.67 5.15 5.87
Mixtral 497.66 315.25 4.65 4.16

Twitter

Llama-3 525.25 410.20 3.67 4.24
Mixtral 517.32 392.18 3.54 4.17

Table 5: LLMs rule mining times (seconds)

4.4 Cypher Generation
In this section, we discuss the performances of the model in gen-
erating the Cypher queries related to the rules. We consider a
query not correct if it has syntax errors or if its formulation
does not match the data model. As shown in Table 6, both LLMs
tend to correctly generate the queries (with a minimal accuracy
of 70%). In addition, we also analyzed the types of errors the
LLMs make and we found three categories. The first category
corresponds to misinterpreting the direction of the relationship
in the property graph. There were 5 cases where the LLMs mis-
interpreted the direction of the relationship. For example, with

Model Sliding Window Attention RAG

Zero-shot Few-shot Zero-shot Few-shot

WWC-2019

Llama-3 11/12 7/8 7/7 5/6
Mixtral 8/9 7/8 5/6 4/5

Cybersecurity

Llama-3 8/10 7/9 6/7 7/7
Mixtral 7/10 4/5 4/6 4/5

Twitter

Llama-3 7/8 5/7 7/8 8/9
Mixtral 9/10 6/7 6/7 8/8

Table 6: Number of correctly generated Cypher queries

the rule Unique Match identifier within a Tournament, the correct
query should ensure that each match within a tournament has
a unique identifier. However, the LLM generated the following
query:

MATCH (t:Tournament)-[:IN_TOURNAMENT]->(m:Match)
WITH t.id AS tournament_id, m.id AS match_id, COUNT(*) AS count
WHERE count = 1
RETURN COUNT(*) AS support;

This query incorrectly identifies the relationship direction
from Tournament to Match. The second type of error correspond
to misunderstand the properties between nodes or relationships,
sometimes even creating properties that do not exist. For instance,
the following rule generated by Mixtral "Ensure that no two
SCORED_GOAL relationships between a Person and a Match should
have the same minute property" resulted in the following Cypher
query:

MATCH (p:Person)-[:SCORED_GOAL]->(m:Match)
WITH m.id AS match_id, p.id AS person_id,
COLLECT (DISTINCT p.name + ':'
+ tostring(m.score) + ':' + tostring(m.penaltyScore)
+ ':' + tostring(m.minute)) AS minutes WHERE Size(minutes) > 1

RETURN match_id, person_id, minutes;

However, this Cypher query is incorrect as it includes non-
existent properties like score, minutes, and penaltyScore for the
Match node. The third category of errors is related to syntax
issues in the Cypher query. An example of this is when the rule
"The domain property should be a string value matching domain
format" generated the following incorrect query:

MATCH (n)
WHERE n.domain IS NULL AND n.domain = '^([a-zA-Z0-9-]+\\.)+
[a-zA-Z]{2,}$'
RETURN COUNT(*) AS valid_domains

In this case, the LLM used the "=" operator for the regular
expression match, but the correct operator should have been
"=∼" to properly compare a string with a regular expression

In addition to these error categories, another factor contribut-
ing to the decrease in LLM performance is the generation of
inaccurate rules (i.e., the rule itself is not correct). To ensure
a fair evaluation of the LLM’s ability to generate consistency
rules, we corrected the queries in case of syntax errors or wrong
edge directions, but we left them as they were the queries with
additional non-existing properties, because those errors corre-
sponded to hallucination at rule generation level, rather than the
translation to Cypher.

4.5 Discussion
In our study, we initially aimed to extract specific GFD and GED
rules. However, we observed that the LLMs struggled to distin-
guish between these concepts effectively. In general, for all the
datasets the extracted rules seem to relate to the schema of the
graph (e.g. enforcing that nodes are connected with edges having
specific labels, or specifying some values for the properties). For
instance, an example of a rule for the WWC20219 is "Each match
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node should have a date and stage property" emphasizes the neces-
sity of defining essential attributes for the integrity of the graph;
while another, for the Cybersecurity one is The owned property
should only be True or False. Even though Few-Shot prompting
results in a higher confidence score, it doesn’t seem to change
the type of rules generated.

LLaMA-3 generates rules with higher support, coverage, and
confidence than Mixtral. However, this could be explained by
LLM’s tendency to focus on simple rules regarding the unique-
ness of elements. For example, in the Twitter dataset, a gener-
ated rule is Each tweet node should have a unique id property.

In contrast, Mixtral appears to generate more complex rules.
For instance, for the WWC20219 dataset, it specifies that a player
must be associated with a squad that belongs to the tournament in
which the player has participated. Another notable rule indicates
that each match must have a score for both teams if the score has
been determined. Additionally, this rule stipulates that a player
cannot score two goals in the same minute of the same match.
This complexity could explain its lower scores, as there may be
fewer elements in the graph satisfying these rules. Also, LLMs - as
reported in Section 4.4 - may encounter issues when converting
these complex rules into Cypher queries.

Interestingly, the sliding window method yields better results
in capturing crucial information, even though there could be the
risk of patterns being split in different windows (hence informa-
tion relevant to mine rules could be lost). Probably this effect is
attenuated by the fact that the LLM sees the whole graph. Also,
we noticed that the number of patterns broken in this way was
relatively small, 6 for the WWC2019, 11 for Cybersecurity, and 6
for Twitter graph.

On the other hand, the RAG encoding method does not per-
form as expected. This is probably because the LLM is not able
to retrieve from the graph the specific information needed to
extract the rules adapted for each dataset since the prompt itself
indicates only the request to generate consistency rules. Incom-
plete or irrelevant context retrieval can significantly impact the
performance of the LLM. The retriever might not obtain enough
pertinent information from the vector database, leaving the LLM
without the necessary context to generate accurate rules. Ad-
ditionally, irrelevant chunks that appear semantically similar
to the query may be retrieved, introducing excessive or irrele-
vant information. This noise can distract or mislead the LLM,
leading to the generation of incorrect or unrelated rules. As a
result, both the lack of relevant context and the presence of irrel-
evant information can undermine the rule-generation process.
Using Few-Shot prompting improves the performance only in
the Twitter dataset. Human intervention was necessary to ad-
dress inaccuracies in the query generation while maintaining the
intended meaning of the rules, in the future the correction of syn-
tax errors may be automated. While the current pipeline is not
fully automated, the LLMs nature has the opportunity to design
rule mining pipelines that are inherently interactive, allowing
also domain expert (who may not possess technical knowledge)
to refine the rules to their needs.

5 CONCLUSIONS AND FUTUREWORK
In this research, we introduced a new method using LLMs to
automatically generate consistency rules for property graphs,
improving data quality. This method not only expands the scope
of LLMs beyond knowledge graphs but also offers a new approach
for mining consistency rules in property graphs.

While this work shows promising in using LLMs for rule
mining in property graphs, it also highlights challenges related
to LLMs limitations regarding input size and processing time,
especially in case of bigger graph and prompts.

Although our approach is primarily designed for property
graphs, it is also applicable to flat relational data. Relational data
can be seen as a graph structure, especially when organized
following key-foreign key relationships. In this case, nodes repre-
sent entities, and edges represent relationships between them. To
apply our method to relational data, the rules and the encoding
process using LLMs would need to be adapted accordingly.

Future work will focus on these key areas. First, a more de-
tailed empirical study - with more complex prompting strategies
- is required to thoroughly evaluate the performance of LLMs
across different graph structures, which will provide deeper in-
sights into rule generation patterns. Second, as mentioned in
Section 4.3, we will investigate efficient rule mining methods,
either based on parallelism or graph summarization. Third, de-
veloping interactive rule mining techniques could allow users to
engage in the rule extraction process, offering real-time feedback
to refine the rules. Finally, enabling LLMs to explain the rationale
behind the rules they generate would improve transparency and
provide valuable insights into the underlying data patterns.
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