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ABSTRACT
Embeddings are now used to underpin a wide variety of data
management tasks, including entity resolution, dataset search
and semantic type detection. Such applications often involve
datasets with numerical columns, but there has been more em-
phasis placed on the semantics of categorical data in embeddings
than on the distinctive features of numerical data. In this pa-
per, we propose a method called Gem (Gaussian mixture model
embeddings) that creates embeddings that build on numerical
value distributions from columns. The proposed method special-
izes a Gaussian Mixture Model (GMM) to identify and cluster
columns with similar value distributions. We introduce a sig-
nature mechanism that generates a probability matrix for each
column, indicating its likelihood of belonging to specific Gaussian
components, which can be used for different applications, such
as to determine semantic types. Finally, we generate embeddings
for three numerical data properties: distributional, statistical and
contextual. Our core method focuses on numerical columns with-
out using table metadata for context. However, the method can
be combined with other types of evidence, and we integrate at-
tribute names with the Gaussian embeddings to evaluate the
method’s contribution to improving overall performance. We
compare Gem with several baseline methods for numeric only
and numeric + context tasks, showing that Gem consistently
outperforms the baselines on five benchmark datasets.

1 INTRODUCTION
Data repositories, such as data lakes and open government data,
often contain substantial amounts of numerical data [20], which
forms the backbone of various analytical and predictive models.
Indeed, numerical data often outnumbers non-numerical and cat-
egorical data [18]. Applications such as semantic type detection
of numerical data are thus important, but numerical data presents
several challenges, including variability in data distributions (e.g.,
consider two columns both labeled "weight" in different datasets:
one representing "package weight", and another representing "hu-
man weight"; although both columns share the same label and
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Figure 1: A histogram with a Kernel Density Estimate
(KDE) overlay distributions of four numerical columns:
Age, Rank, Test Score, and Temperature. Despite the sim-
ilar distribution shapes — Age and Rank both showing a
normal distribution around a mean of 30 and Test Score
and Temperature around a mean of 75 — the semantic con-
texts differ significantly and refer to the different semantic
types and units. For example, "Age" might be measured
in years, "Rank" in a hierarchical position, "Test Score" as
points out of 100, and "Temperature" in degrees, Fahren-
heit and Celsius. These variations illustrate the complexity
of semantic type detection of columns with different dis-
tributions. In this context, existing methods struggle to
distinguish these overlapping columns. However, our pro-
posal can effectively distinguish between these columns
by focusing on their distributional properties.

numerical nature, their distributions and contexts differ signif-
icantly). Even when columns have similar distributions, their
semantics might differ. For instance, a column representing tem-
perature and another representing test score can have similar dis-
tribution shapes but different semantics. Figure 1 illustrates the
challenge of comparing numerical distributions, where columns
from different semantic types share similar values.
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The central contribution of this paper is a method for creating
embeddings of numerical columns. In proposing a method that
focuses on numerical data, we have two objectives:

(i) To provide an approach to the embedding of numerical
columns where metadata is absent or unreliable. For ex-
ample, it has been reported that 20% of web tables do not
have column headers [9].

(ii) To provide more effective embeddings for numerical data
that can then be combined with other contextual informa-
tion. We note that state-of-the-art proposals for column
annotation that perform well on non-numerical data, have
been shown to perform much less well on repositories
that contain significant amounts of numerical data [18].
In the absence of a single unifying embedding method
that works well on both numeric and non-numeric data,
the state-of-the-art involves hybrid proposals that include
specialized techniques for numerical data [20]. All such
hybrid techniques stand to benefit from advances in nu-
merical data embedding.

Although several approaches handle numerical columns us-
ing bespoke deep learning techniques [8, 13, 16, 19, 29, 30, 34],
they heavily rely on the context extracted from non-numerical
data. Our contribution complements that of existing proposals,
in providing a new approach to handling numerical features
that can be combined with other features or used in isolation
where contextual information is limited. Furthermore, existing
methods often overlook the distributional differences between
columns with similar column names but different values. For
example, two columns representing temperature readings in dif-
ferent regions might have similar schemas but different distribu-
tions due to varying climates. Similarly, existing approaches may
fail to capture fine-grained domain-specific information from
numerical data distributions. For instance, financial transaction
amounts and sales figures might overlap in certain ranges but dif-
fer in others, presenting specific challenges such as variability in
data distributions and similar contextual information. Numerical
columns often have diverse distributions, such as normal, skewed,
or multimodal, which can be challenging to model accurately.
Existing methods may struggle to differentiate between columns
with similar value ranges but different underlying distributions.
Additionally, many approaches rely heavily on contextual infor-
mation from table names and neighboring columns, which might
not always be available. This reliance can lead to misclassification
when context is absent or incomplete.

In this paper, we aim to address challenges associated with
numerical data, and propose an approach based on a Gaussian
Mixture Model (GMM) [4, 23, 26] to identify data distributions
existing in different columns. Gem focuses solely on numerical
columns without utilizing context from table names or neighbor-
ing columns. However, we later incorporate context from column
headers (attribute names) to investigate how numeric-only em-
beddings contribute to improvements in downstream tasks. We
defined a signature mechanism to draw a probability matrix from
each column, which shows the probability of a column belonging
to a particular Gaussian component or distribution, which can
be interpreted as a semantic type.

The contributions of this paper are:
(1) Amethod for producing embeddings for numerical columns

that leverages GMMs to handle numerical distributions in
tabular data. This approach utilizes the statistical proper-
ties of distributions and a unique signature method to form

a probability matrix from Gaussian distributions, focusing
exclusively on numerical data.

(2) An investigation into the contribution of embeddings pro-
duced from numerical values in combination with header
information. This includes thoroughly analyzing the im-
pact of integrating numerical data distributions and header
embeddings using transformer models.

(3) A comprehensive comparative analysis of Gem against
state-of-the-art bespoke methods that reveals that Gem
consistently achieves superior performance, both when
incorporating contextual information andwhen using only
numerical values.

2 RELATEDWORK
We review the literature on embeddings for numerical data in two
categories: (i) approaches that employ GMMs and other mixture
models, and (ii) numerical embedding methods for tabular data.

2.1 Mixture models for embeddings
Several approaches have adopted mixture models and other dis-
tributional techniques to encode numerical data via distribu-
tions. One notable method [8], focusing on tabular deep learning,
proposes two mechanisms to encode numerical data: piecewise
linear encoding (PLE) and periodic activation functions (PAF).
PLE divides the numerical range into segments and fits linear
functions within each segment, capturing non-linear relation-
ships among numerical features. PAF maps numerical values to
a higher-dimensional space using sinusoidal transformations,
which helps capture periodic patterns. The evaluation reports
that the custom embeddings can provide improved performance
when included in a variety of architectures.

Another related approach embeds numeral contexts within
traditional word embeddings, enhancing numeral understanding
in text data applications [13], utilizing Self-Organizing Maps
(SOM) and GMM to create numeral embeddings. Both SOM and
GMM integrate numerical values and neighboring textual data to
produce embeddings, which are calculated as weighted averages
of prototype numeral embeddings determined by a similarity
function and integrated into traditional word embeddings. The
proposed approaches are shown to outperform baselines that do
not incorporate numerical embeddings.

The MULTIHIERTT framework [35] handles numerical rea-
soning over hybrid datasets that integrate hierarchical tables and
textual data. It is developed on MT2Net [35], combining numeri-
cal data and contextual information from table structures, such
as headers and neighboring text. Unlike GMM and SOM [13],
which mainly focus on numerical columns, MT2Net enhances its
reasoning capabilities by utilizing the structural metadata from
tables. The MULTIHIERTT framework works in two stages: a
fact-retrieval module first gathers relevant numerical and textual
information, followed by a reasoning module that applies both
symbolic and arithmetic operations to integrate and reason over
the retrieved data. Several other recent approaches adopt numer-
ical reasoning methods to embed numerical data, each tailored to
specific applications, including number decoding [31], automatic
data generation [7], numerical attribute estimation [14, 17] and
data-to-text generation [27].

2.2 Numerical embeddings for tabular data
In applications such as semantic column type detection, it is
challenging to detect the type of a column solely from numerical
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data, and as a result many proposals combine numerical features
with other context. Our work aims to increase the extent to
which numeric column values can inform such applications by
considering distributions from the column values themselves.

Most existing approaches consider contextual evidence from
neighboring columns, rows, tables and metadata, such as table
descriptions or names. For instance, DICE [30] produces embed-
dings to reflect actual distances on the number line, utilizing
contextual information from surrounding words to enhance nu-
merical reasoning. This involves creating vector representations
(embeddings) for numerical values such that the cosine simi-
larity between these embeddings corresponds to the numerical
difference between the values. For example, if two numbers in a
column are 5 and 10, the DICE embeddings would ensure that the
vector representations for these numbers are placed in such a way
that the cosine similarity between them reflects the numerical
distance of 5 units.

Research has often focused on leveraging as much contextual
evidence as possible to improve column semantic type detection.
For example, Sato [34] uses column values from numeric and
non-numeric neighboring columns, table metadata, and global
table features. Sato employs a structured prediction model that
integrates evidence from individual columns and evidence in-
volving adjacent columns to capture inter-column semantic re-
lationships. These relationships define the embeddings within
the same table, as certain semantic types often co-occur across
columns. For instance, a "Date" column is semantically related
to a "Payment Due" column in finance data. Similarly, Sherlock
[12] is a multi-input neural network-based architecture that de-
tects semantic data types by analyzing features extracted from
numerical and non-numerical contexts. Sherlock utilizes meta-
data from column headers, adjacent textual data within the table,
and numerical values. Sherlock composes features to generate
comprehensive embeddings, including character distributions,
word embeddings, and paragraph vectors. Unlike Sherlock, which
focuses on intra-table context, RECA [29] extends the contex-
tual scope by incorporating data from related tables, providing a
broader contextual framework. RECA utilizes a graph neural net-
work to integrate features from related tables, capturing complex
inter-table relationships.

A recent proposal, Pythagoras [20], outperforms Sato [34],
Sherlock [12] and Doduo [28] by focusing on a more holistic in-
tegration of numerical and non-numerical contexts. Pythagoras
employs a Graph Neural Network (GNN) and constructs a hetero-
geneous graph to integrate various contextual signals, including
table names, numerical data, and metadata from neighboring
columns. Unlike earlier methods that either emphasize related
tables (RECA [29]), intra-table relationships (Sherlock [12]), or
token-level interactions (Doduo [28]), Pythagoras synthesizes
these contexts within a unified graph structure.

In terms of numerical embeddings, most existing approaches
focus on statistical properties of numeric columns rather than
distributional properties, e.g., Pythagoras [20] and Sato [34]. Con-
versely, ad hoc methods that capture distributional properties
based on Gaussian Mixture Models (GMMs) or similar techniques
have proven effective for other numerical tasks, such as cluster-
ing and density estimation. However, these approaches have not
been widely generalized for data management tasks within tabu-
lar data. As a result, there remains a gap in fully leveraging the
numerical features of tabular data. Existing methods do not focus
on drawing distributions from numerical columns and clustering
them based on similar distributions, missing the opportunity to

utilize the inherent properties of numerical data. Our approach
addresses this gap by extracting numerical data distributions.

3 GEM-BASED SIGNATURES FOR
NUMERICAL COLUMNS

Building on the related work, Gem seeks to address the limita-
tions of existing methods by maximizing the use of numerical
data distributions to generate embeddings. Our proposed method
uses numerical data distributions to identify and cluster columns
with similar semantic types. Gem provides a unique approach
to tackling numeric columns by grouping distributions (in other
words, histograms) from tables that refer to the same seman-
tic type. Additionally, it is designed to combine the numerical
embeddings with other types of evidence, as explored in the
experiments (see Section 4.2). This process involves extracting
numerical data from tabular data, fitting a GMM to capture their
distributional characteristics, and then calculating a probability
matrix for each column based on these distributions. Gem takes
stacks of numerical columns and uses a signature mechanism
to predict the probabilities of each column belonging to corre-
sponding Gaussian components. These probabilities are then
aggregated for each column to form a likelihood distribution
across the different components, effectively capturing the under-
lying numerical characteristics. Gem then calculates additional
statistical features for each column and integrates contextual
information from headers. These combined features enhance
clustering, distinguishing similar distributions based on distri-
butional, statistical, and contextual properties. In Figure 2, we
illustrate the transformation of numerical columns into final
embeddings. In the following, we describe Gem for producing
embeddings from numerical columns.

3.1 Modelling Value Distributions Using
GMMs

Assume we have a dataset comprising 𝑛 columns, each represent-
ing a distinct set of numerical values. The primary representa-
tional goal is to capture the underlying distributions from which
the values in each column are drawn. GMM offers an approach
to this problem, leveraging the ability to deliver an expressive
probabilistic model to identify the latent Gaussian distributions
that collectively describe the numerical values.

A GMM is a probabilistic model representing a mixture of𝑚
Gaussian distributions. GMM represents the dataset’s probability
density function (pdf) as a weighted sum of multiple Gaussian
distributions. The pdf of a GMM is given by [23, 26]:

𝑝 (𝑥) =
𝑚∑︁
𝑗=1

𝜋 𝑗N(𝑥 |𝜇 𝑗 , Σ 𝑗 ) (1)

where:
• 𝑥 is a numeric value.
• 𝜋 𝑗 is the mixing coefficient for the 𝑗-th Gaussian compo-
nent, with

∑𝑚
𝑗=1 𝜋 𝑗 = 1.

• N (𝑥 |𝜇 𝑗 , Σ 𝑗 ) is the Gaussian distribution with mean 𝜇 𝑗 and
covariance Σ 𝑗 .

To estimate the parameters (𝜇 𝑗 , Σ 𝑗 and 𝜋 𝑗 ) of the GMM, we
employ the Expectation-Maximization (EM) algorithm [4], which
iteratively optimizes these parameters to maximize the likelihood
of the observed numeric columns. The EM algorithm includes two
main steps: the Expectation step (E-step) and the Maximization
step (M-step). Initially, the means 𝜇 𝑗 , covariances Σ 𝑗 , and weights
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Price Quantity Discount

20.99 15 5

35.50 30 10

40.00 25 7

values

P(c1) P(c2) P(c3)

20.99 P(20.99|c1) P(20.99|c2) P(20.99|c3)

35.50 P(35.50|c1) P(35.50|c2) P(35.50|c3)

40.00 P(40.00|c1) P(40.00|c2) P(40.00|c3)

15 P(15|c1) P(15|c2) P(15|c3)

30 P(30|c1) P(30|c2) P(30|c3)

25 P(25|c1) P(25|c2) P(25|c3)

5 P(5|c1) P(5|c2) P(5|c3)

10 P(10|c1) P(10|c2) P(10|c3)

15 P(15|c1) P(15|c2) P(15|c3)

Price

Quantity

Discount

Headers

For each value? in the column, calculate the probability that it belongs 
to each component c of the GMM.

price.c1 price.c2 price.c3 s1 s2 s3 price.h1 price.h2 price.h3

Mean 
probabilities

Quantity.c1 Quantity.c2 Quantity.c3 s1 s2 s3 Quantity.h1 Quantity.h2 Quantity.h3

Discount.c1 Discount.c2 Discount.c3 s1 s2 s3 Discount.h1 Discount.h2 Discount.h3

Augmented with additional 
features

Header embeddings 
(SBERT)

distributional embeddings statistical 
embeddings

contextual embeddings

Figure 2: The process of transforming a table with three numeric columns (Price, Quantity, Discount) into a final embedding
matrix. First, the GMM is fitted to the values in each column. For each value 𝑥𝑛 in a column, the probability 𝑝 (𝑥𝑛 | 𝜇 𝑗 , Σ 𝑗 ) that
it belongs to each component 𝐶 𝑗 of the GMM is calculated using Equation 6 where 𝜇 𝑗 and Σ 𝑗 are the mean and covariance
matrix of component 𝑗 , respectively. Next, the mean probabilities for each component are computed: 𝜇𝐶 𝑗

= 1
𝑁

∑𝑁
𝑖=1 𝑝 (ℎ𝑖 |

𝜇 𝑗 , Σ 𝑗 ) where 𝑁 is the number of values in the column. These mean probabilities are augmented with additional statistical
features (𝑠1, 𝑠2, 𝑠3...𝑠𝑛). Simultaneously, the column headers are transformed into embeddings using the SBERT model.
Finally, the normalized probability matrix (value embeddings) and the normalized SBERT embeddings (header embeddings)
are combined to form the final embedding matrix for the table. The final embedding vector for each column includes the
distributional embeddings using GMM, the statistical embeddings using data properties, and the contextual embeddings
from headers, resulting in a comprehensive representation of the column data.

𝜋 𝑗 are initialized randomly. In the E-step, the responsibilities
𝛾 (𝑧𝑛𝑗 ) are calculated, which represent the probability that a data
point 𝑥𝑛 belongs to the 𝑗-th Gaussian component:

𝛾 (𝑧𝑛𝑗 ) =
𝜋 𝑗N(𝑥𝑛 | 𝜇 𝑗 , Σ 𝑗 )∑𝑚

𝑘=1 𝜋𝑘N(𝑥𝑛 | 𝜇𝑘 , Σ𝑘 )
(2)

In the M-step, the parameters are updated based on the re-
sponsibilities computed in the E-step:

𝜇 𝑗 =

∑𝑁
𝑛=1 𝛾 (𝑧𝑛𝑗 )𝑥𝑛∑𝑁
𝑛=1 𝛾 (𝑧𝑛𝑗 )

(3)

Σ 𝑗 =

∑𝑁
𝑛=1 𝛾 (𝑧𝑛𝑗 ) (𝑥𝑛 − 𝜇 𝑗 ) (𝑥𝑛 − 𝜇 𝑗 )𝑇∑𝑁

𝑛=1 𝛾 (𝑧𝑛𝑗 )
(4)

𝜋 𝑗 =
1
𝑁

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑗 ) (5)

This iterative process continues until convergence, typically
when the change in the likelihood of the data given the param-
eters falls below a pre-defined threshold. In our case it is the
default value of 1e-3. Once we obtain Gaussian components from
the GMM for each numeric value, we use the Gem signature
mechanism to compute the likelihood that each column belongs
to a particular Gaussian component.

3.2 Gem Signature Mechanism
In this step, Gem treats all numerical values from the columns as
a single stack (one-dimensional array) of numeric values rather
than individual columns. Here, signatures refer to feature vectors
extracted from each column, which capture essential charac-
teristics for analysis. For each data point 𝑥𝑛 , we compute the
probability of it being generated by each Gaussian component

𝑗 using the fitted parameters of the GMM (see Figure 2). This is
done using pdf [23, 26]:

𝑝 (𝑥𝑛 | 𝜇 𝑗 , Σ 𝑗 ) =
1

(2𝜋)𝑑/2 |Σ 𝑗 |1/2
exp

(
−1
2
(𝑥𝑛 − 𝜇 𝑗 )𝑇 Σ−1𝑗 (𝑥𝑛 − 𝜇 𝑗 )

)
(6)

Using these probabilities, we construct a probability matrix
𝑃 , where each element 𝑃𝑛𝑗 represents the responsibility 𝛾 (𝑧𝑛𝑗 )
computed during the E-step. The matrix 𝑃 thus encodes the like-
lihood of each data point belonging to each Gaussian component,
summarizing the distributional features captured by the GMM.

In addition to these GMM-derived probabilities, we extract
several statistical features from each numeric column to capture
the statistical aspects of the column’s distribution. These features
were selected by systematically evaluating the Pythagoras feature
set [20]. We only focus on features applicable to numerical values.
Each feature’s correlation with the Gem embeddings was tested,
and only those with high correlation were retained. The select
features includes:
• Unique count: Reflects the variety of distinct values in the
column, indicating whether the data is largely repeated.
• Mean: Representing the average value in the column.
• Coefficient of variation (CV): A normalized measure of
spread that indicates the relative dispersion of values.
• Entropy: Quantifies the degree of uncertainty in the data
distribution.
• Range: The difference between the maximum and mini-
mum values.
• Percentiles (10th and 90th): Highlight the lower and upper
bounds to provide insights into the data’s distribution.

Mathematically, let f𝑖 represent the vector of additional fea-
tures for the 𝑖-th column. Standardization transforms each feature
vector f𝑖 to f̃𝑖 , where:
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f̃𝑖 =
f𝑖 − 𝜇 (f)
𝜎 (f) (7)

where 𝜇 (f) and 𝜎 (f) are the mean and standard deviation of the
feature vector, respectively. These standardized feature vectors
are then integrated with the mean probabilities derived from the
GMM. For the 𝑖-th column, let m𝑖 represent the mean probabil-
ity vector of length 𝐾 (number of Gaussian components). The
augmented feature vector a𝑖 is formed by concatenating m𝑖 and
f̃𝑖 :

a𝑖 = [m𝑖 ∥ f̃𝑖 ] (8)

Finally, each augmented feature vector a𝑖 is normalized to
ensure comparability across different columns, resulting in the
final row of the probability matrix 𝑃𝑖 :

𝑃𝑖 =
a𝑖
∥a𝑖 ∥1

(9)

where ∥a𝑖 ∥1 denotes the L1 norm of a𝑖 . This integration enhances
the descriptive power of the probability matrix by combining the
probabilistic information (distributional embeddings) from the
GMM with statistical characteristics of the columns.

Why combine distributional and statistical features? The notion
behind combining the statistical and distributional features of a
column is to distinguish fine-grained patterns of similar numeri-
cal columns with different semantic types. For instance, consider
two columns x1 (income) and x2 (heights). Distributional features,
extracted using GMM probabilities 𝑝 (𝑥𝑖, 𝑗 | 𝜇𝑘 , Σ𝑘 ) (Equation 6),
learn the clustering patterns within the column, such as income
(low, medium, high) in x1, formingm1 = [𝑚1,1,𝑚1,2, . . .]. Statisti-
cal features f̃1 = [𝑓11 , 𝑓21 , . . .], such as mean 𝑓11 =

1
𝑁1

∑
𝑥1, 𝑗 and

variance 𝑓21 =
1
𝑁1

∑(𝑥1, 𝑗 − 𝑓11 )2, represent global trends like aver-
age income. Gem combines both feature sets into a1 = [m1 ∥ f̃1]
(Equation 8), normalizes them as 𝑃1 =

a1
∥a1 ∥1 (Equation 9), and

provides embeddings with fine-grained distributional clustering
and broader numerical properties. The generated embedding can
then distinguish columns like x1 (income) and x2 (heights), even
when their value distributions show overlapping patterns.

3.3 Header embeddings
We obtain the distributional embeddings from the GMM and cap-
ture the statistical properties from the column values. Addition-
ally, we incorporate contextual information from column head-
ers. This step, while not always necessary, proves helpful when
the distributional embeddings are highly dense and similar. The
context provided by the column headers helps to disambiguate
meaningful differences among columns. Our experiments (see
Section 4.2) report results with and without headers, demonstrat-
ing Gem’s flexibility and effectiveness. We use Sentence-BERT
(SBERT) [25] to embed column headers, which captures the se-
mantic meaning of the headers in a high-dimensional space. Let
s𝑖 represent the SBERT embedding for the 𝑖-th column header.
To ensure compatibility with the value embeddings, the SBERT
embeddings are also normalized:

S𝑖 =
s𝑖
∥s𝑖 ∥1

(10)

where ∥s𝑖 ∥1 denotes the L1 norm of s𝑖 .

Finally, the normalized probability matrix P𝑖 (value embed-
dings) and the normalized SBERT embeddings S𝑖 (header embed-
dings) are concatenated to form the final combined embedding
vector C𝑖 for each column:

C𝑖 = [P𝑖 ∥S𝑖 ] (11)

where ∥ denotes the concatenation operation. This final embed-
ding vector C𝑖 includes the probabilistic and semantic informa-
tion, providing a joint representation of each column in the table
for downstream tasks (attribute name + represented value dis-
tribution). E.g., in clustering, each data point is assigned to the
Gaussian component with the highest responsibility:

Cluster(𝑥𝑛) = argmax
𝑗
𝐶𝑛𝑗 (12)

In addition to the contextual embeddings and probabilistic rep-
resentations, we also aggregate standardized statistical features
f̃𝑖 . These standardized features f̃𝑖 are integrated with the proba-
bilistic embeddings P𝑖 and the normalized SBERT embeddings
S𝑖 , forming the final aggregated embedding vector Cagg

𝑖
:

Cagg
𝑖

=

[
P𝑖 ∥S𝑖 ∥f̃𝑖

]
(13)

This final aggregated embedding Cagg
𝑖

combines probabilistic,
semantic, and standardized statistical information, providing a
rich representation for downstream tasks.

By integrating the GMM with extracted signatures and lever-
aging the resulting probability matrix, we establish a comprehen-
sive framework for managing and analyzing datasets composed
of numerical columns. We provide pseudocode to generate the
final embedding matrix from numerical columns in Algorithm 1.

4 EVALUATION
4.1 Datasets
We use five widely used datasets, which include Sato Tables [34],
Git Tables [11], Google Dataset Search (GDS)1, Web Data Com-
mons (WDC)1 and BiodivTab [1] to evaluate Gem2. We select
numeric columns from all five datasets. The datasets have been
selected for their abundance of numeric columns, rich variabil-
ity in data distributions, and diverse column semantics. Dataset
details are given below and in Table 1.
• Sato Tables, part of the VizNet dataset, includes numeric
columns representing attributes such as population counts,
GDP values, and personal statistics.Many numeric columns
have similar distributional characteristics but different
semantic types. For instance, columns labeled as "age,"
"duration," "weight," "order," and "position" exhibit similar
numeric distributions, yet they have different semantic
meanings. The distributional and statistical similarity be-
tween these columns is greater than 0.90, indicating their
contextual (header embeddings) meanings differ signifi-
cantly despite their numeric resemblance.
• Git Tables is a large-scale semantic type detection dataset
consisting of relational tabular data from a wide range
of domains. The column annotations were obtained from
Schema.org and DBpedia. Git Tables represents a partic-
ularly challenging setting without additional context de-
scriptions. For example, detecting the semantic type of a

1https://github.com/PierreWoL/SILM
2https://github.com/hafizrauf/Gem
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Table 1: Dataset statistics related to the number of numeric columns and ground truth (GT) clusters. The numbers in
brackets indicate the columns and semantic types in the GT, which were derived by refining coarse-grained annotations
into fine-grained ones for both the GDS and WDC datasets

GDS WDC Sato Tables Git Tables BiodivTab

# Columns 2491 (2117) 2852 (5678) 2231 459 384
#GT clusters 86 (96) 147 (325) 12 19 44

Algorithm 1 Generating the final embedding matrix from nu-
meric columns
Require: Dataset with 𝑛 numeric columns {x1, x2, . . . , x𝑛} and

headers {ℎ1, ℎ2, . . . , ℎ𝑛}
Ensure: Final embedding matrix {C1,C2, . . . ,C𝑛}
1: Initialize lists: column_headers ← [],

additional_features← []
2: for each column 𝑖 in the dataset do
3: Extract column values x𝑖 and header ℎ𝑖
4: Append ℎ𝑖 to column_headers
5: Calculate additional statistical features f𝑖
6: f𝑖 ← [𝑓1𝑖 , 𝑓2𝑖 , . . . , 𝑓𝑚𝑖

]
7: Append f𝑖 to additional_features
8: end for
9: Fit GMM with 𝑚 components to all column values:

GMM_model← GMM(𝑚)
10: for each column 𝑖 do
11: for each data point 𝑥𝑖, 𝑗 in x𝑖 do
12: Compute the probability 𝑝 (𝑥𝑖, 𝑗 | 𝜇𝑘 , Σ𝑘 ) using Equation

6
13: end for
14: Compute the mean probabilities for each component
15: Form the augmented feature vector a𝑖 using Equation 8:
16: Normalize a𝑖 to form 𝑃𝑖 using Equation 9:
17: Append 𝑃𝑖 to the probability matrix
18: end for
19: Encode column headers using SBERT: s𝑖 ←

SBERT_model.encode(ℎ𝑖 )
20: Normalize SBERT embeddings using Equation 10:
21: for each column 𝑖 do
22: Concatenate 𝑃𝑖 with S𝑖 to form the final combined embed-

ding vector C𝑖 using Equation 11:
23: Append C𝑖 to the final embedding matrix
24: end for
25: Output the final embedding matrix

column given the values [153, 228, 125, 273, 319, 139, ...] to
be duration, height, length or volume.
• BiodivTab3 [1] forms from a wide variety of real-world
biodiversity datasets and was used in the SemTab20214
challenge to map semantic classes from knowledge bases
to table columns. BiodivTab contains several challenges,
including columns with nested entities, no contextual in-
formation, and diverse numerical columns.
• WDC (Web Data Columns) includes numeric columns
extracted from web data, such as product prices, stock
quantities, and review scores. It captures a broad spectrum

3https://github.com/fusion-jena/BiodivTab
4https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2021/index.html

of e-commerce and social media numeric data. WDC at-
tribute names are categorically coarse-grained. For exam-
ple, columns like Score_Cricket, Score_Rugby, Score_Football
are semantically annotated with Score. However, we trans-
form the annotation from coarse-grained to fine-grained
to better capture the different distributions of each column.
For instance, while both Score_Cricket and Score_Rugby
represent game scores, they have distinct contexts and
distributions. Cricket scores tend to be much higher due
to the nature of the game, while Rugby scores follow a
different scale. Simply classifying them as Score would
overlook these differences. Further details of the column
annotation process are provided in Section 4.1.1.
• GDS (Google Dataset Search) is a platform developed to
help researchers discover openly available datasets on the
web. We used the GDS dataset, where the authors manu-
ally curated specific tables for data discovery tasks. This
dataset has been refined to a fine-grained level from its
original form, ensuring that each table represents distinct
and specific concepts for more precise column annota-
tion. For example, instead of having a general "power"
column, we annotate columns with more granularity, such
as "engine_power_car" and "battery_power_device", which
capture contextually relevant information about the power
of car engines and electronic devices, respectively.

The following criteria guided the selection of the above datasets:

• Numerical Columns Specificity: Each dataset contains
a significant number of columns that are composed en-
tirely of numerical data (see Table 4).
• GT clusters with detailed refinement: Another crite-
rion is the availability of GT clusters that categorize differ-
ent semantic types. The initial annotations for the GDS and
WDC datasets were refined from broader, coarse-grained
types to more specific, fine-grained semantic categories.
For instance, the GDS dataset refined clusters from 86 to
96 distinct types, while WDC refined 147 clusters into 325
semantic types.
• Diversity across datasets: The selected datasets provide
a broad spectrum of semantic types representing different
domains.

4.1.1 Data Annotation: From Coarse-Grained to Fine-Grained
Labels. We use the following criteria to convert coarse-grained
labels into fine-grained labels for both WDC and GDS datasets,
as both datasets have coarse-grained annotations as ground truth.
For example, the score of a cricket and the score of a football game
can be classified under the supertype "score". The re-annotation
was performed manually, guided by the criteria outlined below:

• Two columns should have the same annotation if they de-
scribe the same domain. Applying the equality (=) opera-
tor to values from different columns should be meaningful.
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For example, it is not meaningful to compare a volume
with an area as they have different units.
• Two values must describe the same real-world concept
at a comparable scale and within the same context to be
equivalent. For instance, the height of a person and the
height of a building, while both referring to ’height’, are
not equivalent because they belong to different real-world
domains and scales.
• If subcategories exist, they must be applied at the appropri-
ate level of specificity. For example, the score achieved by
a baseball player cannot be equated to the score achieved
by a golf player, even though both fall under the super
category of score.

The manual re-annotation process was carried out systemati-
cally by following these criteria. We provide coarse-grained and
fine-grained ground truth annotations in GitHub5.

4.1.2 Evaluation Metrics. We evaluated Gem for two down-
stream tasks: semantic table annotation and column clustering.

Two metrics are used to evaluate column semantic type an-
notation, Precision at K and Normalized Discounted Cumulative
Gain (nDCG). Precision at 𝐾 is used to evaluate the performance
of ranking algorithms, and computes the fraction of the top K
results that are correct. Thus Precision at 𝐾 is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =
𝑇𝑃@𝐾
𝐾

(14)

where 𝑇𝑃@𝐾 is the number of true positives in the top 𝐾 .
In our experiments, the true positive columns are those with
the correct type annotation, and the top 𝐾 are the 𝐾 columns
with embeddings that are most similar to a given column. In the
experiments, 𝐾 is set to the total number of columns with the
same semantic type in the GT.

nDCG considers the ranked list’s relevance and positions of
retrieved columns. It can be defined as:

𝑛𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾
𝐼𝐷𝐶𝐺@𝐾

(15)

where, 𝐷𝐶𝐺@𝐾 (Discounted Cumulative Gain) computes the
cumulative relevance of the top 𝐾 columns, and 𝐼𝐷𝐶𝐺@𝐾 repre-
sents the maximum possible 𝐷𝐶𝐺@𝐾 if all true positives are
ranked correctly. We consider a column is relevant if it has
the same semantic label as the GT label. Unlike 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 ,
𝑛𝐷𝐶𝐺@𝐾 takes into account the relative order of TPs in the
ranked list.

We used two well-known evaluation metrics for column clus-
tering: Accuracy (ACC) [33] and Adjusted Rand Index (ARI) [32].
ACC measures the proportion of correctly clustered columns and
ranges from 0 to 1. The ARI score ranges from -1 to 1, where
negative values suggest worse-than-random labeling, 0 indicates
random labeling, and 1 indicates a perfect match.

4.1.3 Baselines. We selected two types of baseline method
to compare with Gem. The first relies solely on numerical data.
The second includes methods that consider context from head-
ers, table names and neighboring columns, such as Pythagoras,
Sato, Doduo and Sherlock. We could not directly compare these
methods to Gem because Gem is purely designed to handle nu-
merical features. To ensure a fair comparison, we modified and
re-implemented Pythagoras, Sato, Doduo and Sherlock to retain
their core statistical features and header information, aligning
their focus on numerical data. However, we explicitly excluded
5https://github.com/hafizrauf/Gem

all other contextual information, such as table names, neigh-
boring non-numerical columns, and inter-column relationships,
so that the comparison was based solely on the numerical em-
bedding capabilities of the methods. We acknowledge that this
re-implementation of Pythagoras, Sato, Sherlock andDoduo gives
rise to a simplified and modified version of the original methods.
However, it illustrates the specific impact of removing several
contextual elements, allowing for a more precise comparison
with Gem’s context-independent approach.

• Piece-wise Linear Encoding (PLE) [8] transforms nu-
meric data into a series of linear segments, each represent-
ing a portion of the data range. This method simplifies
complex non-linear relationships into manageable linear
parts by dividing the numeric range into intervals and
applying linear transformations within each segment.
• Periodic Activation Functions (PAF) [8] introduce oscil-
latory behavior into neural network layers, making them
adept at capturing repeating patterns in numeric data. This
model with periodic function efficiently learns and repre-
sents cyclical patterns and can detect semantic types that
exhibit periodic behavior.
• Squashing_GMM [13]: This method begins by squashing
numeric values into log space following a prototype induc-
tion using GMM to identify the clusters, each representing
a prototype. Similarity functions thenmeasure how closely
numeric columns match these Gaussian components.
• Squashing_SOM [13]: This method is similar to Squash-
ing_GMM, except for the prototype induction part, where
SOMprojects the log-transformed data onto a grid of lower
dimensionality while preserving its topological structure,
inducing prototypes representing data clusters.
• Kolmogorov-Smirnov (KS) statistic [22]: The KS statis-
tic is particularly relevant in this context because it mea-
sures the maximum difference between the cumulative
distribution functions (CDFs) of the empirical data and sev-
eral theoretical distributions, such as normal [6], uniform
[5], exponential [2], beta [15], gamma [10], lognormal [21],
and logistic [15]. We evaluate how well the numerical data
in columns aligns with these reference distributions; we
generate features that capture the underlying semantic
type of the columns because different semantic types ex-
hibit unique distributional patterns, and the KS statistic
helps identify these patterns accurately.
• Sherlock [12]: We compare Sherlock with Gem because it
extracts statistical features from numerical columns, such
as mean, variance, skew and kurtosis, which align with
Gem’s focus on numerical data. To ensure a fair compar-
ison, we augment these statistical features with SBERT-
generated embeddings from column headers, similar to
Gem’s use of header information. Sherlock’s model pro-
cesses these combined features using dense layers with
dropout and a softmax layer.
• Sato [34]: We also compare Sato, which is an enhance-
ment in Sherlock. To maintain fairness, we exclude Sato’s
global and local context features, which rely on neighbor-
ing nonnumerical columns, since Gem does not utilize the
nonnumerical global context. In our implementation of
Sato, we focus on single-column data, extracting the same
statistical features as Sherlock and combining them with
SBERT embeddings from the headers. These combined
features are processed in Sato’s neural network model.
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Overall, we extract statistical features in both implementa-
tions (Sherlock and Sato) and combine them with SBERT
embeddings before processing them through their respec-
tive training architectures to obtain embeddings.
• Pythagoras [20]: Pythagoras uses a graph representation
of tables to capture both numerical and contextual infor-
mation, such as table names and neighboring columns.
The model combines pre-trained language models for ini-
tial encoding with specialized subnetworks for numerical
features. In line with Gem’s focus on numerical data and
headers only, we re-implemented Pythagoras in a context-
reduced version, where only header data was considered,
excluding table names and neighboring columns. Addi-
tionally, we retained the same statistical features selected
for Gem.
• Doduo [28] is a pre-trained Transformer-based model
used for multi-task learning to predict column types and
relations. Doduo considers non-numerical context, such as
textual data from cell values, and uses a multi-column ap-
proach with attention mechanisms to capture fine-grained
token-level interactions among cells within the same ta-
ble. However, in our implementation, we used Doduo’s
context-reduced version (single-column version) to gener-
ate embeddings for numeric columns and headers, relating
solely to their intrinsic data.

To differentiate the original versions of Pythagoras, Sherlock,
and Sato from our modified simple implementations, we called
them Pythagoras_SC, Sherlock_SC, Sato_SC, and Doduo_SC,
where SC indicates Single-Column. This shows that our imple-
mentations work with individual numerical columns without
relying on multi-column and table-wide context. In the original
approaches, these methods use additional information, such as
neighboring columns and metadata. However, in our adapted
versions, we remove this extra context to focus exclusively on
the features of single-column numerical data.

4.1.4 Parameter Setting. The number of Gaussian compo-
nents does not significantly impact Gem’s overall performance
(see ablation study in Section 4.4). Through comprehensive ex-
perimentation, we found that each column generally exhibits
between 5 to 10 distinct distributions, and further increasing the
number of components beyond this range does not contribute
to performance improvement. Specifically, using more than 10
Gaussian components per column leads to model complexity
without corresponding gains in accuracy. However, we deter-
mine each dataset’s optimal number of components using the
Bayesian Information Criterion (BIC). The BIC results showed
consistent performance across 5 to 100 components, with mini-
mal fluctuations. To maintain consistency, we used 50 Gaussian
components for all our analyses. In baselines, specifically Squash-
ing_GMM [13], we use the same number of components as used
in Gem; in Squashing_SOM [13], PLE [8] and PAF [8], we use 50
prototypes, bins, and frequencies, respectively. Additionally, we
initialize the EM algorithm 10 times to increase the likelihood of
finding the global optimum, ensuring robust convergence and
avoiding local minima.

4.2 Results and Discussion
4.2.1 Numeric-Only Results. Table 2 shows the experimental

results of Gem compared to the baselines, considering numeric-
only data across all five datasets. As the results for 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

and 𝑛𝐷𝐶𝐺 are similar, in the text when we discuss numbers, we
always refer to 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. We observe the following:

(1) Gem consistently outperforms the baseline methods
when considering numeric columns, achieving the
highest average precision in all datasets. Notable im-
provements relative to the best baseline are in Sato Tables
(0.06), Git Tables (0.03), and GDS (0.03), demonstrating its
ability to handle diverse numeric data distributions.

(2) Baseline methods, including PLE, PAF and the KS
statistic, struggled to differentiate between columns
with superficially similar value ranges across all
datasets. For example, the columns labeled ’Rating’ [3.6,
3.8, 3.9, 3.9, 3.6, ...] and ’Weight’ [1.0, 1.0, 1.4286, 1.25, 1.0957,
2.5, ...] were incorrectly identified as highly similar (as
evidenced by high cosine similarity in the embeddings
produced by PLE and PAF, and low KS statistic values),
despite having distinct value distributions and underlying
semantics. In contrast, Gem distinguished between these
columns, correctly classifying them as true negatives. This
demonstrates Gem’s superior ability to capture and iden-
tify semantic differences based on the underlying value
distributions of the columns.

(3) Gem better accounts for distributional variations in
detecting column semantic types. For instance, Gem
correctly identifies (true positives) the top 10 neighbors of
the column ’Mileage’ with values [5, 117000, 92000, 500...]
as ’Mileage’ on GDS. However, with Squashing_GMM and
KS statistic, the top 10 neighbors are columns about ’Rank’
and ’Year’ due to the overlap in value ranges, even though
these columns represent different domains. The additional
statistical features combined with distributional properties
in Gem effectively identify the fine-grained components
among numeric columns.

(4) Gem accurately distinguishes between width and
length columns in contrast with Squashing_SOM and
Squashing_GMM using the Git Tables dataset. Gem
achieves a precision of 0.61 compared to 0.41 with Squash-
ing_SOM and 0.39 with Squashing_GMM. For example,
for the column ’width:[5, 256, 5, 256, 5.12]’ and ’length:
[256, 5, 256, 5, 256, 109.71, 51.2]’, Gem identifies subtle
distributional variances in both columns, such as ranges
and proportions of values, unlike Squashing_SOM and
Squashing_GMM, which consider the cluster properties.
Squashing_SOM also reduces overlapping data to a grid
representation, which overlooks the fine-grained patterns
in distributions, while Squashing_GMM depends on over-
all variance, which is similar in both columns.

(5) For Sato Tables, Gem tends to misclassify columns
with similar value distributions, resulting in overlap-
ping errors. For instance, ’weight’ columns with values
[32.2, 34.3] were consistently misclassified as ’age’ due
to their repetitive values (e.g., [32, 30, 30, 31, 31, 31, 30, 31,
31, 31]). Values of both columns have similar means, vari-
ances, and percentile ranges, even with different lengths
(due to repeated cells). Gem utilizes GMM in its signa-
ture mechanism to capture the distributions, and these
comparable statistical properties result in an overlapping
probability matrix. We observe that Gem struggles when
columns share close numeric ranges (30-34 in the above ex-
ample) and experiences repetitive patterns. These patterns
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Table 2: Average precision and nDCG score on GitTables, Sato Tables, GDS, WDC and BiodivTab datasets on numeric-only
data. To ensure a consistent comparison, we used the coarse-grained versions of all datasets. Gem (D+S) represents the
distributional and statistical components of Gem.

Methods
Avg precision Avg nDCG

Git Sato WDC GDS BiodivTab Git Sato WDC GDS BiodivTab
Tables Tables

Squashing_GMM[13] 0.25 0.28 0.19 0.29 0.72 0.30 0.30 0.20 0.34 0.80
Squashing_SOM [13] 0.19 0.31 0.14 0.28 0.53 0.22 0.33 0.14 0.31 0.58

PLE [8] 0.19 0.11 0.18 0.11 0.72 0.23 0.12 0.18 0.13 0.80
PAF [8] 0.24 0.23 0.19 0.34 0.72 0.29 0.14 0.20 0.39 0.79

KS statistic [22] 0.21 0.21 0.02 0.21 0.48 0.24 0.22 0.03 0.23 0.52
Gem (D+S) 0.28 0.37 0.21 0.37 0.74 0.32 0.41 0.21 0.42 0.81

generate a similar entropy, and their probability repre-
sentations in the matrix become identical, which causes
the mis-classification. Conversely, despite having a low
overlap in value similarities, PLE and PAF methods still re-
sulted in mis-classifications. For example, ’year’ columns
with values ranging from [1980, 1981, 1982, ..., 2012] were
misclassified as ’duration’ with non-similar values like
[214.0, 306.0, 248.0, ...] or ’age’ with values [24, 38, 36, ...].
This indicates that PLE and PAF struggle to differentiate
columns with distinct value ranges due to insufficient se-
mantic differentiation.

(6) ForBiodivTab, PLE struggled to cluster "year" columns
effectively and did not manage to group columns
with varying ranges into𝑇𝑃@𝐾 . In contrast, Gem showed
a stronger ability to handle this. For instance, Gem suc-
cessfully grouped multiple "year" columns from different
tables, covering ranges between 1997 and 2017, to give a
precision of 0.84, while PLE achieved only 0.31 precision.

(7) Compared to PLE and PAF, Gem successfully differ-
entiates between columns with overlapping numer-
ical ranges by learning distributional embeddings
and capturing statistical features from Sato Tables.
For instance, two columns—one representing ’weight’ with
values [32.2, 34.3] and another representing ’age’ with val-
ues [30, 31, 34]. PLE and PAF struggle with these because of
the overlap in numerical values. However, Gem effectively
determines the difference by identifying that ’weight’ val-
ues follow a continuous distribution, while ’age’ exhibits
a clustered distribution at specific points.

(8) Gem consistently maintains high similarity (seman-
tic similarly of embedding vectors) scores even when
columns with the same semantic types have varying
cardinalities, outperforming PAF and KS statistics.
For instance, Gem analyzes a column ’year’ with 33 dis-
tinct values against another year column with 48 distinct
values. Despite the difference in cardinality, Gem put them
in a single cluster compared to PAF and KS statistics, which
classify them into different clusters.

4.2.2 Numeric + Headers Results. In this section, we examine
if the numerical embeddings obtained using Gem can contribute
to further improvements when considering more evidence from
columns to detect the semantic types. To achieve this, we ob-
tained header embeddings for two datasets, GDS and WDC, and
composed them with value embeddings using different composi-
tion approaches.

Table 3: Average precision and nDCG scores considering
headers + values on fine-grained versions of GDS andWDC.
In Gem, D represents Distributional data, S represents sta-
tistical data and C represents Contextual data.

Methods Avg precision Avg nDCG

WDC GDS WDC GDS

Pythagoras_SC [20] 0.02 0.01 0.01 0.01
Sherlock_SC [12] 0.002 0.27 0.003 0.31
Sato_SC [34] 0.003 0.25 0.003 0.31
Doduo_SC [28] 0.12 0.35 0.14 0.38

Gem D+S+C (aggregation) 0.41 0.81 0.45 0.85
Gem D+S+C (AE) 0.40 0.81 0.45 0.85

Gem D+S+C (concatenation) 0.43 0.82 0.47 0.86

In Gem, we experimented with three composition methods
to merge embeddings: concatenation, aggregation, and learning
embeddings through autoencoders (AE). In the concatenation
approach, the probabilistic features from the GMM, statistical
features from the columns, and contextual embeddings from the
headers are combined into a single vector by joining them side
by side. In contrast, the aggregation approach summarizes these
different embeddings into a single representation. The third ap-
proach, learning embeddings through autoencoders, compresses
the combined information into a lower-dimensional latent space.
We record the average precision and nDCG score for all meth-
ods in Table 3. Similar to Table 2, when discussing numbers, we
always refer to 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 in the text.

For this experiment, we use the fine-grained versions of both
datasets. We observe the following:

(1) Concatenation proved to be the most effective com-
positionmethod for both datasets compared to aggre-
gation and learning embeddings through AE when
header contextual embeddings are combined with
value embeddings. The concatenation method preserves
the integrity of each embedding type, ensuring that distri-
butional features, statistical characteristics, and semantic
context from the headers are all maintained in the final em-
bedding. This allows the model to leverage both numerical
properties and semantic signals effectively. At the same
time, aggregation with three embeddings into a single rep-
resentation risks losing some information as it compresses
diverse characteristics into a less detailed form. In the case
of AE, it is effective for capturing high-level patterns and
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lacks in capturing specific details, particularly in scenar-
ios where distributional properties are less distinct. This
results in a loss of granularity crucial for tasks requiring
precise differentiation between similar value distributions.

(2) Gem’s distributional embeddings help to improve
the classification of overlapping values. For example,
in the WDC dataset, columns such as ’Rating_Movie’ [10,
10, ...10], ’Rating_Book [5, 3, 5 ...5],’ and ’Rating_Hotel [4.0,
5.0, 0.0, 3.0, 5.0, 0.0, 4.0, ..., 5.0, 5.0, 3.0]’ are clustered to-
gether using SBERT due to their high syntactic similarity.
However, while all three columns represent ratings on a
1-10 scale, Gem’s distributional embeddings capture the
different rating patterns within each column. For exam-
ple, ’Rating_Hotel’ includes a wider spread than the other
ratings, with lower and zero scores. This demonstrates
how integrating distributional data with contextual em-
beddings enhances the accuracy of embeddings.

(3) Pythagoras_SC, which relies on headers as context
for numerical embeddings, has demonstrated signif-
icant limitations when applied to the GDS dataset,
where the headers are highly diverse. It struggles to
distinguish between columns with similar values, even
when the headers differ. For instance, the column "Acceler-
ation" was incorrectly identified as being highly similar to
columns like "Age" and "Dry weight". Pythagoras_SC’s de-
pendence on header context proved insufficient, whereas
Gem performed better in these scenarios. Likewise, on the
WDC dataset, where the header information is more com-
plex and heterogeneous, Pythagoras_SC produced poorer
results, as its GCN model failed to combine contextual and
statistical features effectively.

(4) Sherlock_SC, which relies on statistical features and
embeddings derived solely from headers, shows a
substantial difference in performance across the two
datasets. On the WDC dataset, where header information
is more complex and varied, the precision drops signifi-
cantly to 0.002, suggesting that Sherlock_SC struggles to
generalize across more diverse column types. However, on
the GDS dataset, where the column headers are more stan-
dardized, Sherlock_SC performs better with a precision of
0.27; however, in both cases, it is outperformed by Gem.
For example, one mis-classification can be seen when Sher-
lock_SC embedding vectors of two columns have a high
similarity score of 0.99: one containing years of publication
for books ([2019, 1990, 2019, 2018]) and another with tele-
phone data related to hotels ([13.943, 13.837]), confusing
these distinct categories of "Book" and "Hotel".

(5) Similar to Sherlock_SC and Pythagoras_SC, Sato_SC,
which also uses header-based embeddings, demon-
strates difficulties on the WDC dataset, achieving a
precision of only 0.003. In contrast, on the GDS dataset,
Sato_SC performs worse than Sherlock_SC and Gem but
better than Pythagoras_SC, with a precision of 0.25. For
example, the embedding vectors of two columns using
Gem embeddings show a high similarity score of 0.98: one
column contains house prices in various cities ([320000,
450000, 210000]), while the other represents population
sizes in different regions ([50000, 120000, 30000]). Despite
their distinct semantic categories of "Economic" and "De-
mographic", Gem embeddings were unable to distinguish
between the two.
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Figure 3: Average Precision for WDC and GDS across dif-
ferent feature settings. ’D’ is distributional features, ’S’ is
statistical features and ’C’ is contextual (headers) features.
The results illustrate the performance of these feature com-
binations for both the WDC and GDS datasets.

(6) When handling numerical columns, Doduo_SC out-
performed other adapted single-column baselines
(Pythagoras_SC, Sherlock_SC, and Sato_SC). With a
precision of 0.12 and recall of 0.35, Doduo_SC showed a
stronger capability to extract meaningful representations
from individual numerical columns without relying on
multi-column and table-wide context. However, the preci-
sion for Doduo_SC is closer to Gem (0.14) with no context,
which shows that Doduo_SC still needs header context
to embed numeric columns compared to Gem with no
context from headers.

4.3 Ablation Study
We conducted an ablation study to understand the contribution
of each feature type in Gem to numerical embeddings’ perfor-
mance.We tested combinations of Gem’s distributional, statistical
and contextual feature types, and calculated the average preci-
sion for each semantic type across the WDC and GDS datasets.
The feature combinations we evaluated were Distributional (D),
Statistical (S), Contextual (C), Distributional + Statistical (D+S),
Contextual + Statistical (C+S), Distributional + Contextual (D+C),
and Distributional + Contextual + Statistical (D+C+S).

For each combination, we generated an embedding matrix
between column pairs and calculated precision by determining
how often the top-k most similar columns matched the ground
truth labels. This experiment provides insights into the impact of
each feature type in accurately detecting column semantics using
numerical embeddings. The results, highlighting the performance
of each feature combination, are presented in Figure 3 for both
WDC and GDS datasets. The following can be observed:

(1) Among the individual feature types in Gem, Contex-
tual performs better than Statistical that performs
better than Distributional. The Contextual features act
on column headers (and not values) whereas both Statisti-
cal and Distributional features act on column values (and
not headers). The results for all three feature types are
better in GDS than WDC. The Distributional features, by
way of the GMM, are designed to model underlying latent
distributions, and work well in cases where the data is
naturally segmented into distinct distributions. However,
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such distributions are not well-defined in GDS and WDC
for numerical columns. In such cases, GMM fails to give a
full characterisation of a column.

(2) Distributional features combine effectivelywith both
Statistical and Contextual features. This is reflected
in the fact that (D+S) performs better than both D and S
independently and that (D+C) performs better than both
D and C independently. This is in contrast with Statistical
features, which combine less well with Contextual fea-
tures; (C+S) performs worse than C on its own for both
datasets. Combining Distributional features, by way of
the GMM, with Statistical features compensates for their
weaknesses in isolation. GMM captures fine-grained distri-
butional details, while statistical features provide broader,
high-level insights. Together, they form a more compre-
hensive representation.

(3) All three features together perform better than pairs
of features. Indeed, (D+C+S) performs much better than
(C+S) and (D+S), but only slightly better than (D+C).

4.4 Impact of Gaussian components
In this section, we assess the impact of the number of GMM com-
ponents on Gem’s performance. We vary the number of GMM
components from 100 to 500 for all datasets, and the results are
presented in Figure 4. This ablation study aims to investigate how
Gem performs on high-dimensional numerical features. How-
ever, the numerical features do not represent the raw dimensional
numerical features; instead, they correspond to the number of
Gaussian components extracted from each column. Since our
use case is based on single-column distributions, the dimensions
of the raw data do not affect the evaluation performance. Our
observations indicate that the number of Gaussian components
does not significantly impact Gem’s overall performance. Pre-
cision results for GitTables remain consistently around 0.26 to
0.28, with minimal fluctuations as the number of components in-
creases. Similarly, Sato Tables show a stable range of 0.36 to 0.37,
while GDS consistently remains around 0.43 to 0.44. For WDS,
precision scores slightly vary between 0.19 and 0.21, indicating
no significant improvement with more Gaussian components.
Similarly, for BiodivTab, the minimum precision bound appears
as 0.72 and goes to 0.74; however, it achieved themaximum of 0.74
at 50 Gaussian components, quite early. For WDC and GDS, we
perform the ablation study in a dedicated environment with par-
allel processing due to the high number of Gaussian components
extracted from each single column. This stability across differ-
ent numbers of components suggests that Gem’s performance is
robust to the choice of Gaussian mixture complexity.

4.5 Scalability analysis
We perform a scalability analysis (see Figure 5) of Gem with
benchmark methods to evaluate how each method’s runtime
scales as the number of columns in the dataset increases. We
measured each method’s run time to generate embeddings. To
ensure consistency, we measured the runtime for each dataset
size five times and calculated the average.

Figures 5a and 5b compare the runtime of Gem and baseline
methods in the numeric-only setting, whereas Figures 5c and
5d provide a runtime comparison considering the context for
Gem and bespoke solutions. From Figures 5a and 5b, we observe
that PLE and KS statistics demonstrate consistently low runtimes
as the number of columns increases. However, PLE shows an
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Figure 4: Performance comparison across different num-
bers of GMM components for all datasets.

irregular trend after 2000 columns due to skewed distributions
in a subset of columns; the quantile bins in PLE divide the data
unevenly under skewed distributions, leading to imbalanced en-
coding. While Gem is mostly linear, it shows a slight irregular
trend with a substantial spike at 2000 columns due to compu-
tational differences in Gaussian distributions. Squashing GMM
demonstrates less predictable behavior, with significant jumps
at specific column counts (e.g., 1200 and 2000), which is due to
higher sensitivity to individual dataset sizes. Overall, Gem and
Squashing GMM scale reasonably, in linear time.

From Figures 5c and 5d, Sato_SC, Pythagoras_SC and Sher-
lock_SC show linear runtime growth as the number of columns
increases. However, Pythagoras_SC shows a slight peak at 3200
columns before stabilizing. Gem and Doduo_SC follow linear
trends, although both experience a slightly steeper rise at a higher
number of columns. Overall, Sato_SC, Sherlock_SC and Pythago-
ras_SC scale nearly linearly, while Doduo_SC and Gem appear
linear at a higher number of columns.

4.6 Clustering Results
We evaluated Gem for an additional downstream clustering task
by clustering columns with similar semantics using Deep Clus-
tering (DC) algorithms. We applied SDCN [3], a well-known DC
algorithm, and TableDC [24], which was specifically designed
to support clustering in data management tasks. This analysis
evaluated how well Gem integrates with the clustering meth-
ods. We also compare Gem embeddings with the ones generated
through Squashing_SOM to see how different embeddings af-
fect the clustering performance. In the clustering environment,
the distributional embeddings produced by Gem and Squash-
ing_SOM are an input for the autoencoder in the DC algorithm.
The results are shown in Table 4. We observe the following:

(1) Gem consistently outperforms Squashing_SOM for both
TableDC and SDCN when considering numerical embed-
dings in the GDS dataset. For example, TableDC with Gem
obtained a higher 0.10 ARI and 0.16 ACC than TableDC
with Squashing_SOM on GDS, while the improvement for
SDCN with Gem embeddings is 0.08 on ARI and 0.13 ACC.
Squashing_SOM’s preserved topological structures, how-
ever, struggled to integrate the rich semantic context from
SBERT. On the other hand, Gem, which focuses on model-
ing numerical distributions using GMM, better integrates
the contextual information than Squashing_SOM.
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Figure 5: Run time comparison of different methods with and without context from headers: (a) Overall view (no context);
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Table 4: Clustering results on the GDS and WDC datasets. We compare the performance of Gem and Squashing_SOM using
ARI and ACC metrics. The best result for each dataset, based on ARI and ACC, is highlighted in bold. Notation: HO =
Headers only; VO = Values only; H+V = Headers plus Values.

Gem Squashing_SOM

GDS WDC GDS WDC

TableDC SDCN TableDC SDCN TableDC SDCN TableDC SDCN
ARI ACC ARI ACC ARI ACC ARI ACC ARI ACC ARI ACC ARI ACC ARI ACC

HO 0.69 0.76 0.65 0.68 0.31 0.41 0.30 0.41 - - - - - - - -
VO 0.39 0.48 0.39 0.46 0.03 0.12 0.03 0.12 0.29 0.32 0.31 0.33 0.009 0.21 0.009 0.20
H+V 0.78 0.81 0.74 0.77 0.33 0.43 0.27 0.38 0.63 0.70 0.58 0.61 0.009 0.20 0.009 0.21

(2) TableDC outperformed SDCN across both datasets under
two experimental configurations: headers-only and head-
ers+values. The is observed in the GDS dataset, where
TableDC achieves a 0.08 increase in ACC using the SBERT
in the headers-only setting. This highlights the effective-
ness of TableDC in combination with column headers.

(3) Gem embeddings alone do not integratewell with TableDC
and SDCN. However, contextual integration with column
values in TableDC shows better performance than SDCN.
For example, TableDC and SDCN perform poorly with a
0.39 ARI using values only on GDS. However, TableDC
improves by 0.39 ARIwhen headers are included compared
to SDCN, which improves by 0.35 ARI.

(4) Like column embeddings, column clustering has poorer
results in theWDC dataset than in GDS for both SDCN and
TableDC. This arises from the inherent complexity and
overlap in the WDC headers, which leads to ambiguities
in both downstream tasks. The WDC dataset has more
varied and noisy data distributions, making it harder for
SDCN and TableDC to cluster similar columns effectively.
For example, columns "journal_Rank" and "Book_Rank"
have similar ranking values, leading to large clusters in
both SDCN and TableDC, which is a mis-classification.

5 CONCLUSION
Numerical data is prominent in tabular datasets, and thus embed-
dings for database columns can usefully treat numerical data as a
first-class citizen. To enable this, we propose Gem, which focuses

on numerical data through a signature mechanism that generates
a probability matrix for each column, indicating the likelihood of
belonging to specific Gaussian components. Experiments have (i)
shown that Gem outperforms previous numerical embedding pro-
posals (i.e., [8, 13]) for semantic type detection of column using
numerical embedding over a variety of datasets; and (ii) shown
that Gem embeddings can be combined effectively with other
evidence on the semantics of a column, such as column headers,
both for column clustering and semantic type annotation.
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