
Effective and Efficient Community Search over Large-Scale
Hypergraphs

Yu Liu

Shandong University

Qingdao, China

yuliu@mail.sdu.edu.cn

Qi Luo
∗

University of New South Wales

Sydney, Australia

qi.luo1@unsw.edu.au

Yanwei Zheng

Shandong University

Qingdao, China

zhengyw@sdu.edu.cn

Wenjie Zhang

University of New South Wales

Sydney, Australia

wenjie.zhang@unsw.edu.au

Xuemin Lin

Shanghai Jiao Tong University

Shanghai, China

xuemin.lin@sjtu.edu.cn

Dongxiao Yu

Shandong University

Qingdao, China

dxyu@sdu.edu.cn

ABSTRACT
Community search (CS) is a fundamental task in graph mining

with a wide range of applications, such as social network, recom-

mendation and link prediction. Traditional CS approaches fail

to capture the higher-order interactions in hypergraphs, where

vertex-centric community models fail to capture the relation-

ships formed by hyperedges involving multiple vertices. This

leads to traditional community models in hypergraphs that tend

to overlook the overlapness of hyperedges and be overly large.

To tackle these issues, we study the problem of Hypergraph

Minimum Community Search (HMCS), aiming to identify the

minimum cohesive communities in hypergraphs. We propose a

new cohesive community model, (𝑘, 𝑠)-HCore, where 𝑘 denotes

the level of participation in hyperedge interactions, and 𝑠 repre-

sents the intensity of these interactions. This model effectively

captures higher-order interactions in hypergraphs and addresses

hyperedge overlapping issues in hypergraphs. Moreover, to solve

the issue of overly large communities, we propose a branch-

and-bound method (BAB) to search a minimal community for

given queries. To further improve computational efficiency, we

propose an optimized algorithm (OBBAB) using candidate set

pruning, lower bound pruning, and an enhanced branching strat-

egy. Experimental results show that the communities searched

by the (𝑘, 𝑠)-HCore model are twice as overlapness as traditional

models, while reducing community sizes by approximately 25%,

demonstrating the effectiveness in capturing minimal communi-

ties in hypergraphs. The OBBAB achieves a 10
2
to 10

4
efficiency

improvement over BAB, and exhibits linear scalability with in-

creasing dataset sizes. Case studies demonstrate the broad appli-

cability and flexibility of the (𝑘, 𝑠)-HCore model across diverse

real-world scenarios.

1 INTRODUCTION
Community search (CS)[12, 35] is a common and critical task

widely used in complex networks analysis. The goal of CS is to

identify communities or groups of closely connected vertices

within networks [18], which can be applied in social network

[53], recommendation systems [55], link prediction [32]. In recent

years, hypergraphs [10, 17, 38], which connect multiple vertices

through hyperedges, have become a crucial tool for modeling

∗
Qi Luo is the corresponding author.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the

28th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

higher-order interactions and capturing complex group dynam-

ics. The problem of CS in hypergraphs facilitates the discovery

of cohesive sub-hypergraphs in higher-order interactions. For

instance, Figure 1 illustrates the DBLP academic network mod-

eled as a hypergraph, where co-authors are treated as a cohesive

group, highlighting the strength of academic collaborations.

Despite the significant advantages of CS in hypergraphs, there

are two major challenges that are often raised when performing

CS on hypergraphs. (1) Ignoring Hyperedge Overlapness: Tra-
ditional pairwise cohesive models in CS rely on vertex-centric,

including 𝑘-core [14], 𝑑-core [34], 𝑘-edge [11], and 𝑘-truss [27].

These models fail to consider overlapness and capture crucial

high-order interactions involving multiple vertices. Directly con-

verting hypergraphs to pairwise graphs to match these models

will lead to a sharp increase in the number of edges, and result in

excessive resource overhead. While the strength of group inter-

action overlapness is crucial for accurately representing commu-

nity cohesiveness in hypergraphs, current hypergraph-specific

models, such as 𝑘-hypercore [42], 𝑁𝑏𝑟 -𝑘-core [5], and 𝐶𝑜𝐶𝑜𝑟𝑒

[44], primarily focus on individual vertex connections and ig-

nore group-level interaction strength, making them insufficient

for representing cohesive community structures in hypergraphs.

As a result, there is an urgent need for a new cohesive model

that captures both high-order interactions and group interaction

strength. (2) Excessive Community Size: Existing hypergraph
CS methods [16, 47] often face the challenge of producing ex-

cessively large communities, due to a lack of emphasis on size

minimization. While these methods are effective at identifying

cohesive structures, the resulting communities are often too large,

causing inefficiencies and making them unsuitable for scenarios

requiring smaller, more precise communities. This issue becomes

particularly evident in applications such as publication networks

[26, 32, 52], influence spreading [8, 13], and hypergraph classifi-

cation [51, 56], where identifying minimal community structures

can significantly improve performance and interpretability. De-

tailed explanations can be found in Section 3.3 and 6.8. However,

identifying such minimal communities is inherently challeng-

ing, as the problem is NP-Hard [50], making it computationally

infeasible to solve optimally within polynomial time.

To address the aforementioned challenges, we propose the

approach called Hyperedge-Centric Minimum Community
Search (HCMCS). This approach ensures that the identified com-

munities are minimal and effectively capture the hyperedge over-

lapness, overcoming the limitations of traditional vertex-centric

models in hypergraphs. Specifically, the HCMCS approach con-

sists of two important components: the (𝑘, 𝑠)-HCore model and

Series ISSN: 2367-2005 722 10.48786/edbt.2025.58

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.58

(a) The DBLP network

3

0

2

1

7

4 6

5
(b) The pairwise graph

3

0

2
1 3

0

2
1

7

4

6
5

E

V

(c) The bipartite graph

3

0 2

1

4 4

4 4

(d) The s-line graph

3
0
2
1

7

4 6

5

(e) The hypergraph

Figure 1: Different representations of a DBLP network. (a) illustrates a hypergraph representation where vertices represent
authors and hyperedges represent group interactions (publications). (b) shows the pairwise graph representation, simplify-
ing these interactions into pairwise connections. (c) depicts a bipartite graph, with separate vertex sets for authors and
publications. (d) presents the s-line graph, emphasizing relationships between hyperedges based on shared vertices. (e)
visualizes a hypergraph preserving the richness of higher-order group interactions. However, the traditional 𝑘-core model
[42] identifies this hypergraph only as a 1-core, failing to effectively capture cohesive group relationships.

the corresponding minimum community search algorithm, which

tackle these difficulties collaboratively.

For challenge 1: Hyperedge-centric interaction model-
ing. We first propose a novel hyperedge-based (𝑘, 𝑠)-HCore
model, where 𝑘 represents the hyperedge connection constraint,

and 𝑠 denotes the hyperedge overlapping constraint. This model

operates directly on hypergraphs, avoiding information loss and

computational overhead associated with converting hypergraphs

to pairwise graphs, which makes the communities more accu-

rate and effective. We propose two key metrics to quantify the

complex relationships in hyperedges: Interaction Engagement (IE)
and Intersection Strength (IS), which correspond to parameters 𝑘

and 𝑠 in the (𝑘, 𝑠)-HCore.
The IE metric is designed to measure the strength of overlap

between hyperedges. It captures richer group interaction infor-

mation by calculating the frequency of interactions between

hyperedges in the hypergraph. By setting a threshold, we can

identify strong interactions between hyperedges when their en-

gagement frequency surpasses this threshold. The IE metric not

only captures vertex-to-vertex connections but also reflects the

cohesion of group-level interactions, providing a more compre-

hensive and profound understanding of community structures.

The IS metric, on the other hand, is crucial for describing group-

level interaction strength, which is an essential factor in determin-

ing community cohesiveness within hypergraphs. Traditional

methods often overlook this aspect, focusing only on individ-

ual vertex connections. However, considering group interaction

strength can provide deeper insights into the internal cohesive-

ness of communities. For this purpose, we propose the IS metric,

which uses the 𝑠-walk algorithm [3, 39, 41] to calculate the interac-

tion strength between hyperedges by capturing high-order inter-

actions within hypergraphs, effectively reflecting their intensity.

Specifically, the IS metric measures the number of shared vertices

between hyperedges, representing their intersection strength. By

leveraging this approach, we can more accurately describe the

internal cohesiveness of communities and perform CS based on

intersection strength, thereby identifying highly interactive com-

munities.

By combining the IE and ISmetrics, we propose Restricted Interaction

Engagement (RIE), a unified framework that captures both hy-

peredge overlap and interaction strength. RIE addresses the limi-

tations of traditional methods by capturing higher-order interac-

tions, addressing hyperedge overlap issues, and enabling a direct

analysis of group-level interactions. This integration allows for

more accurate and cohesive community detection, enhancing the

(𝑘, 𝑠)-HCore model’s ability to identify highly interactive com-

munities. RIE not only provides deeper insights into community

structures but also supports efficient algorithmic pruning and

search strategies, making it highly effective for large-scale hy-

pergraph applications like influence spreading and classification.

For challenge 2: Minimum community search. Consid-
ering the excessive community size, we utilize a basic branch-

and-bound (BAB) framework to implement a minimum commu-

nity search by systematically exploring all possible branches,

checking each community to determine if it meets the minimum

(𝑘, 𝑠)-HCore conditions, and then eliminating those that do not.

However, BAB often explores multiple branches, many of which

are unproductive, leading to inefficiencies. To overcome this

limitation, we propose an enhanced OBBAB algorithm, integrat-

ing candidate set pruning, lower bound pruning, and improved

branching strategy. These optimizations aim to reduce compu-

tational complexity and enhance the efficiency of identifying

minimal communities, thereby making the solution more practi-

cal for real-world applications. Furthermore, we have rigorously

validated the efficacy and correctness of these pruning methods

through extensive proofs.

We summarize our contributions as follows:

• Innovative Cohesive Model. This paper is pioneering in

addressing the hypergraph community search problem with a

focus on hyperedge interactions. To accurately capture these

interactions, we introduce the concepts of interaction engage-

ment, which limits the frequency of interactions, and inter-

action strength, which limits the degree of interactions. We

integrate these concepts to propose a hyperedge-centric cohe-

sive model, (𝑘, 𝑠)-HCore. This model addresses the challenges

of varying hyperedge sizes and the complexity of hyperedge

intersections, thereby improving the precision of community

searches within hypergraphs. Additionally, we introduce the

Hyperedge-Centric Minimum Community Search problem,

723

based on (𝑘, 𝑠)-HCore, to further refine hypergraph commu-

nity searches.

• Effective and Efficient Algorithms.We have proven that the

minimum community search problem is NP-hard. To address

this, we develop a branch-and-bound algorithm enhanced with

three optimal techniques: candidate set pruning, lower bound

pruning, and a strategic branching method. These techniques

collectively improve the computational efficiency of our algo-

rithm.

• Comprehensive Experiments. We conduct extensive exper-

iments on eight datasets to validate the model’s effectiveness

and algorithm’s efficiency. The (𝑘, 𝑠)-HCore model achieves

higher 𝑘 values compared to traditional vertex-centric mod-

els. The overlapness metric of (𝑘, 𝑠)-HCore is twice that of

traditional 𝑘-core and 𝐶𝑜𝐶𝑜𝑟𝑒 , while community sizes are re-

duced by 25%. Our optimization strategies improve algorithm

efficiency by 2-4 orders of magnitude. Metrics such as com-

munity density and triple count demonstrate a 10%-30% im-

provement in cohesion over traditional models. Case studies

further highlight the superiority of (𝑘, 𝑠)-HCore in large-scale

hypergraphs.

2 RELATION WORK
We introduce the work related to the cohesive subgraph and the

community search, respectively.

Cohesive Subgraph. The mining of cohesive subgraphs is an

important study area of graph analysis. The concept of 𝑘-core is

first proposed in graphs by [7, 48] and introduced in hypergraph

by [42, 46]. Furthermore, Malliaros et al. [45] suggested a link

between 𝑘-core and community engagement, which makes it

better to be used for CS. Huang et al. [29] proposed the concept

of 𝑘-truss, which is further restricted from the perspective of

edges. To find different regions containing different densities in

graphs, Govindan et al. [25] proposed the 𝑘-peak. The concept

of 𝑘-ECC has been introduced in [11], which is defined as the

property of a graph to remain connected even after removing

𝑘−1 edges. Gabert et al. [23] proposed the concept of the nucleus,
redefines cohesive subgraphs, and unifies the concepts of 𝑘-core,

and 𝑘-truss. However, compared to pairwise graphs, there is rel-

atively less research on the concepts and algorithms for cohesive

subgraphs in hypergraphs. Luo et al. [42, 43] introduced a con-

cept called Hypercore in hypergraphs, which corresponds to the

𝑘-core in pairwise graphs. Arafat et al. [5] have proposed 𝑁𝑏𝑟 -𝑘-

core, a methodology to depict closely cohesive subgraphs from

the perspective of vertex neighbors. Luo et al. [44] introduced

the 𝐶𝑜𝐶𝑜𝑟𝑒 considering both group engagement and neighbor

engagement.

Community Search. The purpose of the CS is to find a

densely connected subgraph in graphs based on the given queries

[28]. The most classical method for CS is to utilize the cohe-

siveness models [1, 19, 21, 36, 40, 54, 57, 58]. This approach in-

volves analyzing the connections and interactions among mem-

bers within a community to identify groups of members that are

closely connected to some degree, such as [2, 14, 27, 50]. How-

ever, researchers have found that if the size of the community is

not limited, the resulting communities can be excessively large,

making it difficult to obtain the desired results intuitively. To this

end, Barbieri et al. [6] proposed a minimum CS problem, which

involves finding a community that satisfies the 𝑘-core condition

and has the minimum number of vertices and Dong et al. [15]

proposed the search for a minimum butterfly core community.

Additionally, researchers have started to expand the CS to en-

compass more types of graphs beyond simple graphs. They have

begun to conduct CS on more complex graph structures, such

as directed graphs [20, 24], heterogeneous graphs [22], attribute

graphs [37], and temporal graph [33]. Nevertheless, there is no

minimum CS specifically designed for hypergraphs currently.

In this paper, we propose the (𝑘, 𝑠)-HCore model, focusing

on hyperedge interactions to identify cohesive sub-hypergraphs.

Unlike previous vertex-centric models, which are prone to the

influence of individual vertices, the (𝑘, 𝑠)-HCore leverages the
flexibility of hyperedges to overcome these limitations. Based

on this model, we address the HCMCS problem, enabling the

discovery and search of minimal communities in hypergraphs.

3 PRELIMINARIES AND APPLICATION
3.1 Notation Definition
Let 𝐺 = (𝑉 , 𝐸) represent an undirected and unweighted hyper-

graph with𝑉 and 𝐸 denoting the sets of vertices and hyperedges,

respectively. Consider 𝑆 ⊆ 𝐺 to be a sub-hypergraph induced

by hyperedges. Unless otherwise specified, the sub-hypergraph

refers to a hyperedge-induced sub-hypergraph. We denote |𝑆 |
as the number of hyperedges in 𝑆 . Furthermore, let 𝑁𝑉𝐺 (𝑢)
signify the set of hyperedges incident to a vertex 𝑢, defined

as 𝑁𝑉𝐺 (𝑢) = {𝑒 | 𝑢 ∈ 𝑒,∀𝑒 ∈ 𝐺}, and let 𝑁𝐸𝐺 (𝑒) repre-
sent the set of hyperedges incident to a hyperedge 𝑒 , defined

as 𝑁𝐸𝐺 (𝑒) = {𝑒′ | 𝑒 ∩ 𝑒′ ≠ ∅, 𝑒′ ∈ 𝐺}. When the context is clear,

we omit the footnote of symbols, such as using 𝑁𝑉 (𝑢) instead
of 𝑁𝑉𝐺 (𝑢). We first propose the concept of interaction engage-

ment, which measures the frequency of interaction between a

hyperedge and other hyperedges.

Definition 1. (Interaction Engagement (IE)) Given a hy-
pergraph 𝐺 = (𝑉 , 𝐸), let 𝑒 ∈ 𝐸 be an arbitrary hyperedge. The
interaction engagement of 𝑒 is defined as the number of hyperedges
that intersect with 𝑒 , which is computed by the following formula:

𝐼𝐸𝐺 (𝑒) = |{𝑒′ ∈ 𝑁𝐸 (𝑒) |𝑒′ ∩ 𝑒 ≠ ∅}|. (1)

To quantitatively ascertain the degree of interaction between

two hyperedges in a hypergraph, we define the interaction strength

as follows.

Definition 2. (Interaction Strength (IS)) Given a hyper-
graph 𝐺 = (𝑉 , 𝐸), where for any two hyperedges 𝑒0 and 𝑒1, their
interaction strength is defined as the intersection size between them,
which is computed by the following formula:

𝐼𝑆𝐺 (𝑒0, 𝑒1) = |{𝑢 |𝑢 ∈ 𝑒0 ∩ 𝑒1}|. (2)

Based on Definition 1 and 2, we propose a measure called re-

stricted interaction engagement, which quantifies the frequency

of hyperedge interaction under the constraint of interaction

strength.

Definition 3. (Restricted Interaction Engagement (RIE))
Given a hypergraph𝐺 = (𝑉 , 𝐸), let 𝑒 ∈ 𝐸 be an arbitrary hyperedge.
The restricted interaction engagement of 𝑒 is defined as the number
of hyperedges that intersect with 𝑒 , and their interaction strength
is not less than the threshold 𝑠 , which is computed by the following
formula:

𝑅𝐼𝐸𝐺 (𝑠, 𝑒) = |{𝑒′ ∈ 𝐼𝐸 (𝑒) |𝐼𝑆 (𝑒′, 𝑒) ≥ 𝑠}|. (3)

Subsequently, we propose the definition of (𝑘, 𝑠)-HCore and
hyperedge core number.

724

Algorithm 1 (𝑘, 𝑠)-HCore Decomposition

Input: Hypergraph𝐺 = (𝑉 , 𝐸) , IS 𝑠
Output: Core number 𝑐𝐸 (·)
1: 𝑆 ← 𝐺 , 𝑘 ← 1;

2: while 𝑆 is not empty do
3: 𝑒 ← arg𝑒∈𝑆 min𝑅𝐼𝐸𝑆 (𝑠, 𝑒) ;
4: 𝑘 ← max(𝑘, 𝑅𝐼𝐸𝑆 (𝑠, 𝑒)) ;
5: 𝑆 ← 𝑆 \ 𝑒 ;
6: 𝑐𝐸𝐺 (𝑠, 𝑒) ← 𝑘 ;

7: return 𝑐𝐸 (·) ;

Definition 4. ((𝑘, 𝑠)-HCore) Given a hypergraph𝐺 = (𝑉 , 𝐸),
a hyperedge-induced maximal sub-hypergraph 𝑆 is a (𝑘, 𝑠)-HCore
if and only if for any hyperedge 𝑒 ∈ 𝑆 , 𝑅𝐼𝐸𝑆 (𝑠, 𝑒) ≥ 𝑘 .

Definition 5. (Hyperedge Core Number) Given a hypergraph
𝐺 = (𝑉 , 𝐸) and the IS 𝑠 , for any hyperedge 𝑒 ∈ 𝐸, its hyperedge
core number 𝑐𝐸𝐺 (𝑠, 𝑒) is defined as the maximum value of 𝑘 such
that hyperedge 𝑒 belongs to the (𝑘, 𝑠)-HCore.

Example 1. For example, in Figure 1, 𝐼𝐸 (𝑒0) = 3 because it
intersects with three hyperedges. 𝐼𝑆 (𝑒0, 𝑒1) = 4 because these two
hyperedges share four common vertices. 𝑅𝐼𝐸 (4, 𝑒0) = 3 because 𝑒0
intersects with 𝑒1, 𝑒2, and 𝑒3, each sharing four common vertices
with 𝑒0. The entire graph forms a (3, 4)-HCore since the 𝑅𝐼𝐸 (4, 𝑒)
for every hyperedge in the graph is equal to 3.

Based on the above definitions, we present the decomposition

algorithm in Algorithm 1 for computing all the hyperedge core

numbers in hypergraph𝐺 = (𝑉 , 𝐸) with IS 𝑠 . It entails an iterative
removal of hyperedges in 𝐸 with RIE below the prescribed thresh-

old value 𝑘 . This iterative process continues until all remaining

hyperedges in the hypergraph meet the criterion of RIE greater

than or equal to 𝑘 . The remaining hypergraph resulting from this

iterative process is identified as the (𝑘, 𝑠)-HCore sub-hypergraph
of the initial hypergraph.

3.2 Problem Definition
In this paper, we focus on the problem of Hyperedge-Centric
Minimum Community Search (HCMCS).

Problem 1. (HCMCS) Given a hypergraph𝐺 = (𝑉 , 𝐸), a query
vertex 𝑞, positive integers IE 𝑘 and IS 𝑠 , the HCMCS problem aims to
find a minimum sub-hypergraph 𝑆 ⊆ 𝐺 which holds the following
properties:

(1) Connectivity Constraint. 𝑆 is connected and contains 𝑞;
(2) Structure Constraint. ∀𝑒 ∈ 𝑆 , 𝑅𝐼𝐸𝑆 (𝑠, 𝑒) ≥ 𝑘 ;
(3) Size Constraint. There does not exist a sub-hypergraph 𝑆 ′

that satisfies conditions 1), 2), and |𝑆 ′ | ≤ |𝑆 |.

3.3 Discussion of Application
Hyperedge-Centric Minimum Community Search plays a criti-

cally important role in multiple domains in the real world. The

follows are descriptions of several practical applications for hy-

pergraph community search, and all applications are verified in

experiments.

Publication Networks [26, 32, 52]: In publication networks,

researchers from the same university or closely interacting col-

leagues often collaborate in publications, forming a group (𝑠)
that produces a large number (𝑘) of publications. (𝑘, 𝑠)-HCore
with larger 𝑠 and 𝑘 can more easily identify these groups in

the publication network. This is advantageous for publishers, as

hypergraph-based minimal CS can identify small but tightly con-

nected groups with high publication output. In our experiment

6.8, we conducted a detailed analysis of the historical publication

network CoMH, demonstrating the effectiveness of this approach.

Influence Spreading [8, 13]: In social networks and infor-

mation dissemination, certain key vertices have higher influence

and can affect a wide range of the spreading process. By using the

(𝑘, 𝑠)-HCore model, we can identify these vertices with high cen-

trality and strong influence. Vertices in (𝑘, 𝑠)-HCores with high

𝑘 and low 𝑠 tend to have greater influence during the spreading

process. In our experiment 6.8, we evaluated influence spread-

ing using the SIR diffusion model, and the results showed that

the (𝑘, 𝑠)-HCore model has significant advantages in selecting

influential vertices.

Hypergraph Classification [51, 56]: In data mining and

network analysis, hypergraphs from different domains often ex-

hibit similar structural characteristics, such as the distribution

of (𝑘, 𝑠)-HCores and the range of 𝑠 values. By analyzing these

features, hypergraphs can be effectively classified, improving the

accuracy and efficiency of classification. In our experiment 6.8,

we demonstrated the similarity in core distribution of datasets

from the same domain under (𝑘, 𝑠) core constraints, proving the

potential of the (𝑘, 𝑠)-HCore model in hypergraph classification

tasks.

4 NAIVE APPROACH
In this section, we present a baseline (traditional) algorithm, out-

lined in Algorithm 2, designed to solve the HCMCS problem,

which seeks the optimal solution by exhaustively enumerating

all potential communities that fulfill the HCMCS criteria. Con-

sidering the NP-hard nature of the problem, the algorithm has

been designed with rudimentary pruning strategies to ensure

that the minimum community meeting the requirements can be

identified within a reasonable timeframe.

Algorithm 2 BAB: BranchAndBound

Input: Hypergraph𝐺 = (𝑉 , 𝐸) , query vertex 𝑞, positive integers IE 𝑘 ,

IS 𝑠
Output: Sub-hypergraph 𝑆

1: 𝑐𝐸 (·) ← (𝑘, 𝑠)-HCore Decomposition;

2: 𝐺 ← 𝐺 \ {𝑒 |𝑐𝐸 (𝑒) < 𝑘 }; ⊲ Reduce the size of the hypergraph
3: if 𝐺 is empty then ⊲ No community meeting the criteria
4: return ∅;
5: 𝑆 ← 𝐺 ; ⊲ Optimal result initialization
6: for 𝑒 ∈ 𝑁𝑉𝐺 (𝑞) do
7: 𝑃 ← 𝐸 (𝐺) ; ⊲ Candidate set initialization
8: BranchAndBound({𝑒 }, 𝑃 \ {𝑒 });
9: return 𝑆 ;

10: procedure BranchAndBound(𝐶, 𝑃)
11: if 𝐶 is (𝑘, 𝑠)-HCore and |𝐶 | <= |𝑆 | then
12: 𝑆 ← 𝐶 ;

13: else
14: 𝑒 ← Randomly select a hyperedge from P;

15: BranchAndBound(𝐶 ∪ {𝑒 }, 𝑃 \ {𝑒 });
16: BranchAndBound(𝐶 , 𝑃 \ {𝑒 });

Algorithm 2 initially performs a (𝑘, 𝑠)-HCore decomposition

on the hypergraph 𝐺 to determine the core number of each

hyperedge by Algorithm 1. It then prunes hyperedges that do

not meet the 𝑘 threshold, effectively reducing the size of the

hypergraph (Lines 1-2). If the hypergraph is empty after pruning,

the algorithm 2 concludes with an empty set, indicating that no

725

community satisfies the criteria (Line 3-4). Conversely, the entire

𝐺 is taken as the initial optimal result 𝑆 (Line 5).

Subsequently, Algorithm 2 traverses the adjacent hyperedge

set 𝑁𝑉𝐺 (𝑞) of the query vertex 𝑞, performing branch-and-bound

methodology for each hyperedge 𝑒 (Line 6-16). In this process,

this initiates with the establishment of the candidate set 𝑃 as the

hyperedge set of the hypergraph𝐺 , and iteratively, the algorithm

refines the optimal sub-hypergraph via the BrandAndBound pro-

cedure (Line 10-16). When𝐶 satisfies the HCMCS criteria and the
size of it does not exceed that of the minimum sub-hypergraph 𝑆 ,

it is adopted as the new optimal solution (Lines 11-12). Otherwise,

Algorithm 2 randomly selects a hyperedge 𝑒 from 𝑃 and explores

sub-hypergraphs both including and excluding 𝑒 , iteratively con-

tracting the search domain (Line 14-16).

Through the detailed branch-and-bound process, Algorithm 2

effectively explores the solution space. The recursive application

of the BranchAndBound procedure ensures that each sequential

solution is not only locally optimal within its respective search

trajectory, but also that it holds the global optimum.

Correctness Analysis. Algorithm 2 guarantees correctness

by exhaustively exploring all sub-hypergraphs that satisfy the

HCMCS criteria. The branch-and-bound process ensures no valid
solutions are omitted, and the smallest community is always

identified as the optimal result.

Performance Analysis. Algorithm 2 employs a branch-and-

bound method, an NP-Hard algorithm with a time complexity

of 2
𝑚
, where 𝑚 represents the number of hyperedges in the

hypergraph.

To reduce𝑚, we initially apply the (𝑘, 𝑠)-HCore decomposition

method to narrow down the search space. This step effectively

avoids unnecessary searches by identifying and excluding ver-

tices and hyperedges that are unlikely to belong to any commu-

nity that meets HCMCS criteria (Line 1-2). Furthermore, during

the recursive process of the algorithm, boundary conditions are

set for inspection (Line 11-12), halting further in-depth search

if the current community satisfies the HCMCS condition and

does not exceed the size of the existing optimal solution. These

strategies significantly reduce the number of branches to explore

and lower the actual complexity.

Performance Limitations.Although Algorithm 2 introduces

two optimization strategies, namely reducing the scale of the in-

put graph and setting boundary conditions, the number of branch

instances that still need to be explored in practice remains signifi-

cant. Particularly when dealing with large-scale hypergraphs, the

efficiency of the algorithm is still insufficient. This is primarily

attributed to the following three limiting factors.

Lager Candidate Set: In Algorithm 2, the candidate set 𝑃

comprises all the hyperedges in the input hypergraph. During

each branching iteration, the size of 𝑃 is decreased by only one

(Lines 14-16), a process that is markedly inefficient. It has been

noted that the hyperedges in set 𝐶 influence those in 𝑃 . Due

to restrictions based on interaction frequency and interaction

strength, certain hyperedges in 𝑃 cannot be incorporated into 𝐶 .

In such instances, these hyperedges can be eliminated from 𝑃 ,

effectively reducing the size of the candidate set.

Lack of Lower Bound Pruning: In Algorithm 2, a branch

concludes only when the set 𝑃 is empty or the branch already sat-

isfies HCMCS constraints. However, this termination criterion is

not particularly efficient. It has been observed that for a given set

𝐶 , one can predict the size of the minimum sub-hypergraph that

encompasses 𝐶 and satisfies HCMCS constraints. Consequently,

if the minimum required sub-hypergraph size for a set 𝐶 sur-

passes the size of the current optimal solution, this branch can

be preemptively terminated. This strategy significantly reduces

the search space.

Trivial Branching Rules: In Algorithm 2, branch generation

is based on randomly selecting a hyperedge from the set 𝑃 , re-

sulting in two diverging branches: one that includes and another

that excludes the selected hyperedge. However, the criteria for

branch selection substantially influence the speed of result gen-

eration. If the chosen hyperedge allows Algorithm 2 to swiftly

achieve a smaller intermediate sub-hypergraph, then using the

lower bound pruning mechanism, this approach can facilitate a

quicker convergence to the optimal solution.

5 OPTIMIZATIONS FOR
BRANCH-AND-BOUND

In this section, we introduce a branch-and-bound algorithm based

on optimization strategies. The algorithm aims to address the

problems identified in the previously proposed baseline algo-

rithm: numerous branching instances are not effective, failing

to generate outputs that surpass the existing results. In light of

this, we have designed three optimization strategies: candidate

set pruning, lower bound pruning, and branching strategy.

5.1 Candidate Set Pruning
In this subsection, we present a candidate set pruning technique

tailored for branch instances (𝐶, 𝑃). This technique is designed
to substantially decrease the candidate set size by systematically

eliminating elements from 𝑃 that definitively cannot be incor-

porated into the set 𝐶 . The implementation of this technique

is primarily based on the definition of the (𝑘, 𝑠)-HCore, which
requires that each hyperedge intersects with at least 𝑘 other hy-

peredges, and the strength of these interactions must be at least

𝑠 . Following this, we first present the basic formalized equation

for pruning, followed by a detailed analysis of the underlying

principles.

Theorem 1. (Basic Candidate Set Pruning) Given an instance
(𝐶, 𝑃), IE 𝑘 and IS 𝑠 . For any hyperedges 𝑒 ∈ 𝑃 , if 𝑅𝐼𝐸𝐶∪𝑃 (𝑠, 𝑒) < 𝑘 ,
then we can discard 𝑒 from 𝑃 .

Correctness Analysis. Clearly, the validity of Theorem 1

is self-evident based on the definition of the (𝑘, 𝑠)-HCore. Fur-
thermore, we define𝑚𝑖𝑛𝑅 as the currently minimum community

satisfying the HCMCS within our algorithm. This allows us to for-

mulate a more refined pruning condition, one that is contingent

on the size of the current minimum community.

Theorem 2. (Candidate Set Pruning) Given an instance (𝐶, 𝑃),
IE 𝑘 and IS 𝑠 . For any hyperedges 𝑒 ∈ 𝑃 , if min{𝑅𝐼𝐸𝐶∪𝑃 (𝑠, 𝑒),
𝑅𝐼𝐸𝐶∪{𝑒 } (𝑠, 𝑒) + |𝑚𝑖𝑛𝑅 | − |𝐶 | − 1} < 𝑘 , then we can discard 𝑒 from
𝑃 .

Correctness Analysis. Firstly, we prove 𝑅𝐼𝐸𝐶∪𝑃 (𝑠, 𝑒) < 𝑘

according to Theorem 1. Then, we analyze the process of incor-

porating hyperedge 𝑒 into 𝐶 . The inclusion of 𝑒 needs to satisfy

both the minimum community size (𝑚𝑖𝑛𝑅) and the interaction

frequency criteria specific to 𝑒 . In theory, the maximum number

of hyperedges that can be added to 𝐶 is |𝑚𝑖𝑛𝑅 | − |𝐶 | − 1. When

the candidate hyperedge 𝑒 is added to the set 𝐶 , it is inferred

that the inclusion of 𝑒 in 𝐶 is not advisable, if we observe that

𝑅𝐼𝐸𝐶∪{𝑒 } (𝑠, 𝑒) + |𝑚𝑖𝑛𝑅 | − |𝐶 | −1 < 𝑘 This is because the inclusion

of hyperedge 𝑒 and the subsequent addition of hyperedges will re-

sult in a community size exceeding the𝑚𝑖𝑛𝑅 limit. Consequently,

726

this situation requires the exclusion of 𝑒 in 𝑃 . Therefore, based

on the (𝑘, 𝑠)-HCore constraint and the𝑚𝑖𝑛𝑅, it can be concluded

that if 𝑅𝐼𝐸𝐶∪{𝑒 } (𝑠, 𝑒) + |𝑚𝑖𝑛𝑅 | − |𝐶 | − 1 < 𝑘 , then hyperedge 𝑒

fails to satisfy the inclusion criteria for community 𝐶 and should

be pruned accordingly.

5.2 Lower Bound Pruning
In this subsection, we focus on introducing a method for calcu-

lating the lower bound. The key of this method is as follows: for

a given instance (𝐶, 𝑃), we can determine the size of the mini-

mum community that includes the set𝐶 and satisfies the HCMCS
constraint, denoted as𝑚𝑖𝑛𝑆𝑖𝑧𝑒 (𝐶). This allows us to effectively

prune the instance 𝑃 , especially when its lower bound exceeds

the size of the 𝑚𝑖𝑛𝑅. Algorithm 3 details this process, which

iteratively refines and augments the community 𝐶 .

Algorithm 3 Lower Bound

Input: Instance (𝐶, 𝑃) , positive integers IE 𝑘 , IS 𝑠
Output: Lower Bound 𝑙𝑏

1: 𝑟 (𝑒) ← 𝑘 − 𝑅𝐼𝐸𝐶 (𝑠, 𝑒), ∀𝑒 ∈ 𝐶 ;
2: 𝑙𝑏 ← |𝐶 |;
3: while 𝑟 (𝑒) > 0, ∃𝑒 ∈ 𝐶 do
4: Select the hyperedge with the max 𝑟 (𝑒) ;
5: Select 𝑟 (𝑒) hyperedges from 𝑃 , denoted as Δ, and the hyperedges

intersect with the hyperedges in𝐶 as much as possible;

6: 𝑙𝑏 ← 𝑙𝑏 + 𝑟 (𝑒)
7: 𝑟 (𝑒) ← 𝑟 (𝑒) − | {𝑒′ ∈ Δ |𝑒 ∩ 𝑒′ ≠} |, ∀𝑒 ∈ 𝐶 ;
8: return 𝑙𝑏;

Initially, the algorithm computes the residual interaction fre-

quency requirement, denoted 𝑟 (𝑒), for each hyperedge 𝑒 within

the community 𝐶 . It then sets the lower bound, referred to as 𝑙𝑏,

to correspond to the size of 𝐶 . In its main loop, the algorithm

identifies the hyperedge 𝑒 with the highest residual interaction

frequency requirement. It selects 𝑟 (𝑒) hyperedges from the candi-

date set 𝑃 , which intersect as much as possible with the existing

hyperedges in 𝐶 . Subsequently, it updates the lower bound, 𝑙𝑏.

After each expansion, the residual interaction requirements of

all hyperedges in 𝐶 are updated. This iterative process continues

until there are no longer any hyperedges in 𝐶 with a residual

interaction requirement exceeding zero. The final lower bound

𝑙𝑏 reflects the potential size of the minimum community that

includes the set 𝐶 and satisfies the HCMCS constraint.
Correctness Analysis. Subsequently added hyperedges are

only guaranteed to satisfy the restricted interaction engagement

constraint for the hyperedges within 𝐶 , without considering

whether the subsequently added hyperedges meet this constraint.

Thus, the lower bound 𝑙𝑏 that we calculate must be the minimum

size of any community that contains 𝐶 and satisfies the HCMCS
constraint.

Time complexity. The worst time complexity of Algorithm

3 is 𝑂 (|𝐶 |2 + |𝐶 | |𝑃 |). The time complexity analysis of Algorithm

3 begins with the initialization step. This step includes the com-

putation of 𝑅𝐼𝐸𝐶 (𝑠, 𝑒) for each hyperedge 𝑒 in the community 𝐶 ,

which has a complexity of𝑂 (|𝐶 |). During the main loop, identify-

ing the hyperedge with the highest residual interaction frequency,

𝑟 (𝑒), necessitates traversing through 𝐶 , thereby resulting in a

complexity of 𝑂 (|𝐶 |). The process of selecting hyperedges from

the candidate set 𝑃 involves traversing the entire set, leading to a

complexity of𝑂 (|𝑃 |). Furthermore, updating𝐶 and recalculating

𝑟 (𝑒) also requires a time complexity of𝑂 (|𝐶 |). Consequently, the
complexity for each iteration of the loop is𝑂 (|𝐶 |+|𝑃 |). Given that

the loop can execute up to |𝐶 | times, the overall time complexity

of the algorithm amounts to 𝑂 (|𝐶 |2 + |𝐶 | |𝑃 |).
Space complexity. The worst space complexity of Algorithm

3 is 𝑂 (|𝐶 | + |𝑃 |). We consider the storage requirements for the

input sets 𝐶 and 𝑃 . Specifically, the space dedicated to set 𝐶

aligns with the quantity of hyperedges, leading to a complexity

of𝑂 (|𝐶 |). Set 𝑃 exhibits a similar trend, with its complexity noted

as 𝑂 (|𝑃 |). During the execution of the algorithm, we maintain a

set Δ to store the selected hyperedges from 𝑃 that intersect with

the hyperedges in 𝐶 . In the worst case, Δ could be as large as

𝑃 , hence its space requirement is also 𝑂 (|𝑃 |). Additionally, the
algorithm maintains a counter 𝑟 (𝑒) for each element 𝑒 in the set

𝐶 , and since 𝑟 (𝑒) assigns an integer for each hyperedge, its space

complexity is also 𝑂 (|𝐶 |). Summarizing these individual space

complexities, the worst space complexity is 𝑂 (|𝐶 |) +𝑂 (|𝑃 |).

5.3 Branching Strategy
In this subsection, we present two branching strategies aimed at

selecting hyperedges to be added to 𝐶 . The primary goal of this

strategy is to quickly identify a smaller community that meets the

HCMCS constraint conditions, facilitating subsequent pruning of
the candidate set and lower bound calculations. To achieve these

goals, we give priority to those hyperedges that intersect with

hyperedges of lower restricted interaction engagement within 𝐶 ,

and also have a significant number of intersections with many

hyperedges in 𝐶 . Such a branching strategy helps Algorithm 2

to quickly identify a smaller community that meets the HCMCS
constraint conditions. To quantitatively evaluate the preference

for hyperedges, we introduce two connectivity score metrics for

hyperedge 𝑒 .

We propose the concept of the first connection score. In this

connection score, we consider that when a hyperedge is added

to the set 𝐶 , it should intersect with the hyperedge with a lower

𝑅𝐼𝐸 in the set 𝐶 as much as possible. Hyperedge 𝑒 that is associ-

ated with a greater number of hyperedges with lower 𝑅𝐼𝐸 has a

higher connectivity score. Therefore, it is given priority during

the selection process for inclusion in the set 𝐶 .

Definition 6. (connection score) Given an instance (𝐶, 𝑃), IE
𝑘 and IS 𝑠 . The connection score of a hyperedge 𝑒 ∈ 𝑃 is defined as:

𝛿 (𝑒) =
∑︁

𝑒′∈𝑁𝐸𝐶∪{𝑒} (𝑒)

1

𝑅𝐼𝐸𝐶 (𝑠, 𝑒′)
. (4)

We present another definition of the connectivity score below.

We have considered two main aspects: 𝛿1 (𝑒) denotes the number

of hyperedges 𝑒′ in set 𝐶 that are adjacent to 𝑒 and have the

𝑅𝐼𝐸𝐶 (𝑠, 𝑒′) less than the threshold𝑘 ; 𝛿2 (𝑒) represents the number

of hyperedges 𝑒′ that are adjacent to 𝑒 and have the 𝐼𝑆 (𝑒, 𝑒′)
greater than or equal to the threshold 𝑠 . The total connection

score of hyperedge 𝑒 , 𝛿 (𝑒), is the sum of these two values. This

definition quantifies the connectivity score of a hyperedge that

is added to the set by integrating two dimensions.

Definition 7. Given an instance (𝐶, 𝑃), IE 𝑘 and IS 𝑠 . The
connection score of a hyperedge 𝑒 ∈ 𝑃 is defined as:

𝛿1 (𝑒) = |{𝑒′ |𝑒′ ∈ 𝑁𝐸𝐶 (𝑒), 𝑅𝐼𝐸𝐶 (𝑠, 𝑒′) < 𝑘}|
𝛿2 (𝑒) = |{𝑒′ |𝑒′ ∈ 𝑁𝐸𝐶 (𝑒), 𝐼𝑆 (𝑒, 𝑒′) ≥ 𝑠}|
𝛿 (𝑒) = 𝛿1 (𝑒) + 𝛿2 (𝑒) .

(5)

The computation methods for these two connectivity scores

give priority to hyperedges that intersect with those having the

lower 𝑅𝐼𝐸 and also intersect with many other hyperedges in the

727

set 𝐶 . This prioritization strategy effectively facilitates the rapid

identification of smaller communities that meet the 𝐻𝐶𝑀𝐶𝑆 con-

straint conditions, greatly enhancing the efficiency of pruning

the candidate set and calculating lower bound pruning.

Correctness Analysis. The proposed branching strategy, in-

cluding the connection score definitions, is designed to guide

the search process toward smaller communities more efficiently.

However, it is important to note that this selection strategy does

not affect the correctness of the algorithm’s results. The algo-

rithm guarantees correctness because it exhaustively explores

all feasible hyperedge combinations that satisfy the HCMCS con-
straints. The branching strategy merely prioritizes hyperedges

based on their connectivity scores to expedite the identification

of a valid community, but it does not exclude any feasible solu-

tions from consideration. Thus, regardless of the order in which

hyperedges are explored, the algorithm ultimately identifies the

smallest community that meets the given constraints, ensuring

the correctness of the result.

5.4 Optimization-based Branch-and-Bound
In this subsection, we integrate all the proposed optimization

strategies to introduce an optimization-based branch-and-bound

algorithm. The aim is to search for the minimum community that

satisfies the HCMCS constraints.

Algorithm 4 OBBAB: Optimization-based BranchAndBound

Input: Hypergraph𝐺 = (𝑉 , 𝐸) , query vertex 𝑞, positive integers IE 𝑘 ,

IS 𝑠
Output: Sub-hypergraph 𝑆

1: 𝑐𝐸 (·) ← (𝑘, 𝑠)-HCore Decomposition;

2: 𝐺 ← 𝐺 \ {𝑒 |𝑐𝐸 (𝑒) < 𝑘 }; ⊲ Reduce the size of the hypergraph
3: if 𝐺 is empty then ⊲ No community meeting the criteria
4: return ∅;
5: 𝑆 ← 𝐺 ; ⊲ Optimal result initialization
6: for 𝑒 ∈ 𝑁𝑉𝐺 (𝑞) do
7: 𝑃 ← 𝐸 (𝐺) ; ⊲ Candidate set initialization
8: BranchAndBound({𝑒 }, 𝑃 \ {𝑒 });
9: return 𝑆 ;

10: procedure BranchAndBound(𝐶, 𝑃)
11: if𝑚𝑖𝑛𝑆𝑖𝑧𝑒 (𝐶) ≥ |𝑆 | then ⊲ Lower Bound Pruning
12: return ;

13: if 𝐶 is (𝑘, 𝑠)-HCore and |𝐶 | <= |𝑆 | then
14: 𝑆 ← 𝐶 ;

15: else
16: Prune 𝑃 ; ⊲ Candidate Set Pruning
17: 𝑒 ← hyperedge with the highest score in P’; ⊲ Branching

Strategy
18: BranchAndBound(𝐶 ∪ {𝑒 }, 𝑃 ′ \ {𝑒 });
19: BranchAndBound(𝐶 , 𝑃 ′ \ {𝑒 });

Algorithm 4 is an optimized branch-and-bound strategy aimed

at finding the smallest community in a hypergraph that satisfies

the HCMS constraints. The algorithm starts with a (𝑘, 𝑠)-HCore
decomposition to initialize the 𝑐𝐸 (·) (Line 1), followed by pruning
to reduce the size of the hypergraph 𝐺 by removing hyperedges

with the 𝑐𝐸 (·) less than 𝑘 (Line 2). If the pruned hypergraph is

empty, indicating that no community meets the criteria, the algo-

rithm returns an empty set (Lines 3-4). If the hypergraph is not

empty, the algorithm sets the current hypergraph𝐺 as the initial

optimal sub-hypergraph 𝑆 (Line 5). For each adjacent hyperedge

𝑒 of the query vertex 𝑞, the algorithm initializes the candidate set

𝑃 (Lines 6-7) and performs the branch-and-bound process on it

(Line 8). In the 𝐵𝑟𝑎𝑛𝑐ℎ𝐴𝑛𝑑𝐵𝑜𝑢𝑛𝑑 (𝐶, 𝑃) function (Line 10), if the

lower bound of the set𝐶 is not less than 𝑆 (Line 11), candidate set

pruning is performed and the current branch is terminated (Line

11-12). If 𝐶 satisfies the (𝑘, 𝑠)-HCore and its size does not exceed

𝑆 (Line 13), then 𝐶 is set as the new 𝑆 . Otherwise, the algorithm

prunes the current candidate set 𝑃 according to Theorem 2 and

selects the hyperedge 𝑒 with the highest connectivity to proceed

to the next round of branching (Lines 16-19). In summary, Algo-

rithm 4 integrates candidate set pruning, lower bound pruning,

and branching strategies to efficiently determine the minimum

community.

Correctness Analysis. Since any technology used in Algo-

rithm 4 has passed the correctness proof, it is obvious that Algo-

rithm 4 is correct.

�0

�0�0�1

�0�1�0�1�2 �0�0�2

+ �1 − �1

+ �2 − �2 + �2 − �2

.

(a) The workflow of BAB

�0

�0�0�1

�0�1�0�1�2 �0�0�2

+ �1 − �1

+ �2 − �2 + �2 − �2

.

(b) The workflow of OBBAB

Figure 2: The Workflow of BAB and OBBAB

Example 2. In Figure 2, we illustrate the workflows of the BAB
and OBBAB algorithms. While the BAB algorithm exhaustively
explores every branch, the OBBAB algorithm employs pruning
techniques to eliminate unnecessary branches, reducing the number
of traversed branches and improving efficiency.

6 EXPERIMENT
In this section, we first describe the datasets and settings in

our experiments. The experimental goals and results are then

presented to demonstrate the effectiveness of the models and the

efficiency of the algorithms.

Datasets.Weuse ten real-world datasets (NDCC, NDCS, TaMS,

TaAU, ThAU, ThMS and DBLP[9], CoMH and CoGe [49], Aminer

[31]) from six domains with various data properties. NDCC and

NDCS [9] are two hypergraphs originating from the pharmaceuti-

cal field. NDCC comes from the National Drug Code, in which hy-

peredges represent drugs, and vertices are category labels used to

tag drugs. NDCS comes from drug identifiers, with vertices repre-

senting substances, and hyperedges signifying drugs containing

these substances. TaMS and TaAU [9] are hypergraphs with ver-

tices being labels, and hyperedges being the sets of labels applied

to questions on math.stackexchange.com and askubuntu.com.

ThAU and ThMS [9] are hypergraphs that represent user ac-

tivities on askubuntu.com and math.stackexchange.com. Each

hyperedge captures threads engaged by users within 24 hours,

and vertices correspond to individual users. CoMH and CoGe

[49] are hypergraphs describing temporal evolution, simulating

publishing activities of authors in the "History" and "Geology"

fields in the Microsoft Academic Graph. In these two hyper-

graphs, vertices represent individual authors, and hyperedges

correspond to their co-authorships within a specific time frame

in given publications. DBLP [9] is a temporal higher-order net-

work, where nodes are authors and each simplex represents a

publication. AMiner [31] is a weighted undirected coauthorship

728

Table 1: Real-World Hypergraph Datasets.

DataSet |𝐸 | |𝑉 | 𝑐𝑚𝑎𝑥 𝑐𝑎𝑣𝑔 𝑑𝑚𝑎𝑥 𝑑𝑎𝑣𝑔

NDCC 46285 1149 24 3 5357 132

NDCS 29810 3767 25 7 5901 38

TaMS 558272 1627 5 2 59277 945

TaAU 219076 3021 5 3 19631 225

ThAU 117764 90054 14 2 2247 3

ThMS 563710 153806 21 2 12403 9

CoMH 308934 503868 925 2 1077 1

CoGe 1045462 1091979 25 3 1125 3

DBLP 1836596 2955129 20 4 1399 5

Aminer 27850748 17120546 18 4 9386 6

graph, where nodes are authors and edge weights correspond to

the number of papers coauthored by two authors.

All datasets can be downloaded from ARB
1
. We remove all

isolated vertices in the datasets. The basic statistics of the datasets

are shown in Table 1, which is classified based on the different

domains of origin for the hypergraphs. For each hypergraph,

we define 𝑑𝑚𝑎𝑥 , 𝑑𝑎𝑣𝑔 as the maximum and average degree of all

vertices, and 𝑐𝑚𝑎𝑥 , 𝑐𝑎𝑣𝑔 as the maximum and average cardinality

of all hyperedges, respectively.

Settings. Our algorithms are implemented in C++ and com-

piled using the GNU GCC 11.3.0 compiler. The experiments are

performed on a machine equipped with an AMD Ryzen Thread-

ripper PRO 5995WX processor, featuring 64 cores running at 2.7

GHz, and 256 GB of memory. The operating system is Ubuntu

22.04.1 LTS.

Baseline Models. To demonstrate the precision of (𝑘, 𝑠)-
HCore in searching hypergraph communities, we compare it

with several common hypergraph cohesive community models.

• 𝑘-hypercore [42]: each vertex is contained in at least 𝑘 hyper-

edges.

• 𝑁𝑏𝑟 -𝑘-core [5]: each vertex has at least 𝑘 neighbors.

• 𝐶𝑜𝐶𝑜𝑟𝑒 [44]: each vertex is in at least 𝑘 hyperedges and has ℎ

neighbors.

Experiment Evaluation. To demonstrate the advantages of

our model and algorithm, we conduct the following experiments:

• Model Evaluation: We evaluate the (𝑘, 𝑠)-HCore model by

assess the hyperedge core number distribution to verify model

robustness, compare overlapness with traditional models to

demonstrate improved cohesiveness, analyze the maximum 𝑘

value compared to vertex-centricmodels to highlight the ability

to capture higher-order interactions, conduct case studies to

showcases the practical applicability and flexibility of the (𝑘, 𝑠)-
HCore model in diverse real-world scenarios, and test the

effectiveness of the query results produced by the model.

• Algorithm Evaluation: For the algorithm, we perform a

query efficiency evaluation to assess the efficiency of the OB-

BAB algorithm in comparison to the BAB method and evaluate

its scalability with increasing dataset size.

6.1 Hyperedge Core Number Distribution
We conduct a comprehensive analysis of the hyperedge core

numbers distribution of ten hypergraphs from six different do-

mains.We employ a heatmap to elucidate how various interaction

strengths impact the core decomposition outcomes. Figure 3 fea-

tures individual subplots that delineate the core distribution for

1
https://www.cs.cornell.edu/~arb/data/

each dataset independently, with the x-axis signifying varying

interaction strengths and the y-axis corresponding to hyperedge

core numbers. The color gradient represents the percentage of

hyperedges whose core numbers are less than or equal to the cor-

responding value on the y-axis. We set the interaction strength

ranging from 2 to 5 for the TaMS and TaAU datasets, and from

2 to 10 for the remaining datasets, to align with the limitations

imposed by hyperedge size.

Figure 3 demonstrates a noticeable negative correlation be-

tween the interaction strength and the maximum core number of

the hypergraph. As the interaction strength increases, the maxi-

mum core number decreases. This empirical finding aligns with

our expectations, as a higher interaction strength restricts the

number of hyperedges that can satisfy the interaction require-

ments. A significant proportion of hyperedges fail to meet these

strength parameters, resulting in a decrease in the maximum core

number of hypergraphs. By adjusting the interaction strength,

we can effectively control the structure of communities within

the hypergraph. Figure 3 shows that in the NDCC and NDCS

datasets, lower interaction strengths encourage the formation

of cohesive communities with larger core numbers. Meanwhile,

in the CoMH and CoDB datasets, higher interaction strengths

facilitate the identification of more cohesive communities within

large-scale hypergraphs.

6.2 Comparison of Overlapness
We evaluate the overlapness metric to gain insights into the

density of interconnections within sub-hypergraphs of the hy-

pergraph. The overlapness of a sub-hypergraph 𝐻 = (𝑉𝐻 , 𝐸𝐻) is
calculated using the formula:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑛𝑒𝑠𝑠 (𝐻) =
∑
𝑒∈𝐸𝐻 |𝑒 |
|𝑉𝐻 |

.

This metric measures the average number of hyperedges incident

on each vertex within the sub-hypergraph, providing a quantita-

tive assessment of how densely interconnected the hyperedges

are. A higher overlapness value indicates a more densely inter-

connected subgraph, suggesting a tighter and more cohesive

structure. Since 𝑘-core only has 𝑘 , we do not analyze the changes

in 𝑠 for k-core. For 𝐶𝑜𝐶𝑜𝑟𝑒 , we use the 𝑠 value as the ℎ value to

maintain consistency in the results.

Figure 4 presents the overlapness metrics of sub-hypergraphs

using different cohesivemodes ((𝑘, 𝑠)-HCore,𝑘-core, and𝐶𝑜𝐶𝑜𝑟𝑒).
The results show that with the increase of 𝑘 and 𝑠 , the overlap-

ness of (𝑘, 𝑠)-HCore significantly increases, indicating that this

method can identify more tightly and densely connected com-

munities. In comparison, the overlapness of the 𝑘-core method

is relatively low, and its increase is slower with the core num-

ber. 𝐶𝑜𝐶𝑜𝑟𝑒’s performance falls between the other two methods.

These results suggest that the (𝑘, 𝑠)-HCore model has an advan-

tage in identifying cohesive communities and functional groups

within hypergraphs.

6.3 Comparison of Maximum k Value
In this section, we conduct a comparative analysis of different

cohesive subgraph models, evaluating their performance on var-

ious datasets in terms of the maximum 𝑘 value, as depicted in

Figure 5. An increase in the maximum 𝑘 value indicates a model’s

enhanced capability to detect a greater number of cohesive sub-

graphs. The 𝑠 parameter of the (𝑘, 𝑠)-HCore model significantly

impacts the results: with 𝑠 set to 2, the (𝑘, 2)-HCore model con-

sistently achieves high 𝑘 values across all datasets, proving its

729

2 5 8

5000

4000

3000

2000

1000

NDCC

s

k

0.2

0.4

0.6

0.8

1.0

2 5 8

2538

1538

538

NDCS

0.2

0.4

0.6

0.8

1.0

2 5 8

1076
916
756
596
436
276
116

CoMH

0.80

0.85

0.90

0.95

1.00

2 5 8

191
162
133
104

75
46
17

CoGe

0.6

0.8

1.0

2 3 4 5

16023
13646
11269
8892
6515
4138
1761

TaMS

0.2

0.4

0.6

0.8

1.0

2 3 4 5

3430

2430

1430

430

TaAU

0.2

0.4

0.6

0.8

1.0

2 5 8

83
70
57
44
31
18

5

ThAU

0.94

0.96

0.98

1.00

2 5 8

349
297
245
193
141

89
37

ThMS

0.8

0.9

1.0

2 5 8

1398

1089

780

471

162

CoDB

0.2

0.4

0.6

0.8

1.0

2 5 8

9341

7603

5865

4127

2389

651

Aminer

0.2

0.4

0.6

0.8

1.0

Figure 3: Cumulative percentage of hyperedge core numbers for 8 hypergraphs from 4 different fields.

2 3 4 5 6 7 8 9 10
0

200

400

600

800

s

NDCC

2 3 4 5 6 7 8 9 10
0

300

600

900

1200

s

NDCS

10 30 50 70 90
0

2000

4000

6000

k

TaMS

10 30 50 70 90
0

2000

4000

6000

k

TaAU

2 3 4 5 6 7 8 9 10
0

20

40

60

80

s

ThAU

1 2 3 4 5 6 7 8 9
0

100

200

300

s

ThMS

10 30 50 70 90
0

100

200

300

400

k

CoMH

10 30 50 70 90

0

100

200

300

400

k

CoGe

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

s

DBLP
(k,s)-HCore

CoCore

2 3 4 5 6 7 8 9 10

0

500

1000

k

Aminer
(k,s)-HCore

CoCore

k-core

O
ve

rla
pp

in
g

Figure 4: The (𝑘, 𝑠)-HCore model over baseline vertex-centric cohesive subgraph models in terms of overlapness.

effectiveness in identifying cohesive subgraphs with numerous

vertices. When 𝑠 is increased to 5, there is a noticeable decrease in

the maximum 𝑘 value for the (𝑘, 5)-HCore model. However, this

trend reflects the imposition of more stringent constraints, each

hyperedge must be at least 5 in length, and must intersect with

other hyperedges by at least 5 vertices. Despite these constraints,

the (𝑘, 𝑠)-HCore model can identify more cohesive subgraphs,

especially evident on the TaMS and TaAU datasets.

Thus, we ascertain that the (𝑘, 𝑠)-HCore model, in comparison

to traditional vertex-centricmodels, exhibits potential advantages

in mining large-scale cohesive sub-hypergraphs with significant

intersection density.

NDCC NDCS TaMS TaAU ThAU ThMS CoMH CoGe DBLP Aminer
100

102

104

M
ax

im
um

 k
 v

al
ue

k-hypercore
Nbr-k-core CoCore(k,2)-HCore

(k,5)-HCore

Figure 5: The (𝑘, 𝑠)-HCore model over baseline vertex-
centric cohesive subgraph models in terms of maximum 𝑘

value.

6.4 Query Efficiency Evaluation
Figure 6 presents query efficiency across multiple datasets as the

𝑘 and 𝑠 parameters. The figure compares the BAB (traditional

algorithm) with OBBAB (our algorithm), analyzing their perfor-

mance in terms of query time under various 𝑘 and 𝑠 value settings.

It is important to note that the query points are randomly se-

lected for each dataset, ensuring a diverse and representative

evaluation of both algorithms’ query performance.

In Figure 6(a), with 𝑠 set to 5, it is observed that as the hyper-

edge core number 𝑘 increases, the query time for both algorithms

tends to decrease. Meanwhile, the query times for the OBBAB

algorithm are consistently lower across all datasets compared

to the BAB algorithm, especially at larger values of 𝑘 , indicat-

ing a more pronounced efficiency advantage of the optimized

algorithm in processing large-scale cohesive subgraph queries.

Furthermore, in Figure 6(b), with 𝑘 set to 50, an increase in the

interaction strength 𝑠 results in decreased query times. Contrary

to the trend with 𝑘 , the rise in 𝑠 values decreases the search space

due to the introduction of stricter interaction constraints, leading

to improved query efficiency. The OBBAB algorithm demon-

strates lower query times across all 𝑠 values when compared to

the BAB algorithm, further confirming the significant enhance-

ment in query efficiency achieved by the optimized algorithm.

In summary, the experimental results distinctly demonstrate

the significant optimization of the OBBAB algorithm in query

time compared to the BAB algorithm, whether with increasing 𝑘

values or 𝑠 values. These findings underscore the critical role of

algorithm optimization in enhancing the efficiency of detecting

cohesive subgraphs within complex networks, particularly when

dealing with large-scale network data.

6.5 Ablation Study
This subsection utilizes ablation analysis to evaluate the impact

of three optimization strategies (lower bound pruning, candidate

set pruning, and branching strategy) on algorithm performance.

We compared the traditional algorithm (BAB), individual opti-

mization strategies, and the fully optimized algorithm (OBBAB)

in terms of query efficiency across multiple datasets, using the

same vertex, 𝑘 , and 𝑠 parameters. Each experiment was repeated

100 times, and the average results were reported. The findings

in Figure 7 indicate that the traditional algorithm exhibits con-

sistently higher query times, while individual optimizations im-

prove performance to varying degrees depending on the dataset

characteristics. The OBBAB algorithm, which integrates all three

optimizations, consistently achieves the best query efficiency

across all datasets, demonstrating performance improvements

730

100 101 102 103 104
104

105

106 NDCC

100 101 102
103

104

105

106 ThAU

100 101 102 103 104
104

106

108

1010 NDCS

100 101 102 103
104

105

106

107

108

k

Ti
m

e
(n

s)

ThMS

BAB

OBBAB

100 101 102 103 104 105
102

104

106

108

1010

TaMS

100 101 102 103 104

104

106

108 CoMH
100 101 102 103 104

104

106

108

1010 TaAU

100 101 102 103
105

106

107

108 CoGe

100 101 102 103
103

104

105

106

107

108
DBLP

100 101 102
104

105

106

107
Aminer

(a) Query time changes with 𝑘

2 4 6 8 10
104

105

106 NDCC

2 4 6 8 10
102

103

104

105

106 ThAU

2 4 6 8 10
103

105

107

109

NDCS

2 4 6 8 10
103

104

105

106

107

108

s

Ti
m

e
(n

s)

ThMS

BAB
OBBAB

2 3 4 5
103

105

107

109

1011

TaMS

2 4 6 8 10
103

104

105

106

107 CoMH
2 3 4 5

104

105

106

107

108

109 TaAU

2 4 6 8 10
104

105

106

107

108 CoGe

2 4 6 8 10
102

103

104

105

106 DBLP

2 4 6 8 10
104

105

106

107

108 Aminer

(b) Query time changes with 𝑠

Figure 6: Query efficiency of different algorithms.

NDCC NDCS TaMS TaAU ThAU ThMS CoMH CoGe DBLP Aminer
100

102

104

106

108

Ti
m

e
(n

s)

BAB
Candidate Set PruningLower Bound Pruning

Branching Strategy OBBAB

Figure 7: Ablation Study: query efficiency about optimiza-
tion strategies

by orders of magnitude over the traditional algorithm. This high-

lights the effectiveness of the optimizations and the superiority

of OBBAB.

6.6 Query Algorithm Scalability

215 217 219 221 223
0

2×107

4×107

6×107

8×107

Number of Vertices

Ti
m

e
(n

s)

BAB
k=5
k=198
k=458

215 217 219 221 223
0

5×104

1×105

2×105

2×105

Number of Vertices

OBBAB

Figure 8: Relationship between algorithm query time and
hypergraph size.

In this scalability experiment, we apply the existing synthetic

hypergraph model [4] to create datasets with vertex sizes of 2
15
,

2
17
, 2

19
, 2

21
, and 2

23
. For each subset, we conduct 100 repeated

queries on a set of vertices with 𝑘 values of 5, 198, and 458 and 𝑠

value of 4, measuring the average time required for each query.

The experiment compares the performance of the BAB algorithm

with the OBBAB algorithm. Figure 8 shows that the time com-

plexity of the BAB algorithm increases exponentially with the

size of the dataset, whereas the OBBAB algorithm demonstrates

an approximately linear relationship. Specifically, the BAB algo-

rithm’s query time increases exponentially as the dataset size

increases, indicating poor scalability for larger datasets. In con-

trast, the OBBAB algorithm shows a near-linear increase in query

time with the size of the dataset, demonstrating better scalability.

These results suggest that the OBBAB algorithm is significantly

more efficient and scalable for large hypergraph datasets.

6.7 Query Effectiveness Evaluation
To demonstrate the efficacy of our (𝑘, 𝑠)-HCore model in CS, we

compare the communities discovered by this model with those

discovered by the baseline model. To this end, we select eight

datasets, and set 𝑠 = 5 in (𝑘, 𝑠)-HCore configuration. Using the
same vertices by selected randomly, we separately return the

minimum communities with the maximum 𝑘 values obtained

by the two above models: To assess the quality of the returned

communities, we utilize two community quality metrics.

731

NDCC
NDCS

Ta
MS

Ta
AU

ThA
U
ThM

S
CoM

H
CoG

e
DBLP

Amine
r

0
2
4
6
8

10 Density

NDCC
NDCS

Ta
MS

Ta
AU

ThA
U
ThM

S
CoM

H
CoG

e
DBLP

Amine
r

0
30
60
90

120
150 Number of triples

k-hypercore Nbr-k-core CoCore (k,h)-HCore

Figure 9: Evaluation of query effectiveness in the aspect of
density and number of triples.

• Community Density: This parameter is a crucial metric for

evaluating cohesion within a community. Typically, an excel-

lent community should demonstrate a strong degree of internal

linkage. An increase in density value signifies more intense

connections within the community. This density is computed

by the following formula:

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
|{𝑒 |𝑒 ∈ 𝑆}|
|{𝑣 |𝑣 ∈ 𝑆}| .

• Number of Triples (vertex set): This parameter primarily

measures the frequency of interaction within the community.

An ideal community is characterized by rich internal inter-

actions, which are reflected in a large number of vertex sets.

The greater the number of triples (three vertices, vertex set)

appearing in more than two hyperedges within a community,

the higher the interaction frequency of that community. The

number of triples is computed by the following formula:

𝑁𝑇 = |{(𝑣0, 𝑣1, 𝑣2) | |{𝑒 ∈ 𝑆 | (𝑣0, 𝑣1, 𝑣2) ⊆ 𝑒}| ≥ 2}|.

In the evaluation shown in Figure 9, the (𝑘, ℎ)-HCore model

clearly exhibits superior performance in both density and number

of triples metrics. Regarding density, the (𝑘, ℎ)-HCore model out-

performs the other algorithms in most cases, particularly when

compared with the 𝑘-hypercore and 𝑁𝑏𝑟 -𝑘-core. Similarly, for

the number of triples, (𝑘, ℎ)-HCore also shows an advantage, and

even though the𝐶𝑜𝐶𝑜𝑟𝑒 model demonstrates similar higher num-

bers of triples in NDCC, the overall trend still indicates that the

(𝑘, ℎ)-HCore model is capable of maintaining high numbers of

triples while also sustaining high density. This indicates that the

(𝑘, ℎ)-model algorithm offers a more optimized query effective-

ness in these two aspects, especially when dealing with complex

network queries that require consideration of both structural

density and the quantity of connections.

6.8 Case and Applications Studies
We apply three case studies and applications related to (𝑘, 𝑠)-
HCore. The community search demonstrates the differences

between the communities identified by our algorithm and those

identified by other algorithms. Influence Spreading and hyper-
graph classification highlight the advantages of our (𝑘, 𝑠)-core
over other types of cohesive subgraphs.

(1) Community Search: We employ the CoMH dataset, specifi-

cally dedicated to historical publications, and set an interaction

strength parameter 𝑠 = 4 with A. Chaniotis as the query vertex

to conduct a minimal CS. The results reveal a cohesive com-

munity comprising A. Chaniotis, R.S. Stroud, R.A. Tybout, and

T. Corsten, forming a (106, 4)-HCore community. In contrast,

traditional vertex-centric models (𝑘-core) of community cohe-

sive can only identify a 65-core community, primarily due to

Table 2: Case study of community property using different
cohesive modes.

(𝑘, 𝑠)-HCore 𝑘-core 𝐶𝑜𝐶𝑜𝑟𝑒

E 182 276 254

V 28 39 31

Overlapness 35.2876 18.6325 23.156

20 40 60 80 100
180

200

220

240

260

k

In
flu

en
ce

d
Ve

rti
ce

s Seed = 10
Seed = 20
Seed = 30

2 4 6 8 10
160

180

200

220

240

s

Figure 10: Evaluation of influence spreading for vertices
in (𝑘, 𝑠)-HCores.

interference from unrelated vertices. We measure the proper-

ties of the minimal sub-hypergraphs with A. Chaniotis as the

query vertex through (𝑘, 𝑠)-HCore (𝑠 = 4), 𝑘-core, and 𝐶𝑜𝐶𝑜𝑟𝑒
searches, as presented in Table 2. The results show that the (𝑘, 4)-
HCore method performed best in eliminating irrelevant vertices

and identifying cohesive and relevant communities, whereas

the 𝑘-core method is more susceptible to interference, resulting

in lower cohesion and relevance. The 𝐶𝑜𝐶𝑜𝑟𝑒 method’s perfor-

mance fails between the two. A deeper analysis shows that these

four scholars appeared together in 106 hyperedges, collaborat-

ing on a substantial volume of historical literature. According

to Google searches, they significantly contribute to the Supple-

mentum Epigraphicum Graecum (SEG), enriching its content

and deepening the academic community’s understanding of an-

cient Greek and Roman societies. This experiment demonstrates

the (𝑘, 𝑠)-HCore model’s efficacy in focusing on core vertices,

eliminating irrelevant vertex interference, and identifying more

cohesive and relevant communities, highlighting its significance

and applicability in academic research and other fields requiring

precise community detection.

(2) Influence Spreading: To evaluate the vertex centrality of

(𝑘, 𝑠)-HCore, we utilized the SIR diffusion model described in

[5, 30]. In our experiments, we randomly selected 10, 20, and 30

vertices as the initial infection sources. These vertices spread the

infection to their adjacent vertices with a probability of 0.1 at

each step. The diffusion process continued until no new vertices

were infected. Existingmethods for influence spreading often rely

on vertex-centric measures, such as degree centrality or PageR-

ank, which fail to capture higher-order group interactions within

hypergraphs. These methods typically overlook the cohesive

structures formed by hyperedges and the influence of their over-

lap, leading to suboptimal identification of influential vertices in

hypergraph settings. In contrast, Figure 10 shows the results of

selecting seed vertices in the (𝑘, 𝑠)-HCores of NDCS to measure

the number of infected vertices. We conducted 50 repetitions for

each setting to ensure reliability. The results for the (𝑘, 5)-HCore
indicate that the average number of infected vertices increases as

𝑘 increases. This phenomenon occurs because high 𝑘 allows for

the selection of more influential vertices. We also conducted ex-

periments with the (20, 𝑠)-HCore, where the number of infected

vertices increases with the number of seed vertices but decreases

732

as 𝑠 increases within the (𝑘, 𝑠)-HCores. This trend occurs because
hyperedges smaller than 𝑠 are excluded from the core, reducing

volume density and vertex influence. Consequently, vertices in

(𝑘, 𝑠)-HCores with high 𝑘 and low 𝑠 exhibit greater influence.

(3) Hypergraph Classification: Hypergraphs from the same

domain often exhibit similar characteristics in their overall hierar-

chical structure, such as the distribution of (𝑘, 𝑠)-HCores and the
range of 𝑠 values. Traditional hypergraph classification methods

usually focus on pairwise relationships or simple node features,

failing to capture the rich, higher-order structures unique to

hypergraphs. These approaches are often unable to effectively

differentiate datasets with similar pairwise properties but distinct

hyperedge-level interactions. Our experimental results validate

the effectiveness of (𝑘, 𝑠)-HCore distributions in hypergraph

classification. In Figure 3, we show the core distribution of all

datasets under the same (𝑘, 𝑠)-core constraints. Notably, the core
distributions of datasets from the same domain are highly similar.

Additionally, the 𝑠 value distributions of datasets from the same

domain exhibit significant consistency. This observed similar-

ity can serve as an effective preprocessing step in hypergraph

classification tasks, providing insights into the unique structural

patterns of hypergraphs that existing methods fail to exploit.

7 CONCLUSION
In this paper, we address the problem of community search in

hypergraphs. Existing community models are predominantly

vertex-centric, which suffer from the arbitrariness of hyperedge

sizes and fail to capture adequately the intersection strength

among hyperedges. To address these limitations, we propose a

novel (𝑘, 𝑠)-HCore model based on hyperedge interactions, ef-

fectively mitigating the issues of hyperedge size arbitrariness

and providing a robust measure of intersection strength. Build-

ing on this model, we propose the HCMCS approach, aimed at

identifying the minimal community within a hypergraph that

meets the (𝑘, 𝑠)-HCore constraint. Given the NP-hard nature of

this problem, we develop a branch-and-bound algorithm, termed

BAB, and further enhance its computational efficiency through

three distinct optimization strategies, resulting in the optimized

OBBAB algorithm. We conduct empirical evaluations across var-

ious different datasets and parameter configurations. The results

demonstrate the advantages of our proposed algorithms in both

efficiency and effectiveness. Additionally, we prove the superi-

ority of (𝑘, 𝑠)-HCore over traditional cohesive sub-hypergraph
models from two key indicators: density and the number of triples.

Furthermore, we demonstrate the benefits of our approach in

diverse applications, such as community search, influence spread-

ing, and hypergraph classification.

Future research will focus on developing more suitable cohe-

sive sub-hypergraph models for hypergraph analysis and explor-

ing more practical strategies and methods.

ACKNOWLEDGMENTS
This work was supported in part by Joint Key Funds of National

Natural Science Foundation of China under Grant U23A20302,

U24B20149.

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based Community Search: a

Truss-equivalence Based Indexing Approach. Proc. VLDB Endow. 10, 11 (2017),
1298–1309. https://doi.org/10.14778/3137628.3137640

[2] Esra Akbas and Peixiang Zhao. 2017. Truss-based Community Search: a

Truss-equivalence Based Indexing Approach. Proc. VLDB Endow. 10, 11 (2017),
1298–1309. https://doi.org/10.14778/3137628.3137640

[3] Sinan G. Aksoy, Cliff A. Joslyn, Carlos Ortiz Marrero, Brenda Praggastis,

and Emilie Purvine. 2020. Hypernetwork science via high-order hyper-

graph walks. EPJ Data Sci. 9, 1 (2020), 16. https://doi.org/10.1140/EPJDS/

S13688-020-00231-0

[4] Naheed Anjum Arafat, Debabrota Basu, Laurent Decreusefond, and Stéphane

Bressan. 2020. Construction and RandomGeneration of Hypergraphs with Pre-

scribed Degree and Dimension Sequences. In Database and Expert Systems Ap-
plications - 31st International Conference, DEXA 2020, Bratislava, Slovakia, Sep-
tember 14-17, 2020, Proceedings, Part II (Lecture Notes in Computer Science), Sven
Hartmann, Josef Küng, Gabriele Kotsis, A Min Tjoa, and Ismail Khalil (Eds.),

Vol. 12392. Springer, 130–145. https://doi.org/10.1007/978-3-030-59051-2_9

[5] Naheed Anjum Arafat, Arijit Khan, Arpit Kumar Rai, and Bishwamittra Ghosh.

2023. Neighborhood-based Hypergraph Core Decomposition. Proc. VLDB
Endow. 16, 9 (2023), 2061–2074. https://doi.org/10.14778/3598581.3598582

[6] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, and Francesco Gullo.

2015. Efficient and effective community search. Data Min. Knowl. Discov. 29,
5 (2015), 1406–1433. https://doi.org/10.1007/S10618-015-0422-1

[7] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003). http://arxiv.org/

abs/cs/0310049

[8] Ruben Becker, Federico Corò, Gianlorenzo D’Angelo, and Hugo Gilbert. 2020.

Balancing Spreads of Influence in a Social Network. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. AAAI Press, 3–10. https://doi.org/10.1609/

AAAI.V34I01.5327

[9] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon M.

Kleinberg. 2018. Simplicial closure and higher-order link prediction. Proc.
Natl. Acad. Sci. USA 115, 48 (2018), E11221–E11230. https://doi.org/10.1073/

PNAS.1800683115

[10] Alain Bretto. 2013. Hypergraph theory: An Introduction. An introduction.
Mathematical Engineering. Cham: Springer (2013).

[11] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa

Liang. 2013. Efficiently computing k-edge connected components via graph

decomposition. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.). ACM, 205–

216. https://doi.org/10.1145/2463676.2465323

[12] I (Eli) Chien, Chung-Yi Lin, and I-Hsiang Wang. 2018. Community Detec-

tion in Hypergraphs: Optimal Statistical Limit and Efficient Algorithms. In

International Conference on Artificial Intelligence and Statistics, AISTATS 2018,
9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain (Proceedings of
Machine Learning Research), Amos J. Storkey and Fernando Pérez-Cruz (Eds.),

Vol. 84. PMLR, 871–879. http://proceedings.mlr.press/v84/chien18a.html

[13] Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno. 2019. Active

influence spreading in social networks. Theor. Comput. Sci. 764 (2019), 15–29.
https://doi.org/10.1016/J.TCS.2018.02.024

[14] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search

of communities in large graphs. (2014), 991–1002. https://doi.org/10.1145/

2588555.2612179

[15] Zheng Dong, Xin Huang, Guorui Yuan, Hengshu Zhu, and Hui Xiong. 2021.

Butterfly-Core Community Search over Labeled Graphs. Proc. VLDB Endow.
14, 11 (2021), 2006–2018. https://doi.org/10.14778/3476249.3476258

[16] Anton Eriksson, Timoteo Carletti, Renaud Lambiotte, Alexis Rojas, and Martin

Rosvall. 2022. Flow-based community detection in hypergraphs. In Higher-
Order Systems. Springer, 141–161.

[17] Ernesto Estrada and Juan A Rodriguez-Velazquez. 2005. Complex networks as

hypergraphs. arXiv preprint physics/0505137 (2005).

[18] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB
J. 29, 1 (2020), 353–392. https://doi.org/10.1007/S00778-019-00556-X

[19] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB
J. 29, 1 (2020), 353–392. https://doi.org/10.1007/S00778-019-00556-X

[20] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng

Hu. 2019. Effective and Efficient Community Search Over Large Directed

Graphs. IEEE Trans. Knowl. Data Eng. 31, 11 (2019), 2093–2107. https://doi.

org/10.1109/TKDE.2018.2872982

[21] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and Efficient Community Search over Large Heterogeneous In-

formation Networks. Proc. VLDB Endow. 13, 6 (2020), 854–867. https:

//doi.org/10.14778/3380750.3380756

[22] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and Efficient Community Search over Large Heterogeneous In-

formation Networks. Proc. VLDB Endow. 13, 6 (2020), 854–867. https:

//doi.org/10.14778/3380750.3380756

[23] Kasimir Gabert, Ali Pinar, and Ümit V. Çatalyürek. 2021. A Unifying Frame-

work to Identify Dense Subgraphs on Streams: Graph Nuclei to Hypergraph

Cores. (2021), 689–697. https://doi.org/10.1145/3437963.3441790

[24] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2011.

D-cores: Measuring Collaboration of Directed Graphs Based on Degeneracy.

In 11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver,
BC, Canada, December 11-14, 2011, Diane J. Cook, Jian Pei, Wei Wang, Osmar R.

733

Zaïane, and Xindong Wu (Eds.). IEEE Computer Society, 201–210. https:

//doi.org/10.1109/ICDM.2011.46

[25] Priya Govindan, Chenghong Wang, Chumeng Xu, Hongyu Duan, and Sucheta

Soundarajan. 2017. The k-peak Decomposition: Mapping the Global Structure

of Graphs. (2017), 1441–1450. https://doi.org/10.1145/3038912.3052635

[26] Yuanshen Guan, Xiangguo Sun, and Yongjiao Sun. 2023. Sparse relation

prediction based on hypergraph neural networks in online social networks.

World Wide Web (WWW) 26, 1 (2023), 7–31. https://doi.org/10.1007/

S11280-021-00936-W

[27] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014.

Querying k-truss community in large and dynamic graphs. (2014), 1311–1322.

https://doi.org/10.1145/2588555.2610495

[28] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2017. Community Search

over Big Graphs: Models, Algorithms, and Opportunities. (2017), 1451–1454.

https://doi.org/10.1109/ICDE.2017.211

[29] Xin Huang, Wei Lu, and Laks V. S. Lakshmanan. 2016. Truss Decomposition

of Probabilistic Graphs: Semantics and Algorithms. (2016), 77–90. https:

//doi.org/10.1145/2882903.2882913

[30] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Much-

nik, H Eugene Stanley, and Hernán A Makse. 2010. Identification of influential

spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.
[31] Raunak Kumar, Paul Liu, Moses Charikar, and Austin R. Benson. 2020. Re-

trieving Top Weighted Triangles in Graphs. InWSDM ’20: The Thirteenth ACM
International Conference on Web Search and Data Mining, Houston, TX, USA,
February 3-7, 2020, James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei

Wang (Eds.). ACM, 295–303. https://doi.org/10.1145/3336191.3371823

[32] Dong Li, Zhiming Xu, Sheng Li, and Xin Sun. 2013. Link prediction in social

networks based on hypergraph. In 22nd International World Wide Web Confer-
ence, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume,
Leslie Carr, Alberto H. F. Laender, Bernadette Farias Lóscio, Irwin King, Marcus

Fontoura, Denny Vrandecic, Lora Aroyo, José Palazzo M. de Oliveira, Fernanda

Lima, and Erik Wilde (Eds.). International World WideWeb Conferences Steer-

ing Committee / ACM, 41–42. https://doi.org/10.1145/2487788.2487802

[33] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Per-

sistent Community Search in Temporal Networks. (2018), 797–808. https:

//doi.org/10.1109/ICDE.2018.00077

[34] Xuankun Liao, Qing Liu, Jiaxin Jiang, Xin Huang, Jianliang Xu, and Byron

Choi. 2022. Distributed D-core Decomposition over Large Directed Graphs.

Proc. VLDB Endow. 15, 8 (2022), 1546–1558. https://doi.org/10.14778/3529337.

3529340

[35] Yu-Ru Lin, Jimeng Sun, Paul C. Castro, Ravi B. Konuru, Hari Sundaram,

and Aisling Kelliher. 2009. MetaFac: community discovery via relational

hypergraph factorization. In Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009, John F. Elder IV, Françoise Fogelman-Soulié, Pe-

ter A. Flach, and Mohammed Javeed Zaki (Eds.). ACM, 527–536. https:

//doi.org/10.1145/1557019.1557080

[36] Boge Liu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021.

Efficient Community Search with Size Constraint. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021.
IEEE, 97–108. https://doi.org/10.1109/ICDE51399.2021.00016

[37] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun

Gao. 2020. VAC: Vertex-Centric Attributed Community Search. In 36th IEEE
International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April
20-24, 2020. IEEE, 937–948. https://doi.org/10.1109/ICDE48307.2020.00086

[38] Yu Liu, Qi Luo, Mengbai Xiao, Dongxiao Yu, Huashan Chen, and Xiuzhen

Cheng. 2024. Reordering and Compression for Hypergraph Processing. IEEE
Trans. Computers 73, 6 (2024), 1486–1499. https://doi.org/10.1109/TC.2024.

3377915

[39] Linyuan Lu and Xing Peng. 2013. High-Order RandomWalks and Generalized

Laplacians on Hypergraphs. Internet Math. 9, 1 (2013), 3–32. https://doi.org/

10.1080/15427951.2012.678151

[40] Linhao Luo, Yixiang Fang, Xin Cao, Xiaofeng Zhang, and Wenjie Zhang.

2021. Detecting Communities from Heterogeneous Graphs: A Context Path-

based Graph Neural Network Model. In CIKM ’21: The 30th ACM International
Conference on Information and Knowledge Management, Virtual Event, Queens-
land, Australia, November 1 - 5, 2021, Gianluca Demartini, Guido Zuccon,

J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, 1170–1180.

https://doi.org/10.1145/3459637.3482250

[41] Qi Luo, Zhenzhen Xie, Yu Liu, Dongxiao Yu, Xiuzhen Cheng, Xuemin Lin,

and Xiaohua Jia. 2024. Sampling hypergraphs via joint unbiased random

walk. World Wide Web (WWW) 27, 2 (2024), 15. https://doi.org/10.1007/

S11280-024-01253-8

[42] Qi Luo, Dongxiao Yu, Zhipeng Cai, Xuemin Lin, and Xiuzhen Cheng. 2021.

Hypercore Maintenance in Dynamic Hypergraphs. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021.
IEEE, 2051–2056. https://doi.org/10.1109/ICDE51399.2021.00199

[43] Qi Luo, Dongxiao Yu, Zhipeng Cai, Xuemin Lin, Guanghui Wang, and Xi-

uzhen Cheng. 2023. Toward maintenance of hypercores in large-scale dy-

namic hypergraphs. VLDB J. 32, 3 (2023), 647–664. https://doi.org/10.1007/

S00778-022-00763-Z

[44] Qi Luo, Dongxiao Yu, Yu Liu, Yanwei Zheng, Xiuzhen Cheng, and Xuemin Lin.

2023. Finer-Grained Engagement in Hypergraphs. In 39th IEEE International
Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023.
IEEE, 423–435. https://doi.org/10.1109/ICDE55515.2023.00039

[45] Fragkiskos D. Malliaros and Michalis Vazirgiannis. 2013. To stay or not

to stay: modeling engagement dynamics in social graphs. (2013), 469–478.

https://doi.org/10.1145/2505515.2505561

[46] Leng Min. 2013. An O(m) Algorithm for Cores Decomposition of Undirected

Hypergraph. Journal of Chinese Computer Systems (2013).
[47] Nicolò Ruggeri, Martina Contisciani, Federico Battiston, and Caterina

De Bacco. 2023. Community detection in large hypergraphs. Science Ad-
vances 9, 28 (2023), eadg9159.

[48] Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5 (1983), 269–287.

[49] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul

Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service

(MAS) and Applications. In Proceedings of the 24th International Conference
on World Wide Web Companion, WWW 2015, Florence, Italy, May 18-22, 2015 -
Companion Volume, Aldo Gangemi, Stefano Leonardi, and Alessandro Pan-

conesi (Eds.). ACM, 243–246. https://doi.org/10.1145/2740908.2742839

[50] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. (2010), 939–948. https://doi.org/10.

1145/1835804.1835923

[51] Xiangguo Sun, Hongzhi Yin, Bo Liu, Hongxu Chen, Jiuxin Cao, Yingxia Shao,

and Nguyen Quoc Viet Hung. 2021. Heterogeneous Hypergraph Embedding

for Graph Classification. In WSDM ’21, The Fourteenth ACM International
Conference on Web Search and Data Mining, Virtual Event, Israel, March 8-12,
2021, Liane Lewin-Eytan, David Carmel, Elad Yom-Tov, Eugene Agichtein, and

Evgeniy Gabrilovich (Eds.). ACM, 725–733. https://doi.org/10.1145/3437963.

3441835

[52] Yu Wang and Qilong Zhao. 2022. Multi-Order Hypergraph Convolutional

Neural Network for Dynamic Social Recommendation System. IEEE Access 10
(2022), 87639–87649. https://doi.org/10.1109/ACCESS.2022.3199364

[53] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudré-Mauroux. 2019. Revis-

iting User Mobility and Social Relationships in LBSNs: A Hypergraph Embed-

ding Approach. (2019), 2147–2157. https://doi.org/10.1145/3308558.3313635

[54] Yixing Yang, Yixiang Fang, Xuemin Lin, andWenjie Zhang. 2020. Effective and

Efficient Truss Computation over Large Heterogeneous Information Networks.

In 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas,
TX, USA, April 20-24, 2020. IEEE, 901–912. https://doi.org/10.1109/ICDE48307.

2020.00083

[55] Xiaoyao Zheng, Yonglong Luo, Liping Sun, Xintao Ding, and Ji Zhang. 2018.

A novel social network hybrid recommender system based on hypergraph

topologic structure. World Wide Web 21, 4 (2018), 985–1013. https://doi.org/

10.1007/S11280-017-0494-5

[56] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learn-

ing with Hypergraphs: Clustering, Classification, and Embedding.

(2006), 1601–1608. https://proceedings.neurips.cc/paper/2006/hash/

dff8e9c2ac33381546d96deea9922999-Abstract.html

[57] Zhongxin Zhou, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Chen Chen.

2019. K-Core Maximization: An Edge Addition Approach. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 4867–4873.
https://doi.org/10.24963/IJCAI.2019/676

[58] Gaoping Zhu, Xuemin Lin, Ke Zhu, Wenjie Zhang, and Jeffrey Xu Yu. 2012.

TreeSpan: efficiently computing similarity all-matching. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T.

Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 529–540. https:

//doi.org/10.1145/2213836.2213896

734

