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ABSTRACT

The DBSCAN algorithm is a popular density-based clustering

method to find clusters of arbitrary shapes without requiring an

initial guess on the number of clusters. While there are methods

to run DBSCAN efficiently in low-dimensional data in near-linear

time, there remains a need for an efficient DBSCAN algorithm

that scales to high-dimensional data. The bottleneck in high-

dimensional data is that the range queries necessary in carry-

ing out the algorithm suffer from the curse of dimensionality.

In this paper we present the SRRDBSCAN algorithm. This al-

gorithm is an implementation of approximate DBSCAN using

locality-sensitive hashing. We prove sub-quadratic running time

bounds under reasonable assumptions about the data. An im-

portant ingredient in the design of the data structure is the use

of a multi-level LSH data structure, which automatically adapts

to the density of data points. An extensive empirical analysis

shows that the approximation does not significantly impact the

quality of the clustering found by the algorithm as compared to

the exact DBSCAN clustering. Moreover, our algorithm is com-

petitive with other approaches even in low-dimensional settings,

and thus provides a general-purpose DBSCAN implementation

for arbitrary data.

1 INTRODUCTION

In recent years the amount of data available has increased dra-

matically. It is no longer uncommon for data collections to con-

sist of millions if not billions of data points. Furthermore, and

particularly driven by deep-learning-based embeddings such as

CLIP [42], each data point can have many features (dimensions);

for an algorithm to be viable for data analysis tasks, it needs to be

able to keep up with the trend of increasing size and dimensions

in data.

Clustering data is one of the basic primitives of data mining.

There exist many different approaches to clustering. One impor-

tant approach is 𝑘-means and its variants, in which the analyst

has a good guess on the number 𝑘 of clusters (or tries out dif-

ferent values of 𝑘). If the number of clusters is not known, or

the clusters have a non-convex shape, density-based approaches
are often the preferred approach. Examples of such methods are

DBSCAN [22], HDBSCAN [14, 15], hierarchical clustering [7],

and others [13]. In this paper, we focus on DBSCAN.
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Informally, the DBSCAN problem asks to group the data in

such a way that the clusters themselves should correspond to

dense regions of points and should be separated by sparse regions.

These regions are created by identifying points with more than a

certain threshold of close points at a certain distance threshold.

Both the number of points required (minPts) and the distance

threshold (𝜀) are parameters set by the analyst. Points satisfying

the properties are so called “core points”; they are used to initiate

the formation of the dense regions, and based on the notion of

𝜀-reachability, clusters are formed. A formal definition of the

problem is given in Section 3.

The simplest way to compute the clustering of 𝑛 data points re-

quires the calculation of the distances between all pairs of points.

In this case the number of required distance computations is

𝑂 (𝑛2). For many distance measures, the distance comparison of

two points in R𝑑 can be carried out in time 𝑂 (𝑑), so the total

running time is𝑂 (𝑛2𝑑). Due to the curse of dimensionality [9], ap-

proximate techniques are necessary to break this quadratic-time

barrier for an arbitrary number of dimensions. Gan and Tao [23]

were the first to formally define the 𝑐-approximate DBSCAN

problem, which relaxes the reachability criterion for clusters: if

a pair of core points is 𝑐 · 𝜀 away, they may belong to the same

cluster. The purpose of this paper is to propose efficient imple-

mentations of approximate DBSCAN for high-dimensional data

based on hashing techniques.

As pointed out by Gan and Tao [23], the running time of the

DBSCAN algorithm for arbitrary but constant 𝑑 was up for dis-

pute for a long time. In their paper, they proved both a lower

bound of Ω(𝑛4/3) for exact DBSCAN, and provided a linear time

algorithm for an approximate version. While this sounds as good

as one can hope for (each point has to be inspected at least once

to make a clustering decision for it), the dependency of their algo-

rithm is exponential in the dimension of the dataset. As pointed

out by Schubert et al. [44], even for small 𝑑 the suggested imple-

mentation did in fact not translate into practical improvements.

The present paper studies the design space of locality-sensitive

hashing (LSH [32]) based algorithms to solve the approximate

variant of DBSCAN with strong probabilistic guarantees. Our

algorithm, to be described in Section 4, provides the following

guarantees:

Theorem 1.1 (Informal version of Theorem 4.3). Let 𝑆 ⊆
R𝑑 be the dataset,minPts and 𝜀 be the DBSCAN-specific parameters,
and 𝑐 ≥ 1 be an approximation factor. There exists an algorithm
that solves the 𝑐-approximate DBSCAN problem under Euclidean
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distance with constant probability. Its expected running time1 is

�̃� (minPts1−1/𝑐
2

𝑛1+1/𝑐
2

𝑑),
if the neighborhood of core points is “not too dense.”

For example, consider the case that 𝑐 = 2, which means that

points at distance 𝜀 to 2𝜀 may count for a point being a core point

in approximate DBSCAN. If minPts is set to some constant, the

expected running time of the algorithm is𝑂 (𝑑𝑛1.25) for arbitrary
dimensionality. Even for extreme settings, such as minPts = 𝑛, or

𝑐 = 1 (exact DBSCAN), the running time smoothly degrades to

guarantee quadratic time in the worst-case.

The backbone of the algorithm is the Multi-level LSH data

structure first described by Ahle et al. [4]. On a high level, our

algorithm uses this data structure for DBSCAN to reduce the

number of distance computations necessary by only considering

points hashed together in the data structure. We will both ana-

lyze theoretically and observe empirically that different density

regions require access to finer granularity of the hash function.

In previous hashing-based work such as [36], only a single level

is used for all points; this will necessarily translate into quadratic

running time for some parameter choices of DBSCAN.

Contributions. The contribution of this paper is the design, im-

plementation, and evaluation of an efficient multi-level LSH data

structure that provides a solution to the approximate DBSCAN

problem. The proposed algorithm is supported by theoretical

guarantees on the time complexity as well as the correctness

of the output. The general description of the algorithm of Sec-

tion 4 uses LSH as a black-box which means that our algorithm

can be applied in all distance spaces that are “LSH-able” [18].

Only in Section 5 we describe particular details of the LSH func-

tion and other implementation choices that influence empirical

performance. The experimental results in Section 6 show com-

petitive performance in running time of the algorithm compared

to existing DBSCAN implementations in the literature, even for

low-dimensional data. As we will show in the experimental sec-

tion, none of the competitors that provide theoretical guaran-

tees on the output quality are able to solve both low- and high-

dimensional clustering problems on datasets containing millions

of data points within reasonable time limits, often failing due to

the dimensionality of the datasets, or certain clustering character-

istica rendering their approach inefficient—both in terms of run-

ning time and memory consumption. Both our implementation,

the experimental framework, and additional experimental results

are available at https://github.com/CamillaOkkels/srrdbscan and

https://github.com/CamillaOkkels/dbscan-benchmark.

We stress that, while LSH is a well-known technique for en-

abling scalable data analysis, no prior work on (approximate)

DBSCAN has both strong theoretical guarantees on the result

quality and good empirical performance.

2 RELATEDWORK

There exist many proposed variations on the original DBSCAN

algorithm that try to mitigate its drawbacks. In the 2-dimensional

case efficient algorithms exist that have improved the running

time from 𝑂 (𝑛2) to 𝑂 (𝑛 · log(𝑛)) [20]. Efficient algorithms for

the general 𝑑-dimensional case as proposed by Gan and Tao [23]

as well as Schubert et al. [44]—while achieving sub-quadratic

running times—rely on constant dimensionality. Indeed, when

the dimensionality becomes high, these algorithms do not gain

significant improvement compared to the naïve implementation

1
With the �̃� (.) notation we suppress polylogarithmic factors in 𝑛 and minPts.

of DBSCAN. While we focus our efforts on efficient DBSCAN

implementations, the same research questions are actively inves-

tigated for hierarchical clusterings as well [1, 20, 25, 30, 47].

Subspace clustering. Much research has been spent on clus-

tering in high-dimensional data [28, 39], in particular including

some adaptations of DBSCAN such as SUBCLU [35], PreDeCon

[10], 4C [11], or COPAC [2]. These and many other methods

in this area broadly described as subspace clustering do not,

however, focus on efficiency and robustness against the curse

of dimensionality when solving the DBSCAN problem as such,

but on re-defining the problem as to identify (possibly multiple)

clustering solutions in (different) subspaces. These and related

methods, although explicitly addressing some issues that come

with high dimensional data, namely the different attributions

of relevant vs. irrelevant attributes for different clusters, do not

address the scalability and robustness issues for the underly-

ing basic DBSCAN problem when it comes to very large and

high-dimensional data.

Efficient implementations. Most approaches to speeding up

DBSCAN rely on using an indexing structure to allow for faster

(range) search operations. These structures usually split up the

high-dimensional space into a grid; since the number of grid cells

increases exponentially in the dimensionality 𝑑 , such approaches

will often have depend exponentially on the dimensionality. An

efficient implementation of DBSCAN was proposed by Gan and

Tao in [23, 24] for 2-dimensional as well as 𝑑-dimensional DB-

SCAN. The 2D algorithm solves DBSCAN in time 𝑂 (𝑛 · log(𝑛))
by imposing a grid and using the cells to reduce the number of

distance computations for core point identification. They pre-

sented an approximate and exact algorithm for solving DBSCAN

for 𝑑 ≥ 3. The data structure for the approximate algorithm is a

quadtree-like hierarchical grid structure. They achieve a running

time of 𝑂 (𝑛) for constant 𝑑 , where the running time depends

exponentially on 𝑑 . The state-of-the-art grid-based approach is

TPEDBSCAN by Wang et al. [46] which focused on an efficient

parallel implementation of the grid-based approach; it has the

same exponential dependency on 𝑑 .

Another line of work based the computation of DBSCAN clus-

terings on sampling approaches. SNGDBSCAN by Jiang et al. [33]

is the state-of-the-art approach in this regime. For constant di-

mensionality 𝑑 (again hiding an exponential dependency), they

prove that sampling 𝑂 (𝑛 log𝑛) random pairs of points is suffi-

cient to identify the DBSCAN clusters if “clusters are sufficiently

dense.”

Hashing-based clustering. Koga et al. [37] and Keramatian et

al. [36] both rely on LSH to design clustering algorithms that

work for high-dimensional data. In contrast to grid-based ap-

proaches that impose a grid structure, the main idea of these

hashing-based algorithms is to hash data points into (multiple)

hash tables. Traditionally, this is achieved using LSH. The promise

of using LSH is that the probability of hashing to the same hash

value is a function increasing in the similarity of the data points.

The main bottleneck of all hashing-based algorithms is that in

each bucket of a hash table, an all-to-all comparison has to be car-

ried out to find close neighbors for all data points in the bucket,

yielding quadratic time in the bucket size. Thus, care has to be

taken in choosing parameters such that (i) buckets are not too

large and (ii) enough repetitions are carried out to guarantee core

point identification with high enough probability. Koga et al. [37]

introduce an algorithm called LSH-LINK to compute a hierarchi-

cal clustering. However, their running time guarantees might

exceed 𝑂 (𝑛2), and—more importantly—there is no correctness
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guarantee for their algorithm. Keramatian et al. [36] recently

provided an efficient clustering algorithm called IP.LSH.DBSCAN
(IP.LSH) that computes a single reference point per bucket. This

heuristic alleviates the quadratic-time barrier in each bucket, but

does not provide strong formal guarantees [36, Lemma 2], which

we will also observe in the experimental evaluation (Section 6.2).

They also require additional parameters to set the number of

hash functions and hash tables to which the algorithm is very

sensitive, also to be explored in the experimental section. Other

LSH-based approaches with no theoretical guarantees on the

result quality include [45, 48].

Other approximate methods.While not being hashing-based,

random projection-based ideas have been explored to cluster

data. This idea was pioneered by Schneider et al. [43]. In very

recentwork, Xu and Pham [49] designed an efficient algorithm for

DBSCAN using random projections. While they give theoretical

guarantees on certain subroutines, there is no general running

time statement and the correctness of the merging step requires

the same strong assumptions [49, Assumption 1] as sampling-

based approaches [33].

3 PRELIMINARIES

3.1 Definitions

In the following, assume a data set 𝑆 ⊆ R𝑑 consisting of𝑛 points is
given. Let𝑑 : R𝑑×R𝑑 → R be some distancemeasure, for example

the Euclidean distance 𝑑 (𝑝, 𝑞) = ∥𝑝 −𝑞∥2. For a point 𝑞 ∈ R𝑑 and

a distance threshold 𝜀 ≥ 0, define 𝑁𝜀 (𝑞) = {𝑝 ∈ 𝑆 | 𝑑 (𝑝, 𝑞) ≤ 𝜀}
as the 𝜀-neighborhood of 𝑞 in 𝑆 . While certain core concepts of

DBSCAN [22] are standard, in particular the role of border points

in clusters is often vaguely discussed. We consider the DBSCAN*

problem [15] in which border points are not part of a clustering

and define an approximate version as follows:

Definition 3.1 (𝑐-approximate core point sets). Let 𝑞 ∈ 𝑆 be a

data point, let 𝜀 and minPts be the DBSCAN parameters, and

let 𝑐 ≥ 1 be an approximation factor. If |𝑁𝜀 (𝑞) | ≥ minPts, 𝑞 is

a core point. If |𝑁𝜀 (𝑞) | < minPts and |𝑁𝑐𝜀 (𝑞) | ≥ minPts, 𝑞 is a

𝑐-approximate core point. Let 𝐶𝑃∗ be the set of all core points in
𝑆 . A set𝐶𝑃 ⊆ 𝑆 is a 𝑐-approximate core point set if𝐶𝑃∗ ⊆ 𝐶𝑃 and

all points in 𝐶𝑃 \𝐶𝑃∗ are 𝑐-approximate core points.

We remark that for 𝑐 = 1, the core point set is the unique set

of core points in 𝑆 in the classical DBSCAN notion. For 𝑐 > 1, we

allow that the core point set moreover includes points that are

only core points at distance threshold 𝑐𝜀, but we do not require

that all of these are included in the 𝑐-approximate core point set.

Definition 3.2 (𝑐-approximate density-reachability). Let 𝐶𝑃 be

an 𝑐-approximate core point set. A point 𝑝 is said to be density

reachable in𝐶𝑃 from another point 𝑞 if there exists a sequence of

points (𝑝 := 𝑝1, 𝑝2, ..., 𝑝𝜏 =: 𝑞) from𝐶𝑃 (with 𝜏 ≥ 2) that satisfies

𝑑 (𝑝𝑖 , 𝑝𝑖+1) ≤ 𝜀 for each 𝑖 ∈ [1, 𝜏 − 1].

Definition 3.3 (𝑐-approximate DBSCAN* clustering). Given 𝑐, 𝜀,
and minPts, let 𝐶𝑃 ⊆ 𝑆 be an 𝑐-approximate core point set. Let

∼𝐶𝑃 be the relation such that 𝑝 ∼𝐶𝑃 𝑞 if and only if 𝑝 and 𝑞

are 𝑐-approximately density-reachable in 𝐶𝑃 . The (𝑐, 𝜀,minPts)-
approximate DBSCAN

∗
clustering C of 𝐶𝑃 are the equivalence

classes of ∼𝐶𝑃 . The remaining points {𝑝 ∈ 𝑆 \𝐶𝑃} are noise.

Alternatively, we can see the clusters as the connected com-

ponents induced by the 𝑐-approximate core point set 𝐶𝑃 of the

Figure 1: An example of a DBSCAN* clustering with the

depicted 𝜀 and minPts = 4. The clusters only consist of core

points.

graph 𝐺 = (𝑆, 𝐸), where an edge exists if two points are at dis-

tance at most 𝜀 [20]. For 𝑐 = 1, we recover the exact DBSCAN*

clustering.

Figure 1 shows a DBSCAN* clustering according to Defini-

tion 3.3. The clusters returned by DBSCAN* are {𝑝1, 𝑝2, ..., 𝑝8}
and {𝑝10, ..., 𝑝16}. Both 𝑝9 and 𝑝17 are ignored because they are

not a core point.

Both [24] and [20] use a different notion of approximation.

Their core point classification is exact, but Definition 3.2 (iii) uses

𝑐 · 𝜀 as a distance value. While the individual approximate clus-

tering might differ, it is straight-forward to see that the quality

of the resulting approximate clustering can be “sandwiched” in

between two exact solutions. Thus, these different notions are

similar in their quality.

Theorem 3.4 (Sandwich theorem [24]). Given 𝑆 ⊆ R𝑑 , 𝜀,minPts,
and 𝑐 ≥ 1.

• Let C𝜀 be the clusters for (𝜀, minPts)-DBSCAN*.
• Let C𝑐 be a (𝑐, 𝜀,minPts)-approximate DBSCAN* clustering.
• Let C𝑐 ·𝜀 be the clusters for (𝑐𝜀, minPts)-DBSCAN*.

Then we have: (1) For each 𝐶𝜀 ∈ C𝜀 there exists 𝐶𝑐 ∈ C𝑐 such
that 𝐶𝜀 ⊆ 𝐶𝑐 . (2) For each 𝐶𝑐 ∈ C𝑐 there exists 𝐶𝑐 ·𝜀 ∈ C𝑐 ·𝜀 such
that 𝐶𝑐 ⊆ 𝐶𝑐 ·𝜀 .

Theorem 3.4 is a natural consequence of the well documented

fact (see for example [7, 25]) that exact DBSCAN* clusters for

small epsilon are subsets of DBSCAN* clusters for larger epsilon.

In particular, all core points of (𝜀,minPts)-DBSCAN* are also 𝑐-
approximate core points, and all non-core points in (𝑐𝜀,minPts)-
DBSCAN* are also non-core points in the approximate setting.

The strength of this theorem lies in the fact that an approximate

DBSCAN* definition can be sandwiched between two exact solu-

tions. Consider the instances where the exact DBSCAN* clusters

are robust up to a small variation in 𝜀, i.e., C𝜀 = C𝑐 ·𝜀 . Theorem 3.4

states that the solution to approximate DBSCAN* with parame-

ters (𝑐, 𝜀,minPts) would also be the solution to exact DBSCAN*.

In other words the similarity between the solution to exact DB-

SCAN* and approximate DBSCAN is entirely dependent on the

robustness of the clusters.

3.2 Objective of DBSCAN* algorithms

The objective of DBSCAN* is to find a clustering C given pa-

rameters 𝜀 and minPts that satisfy Definition 3.3 with 𝑐 = 1. Any

algorithm for solving the DBSCAN* problem should have the

following properties: (i) It needs to identify core points given the

parameters 𝜀 and minPts. (ii) Given the list of core points𝐶𝑃 and

𝜀, clusters have to be identified based on density-reachability.
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Algorithm 1: SRRDBSCAN(𝑆, 𝜀,minPts, 𝐿, 𝛿, 𝑐)

Input: 𝑆 ⊆ R𝑑 , parameters 𝜀,minPts, 𝐿, 𝛿, 𝑐
Output: A list of cluster labels.

1 I ← build multi-level LSH for 𝑆, 𝐿, 𝛿 // Sect. 4.1

2 𝑘
best
← findBestLevel(𝑆,I, 𝐿) // Sect. 4.3

3 𝐶𝑃 ← classifyCP(𝑆,I, 𝑘
best

, 𝜀,minPts, 𝑐) // Sect. 4.3

4 clusters← clusterCore(CP, 𝜀, 𝐿, 𝛿) // Sect. 4.4

5 return clusters

3.3 Locality-Sensitive Hashing

To reduce distance computations we use Locality-Sensitive Hash-

ing [32]. Let Pr(𝜒) denote the probability of an event 𝜒 .

Definition 3.5 (Locality-Sensitive Hash Family [32]). Given a

distance function 𝑑 , a family of hash functionsH = {ℎ : R𝑑 →
𝑅} is said to be (𝑑1, 𝑑2, 𝑝1, 𝑝2)-sensitive if for any pair of points

𝑝, 𝑞 ∈ R𝑑 the following statements are true:

(i) For 𝑑 (𝑞, 𝑝) ≤ 𝑑1, Prℎ∼H (ℎ(𝑞) = ℎ(𝑝)) ≥ 𝑝1.
(ii) For 𝑑 (𝑞, 𝑝) ≥ 𝑑2, Prℎ∼H (ℎ(𝑞) = ℎ(𝑝)) ≤ 𝑝2.
(iii) 𝑝1 ≥ 𝑝2 and 𝑑1 ≤ 𝑑2.

Many LSH families have been described in the past. Of partic-

ular importance are BitSampling [32] for binary strings under

Hamming distance, MinHash [12] for sets, SimHash [17] and

Crosspolytope LSH [6] for angular distance on the unit sphere,

and EuclideanLSH [19] for Euclidean space. As it is standard in

the literature [3], we assume that 𝑝1 is constant. The quality of

an LSH is measured as 𝜌 = log(1/𝑝1)
/
log(1/𝑝2) ≤ 1.

4 PROPOSED ALGORITHM

In this section, we first describe our algorithm for solving the

approximate DBSCAN* problem. Algorithm 1 outlines the algo-

rithm SRRDBSCAN (Spherical Range Reporting DBSCAN). In

addition to the DBSCAN* parameters 𝑆 , 𝜀, and minPts, and the

approximation factor 𝑐 , our algorithms takes two user parame-

ters 𝛿 ∈ (0, 1) (which controls the success probability) and 𝐿 ≥ 1

(which governs the space consumption of the index data struc-

ture). In Sections 4.1—4.4 we discuss the proposed algorithm in

detail, including the index building phase, the core point iden-

tification, and merging core points into the final clustering. In

Section 4.5 we argue for the algorithm’s correctness and then

analyze its running time.

4.1 Index building

The proposed algorithm makes use of the Multi-Level LSH data

structure first described by Ahle et al. [4]. Given a dataset 𝑆 ⊆
R𝑑 , a parameter 𝐿, and access to a (𝑝1, 𝑝2, 𝑑1, 𝑑2)-sensitive hash
familyH consisting of function that map from R𝑑 to some range

𝑅, it builds a multi-level data structure as follows. For a level

𝑘, 0 ≤ 𝑘 ≤ 𝐾, in the data structure, choose 𝑘 hash functions

{𝑔1, 𝑔2, ..., 𝑔𝑘 } uniformly at random and independently fromH to

obtain the hash function ℎ𝑘 = (𝑔1, 𝑔2, ..., 𝑔𝑘 ). The hash value of a

point 𝑥 ∈ R𝑑 is ℎ𝑘 (𝑥) = (𝑔1 (𝑥), . . . , 𝑔𝑘 (𝑥)) ∈ 𝑅𝑘 . For each 𝑥 ∈ 𝑆 ,
compute ℎ𝑘 (𝑥) and, using a hash table, associate with each hash

value the list of points that hash to it. Repeat this process reps(𝑘)
many times independently, where reps(𝑘) is a parameter to be

set later. The data structure for level 𝑘 consists of these reps(𝑘)
hash tables 𝑇𝑘,1, . . . ,𝑇𝑘,reps(𝑘 ) . We denote by 𝑇𝑘,𝑖 (𝑝) the bucket
that point 𝑝 was hashed to on level 𝑘 and repetition 𝑖 . Repeat

this process independently for each 𝑘 ∈ {0, . . . , 𝐾}, where 𝐾 is

defined to be the largest integer satisfying reps(𝐾 ) ≤ 𝐿. Figure 2
provides an example. For reasons that will be addressed in the

analysis, 𝐿 has to be large enough such that 𝐾 ≥
⌈
log(𝑛/minPts)
log(1/𝑝2 )

⌉
.

4.2 Motivation for the data structure

Assume some index 𝑇𝑘,𝑗 for 𝑘 ∈ {0, . . . , 𝐾} and 1 ≤ 𝑗 ≤ reps(𝑘)
built for a dataset 𝑆 . Let 𝜀,minPts be the DBSCAN parameters,

and let 𝑐 be the approximation factor. For each 𝑥 ∈ 𝑆 we have

to identify if it is a core point and (potentially) merge cluster

labels. Let us first consider the influence of the different levels

𝑘 ∈ {0, . . . , 𝐾}. For a given level 𝑘 , concatenating 𝑘 hash func-

tions chosen independently at random fromH results in higher

selectivity of the hash function: if two points are at distance at

most 𝑑1 := 𝜀, their collision probability will be at least 𝑝𝑘
1
, if they

are at least 𝑑2 := 𝑐𝜀 far apart, it is at most 𝑝𝑘
2
(Def. 3.5). Let 𝑝 ∈ 𝑆

be an arbitrary point. Given the properties of the LSH family, at

most 𝑛 · 𝑝𝑘
2
points that are not within distance 𝑐𝜀 are going to

collide with 𝑝 under the hash function. However, a point that

counts towards 𝑝 being a core point has probability at least 𝑝𝑘
1

of colliding with 𝑝 . Repeating the construction Θ(1/𝑝𝑘
1
) times

guarantees that it collides with 𝑝 with constant probability. Thus,

we can upper bound the work for deciding whether point 𝑝 is

a core point on level 𝑘 by 𝑂 (𝑝−𝑘
1
· (minPts + 𝑛𝑝𝑘

2
)). Yet, the ac-

tual work depends heavily on the data: If the dataset consists

of clusters, each of size minPts + 1 with very small intra-cluster

distances, but large inter-cluster distances, then a small level 𝑘

suffices to split up the clusters and the upper bound from before

would clearly misguide us to use a larger level with higher cost.

In the most extreme case where we have𝑛 copies of the same data

point, we would spend time𝑂 (minPts ·𝑛/𝑝𝑘
1
), so the best level is

the first. But if the dataset contains a long “chain” of core points

at distance 𝜀 to each other, and the remaining dataset is noise,

slightly further away than distance 𝑐 · 𝜀, then we would indeed

need to inspect a deeper level in which these noise points are

likely to be split up from core points. Hence we propose to first

compute the work that needs to be carried out on level 𝑘 (which

is easier since we only have to sum up the number of colliding

points, i.e., the bucket sizes in the hash table), choose the level

with minimal cost to carry out the core point identification, and

later merge clusters. The multi-level data structure allows for

data dependent choices.

4.3 Core point identification

To identify 𝑐-approximate core points, i.e., the points that have

at least minPts many neighbors at distance 𝜀 (where we might

count points at distance at most 𝑐𝜀), we proceed in two steps.

First, using Algorithm 2, we determine a best level to carry out

the core point identification in the multi-level data structure. To

do so, we compute in Line 3 the amount of work that will be

necessary to inspect all buckets on level 𝑘 and to carry out all-

to-all comparisons in each of them (without actually carrying

them out). We proceed in the order 𝑘 = 0, 1, 2, . . . and stop as

soon as the time necessary for inspecting the buckets is already

more than carrying out these all-to-all comparisons in the best

level found so far. Let 𝑘
best

be the level returned by Algorithm 2.

Algorithm 3 describes the core point identification given such

a best level. For a point 𝑝 ∈ 𝑆 , it counts the number of distinct

points in the buckets𝑇𝑘best,1 (𝑝), . . . ,𝑇𝑘best,reps(𝑘best ) (𝑝) that are at
distance at most 𝑐 · 𝜀. It stops as soon as the number is minPts,
and classifies the point as a core point.
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Figure 2: An illustration of the multi-level data structure. Given dataset 𝑆 , starting from 𝑘 = 0, the data is hashed reps(𝑘)
times for each level 𝑘 to be constructed. In this example, reps(𝑘) = 2

𝑘
. This is repeated until the final level 𝐾 for which

reps(𝐾) ≤ 𝐿.

Algorithm 2: findBestLevel(𝑆,I, 𝐿)
Input: Points 𝑆 , data structure I, and a parameter 𝐿

Output: Value 𝑘
best

of “best level”

1 𝑛 ← |𝑆 |, 𝑘 ← 0, 𝑘
best
← 0, 𝜔𝑘best ← 𝑛2

2 while 𝑛 · reps(𝑘) ≤ min(𝑛 · 𝐿,𝜔𝑘best ) do
3 𝜔𝑘 ←

∑
𝑞∈𝑆

∑reps(𝑘 )
𝑖=1

|𝑇𝑘,𝑖 (𝑞) |−1
2

+ 1
4 if 𝜔𝑘 ≤ 𝜔𝑘best then
5 𝑘

best
← 𝑘, 𝜔𝑘best ← 𝜔𝑘

6 𝑘 ← 𝑘 + 1
7 return 𝑘best

Algorithm 3: classifyCP(𝑆,I, 𝑘
best

, 𝜀,minPts, 𝑐)
Input: Points 𝑆 , data structure I, a best level 𝑘

best
, and

parameters 𝜀,minPts, 𝑐
Output: List 𝐶𝑃 of core points

1 𝐶𝑃 ← {}
2 foreach 𝑝 ∈ 𝑆 do

3 𝑁 (𝑝) = { }

4 for 𝑖 ← 1 to reps(𝑘best) do
5 foreach 𝑞 ∈ 𝑇𝑘best,𝑖 (𝑝) do
6 if 𝑑 (𝑝, 𝑞) ≤ 𝑐 · 𝜀 and 𝑞 ∉ 𝑁 (𝑝) then
7 𝑁 (𝑝) ← 𝑁 (𝑝) ∪ {𝑞}
8 if |𝑁 (𝑝) | = minPts then
9 𝐶𝑃 ← 𝐶𝑃 ∪ {𝑝}

10 break (out of line 4 loop)

11 return CP

4.4 Merging core points

Algorithm 4 shows how to identify clusters given the list 𝐶𝑃

of core points identified in the previous step. First, initialize a

union-find data structure. Given 𝐶𝑃 , rebuild the multi-level data

structure on𝐶𝑃 and identify the best level𝑘
best

using Algorithm 2.

Next, identify all the points at distance at most 𝜀 from a core point

𝑝 by going through buckets𝑇𝑘best,1 (𝑝), . . . ,𝑇𝑘best,reps(𝑘best ) (𝑝). For
each point 𝑞 found in the buckets, check if the distance is at most

𝜀 and merge the cluster using a union operation if that is the case.

The clustering C is the sets of the union-find data structure.

4.5 Analysis of the algorithm

4.5.1 Correctness guarantee. The following lemma says that

the algorithm works correctly with probability at least 1 − 𝛿 no
matter which level is chosen for the individual points in Algo-

rithm 3.

Lemma 4.1 (Correctness guarantee). Let 𝑆 ⊆ R𝑑 contain
𝑛 data points. Let 𝐶𝑃∗ be the set of core points with respect to

Algorithm 4: clusterCore(𝐶𝑃 , 𝜀, 𝐿, 𝛿)

Input: A list 𝐶𝑃 of core points and parameters 𝜀, 𝐿, 𝛿

Output: A list of cluster labels/identifiers for each point.

1 uf ← UnionFind( |𝐶𝑃 |) ; // Initialize Union-Find

data structure to track clusters

2 I ← build multi-level LSH for 𝐶𝑃, 𝐿, 𝛿 ;

3 𝑘
best
← findBestLevel(𝐶𝑃,I, 𝐿)

4 foreach 𝑝 ∈ 𝐶𝑃 do

5 for 𝑖 ← 1 to reps(𝑘best) do
6 foreach 𝑞 ∈ 𝑇𝑘best,𝑖 (𝑝) do
7 if uf.find(𝑝) ≠ uf.find(𝑞) and 𝑑 (𝑝, 𝑞) ≤ 𝜀

then

8 𝑢𝑓 .union(𝑝, 𝑞);
9 return {uf.find(𝑝) | 𝑝 ∈ 𝐶𝑃};

(𝜀,minPts)-DBSCAN* on 𝑆 . Set

reps(𝑘) = 𝑝−𝑘
1
· ln

(
𝑛 ·minPts · (𝑘 + 1)2/𝛿

)
and let 𝐶𝑃 be the output of Algorithm 3. With probability at least
1−𝛿 ,𝐶𝑃∗ ⊆ 𝐶𝑃 and all points in𝐶𝑃 are 𝑐-approximate core points.

For the proof, we will make use of the following lemma:

Lemma 4.2. Let 𝑝 ∈ 𝑆 be a core point with respect to (𝜀,minPts)-
DBSCAN* and given some 𝛿 ∈ (0, 1). Then for

reps(𝑘) ≥ 𝑝−𝑘
1
· ln(minPts/𝛿),

𝑝 is identified as a core point by Alg. 3 with probability at least
1 − 𝛿 .

Proof. Fix a level 𝑘 ∈ {0, . . . , 𝐾}. Let 𝑝 be a core point in

𝑆 . Given a point 𝑞 with 𝑑 (𝑞, 𝑝) ≤ 𝜀, let 𝐴𝑞 be the event that 𝑝

and 𝑞 do not get hashed together in any hash table on level 𝑘 .

Since all repetitions are independent and by the definition of

LSH, Pr(𝐴𝑖 ) ≤ (1 − 𝑝𝑘
1
)reps(𝑘 ) . Now, w.l.o.g., suppose |𝑁𝜀 (𝑝) | =

minPts.2 In order to identify 𝑝 as a core point, it should be hashed

with every point in 𝑁𝜀 (𝑝) in at least one hash table on the level.

Using a union bound we can find an upper bound on the proba-

bility that there exists a hash table where 𝑝 is not hashed with

some 𝑞 ∈ 𝑁𝜀 (𝑝):

Pr

(⋃
𝑞∈𝑁𝜀 (𝑝 )

𝐴𝑞

)
≤
minPts∑︁
𝑗=1

(
1 − 𝑝𝑘

1

)
reps(𝑘 )

= minPts ·
(
1 − 𝑝𝑘

1

)
reps(𝑘 )

2
If |𝑁𝜀 (𝑝 ) | ≥ minPts, the probability that 𝑝 gets hashed withminPts close points,
thereby identifying it as a core point, is only higher.
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(a) (b)

Figure 3: Illustration of the SRRDBSCAN algorithm. Part (a) illustrates the algorithm up to and including core point

identification outlined in lines 1-3 in Algorithm 1. Part (b) illustrates the merging step outlined in Algorithm 4. The process

of building the data structure and searching for close points is repeated, but only on core points, and the output is clusters.

Using the upper bound

(
1−𝑝𝑘

1

)
reps(𝑘 )≤𝑒−𝑝𝑘1 ·reps(𝑘 ) we get:

Pr

(minPts⋃
𝑖=1

𝐴𝑖

)
≤ minPts · 𝑒−𝑝

𝑘
1
·reps(𝑘 )

(4.1)

Solving minPts · 𝑒−𝑝𝑘1 ·reps(𝑘 ) ≤ 𝛿 for reps(𝑘) ends the proof. □

Proof of Lemma 4.1. Let 𝐵𝑖 be the event for any given core

point 𝑖 that it is not identified at a level 𝑘 . From (4.1) we have

that Pr(𝐵𝑖 ) ≤ minPts · 𝑒−𝑝𝑘1 ·reps(𝑘 ) . Using a union bound over all

𝑛 potential core points, we can upper bound the probability that

at least one core point is not identified on at least one level as

Pr

( 𝑛 · (𝐾+1)⋃
𝑖=1

𝐵𝑖

)
≤

𝐾∑︁
𝑘=0

𝑛 ·minPts · 𝑒−𝑝
𝑘
1
·reps(𝑘 )

By setting reps(𝑘)≥𝑝−𝑘
1

ln

(
2 · 𝑛 ·minPts · (𝑘 + 1)2/𝛿

)
, we may

bound this probability by:

Pr

( 𝑛 · (𝐾+1)⋃
𝑖=1

𝐵𝑖

)
≤

𝐾∑︁
𝑘=0

𝛿

2 · (𝑘 + 1)2
≤ 𝛿 · 𝜋

2

12

< 𝛿 ,

where the last inequality uses the fact that

∑∞
𝑛=1

1

𝑛2
= 𝜋2

6
. □

4.5.2 Running time analysis. We will prove the following the-

orem summarizing the expected running time of the proposed

algorithm:

Theorem 4.3 (Running time). Let 𝑆 ⊆ R𝑑 with 𝑛 points be
given. Let minPts, 𝜀 be the DBSCAN parameters, and let 𝐿, 𝑐 ≥
1, 𝛿 > 0 be user parameters. DefineN =

∑
𝑞∈𝑆 |𝑁𝑐 ·𝜀 (𝑞) |𝜌 (𝑐 ) . With

probability at least 1−𝛿 , the output of Algorithm 1 is a (𝑐,minPts, 𝜀)-
approximate DBSCAN* clustering. Assuming that hash function
evaluations and distance comparisons take time𝑂 (𝑑), the expected
running time is

�̃�

(
𝑑 ·max

(
𝑛𝐾𝐿, 𝑛1+𝜌 (𝑐 )minPts1−𝜌 (𝑐 ) , 𝑛𝜌 (𝑐 )minPts−𝜌 (𝑐 )N

) )
.

The value 𝜌 = log(1/𝑝1)
/
log(1/𝑝2) ≤ 1 is governed by the

LSH family that is used for a given distance measure. For ex-

ample, EuclideanLSH [19] has 𝜌 (𝑐) = 1/𝑐 , and there exist fami-

lies that achieve 1/𝑐2 [5]. The three terms in Theorem 4.3 rep-

resent the time to build the index, the expected time to iden-

tify all core points, and the expected time necessary to merge

core points into clusters. If |𝑁𝑐𝜀 (𝑞) | = 𝑂 (minPts), i.e., if the num-

ber of points at distance at most 𝑐𝜀 is not much larger than

minPts, then the term 𝑛𝜌 (𝑐 )minPts−𝜌 (𝑐 )N is upper bounded by

𝑂
(
𝑛1+𝜌 (𝑐 )minPts1−𝜌 (𝑐 )

)
. This means that the running time of

the merging step is no higher than the time spent in the core

point identification step.

Figure 4: An illustration of the three different categories

of points as seen from the perspective of a point 𝑞.

In the following, we analyse each of the three steps separately,

only counting the number of points inspected by the algorithm

(i.e., disregarding the 𝑂 (𝑑) term present in Theorem 4.3).

Index building. From Lemma 4.2, we build the data structure

for all levels 𝑘 ∈ {0, . . . , 𝐾} such that reps(𝐾) ≤ 𝐿, using that

reps(𝑘) = 𝑝−𝑘
1
· ln

(
𝑛 ·minPts · 𝑘2/𝛿

)
. There are𝑂 (𝐿) hash tables

in themulti-level data structure, as

∑
0≤𝑘≤𝐾 reps(𝑘) = 𝑂

(
reps(𝐾)

)
.

For each hash table, we have to evaluate not more than 𝑛𝐾 hash

values and insert 𝑛 points into the hash table. Thus, the overall

time necessary to build the index is 𝑂 (𝑛𝐾𝐿).

Core point identification. We proceed in two steps: First, we

show that a good level exists in the data structure; next, we rely

on the properties of the Multi-Level LSH data structure proven

in [4] to argue that the adaptive level choice does not lead to a

worse asymptotical running time.

Lemma 4.4. Set 𝑘 =

⌈
log(𝑛/minPts)
log(1/𝑝2)

⌉
. Carrying out Algorithm 3

on level 𝑘 , the expected number of distance comparisons (Line 6) is
�̃�
(
𝑛1+𝜌minPts1−𝜌

)
.

Proof. By linearity of expectation, the expected number of

distance comparisons over all 𝑛 data points is just 𝑛 times the

expected number of distance comparisons for a single point.

Fix a point 𝑞 ∈ 𝑆 . There are three types of points it can get

hashed with into the same bucket in 𝑇𝑘,𝑖 :

(1) Close points (CL): All the points 𝑝 with 𝑑 (𝑞, 𝑝) ≤ 𝜀. These
count towards 𝑞 being a core point. This happens with

probability at most 1.

(2) Middle points (MP): All the points 𝑝 with 𝜀 ≤ 𝑑 (𝑞, 𝑝) ≤ 𝑐 ·𝜀.
These count towards 𝑞 being a core point. This happens

with probability at most 𝑝𝑘
1
.

(3) Far points (FP): All the points 𝑝 with 𝑑 (𝑞, 𝑝) ≥ 𝑐 · 𝜀. This
happens with probability at most 𝑝𝑘

2
.

Figure 4 visualizes a setting in which these probabilities are

attained, i.e., a worst-case setting for the analysis. The expected
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size of the bucket 𝑇𝑘,𝑖 (𝑞) is given by

∑
𝑝∈𝑆 Pr(ℎ(𝑞) = ℎ(𝑝)) and

can be upper bounded by 𝐸
[��𝑇𝑘,𝑖 (𝑞)��] ≤ #𝐶𝐿+#𝑀𝑃 ·𝑝𝑘

1
+#𝐹𝑃 ·𝑝𝑘

2
.

The first two summands of the summation of the right-hand

side are at most minPts, since Algorithm 3 immediately returns

as soon as minPts neighbors at distance at most 𝑐𝜀 are iden-

tified. By the choice of 𝑘 , we may bound the final summand

by #𝐹𝑃 · 𝑝𝑘
2
≤ 𝑛 · 𝑝𝑘

2
≤ minPts. So, 𝐸

[��𝑇𝑘,𝑖 (𝑞)��] ≤ minPts for a

single repetition 𝑖 . The excepted number of distance compu-

tations for 𝑞 is then 𝑂 (reps(𝑘)minPts) with reps(𝑘) = �̃� (𝑝−𝑘
1
)

(cf. Lemma 4.1), which is

�̃�
(
(𝑛/minPts)𝜌minPts

)
= �̃�

(
𝑛𝜌minPts1−𝜌

)
. The proof follows from linearity of expectation over the 𝑛 data

points. □

While Lemma 4.4 proves that there exists a good level to check,

the proposed algorithm first investigates the bucket sizes to make

an adaptive choice for which level is the best to use. A core

contribution of Ahle et al. [4] states that this adaptive choice has

asymptotically (almost) the same running time as if the best level

had been known. To extend their Theorem 3 to our setting, first

define

𝐸 (𝑊𝑘 ) =
∑︁
𝑞∈𝑆

∑︁
1≤𝑖≤reps(𝑘 )

(
𝑂 (1) +

∑︁
𝑥∈𝑇𝑘,𝑖 (𝑞)

Pr

(
ℎ(𝑞) = ℎ(𝑥)

) )
(4.2)

𝑊 ∗ = min

0≤𝑘≤𝐾
𝐸 (𝑊𝑘 )

This—purely abstractly—represents the expected work on the

optimal level if the whole data distribution were known.

Lemma 4.5. Let 𝑆, 𝜀,minPts, 𝛿 be given. Let𝑊 ∗ be defined as
above. The expected running time of Algorithm 2 and Algorithm 3
is 𝑂 (𝑊 ∗).

Proof. The proof will follow closely that of Ahle et al. [4,

Theorem 3]. First, consider Algorithm 2.

Given constant access to the size of the buckets, Line 3 takes

time 𝑂 (𝑛 · reps(𝑘)). Suppose the last value of 𝑘 before the loop

starting in Line 2 terminates is 𝑘∗. Using the choice of reps(𝑘)
from Lemma 4.1, all iterations of the loop until that point in time

took expected time

𝑘∗∑︁
𝑘=1

𝑂
(
𝑛· ln

(
𝑛 ·minPts · 𝑘2/𝛿

)
· 𝑝−𝑘

1

)
≤ 𝑛 · ln

(
𝑛 ·minPts · (𝑘∗)2/𝛿

)
· 𝑝−𝑘

∗
1

∞∑︁
𝑘=0

𝑂
(
𝑝𝑘
1

)
≤ 𝑂 (𝜔𝑘best ) .

The last step follows from the while condition which ensures

that 𝑛 · reps(𝑘∗) ≤ 𝜔𝑘best .
Algorithm 3 looks at the buckets of 𝑘

best
and computes exactly

𝜔𝑘best distances. By Jensen’s inequality,

𝐸 [𝜔𝑘best ] = 𝐸 [ min

0≤𝑘≤𝐾
(𝜔𝑘 )] ≤ min

0≤𝑘≤𝐾
𝐸 [𝜔𝑘 ]

which equals min
0≤𝑘≤𝐾 𝐸 [𝑊𝑘 ] =𝑊 ∗. □

We note that this result is slightly different from the result of

Ahle et al. [4, Theorem 1], which observed a slight asymptotic

difference between the “clairvoyant” algorithm that knows the

best level and the adaptive variant. This is because our definition

of 𝐸 [𝑊𝑘 ] in (4.2) uses the same repetition count as the adaptive

algorithm. In the setting of [4], they have an asymptotic blow-up

because they carry out a different number of repetitions. Lem-

mas 4.4 and 4.5 together show that the expected running time of

Algorithms 2 and 3 is �̃� (𝑛1+𝜌minPts1−𝜌 ), and can potentially be

much better.

Merging clusters. We analyze the running time of Algorithm 4.

Lemma 4.6 (Running time of merging step). Given a set CP of
𝑐-approximate core points, let N =

∑
𝑞∈𝐶𝑃 |𝑁𝑐 ·𝜀 (𝑞) |. Algorithm 4

labels the core points in expected time

�̃� ( |𝐶𝑃 |𝜌 (𝑐 ) ·minPts−𝜌 (𝑐 ) · N) .

The proof follows the same steps as seen for the proofs of

Lemma 4.4 with the main difference being that Algorithm 4 can-

not return after finding just minPts close points as we observe
the merging of two sub-clusters can depend on a single core

point. As a result the expected bucket sizes—and consequently

the running time—will depend on the neighborhood sizes.

Proof. Let 𝐶𝑃 be the set of core points. We observe that

for any core point |𝑁𝑐 ·𝜀 (𝑞) | ≥ minPts. This means |𝐶𝑃 | · 𝑝𝑘
2
≤

|𝑁𝑐 ·𝜀 (𝑞) |. As in the proof of Lemma 4.4, the expected contribution

from a bucket is given by:

𝐸
[��𝑇𝑘,𝑖 (𝑞)��] ≤ #𝐶𝐿 + #𝑀𝑃 · 𝑝𝑘

1
+ #𝐹𝑃 · 𝑝𝑘

2
≤ 2 · |𝑁𝑐 ·𝜀 (𝑞) |. (4.3)

Let 𝑘
best

be the best level found by the algorithm. The expected

time cost 𝑇 to carry out the for loop (Line 4 in Algorithm 4) is

𝑇 ≤ 2 · reps(𝑘
best
) ·

∑︁
𝑞∈𝐶𝑃

|𝑁𝑐 ·𝜀 (𝑞) |. (4.4)

Substituting minPts in Lemma 4.2 by |𝑁𝑐 ·𝜀 (𝑞) | in the proof of

Lemma 4.2, and observing that for any core point |𝑁𝑐 ·𝜀 (𝑞) | ≤

|𝐶𝑃 |, we conclude that setting reps(𝑘) = 𝑝−𝑘
1
· ln

(
|𝐶𝑃 |2 · 𝑘2

𝛿

)
ensures all pairs of core points 𝑞, 𝑝 for which 𝑑 (𝑞, 𝑝) ≤ 𝜀 are

hashed together at least once. Similar to the core points identi-

fication step, to ensure |𝐶𝑃 | · 𝑝𝑘
2
≤ minPts we have �̃� (𝑝−𝑘

1
) is

�̃�

((
𝐶𝑃

minPts

)𝜌 )
. □

5 IMPLEMENTATION CHOICES

In this section we highlight implementation-specific choices that

we did to speed up the empirical performance of our algorithm.

Details of the hash function.We carry out the empirical analysis

under Euclidean distance and use E2LSH [19] as our LSH function.

A single hash function ℎ : R𝑑 → Z takes three parameters

𝑎 ∈ R𝑑 , 𝑟 ∈ R, 𝑏 ∈ R. For one hash function, 𝑎 ∼ 𝑁 (0, 1)𝑑 is

a 𝑑-dimensional vector of standard normal random variables,

and 𝑏 is uniformly chosen in the interval [0, 𝑟 ). We use 𝑟 =

4𝜀 as recommended [19]. The hash value of a point 𝑝 ∈ R𝑑

is ℎ𝑎,𝑏,𝑟 (𝑝) = ⌊
𝑎·𝑝+𝑏
𝑟 ⌋, where 𝑎 · 𝑝 is the inner product of the

vectors 𝑎 and 𝑝 . Applying this hash function 𝑘 times yields a

tuple of integers (𝐻1, . . . , 𝐻𝑘 ) ∈ Z𝑘 . We map these hash values to

an integer using universal hashing [16]: Let 𝑃 = 2
61 − 1 and let

random integers 𝑢1, . . . , 𝑢𝑘 be chosen uniformly at random from

{1, . . . , 𝑃 − 1}. Given (𝐻1, . . . , 𝐻𝑘 ), use
∑
1≤𝑖≤𝑘 𝐻𝑖𝑢𝑖 mod 𝑃 as

key in the hash table.

Details of the merging step. Algorithm 4 details the merging

step. For each core point, we conceptually retrieve all the points

in all the buckets on the point’s best level and check if these two

points should belong to the same cluster. Analogously, the work

carried out in a bucket is quadratic in its size. Since we are using

a union-find data structure to keep track of the current clustering,
we carry out the work in a single bucket as follows: Let uf be

the state of the union-find data structure before inspecting the

points in bucket 𝐵. First, using the find operation on uf, split up
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Table 1: Overview of the datasets.

Dataset #points (𝑛) dim. (𝑑) minPts Baseline

Mnist 60 000 784 100 FAISS

Gist 1 000 000 960 20 —

Glove 1 183 514 100 100 FAISS

Aloi 49 534 27 100 FAISS

Census 299 285 500 650 FAISS

Celeba 202 599 39 200 FAISS

Pamap2 2 872 533 4 100 TPE

Household 2 049 280 7 100 TPE

the points in 𝐵 into their current clusters. Put all points into an

initially empty priority queue 𝑃𝑄 and associate with each point

the size of its current cluster. While 𝑃𝑄 is not empty and there

is more than one cluster left, remove the point 𝑝 with smallest

priority and compare it to all points in clusters different than its

own. As soon as a point 𝑞 is found that is at distance at most 𝜀

call union(𝑝, 𝑞) to merge the two clusterings and stop comparing

to other points in 𝑞’s cluster. Organizing data in this way helps as

soon as clusterings evolved while processing different repetitions.

Instead of quadratic work in each bucket, the work is at most

the product of the individual cluster sizes in a bucket, which can

potentially be much smaller.

6 EXPERIMENTAL EVALUATION

This section reports on the results of our experiments. Our code

is written in C++ and compiled using the flags -std=c++17 -O3
-mavx2. We base our implementation on the code provided by [36]

and use the same parallelism framework. Our implementation is

available at https://github.com/CamillaOkkels/srrdbscan.

Experimental setup. Experiments were run on a machine with

2x14 core Intel Xeon E5-2690v4 (2.60 GHz) with 512GB RAM

using Ubuntu 20.04.6 LTS. All parts of the code are parallelized

by using a concurrent hash table (Intel TBB), and splitting up

points into batches. We restrict the amount of RAM that can be

used to 100 GB and put a time limit of 10 hours on a run for a

single parameter.

Hyperparameter choices. Our implementation requires the user

to set a bound on the memory consumption (𝐿) and the failure

probability (𝛿). We restrict the memory usage to 5 GB for all

datasets except Gist for which we chose to restrict the memory

usage to 15 GB. To compare with other baselines, we use 𝑐 = 1

(no approximation) during core point classification, which only

puts us at a disadvantage. We choose 𝛿 ∈ {0.01, 0.1, 0.5, 0.9} to
control the probability that a core point is missed, cf. Lemma 4.2.

Datasets. Table 1 summarizes the datasets used for the eval-

uation. We use two popular low-dimensional datasets (Pamap2

and Household) for clustering [44] to verify the performance

of our algorithm on low-dimensional datasets. Aloi [26, 38],

Census, and Celeba are standard benchmarks in outlier detec-

tion [27]; Aloi has been used in clustering analysis [29, 40] and

Mnist is a standard dataset used for clustering high-dimensional

data [36, 49]. The two high-dimensional datasets Gist and Glove

are standard datasets for high-dimensional nearest neighbor

search [8] and are the most challenging in terms of their size.

Reproducibility. We developed benchmarking infrastructure

to (i) carry out dataset preparation for common datasets used

in cluster analysis, (ii) install and run all implementations in

Docker containers, and (iii) evaluate the results and produce the

plots. This benchmarking and evaluation environment is avail-

able at https://github.com/CamillaOkkels/dbscan-benchmark.

Competitors. We compare the proposed implementation (re-

ferred to as SRR in the following) to the following baselines: (i)

sklearn’s DBSCAN
3
, (ii) TPEDBSCAN [46], and (iii) SNGDB-

SCAN [34]. We do not include the projection-based method

from [43] because [49] ruled out its scalability even on small

high-dimensional datasets. The former is one of the most widely

used implementations which speeds up range queries using a

tree index data structure and has been shown [41] to be one of

the fastest implementations of DBSCAN. The latter two have

been described in Section 2 and present the state-of-the-art for

grid- and sampling-based approaches. There are no parameters

to set for (i) and (ii), and both are exact. For (iii), the user has to

manually set the sampling probability and we used the values

{0.01, 0.05, 0.1, 0.2}. We will refer to the competitors as follows:

(i) SKL, (ii) TPE, and (iii) SNG. To cope with high-dimensional

datasets, we developed our own exact baseline based on the pop-

ular FAISS library [21], which provides efficient exact nearest

neighbor search with high level of parallelism.
4

We include IP.LSH [36] in the evaluation, but for the lack

of theoretical guarantees omit its results in the head-to-head

comparison. A detailed overview of the clustering quality and its

running time is provided in Section 6.2.

We do not compare directly to the recent paper by Xu and

Pham [49] since they work on inner product spaces and solve

other metric spaces by first embedding—distorting the distance—

while we are interested in the comparison to DBSCAN in Eu-

clidean space.We remark that they achieve faster clustering times

but lack worst-case guarantees, which is a focus of this paper.

Methodology.We follow themethodology of Schubert et al. [44].

For each dataset, a single minPts value is fixed. Each implemen-

tation is run on a collection of 𝜀 values that cover the range from

“all points are noise” to “all points belong to a single cluster.” As

noted in [44] different implementations have different trade-offs

regarding the density of the datasets and only testing a wide

range of 𝜀 values gives an overview of the overall performance

of an implementation.

Quality and performance metrics. As quality metric, we mea-

sure the adjusted Rand index (ARI) [31] of the clustering returned

by our algorithm given an exact DBSCAN ground-truth clus-

tering. Values close to 0 (1) indicate a poor (strong) agreement

between both solutions. As performance metric, we record the

total time needed to cluster the data given some (𝜀,minPts) com-

bination.

Objectives of the experiment. Our experiments are tailored to

answer the following questions.

(Q1) How is the overall running time of the proposed algorithm

influenced by the clustering structure of the dataset?

(Q2) How does the overall running time perform in comparison

to other existing baselines?

(Q3) What is the clustering quality w.r.t. exact DBSCAN results

in practice?

(Q4) How does the proposed multi-level data structure adapt

to different choices of 𝜀?

3
https://scikit-learn.org/stable/modules/clustering.html

4
Weused their exact indexwith a bruteforce search as the basic search data structure.

In the first step, we search for the minPts-nearest neighbors to decide whether a
point is a core point. Next, we carry out the brute-force search only on core points

to find a value 𝐾 such that the 𝐾 -th nearest neighbor of each core point is at most

at distance 𝜀 , starting from the guess 𝐾 = minPts and doubling in each step. Based

on these neighborhoods, we merge labels and assign border points in a final step.
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Figure 5: Normalized running times with 𝛿 = 0.1; 𝑥-axis:

normalized 𝜀 value using (𝜀 − 𝜀min)/(𝜀max − 𝜀min); 𝑦-axis:
Running time in seconds normalized by 𝑛 · 𝑑 .

(a) ALOI

(b)MNIST

Figure 6: Clustering structure and running time for 𝛿 = 0.1.

(Q5) How does the approximation factor 𝑐 influence the run-

ning time and result quality?

6.1 Experimental Results

Running time results (Q1 & Q2). Figure 5 summarizes the run-

ning time results for running our implementation for 𝛿 = 0.1

across all different choices of datasets and 𝜀-values. Because of

the dataset diversity regarding their dimensionality 𝑑 and their

size 𝑛, the running times are scaled by 𝑑 · 𝑛. This normalizes

running times to reflect the amount of distance comparisons

that have been carried out by the implementation to find the

clustering. To account for different distance distributions in the

dataset, 𝜀 values are scaled between the minimum and maxi-

mum value. From the plot we see that higher dimensionality of

the dataset does not increase the difficulty of finding the clus-

tering, with no more than a factor 10 difference in normalized

running time despite the diversity of tested datasets. Across all

datasets, the low-dimensional datasets Pamap2 and Household

take the longest normalized time to obtain a clustering. Each

dataset comes with its own characteristic peak, which poses the

question for the relation between the clustering structure and

the measured running time (Q1).

Table 2: Results of running time experiments. If method is

not exact, fastest configuration with ARI at least .7 is dis-

played. “—𝐻𝐷”: dimensionality too high to run implementa-

tion. This error is due to a safeguard in the implementation

of TPE that restricts the dimension of the input;—𝑇 /—𝑀 :

10 hours or 100 GB RAM exceeded respectively. (
∗
) means

no baseline (𝛿 = 0.1 for SRR is reported). |C |: number of

clusters.

𝜀 |C | Time [s]

SRR SNG TPE FAISS SKL

A
l
o
i

0.0008 2 0.37 1.95 —𝐻𝐷 21.75 7.69

0.01 243 0.47 0.46 —𝐻𝐷 300.02 12.84

0.1 2 1.44 1.4 —𝐻𝐷 173.44 49.88

C
e
l
e
b
a 1.0 2291 4.35 15.91 —𝐻𝐷 323.04 4369.7

1.6 51 7.71 18.37 —𝐻𝐷 1078.9 4727.9

4.0 1 5.85 43.83 —𝐻𝐷 1616.0 —𝑀

C
e
n
s
u
s 0.03 37 21.12 23.4 —𝐻𝐷 3768.1 —𝑇

1.0 1816 30.96 93.78 —𝐻𝐷 6357.3 —𝑇

8.0 2 62.36 772.88 —𝐻𝐷 11823 —𝑀

G
i
s
t

0.3* 794 486.6 1205.0 —𝐻𝐷 —𝑇 —𝑇

j 1.3* 27 3367 8224.89 —𝐻𝐷 —𝑇 —𝑇

6.0* 1 625.7 15627 —𝐻𝐷 —𝑇 —𝑀
G
l
o
v
e 2.0 8 176.14 1064.84 —𝐻𝐷 7433.47 —𝑇

5.0* 11 165.9 2036.14 —𝐻𝐷 —𝑇 —𝑇

20.0 1 99.22 4282.37 —𝐻𝐷 18487 —𝑀

M
n
i
s
t 1000 2 14.41 13.64 —𝐻𝐷 197.51 3201.3

1600 7 30.49 20.05 —𝐻𝐷 683.1 3225.7

4000 1 25.2 42.69 —𝐻𝐷 492.7 2946.9

H
o
u
s
e
h
o
l
d

0.5 69 56.19 —𝑀 1.13 —𝑇 —𝑀

1.0 63 49.43 —𝑀 1.43 —𝑇 —𝑀

500 1 24.24 —𝑀 0.64 15609 —𝑀

P
a
m
a
p
2

0.5 276 15.37 —𝑀 1.6 13095 183.86

3.0 275 80.16 1657.3 1.49 —𝑇 319.85

30.0 3 29.96 3572.3 1.11 —𝑇 —𝑀

Table 3: ARI for different epsilon and failure probabilities.

𝛿
𝜀 = 0.0008 𝜀 = 0.01 𝜀 = 0.1

T [s] ARI T [s] ARI T [s] ARI

0.01 0.89 0.9423 1.8 0.9569 2.88 1.0

0.1 0.58 0.9444 0.83 0.9553 2.04 1.0

0.5 0.48 0.9374 0.47 0.9185 1.44 0.9124

0.9 0.37 0.9243 0.44 0.6455 1.04 0.0084

(a) Aloi

𝛿
𝜀 = 1000 𝜀 = 1600 𝜀 = 4000

T [s] ARI T [s] ARI T [s] ARI

0.01 36.11 0.9938 43.4 0.9749 25.2 1.0

0.1 20.82 0.9944 30.49 0.8866 29.22 1.0

0.5 14.41 0.9819 17.62 0.5472 14.77 0.0

0.9 10.34 0.6297 13.9 0.0372 13.49 0.0

(b)Mnist

Figure 6 relates the empirical running time to the clustering

structure for two datasetsAloi (medium-dimensional) andMnist

(high-dimensional). We observe distinct phases in the running

time for increasing 𝜀-values: When all points are noise (small

relative 𝜀), the algorithm has to check each bucket until it con-

firms that the point is not a core point. In this case, buckets on

deeper levels are small since the area is not dense. No work has
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Figure 7: Influence of 𝜀 on algorithm steps for failure prob-

ability 𝛿 = 0.1.

to be carried out in the merging step. In the other extreme when

all points are core points (large relative 𝜀), it is likely that all

points hash into the same bucket, i.e., points will immediately be

confirmed as core points; the merging step can merge all points

into one cluster based on a single data point as center. The task is

most difficult to solve in the setting where clusters have emerged,

but they do not all belong to the same clustering yet. The trends

observed on these datasets translate to the trends observed in all

datasets.

Table 2 compares the running time achieved by our solution to

the other baselines, answering (Q2). We make the following ob-

servations. As noticed by other authors as well [49], the popular

sklearn DBSCAN implementation fails to find a clustering within

reasonable memory and time limits. For all datasets except Aloi

and Mnist, it fails for some or all 𝜀 values, both in terms of

running time (e.g., Census) or memory (e.g., Pamap2). For the

low-dimensional datasetsHousehold and Pamap2, TPEDBSCAN

provides the most efficient solution. It finds the clustering in a

few seconds for all parameter choices; our implementation takes

a second place and finds all clusterings within a minute. All other

competitors are slower and fail for some 𝜀 values because of ex-

ceeding the time restriction (FAISS) or using too much memory

(SNGDBSCAN and SKLEARN). TPEDBSCAN is only useful for

low-dimensional datasets.

For medium-sized datasets such as Aloi, Celeba, and MNIST,

our implementation and SNGDBSCAN perform best. For high-

dimensional and million-sized datasets, only our implementation

and SNGDBSCAN finds a clustering within the time and memory

restrictions, and our implementation is between 2.4x and 40x

faster at finding the clusters. Over all datasets and 𝜀 values, for all

but GIST the clustering is found in less than 4 minutes. All other

baselines cannot reliably find a clustering within 150x this time

limit (exceeding 10 hours) or 10x the allowed space (exceeding

100GB RAM).

Influence of 𝛿 on clustering quality (Q3). Table 3 showcases the
influence of changing 𝛿 in our implementation for the datasets

Aloi and Mnist, again representing the spectrum of different

dataset dimensionality. Recall from Lemma 4.2 that smaller 𝛿

increases the repetition count on each level. Fixing an 𝜀 value,

increasing 𝛿—as expected—improves the running time at cost of

lower cluster quality. A 𝛿-value of .5 (50% chance ofmisclassifying

a core point on worst-case input) does not affect the ARI score

by much on Aloi, but greatly decreases the clustering quality for

Mnist. Since there is no big loss in performance in choosing a

small 𝛿-value (running times increased by not more than a factor

of 4), these values provide much better result quality at little cost.

Influence of density parameter 𝜀 on multi-level data structure
(Q4). Figure 7 visualizes the contribution of the different algorith-

mic subroutines (index building, core point identification, cluster

Figure 8: Work per level on Pamap2 for 𝜀 ∈ {3, 7, 30} and
𝛿 = 0.1. The 𝑦-axis represents the fraction of points that

collide with a point, averaged over all dataset points. Note

that the 𝑦-axis is log-scaled.

merging) to the total running time on Pamap2 for increasing 𝜀

values.
5
When clusters emerge (𝜀 increasing from 0.3 to 7), the

time to classify core points is first increasing until 𝜀 = 3. The

running time of finding the clustering is maximal for this value,

and this can be contributed largely to the core point identification

step. For larger 𝜀, the contribution of this step decreases since it

is easier to verify that a point has at least minPts neighbors. In
contrast to core point identification, the merging step does not

take a significant share of the total running time.

We now focus on the level that is chosen by the proposed data

structure. Figure 8 shows the work per level for three different 𝜀

values from the discussion above, i.e., the value𝜔𝑘 in Algorithm 2.

Again, the distinct density regions of the clustering have a large

influence on the multi-level data structure. For 𝜀 = 3, clusters

have emerged but points can be well-separated on deeper levels

in the data structures such as 𝐾 = 15, where only 0.01% of data

points are going to be inspected on average to classify a point.

For larger values of 𝜀, the hash function puts more points into

the same bucket which allows for quick validation of core points.

A lower value of 𝐾 is chosen in such a case. For example, for

𝜀 = 7 and 𝐾 = 9, each point collides with roughly 1% of the data

points. Setting these numbers in relation to Figure 7, the core

point classification takes less time in that case as for 𝐾 = 15 for

the 𝜀 = 3.

Influence of approximation factor (Q5). For the following ex-

periment we vary the approximation factor 𝑐 of SRR (cf. Line 6

in Algorithm 3). For space reasons, we focus on the ALOI and

MNIST dataset. As parameters, we choose 𝑐∈{1.0, 1.1, 1.5, 2.0}
and 𝛿 = 0.1. From the definition of an approximate DBSCAN*

clustering in Section 3, we expect more points to be identified

as core points. The impact on running time is less obvious. In

the theoretical derivation of the upper bound, cf. Theorem 4.3, a

larger 𝑐 value decreases the running time. Of course, this upper

bound is on worst-case input, so a higher approximation may

very well lead to a higher running time on real-world datasets.

In particular, the processing of the greater number of core points

may be more time consuming. An unlucky distribution of core

points in the buckets and a large number of emerging clusters

could make the merging step more inefficient with more points.

Figure 9 shows the running time as a function of 𝜀 for different

approximation factors 𝑐 . For ALOI, there is little to be gained by

changing the approximation factor. For MNIST, the running time

improved with the approximation factor for almost all values of

𝜀.

Figure 10 illustrates the ARI score of SRR as a function of 𝜀

for different approximation factors 𝑐 . As expected, the overall

5
The same trends hold for other datasets, but they are most pronounced for Pamap2.
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(a) ALOI

(b) MNIST

Figure 9: Running time as a function of 𝜀 for the ALOI and

PAMAP2 datasets for different values of c.

(a) ALOI

(b) MNIST

Figure 10: ARI score as a function of 𝜀 for the ALOI and

PAMAP2 datasets for different approximation factors 𝑐.

quality decreases as the approximation increases. An exception

is for MNIST, for which a value of 𝑐 = 1.1 is actually better for

𝜀 ≥ 1500.

To summarize, we do not observe a big improvement in run-

ning time that would compensate for the loss in quality. We thus

recommend to use SRR with 𝑐 = 1.

6.2 Comparison to IP.LSH.DBSCAN

In this section we compare our work empirically to the recently

suggested IP.LSH method by Keramatian et al. [36].

Overview. Given parameters𝑀 and 𝐿 provided by the user (in

addition to the DBSCAN parameters), IP.LSH builds an index for

the dataset 𝑆 that consists of 𝐿 repetitions. In each repetition,𝑀

hash functions are concatenated and each point in 𝑆 is stored in

the bucket identified by the 𝑀-tuple of individual hash values.

(a) PAMAP2

(b) MNIST

Figure 11: ARI score for different parameter choices (𝐿,𝑀)

for IP.LSH.DBSCAN vs SRRDBSCAN.

This is comparable to building a single level in our data structure

with a fixed repetition count that is not adjusted automatically

to the DBSCAN parameters in combination with the used LSH

family.

To identify core points, each bucket that contains at least

minPts many points is checked. The medoid 𝑥∗ of the points

is calculated (the data point closes to the average point of all

points that collide in the bucket). This point is marked as a core

point if at least minPts points are at distance 𝜀 in the bucket. All

these points at distance at most 𝜀 are marked as belonging to the

same cluster as 𝑥∗. In a second phase, all buckets whose medoid

is a core point are inspected again, and distance calculations to

other points in the bucket marked as core points, i.e., core points

identified in other buckets, are carried out. If two points are at

distance at most 𝜀, they share a cluster label. As in our implemen-

tation, a union-find data structure is employed to keep track of

the cluster labeling.

Differences. From a running time perspective, the IP.LSH heuris-

tic alleviates the quadratic time barrier in each bucket; if our

implementation and the implementation of IP.LSH would end up

using the same level and repetition count, IP.LSH would carry

out much less work. However, this improvement comes with

great uncertainty about the produced clustering: As stated in [36,

Lemma 2], the probability of correctly identifying a core point

is extremely low for IP.LSH. This is because it only identifies a

single potential point as core point in each bucket. Moreover, for

chains of density-reachable core points to get merged into the

same cluster, these core points have to be chosen in other buckets
to be taken into consideration.

Experimental comparison. To confirm whether the uncertainty

about the clustering quality can also be observed in practice, we

carry out an experimental evaluation using the code provided

with [36]. We note that our quality results cannot be compared

to [36]: the evaluation provided there focused on the quality of

the clustering in terms of predicting known class labels, while

we compare to the exact (𝜀,minPts)-DBSCAN clustering for a

diverse range of density parameters 𝜀.
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For the experiment, we vary𝐿 ∈ {10, 20, 40} and𝑀 ∈ {5, 10, 15}.
We report on the results forMnist and Pamap2. As we can see

from Figure 11, the quality of the resulting clustering varies

widely across datasets and 𝜀 values. For 𝑀 equal to 5 and the

Mnist dataset, the ARI score is high only for very small den-

sity values (almost all points are noise) or very large values (all

points belong to the same cluster). In between these values, the

quality drops to almost 0. Varying the repetition count 𝐿 does

not alleviate this problem. For𝑀 = 15 (Figure 11(b)), not enough

points collide so core points are never identified and the resulting

quality is low.

The trend on the Pamap2 dataset is slightly different. It starts

at 0 for low values of 𝜀 (note that at 𝜀 = 0.1, the Pamap2 dataset

actually does have clusters) after which it increases to a local

maximum, drops again and then finally increases to 1. Pamap2

has many points, so the local maximum can be explained by the

fact that clusters are dense, so there are more chances to find the

necessary points to form them. When increasing 𝜀, at some point

the clusters that emerged are merged together. This too can be

dependent on a single core point being identified. This might be

an explanation for the drop we observe around 𝜀 = 1.5 to 𝜀 = 5.

In terms of the measured running time, the slowest cluster-
ing time achieved by IP.LSH on MNIST was 1.5s. In comparison,

the fastest time for SRRDBSCAN of all values of 𝜀 with 𝛿 = 0.1

was 20.8s. Similarly, while SRRDBSCAN was faster than certain

parameter settings of IP.LSH on PAMAP2 for some values of

epsilon, the fastest average running time of IP.LSH over all val-

ues of epsilon of all parameter settings on PAMAP2 was 2.59s

compared an average running time of 48.3s over all 𝜀 for SRRDB-

SCAN with 𝛿 = 0.1. IP.LSH finds a clustering much faster, but

this has to be seen under the light that the quality with respect

to the baseline DBSCAN is unreliable. The comparison is made

between the 𝛿 = 0.1 run of SRRDBSCAN and the fastest run

across the different parameter settings of IP.LSH. As we can see

from Tables 3a and 3b, SRRDBSCAN achieves decent quality for

all values of epsilon in this setting, whereas the quality of the

IP.LSH results is much more inconsistent.

7 CONCLUSION

In this paper we presented SRRDBSCAN, an LSH-based DBSCAN

implementation with strong theoretical guarantees on running

time and result quality. Through an extensive empirical evalua-

tion, we showed that our implementation provides robust clus-

terings where other baselines fail because of problems that stem

from the curse of dimensionality (exceeding generous running

time bounds), too high memory footprint, or too bad clustering

quality.

As future work, it would be interesting to apply our methods

for finding hierarchical clusterings such as HDBSCAN [14]. An-

other interesting research agenda would explore the combination

of a sampling-based approach such as [34] with LSH.
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