
E�icient Multicore Discovery of Small, High-�ality :-Plex
Teams in Multi-a�ributed Networks

Parisa Esmaeilian Ghahroudi

Department of Computer Science

Victoria, Canada

parisaesmaeilian@uvic.ca

Sean Chester

Department of Computer Science

Victoria, Canada

schester@uvic.ca

Alex Thomo

Department of Computer Science

Victoria, Canada

thomo@uvic.ca

ABSTRACT

Traditional community search identi�es subgraphs as important

because they maximise structural properties like cohesion or size.

However, many real-world graphs additionally describe vertices

withmultiple properties. For thesemulti-attributed networks, one

can instead maximise the vertex properties subject to a subgraph

cohesion threshold, thereby �nding high-quality teams composed

of strong individuals per characteristics of user-de�ned relevance.

This work makes three complementary but orthogonal ad-

vances. First, it introduces a novel group skyline model that can

compare social teams that have di�erent sizes and di�erent mem-

ber specialisations. Second, it generalises algorithms for listing

small cliques to quasi-cliques using a cousins-�rst search strategy

that improves asymptotic complexity. Finally, we illustrate a pre-

viously unknown challenge that arises from composing selection,

grouping, and skyline operators. This informs our integration of

our subgraph listing method within a robust multicore skyline

framework. Compared to the state-of-the-art—which can only

handle cliques—and our semaphore-based parallelisation of it, we

demonstrate up to a 47.9× improvement with our more general

algorithm when using a single core and 950.9× with 48 cores.

1 INTRODUCTION

Recently, there has been a lot of interest in identifying com-

munities in graphs that are maximal in terms of their vertex

attributes [1, 20, 26, 28–30, 46, 49, 50]. Compared to traditional

community search, which focuses only on structural properties,

considering the attributes on vertices as well opens up a lot

of new applications, such as comparing potential teams based

on quantitative metrics rather than just on their social cohe-

sion [28, 29, 49]. However, despite this wide research interest, a

number of serious challenges remain: a) modelling group “domi-

nance” can bias against diversity and require �xed team sizes; b)

listing small teams in large networks requires arti�cially high co-

hesion thresholds; c) the e�ects of composing selection, grouping,

and skyline operators are not well understood; and d) scaling up

skyline community search misses opportunities for parallelism.

Modelling challenge The �rst challenge is simply how to

compare groups in social networks where everyone is described

by multiple attributes. The example in Figure 1 embeds a graph

with six vertices into 2d space based on their vertex attributes: the

nodes represent, say, employees in a company who should form

pods for a project; the edges represent some notion of a�nity,

such as having worked together before; and the spatial axes

plot each employee’s pro�ciency in relevant skills, say, C# and

NodeJS. How could we tell which groups are likely to be the most

successful, considering both raw skill and team cohesion?

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the

28th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Size-3 0-plex dominated in Min model [29]

Size-3 0-plex returned by models [29, 49]

Representative point for circle community

Representative point for diamond community

Figure 1: Illustration of community search in multi-

attributed networks. The vertices of a toy graph are plotted

in the plane. Vertices represent employees, spatial coordi-

nates represent, say, skill level in C# and NodeJS, and edges

between vertices represent prior collaboration. A :-plex

team is one in which nobody has more than : new team-

mates and we want to �nd the “most skilled” such teams.

Zhang et al. [49] use the notion of group dominance [33] from

the skyline literature. (We call this model Permute). In this model,

a group is better than another group if one can construct some

one-to-one mapping between them such that each member of

the better group is paired with a distinct member of the domi-

nated group who is equal or weaker on every attribute. Aside

from being expensive to compute and a very high threshold to

declare that one group is superior, this model is constrained to

comparing groups of a preset size. This fundamentally limits

which graph communities can be compared and therefore also

which structural cohesion thresholds can be applied.

Li et al. [29] address this by instead applying amin-aggregation

across the group independently to each attribute, thereby casting

groups of arbitrary size into points of a �xed dimension. They

can then be compared with a standard max-skyline operator.

(We call this model Min). However, this “worst-case analysis”

penalises diversity: if two people have di�erent, complementary

skills, the Min model evaluates the partnership according to the

skill that each person does not have and ignores the strengths that
they bring. Such a partnership would be represented by a weak

aggregate point close to the origin, even though the partnership

has excellent complementarity. The model favours groups of

mediocrity in which nobody is especially bad at anything.

This work relaxes group dominance to allow a member of

one group to “dominate” many others in another group. If the

group dominance of [33] can be viewed as ensuring that you

cannot replace every member of a group with a better choice,

we propose that a group is not dominated if it has somebody
who is irreplaceable. This model captures the strengths of both

earlier models—an ability to compare any two arbitrary groups

without sacri�cing diversity. We also introduce a novel strategy

of composing �ne-grained models to elicit speci�c traits.

In Figure 1, we try to �nd the best 3-cliques. TheMinmodel [29]

prefers the clearly worse red group because the green one has a

C# developer who is unskilled in NodeJS and vice versa. Mean-

while, our proposed model and the Permutemodel [33] return the

better green group, but the Permute model only works because

we know in advance that the team size should be exactly three.

Series ISSN: 2367-2005 681 10.48786/edbt.2025.55

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.55

We compare the model properties more thoroughly in Sec-

tion 2. Later, in Section 5, we demonstrate with a case study on

a real multi-attributed coauthorship network that our proposed

model can retrieve the most intuitive, variable-size co-author

clusters, while Min misses obvious powerhouse research clusters

and Permute has low selectivity and cannot adapt to this scenario

in which one of the top groups has more researchers than the

other top group.

Listing small teams The second challenge arises when an ap-

plication calls for small teams, the number of which can explode

combinatorially.

0 1 2

10
1

10
3

10
5

10
7

10
9

3 7
25

:

#
C
o
m
m
u
n
i
t
i
e
s

The plot to the right pre-

views Figure 6b from our ex-

periments using the Amazon

dataset, a real graph with more

than 3 million edges. It com-

pares our model’s output size

(the dashed line) to the num-

ber of �ve-member teams (the

solid line) as the cohesion

threshold, : , is relaxed (i.e., in-

creased). With tens to hundreds of millions of communities to

inspect, just listing them requires a very e�cient algorithm.

Zhang et al. [49] partially resolve this by only permitting

teams that are cliques (: = 0 in the plot above). One can then

use the clique listing algorithm of Danisch et al. [13]. However,

requiring teams to be cliques limits this discovery problem to

already-connected people; it does not promote new collabora-

tions. The restrictiveness of this is illustrated in our case study

on coauthorship networks (Section 6), where only one research

cluster returned is a clique. We want to relax the clique constraint

while still being able to list candidate communities e�ciently.

A natural choice is to identify :-plex teams of size 6. Those

are close to 6-cliques, except that each member is not connected

to up to : others [41] (the G-axis in the plot above). For example,

in Figure 1, the two 3-cliques are also 0-plexes of size 6 = 3. Also,

the green employees and the two upper red employees in Figure 1

form a 2-plex of size 5: everyone has already worked successfully

with at least half of the other team members before. Although

it substantially increases the search space, we prefer to consider

such teams as well.

Earlier community search problems, e.g., [11, 32, 42, 47], iden-

tify maximal communities and can be discovered e�ciently with

branch-and-bound style techniques [10, 12, 34, 52], which are

adopted by Li et al. [29]. However, they are not optimised for

small teams. Our algorithm is based on a counter-intuitive itera-

tion strategy that focuses �rst on vertices that are not neighbours,
leading to a better asymptotic worst case time complexity in the

bulk synchronous parallel (BSP) model of computation. This fur-

thermore facilitates multi-threading.

Scalability challenge The third major challenge is that calcu-

lating skylines over exponentially many small communities is too

expensive. Naively listing all :-plexes and then comparing them

to each other is impractical. As already noted in the plot above,

there are half a dozen orders of magnitude di�erence between

the number of candidate teams and those that should be output.

Prior algorithms can take hours on relatively small datasets,

which makes this problem unsuitable to interactive contexts.

This problem is exacerbated by the fact that naively applying

heuristics used in group skyline computation do not immediately

work for graphs, where there are constraints on which nodes

can form acceptable groups, as we will show in Section 4. In fact,

this unrecognised challenge would be true in any context where

group skyline computation is composed with selection.

To improve performance, we interleave skyline calculation

into our e�cient, parallel :-plex listing algorithm, using the

synchronisation ideas from Chester et al. [7] and graph-speci�c

ordering techniques that are robust to the theoretical challenges

just noted.

Run sequentially on large

datasets, our proposed algo-

rithm, PSKPlex, achieves speedups

up to 47.9× over our own op-

timisations to the state-of-the-

art baseline [49], and up to

950.9× when running in par-

allel on 48 cores. On many

problem instances, the baseline

runs in several hours while our

multi-threaded version runs in

a minute or two.

Contributions and outline In this work, we make three

orthogonal contributions to improve community search on multi-

attributed networks. Namely, we introduce:

• A General model of group dominance that can be used

to compare any two communities of any size without

penalising collaborations among specialists (Section 2).

• A novel method to list �xed-sized connected :-plexes

based on a counter-intuitive cousins-�rst-search strategy,

demonstrating an asymptotic improvement in BSP (Sec-

tion 3).

• A counter-example to show how existing group skyline

algorithms can fail when composed with selection predi-

cates. Moreover, the �rst algorithm to list skyline :-plexes,

which achieves up to 950.9× speedup against our paralleli-
sation and optimisation to the state-of-the-art for cliques

(Section 4).

2 PROBLEM MODELLING & BACKGROUND

2.1 De�ning teams

We assume a simple, undirected, graph, � = (+ , �), where + is

the set of vertices and � is the set of edges, with vertex-labelling

function ! : + → R3 . When 3 > 1, we call this a multi-attributed
network, because there is more than one attribute assigned to

each vertex. Figure 2 illustrates an example with the graph con-

nectivity, �, rendered independently from the vertex labels, !. As

described soon, the vertex labels can originate from any domain

over which a partial order can be constructed, but our examples

will generally consider them to be measurements of quality.

The goal is to �nd the best teams (a.k.a., sub-communities)

within a multi-attributed network. A subset of vertices+ ′ ⊆ + is

a team if the subgraph induced on them, �+ ′ = (+ ′, �′, !), �′ =
{4 = (D, E) : 4 ∈ � ∧ {D, E} ⊆ + ′}, meets a prede�ned cohesion

threshold that is speci�ed in terms of the subgraph structure. In

many cases, and throughout this paper, this is de�ned in terms

of the degree of each node E , XE , though one could incorporate

other notions of cohesion.

Zhang et al. [49] search for the best cliqueswhose size is a small,

user-speci�ed constant, 6. In other words, teams are subgraphs

for which |+ ′ | = 6 and ∀E ∈ + ′, XE = 6 − 1. The clique constraint
is too restrictive for most applications; so, quasi-cliques relax

682

(a) Simple, undirected graph,� = (+ , �) (b) Vertex-labelling function, !

Figure 2: An example multi-attributed network, � = (+ , �, !)

how many edges must exist for a graph to be considered “clique-

like.” We focus on a natural generalisation, called a :-plex [41], in

which each vertex of the quasi-clique can lack up to : edges. Note

that our graphs are simple: i.e., self-loops are not permitted and

not counted as potential connections. Thus, a clique is a 0-plex.

De�nition 2.1 (:-plex [41]). A :-plex is a graph � = (+ , �) in
which ∀E ∈ + , XE ≥ |+ | − : − 1.

Following most research on maximal :-plexes, we exploit the

property that if 6 ≥ 2: + 1, then every :-plex is connected [41].

Intuitively, a :-plex with disjoint components is not really a

“team.” By assuming in this work that 6 ≥ 2: + 1, we thereby
assume that each vertex is linked to at least half of the others.

In Figure 2, the teams {?2, ?3, ?4} and {?2, ?3, ?4, ?5} are 0-

plexes of size 3 and 4, respectively (i.e., a 3-clique and a 4-clique).

The teams {?1, ?3, ?4, ?5} and {?6, ?7, ?8, ?9} are 1-plexes with
6 = 4 and the team {?1, ?2, ?3, ?4, ?5} is a 2-plex with 6 = 5. The

0- and 1-plexes are also 2-plexes. We want the ability to compare

all of these teams, rather than restricting ourselves to cliques

with �xed size 6,1 leading us to the new model described below.

2.2 Comparing teams

To compare cohesive teams, we use the vertex labels, as in [26,

29, 30, 49, 50]. If the labels are non-numeric, we assume they

have been mapped to an ordinal domain (i.e., partitioned into

equivalence classes). For example, conferences can be mapped

onto the set {0,1,2} based on whether they are low-, medium-,

or high-impact; and the CVs of job applicants can be mapped

to a discrete multi-point scale for each criterion based on how

competitive they are. For cardinal attributes, like paper citations,

a mapping is not required.

It is easy to decide whether a vertex is better than another

w.r.t. a single attribute. However, comparing teams with multiple

members and multiple attributes is not straightforward. This

di�culty is compounded if any of the attributes are not cardinal

and therefore cannot be meaningfully ranked by linear functions.

In such scenarios, it is natural to search the pareto frontier, i.e.,

use the skyline operator, brie�y reviewed below. This addresses

the multi-variate and ordinal domain challenges, but it is not clear

how to compare entire teams, especially those with di�erent sizes.

To recall, the skyline is the set of non-dominated points.

De�nition 2.2 (Point Dominance [2, 24]). Given two points that

are not coincident, D and E , in R3 , where D8 denotes the value of
the 8’th attribute of D, we say D dominates E , denoted by D � E ,
i� D8 ≥ E8 for all 8 ∈ [1, 3], i.e., there is no attribute on which E is

better.

1
For the algorithmic development later, we will assume a �xed size 6 to facilitate

e�cient listing on large graphs, but we want a model that is not constrained in this

way and that can be used in the �exible way that we demonstrate in our case study.

In the cases that all attributes are total orders (called distinct
value condition) or the input points are a set, the distinctness

check (that D ≠ E) is not required [7]. While Zhang et al. [49]

implicitly make this assumption, repeated values and coincident

points in our case study compel us to handle the general case,

which will introduce more challenges to our algorithms later.

Thus, we also use D � E to denote that either D dominates E or

they are coincident.

De�nition 2.3 (Skyline [2]). Given a multiset of points % , the

skyline multiset of % is (. (%) = {D : D ∈ % ∧ �E ∈ %, E � D}.

Example 2.4. In Figure 2, (. (%) = {?7}. Every other point

is dominated by ?7 as it is not coincident to ?7 and has neither a

larger G-value nor ~-value.

If we construct % ′ by mirroring % about the line ~ = −G , say
by subtracting every attribute value from 100, then (. (% ′) =
{?1, ?6}. Every other point is dominated by ?1, ?6, or both.

Considering teams, it is not obvious how to generalise these

de�nitions from multisets of points to multi-attributed graphs.

We recap existing de�nitions for general groups of points. The

�rst model, Permute, applies dominance recursively.

De�nition 2.5. (Group-based skyline [33]) For groups� and� ′

of6 points inR3 , we say that� dominates� ′, denoted� �Permute
� ′, i� there exists a permutation �̂ =

〈
�̂ [1], . . . , �̂ [6]

〉
of� such

that:

6∧
8=1

�̂ [8] �Permute �
′ [8] and

6∨
8=1

�̂ [8] ≠ � ′ [8] .

Stated simply, points D in G and points E in G’ are mapped

one-to-one such that D � E ; also, distinctness must be checked.

The model clearly requires groups to be the same size. Moreover,

it has been criticised by Zhu et al. [53] for being prohibitively

unselective.

Example 2.6. In Figure 2, {?2, ?3, ?4, ?5} � {?1, ?2, ?3, ?4}.We

can construct a one-to-one mapping from elements of the �rst

group onto elements of the second group

{(?2, ?2), (?3, ?3), (?4, ?4), (?5, ?1)}. For all pairs,

the left element is either coincident to or dominates the

right element; moreover, the last pair is not coincident.

Neither group can be compared to {?2, ?3, ?4} nor
{?1, ?2, ?3, ?4, ?5}.

p2

p3

p4

p5 p4

p3

p2

p1

An alternative approach is to aggregate each attribute inde-

pendently, then apply De�nition 2.3 to the aggregate points.

De�nition 2.7 (Skyline Groups [22, 25]). Consider two groups

� and � ′ of points in R3 and function 5 : R3 → R. Let � [8] be

683

Model Ordinal VariableSize Diverse Complexity

Avg [22, 25] Ø Ø $ (36)
Permute [49] Ø Ø $ ((√6 + 3)62) [49]

Min [29] Ø Ø $ (36)
General Ø Ø Ø $ (362)

Table 1: Comparison of group dominance models by key properties and asymptotic complexity

the 8’th point in the group and � [8] 9 be the 9 ’th attribute of that

point. We say that � dominates � ′ denoted � �58 � ′, i�:(
5
|� |
8=1

� [8]1, . . . , 5 |� |
8=1

� [8]3
)
�58

(
5
|� ′ |
8=1

� ′ [8]1, . . . , 5 |�
′ |

8=1
� ′ [8]3

)
.

Any functions 58 : R3 → R can presumably be used. We

di�erentiate Avg and Min as distinct models, particularly since

Min has been used for community discovery in multi-attributed

networks [29] and has di�erent trade-o�s that we compare soon.

Example 2.8. In Figure 2, group {?2, ?4, ?5} � {?6, ?7, ?8, ?9}
under Min. Each group is mapped to its worst value in each

dimension; so, we have (3, 30) � (3, 10). The excellent point ?7
does not make any contribution to the second group’s score.

Under Avg, these groups are instead mapped to (14/3, 120/3)
and (19/4, 190/4); thus, the dominance relationship is inverted.

The �rst group is discarded by just 1/12, however, which is a

margin that is smaller than the granularity of the domain of the

G attribute.

None of these models particularly suit comparing teams in

social networks. So, we introduce General, which relaxes Permute
from a one-to-one mapping to a one-to-many mapping.

De�nition 2.9 (Team dominance). For groups � and � ′ in R3 ,
� ≠ � ′, we say that � dominates � ′, denoted � �General � ′, i�:

∀E ∈ � ′ \�, ∃D ∈ � \� ′, D � E .
The multiset di�erence operator gracefully handles coincident

points by removing them in pairs from comparison. Like the prior

de�nitions, this relation is transitive, asymmetric, and irre�exive.

Example 2.10. In Figure 2, group {?1, ?3, ?4, ?5} � {?3, ?4, ?5}

p1

p3

p4

p5 p5

p4

p3

under the General model. After removing common el-

ements, the second group is empty. The model nat-

urally selects the �rst group. As another example,

60 = {?6, ?8, ?9} and 61 = {?1, ?2, ?3, ?4, ?5} are in-

comparable: no member of the �rst group is better on

the G-axis than ?5 and vice versa with respect to the

~-axis and ?8. However, by expanding 60 with ?7, we

see that 60 ∪ {?7} � 61.

2.3 Comparison of models

Here we compare the models in terms of three properties that

are desirable for comparing teams in multi-attributed networks.

• OrdinalMany graphs contain categorical attributes that

are di�cult to map onto cardinal values. Even numeric

attributes like price or rating might be better compared

in terms of equivalence classes than precise arithmetic as

many users are equally satis�ed with a 4.7- and a 4.8-rated

hotel. Only Avg cannot support this data type e�ectively.
• VariableSize For comparability to earlier work [49], we

focus algorithmically on �xed-size :-plexes. However, a

strong model should support a spectrum of de�nitions of

cohesion, such as comparing di�erent maximal :-plexes.

Only Permute cannot support variable team sizes.

• Diverse Constructing diverse teams means bringing to-

gether people with di�erent strengths. A strong model

should not be systematically biased against groups whose

team members have specialised skills. Only Min excludes
teams based on each member’s weakest skill, irrespective of
how well it is compensated by the rest of the team.

As Table 1 summarises, only General provides all of these
properties. Finally, we note that the aggregation models are the

fastest to evaluate. While Permute and General have compara-

ble worst-case complexities, the latter is a simple, vectorisable

nested loop whereas the former requires setting up and solving

a bipartite matching.

In Section 6, we perform a larger-scale comparison on a real

coauthorship network. Li et al. [25] also compare Min and Avg
on NBA and stock analysis datasets, though neither of these is

graph-based and Permute and General are not included in that

comparison.

2.3.1 Blending Models. Observe that three of the models have

complementary characteristics that one can blend to create cus-

tom, ensemble-like models. Avg favours teams with a high aver-

age pro�ciency; Min favours teams with high minimum quality;

and General favours teams with at least one high-performer.

One can compose these models to target those characteristics.

For example, by requiring that a group � is not dominated by

another group� ′ on either Avg or General, one constructs a more

selective output in which groups have average high pro�ciency

and at least one high-performer. On the other hand, by requiring

that a group � is dominated by both Min and General, one less
selectively constructs groups with high performers and/or mini-

mum qualities. Permute does not blend well because it already

returns huge supersets of what Avg and General return.

2.4 Team discovery problem statement

We can now state the succinct formal problem de�nition for the

algorithms in this paper. We want to �nd :-plexes of (small) size

6 that lie on the pareto frontier with respect to team dominance.

Problem De�nition. Given graph� = (+ , �), !, integers : and

6, 6 ≥ 2: + 1, output the non-dominated :-plex teams of size 6:

%:,6 (�) = {+ ′ ⊆ + : |+ ′ | = 6 ∧min

�+ ′
X (E) ≥ 6 − : − 1}

(. (�,:, 6) = {% ∈ %:,6 (�) | �% ′ ∈ %:,6 (�), % ′ � %}.

Example 2.11. In Figure 2, the size-4 1-plexes are %1,4 (�) =
{{?1, ?3, ?4, ?5}, {?1, ?2, ?3, ?5}, {?2, ?3, ?4, ?5}, {?6, ?7, ?8, ?9}}.
As the last one dominates others, (. (�, 1, 4) = {{?6, ?7, ?8, ?9}}.

3 PARALLEL LISTING OF SMALL :-PLEXES

Listing small :-plexes is a challenging, NP-hard, combinatorial

problem. If the input is the complete graph, the size of each :-plex

is �xed to 6, and = = |+ |, then there are =C6 :-plexes, though we

expect far fewer in sparse graphs, especially as 6 grows.

684

Great progress has been made on listing maximal :-plexes [4,

5, 10], but simply halting recursion early in those algorithms is

naive. Listing small 6-cliques can be done quite e�ciently [13],

but such algorithms rely on the property that every vertex in

a clique is a neighbour of every other vertex. This is the pre-

cise property relaxed by quasi-cliques and so is not available

algorithmically.

We give a novel algorithm, ListKPlexes (Algorithm 1), based

on a counter-intuitive cousins-�rst iteration strategy to reduce

asymptotic complexity and an iterative :-core repeeling heuristic.

3.1 Degeneracy-ordered, cousins-�rst search

Before presenting our algorithm, we �rst recount some well-

known results on clique and quasi-clique listing:

(1) The diameter of a :-plex is ≤ 2 if 6 ≥ 2: + 1 [41].
(2) If all edges in undirected graph � are oriented from the

lower to the higher degeneracy vertex (one in the :-core

for higher :), then the maximum out-degree, Δ, of the
oriented graph is equal to the degeneracy, V , of � [9].

Usually, V << Δ [17].

(3) Listing 6-cliques can be done in $ (6<V6−2 +<) time by

recursively expanding cliques and repeatedly intersecting

the neighbour lists of all vertices during that expansion.

The bound comes from the degeneracy ordering [13].

The following obvious but useful corollaries follow from (1):

Corollary 3.1. For a :-plex % of size 6, if 6 ≥ 2: + 1, then
all vertices E ∈ % have at most : cousins in % ; moreover, they are
incident to any vertex D ∈ % for which D is not a cousin.

Corollary 3.2. Given �xed size 6, every :-plex % is a subset of
the 2-hop neighbourhood of every vertex E ∈ % if 6 ≥ 2: + 1.

Using Corollary 3.2 is not as immediately helpful as it may

seem: even with degeneracy ordering, the 2-hop neighbourhood

of a vertex is bounded only bymin(= − 1,ΔV), not V2 as one may

hope. This is because one cannot obtain the 2-hop neighbourhood

just by following outgoing edges. Instead, maximal :-plex listing

algorithmswill keep track of potentially connected vertices. Thus,

halting a maximal :-plex algorithm like that of Conte et al [10] at

recursion depth 6 − 2 explores $ (<Δ6−2V6−2) combinations. It

also costs$ (6 logΔ) to con�rm that each combination is actually

a :-plex. This is much worse than the complexity in result (3)

above for cliques where one need never visit in-neighbours.

However, we can use Corollaries 3.1–3.2 to make this problem

more “clique-like.” If we expand groups with up to : cousins �rst,

then we know that the remaining vertices in the :-plex must

be neighbours of E , and we can thereafter only follow oriented

out-edges with a maximum degree of V . This reduces the search

space from ΔV to V for each slot and overall by a multiplicative

factor of $ (Δ6−:−1).
Cousins-�rst search is counter-intuitive, because in :-clique

listing, one iterates over neighbours in order to constrain search

early. But in fact, the principle is the same. If one begins by

obviously �ltering to a 2-hop neighbourhood, then expanding a

:-plex with a neighbour does not add any constraints, because

we cannot intersect the neighbour lists and we already knew the

cousins. Expanding with a cousin, however, constrains search

space by reducing the number of additional cousins that can be

added. Thus, it reduces the search space faster.

Given the fact that it is the number of cousins that are limited

in a :-plex, the cousins-�rst search optimises for small groups by

Algorithm 1 ListKPlexes(� = (+ , �), : , 6)
Precondition: nodes ordered by ↑ coreness
Precondition: neighbour lists � [8] ordered by ↓ node id

1: + ← CoreDecomp(G, 6 − : − 1) ⊲ Save bucket queue state

2: for E ∈ + in order do

3: �, # ← cousins (or [] if :-clique), neighbours of E

4: if |� | + |# | ≥ 6 then
5: PrefixKPlexes([E], [0],� + #, �, :, 6)
6: + ← CoreDecomp(� ′ = (+ \ {E}, �), 6 − : − 1)
7: function PrefixKPlexes(�,",+ , �, :, 6)

8: for E ∈ + in order do

9: # ← � ∩ � [E] ⊲ Neighbours of E in group �

10: if |� | − |# | ≤ : then

11: if |� | + 1 = 6 then emit � + [E]; continue
12: + ′, " ′ ← Trim(� \ #,+ , �, :)
13: if |� | + |+ ′ | + 1 ≥ 6 then
14: PrefixKPlexes(� + [E], " ′,+ ′, �, :, 6)
15: function Trim(",+ , �, :)

16: for E ∈ copy(+) do ⊲ Preserve iterator validity

17: Increment missed connections count for E in"

18: if M[v] = : then + ← + ∩ � [E]
return + ,"

reducing the search space as early in the recursion as possible,

since any :-plex-discovery algorithm must search cousins.

3.2 Listing k-plexes e�ciently

Algorithm 1 integrates cousins-�rst search with the iterative :-

core repeeling heuristic introduced independently in [18] and

[4, 5].
2
We �rst shrink � to the (6-:-1)-core and save the state

of the bucket queue BQ for reuse (Line 1). Then, for each vertex

E ∈ + in ascending coreness (Line 2), we recursively enumerate :-

plexes in which E is the vertex with lowest id, i.e., lowest coreness

(Lines 3–5). Finally, peeling resumes by removing E from BQ and

decrementing the degrees of its neighbours.

The search for :-plexes involving E �rst reduces the input to

the remaining 2-hop neighbourhood of E in the (6-:-1)-core, then

performs cousins-�rst search. Consequently, we search at most

$ (=Δ:V6−:−1) combinations, leading to the complexity below.

Theorem 3.3. With degeneracy-oriented edges and 6 ≥ 2: + 1,
%:,6 (�) can be computed in $ (=6Δ:+1V6−1 +<) time.

Proof. For each of the = vertices in + , there are $ (Δ:V6−1)
combinations of vertices that involve at most : cousins. For each

of these combinations, there is $ (6Δ + 62 + (6 − : − 1)Δ + 6)
work for intersecting sorted lists of groups and non-oriented

neighbours on Lines 9 and 12, for intersecting sorted lists of

active vertex lists and non-oriented neighbours until the :-plex

constraint ensures no other vertices can miss : connections on

Line 18, and emitting a :-plex on Line 11. Thus, the main term is

$ (=6Δ:+1V6−1).
Orienting the edges by coreness requires $ (< + =) time for

peeling and relabelling. By saving the bucket queue state for

peeling the max (6-:-1)-core, we have a total cost of $ (<) to
shrink the graph over all iterations. With lazy updates to remove

2
This heuristic observes that all :-plexes are contained within the (6-:-1)-core of

graph� . One can immediately reduce the input graph� to its (6-:-1)-core before

listing :-plexes. Furthermore, one can save the bucket queue state of the peeling

algorithm and resume the peeling from that state after each iteration of the listing

algorithm. See any of those references or our source code for details.

685

vertices and reverse sorted neighbour lists, we can remove edges

on Line 6 by popping them from the back of a vector when

their source vertex has just been processed. These operations

contribute $ (<) cost.
All :-plexes are listed because Line 6 only removes vertices

that are not part of the maximum (6-:-1)-core or for which we

have already listed any :-cores that include them per the sort

order on Line 2. No :-plexes are listed twice because every call to

function Pre�xKCores has a unique pre�x per Lines 5 and 14. �

When : = 0, Algorithm 1 reduces to the $ (6<V6−2 +<) 6-
clique listing algorithm of Danisch et al. [13], except it also rapidly

shrinks the input graph with iterative :-core repeeling. The al-

gorithm exposes coarse-grained parallelism, described next.

3.3 Bulk synchronous parallelisation

We expose coarse-grained parallelism at Line 2 of Algorithm 1,

as described in the code snippet below. D < E denotes that D

precedes E in the (degeneracy) order that a sequential algorithm

visits them:

Code Snippet 1: Parallelisation Strategy

for each batch V' of V in order do
for each vertex v in V' in parallel do

process v (Lines 3-5), ignoring all u < v
thread barrier
V CoreDecomp(G' = (V \ V'), E), g - k - 1)
thread barrier

Each vertex is a parallel task and the PrefixKPlexes kernel

is entirely thread-local. The processing order within a batch is

preserved logically (rather than physically) with the check that

any vertex D processed in task E is ignored if D < E . Lemma 3.4

below implies that the batch pruning of the input graph to an

ever smaller (6-:-1)-core is equivalent to having peeled it one-at-

a-time, as in [4, 5].

Lemma 3.4. Let D, E be vertices in a graph � and let � \ {E}
be shorthand for inducing a subgraph of � on + \ {E}. Then, the
following are all the same graph: (a) the :-core of � \ {D, E}; (b)
the :-core of � \ {D}, where � is the :-core of � \ {E}; and (c) the
:-core of � \ {E}, where � is the :-core of � \ {D}.

Proof. Assume that there exists an order for removing these

vertices in which the degree of some vertex that would have been

peeled never falls below : . Then the standard peeling algorithm

produces a smaller :-core than this new order, contradicting the

algorithm’s correctness.

Assume that these exists an order for removing a vertex 8 with

degree X8 prematurely from the :-core solution. Then it must

have ≥ X8 − : links outside the :-core and < : links to ver-

tices therein, again contradicting the correctness of the standard

peeling algorithm. �

The barrier synchronisation is helpful, because the work per

task is increased (non-asymptotically) relative to single-core exe-

cution. Namely, the (6-:-1)-core is only repeeled once per batch

rather than once per vertex. On the other hand, parallel :-core

decomposition algorithms [14, 16, 23, 35, 36] can be used. As

these algorithms can struggle to expose su�cient task paral-

lelism, batch repeeling could accelerate them signi�cantly. This

produces the following result:

Theorem 3.5. With ? processors, Algorithm 1 lists all size-6
:-plexes in $ (=?6Δ

:+1V6−1 +<) bulk synchronous parallel time.

Proof. The algorithm requires =/? supersteps (batches), each

performing no more work asymptotically than does the �rst

vertex during sequential execution. Communication between

processors and the cost of synchronisation is limited to updates

to the (6-:-1)-core, of which there can be at most< across all

supersteps. �

4 PARALLEL LISTING OF SKYLINE :-PLEXES

In this section, we study how to rapidly discover the best :-plex
teams of size 6 ≥ 2: + 1 under team dominance (De�nition 2.9).

A straight-forward solution would be to invoke Algorithm 1

to identify all size-6 :-plexes, then run a skyline algorithm over

that result. However, this involves materialising a very large

intermediate result that, per our experiment results in Figure 6b,

can be many orders of magnitude larger than the �nal result.

Moreover, the skyline operator is very expensive, super-linear in

the input size. Thus, we must push the skyline operator into the

listing algorithm.

4.1 Challenges blending skyline & :-plex

listing

To blend skyline computation into our :-plex listing algorithm,

we �rst recount some key, useful, prior results on skyline com-

putation.

(1) As naive skyline computation is quadratic, one should �rst

sort all points by a monotonic criterion (e.g., !1 norm) so

that the best points are encountered early and quickly

dominate most other points which are compared to them

�rst [8].

(2) For the group-based skyline, skyline layers (de�ned below)

are an e�ective monotonic sort criterion [33].

(3) The order in (1) can be maintained and exploited by par-

allel algorithms if they process points in batches [7, 39],

even for group-based skylines [54].

(4) If some skyline group’s Min representative point is better

than the Max representative point of an entire skyline

layer, that skyline layer can be skipped completely [49].

However, we note a few challenges and incongruences. First,

re: result (1), ListKPlexes already de�nes an iteration order based

on degeneracy. As this is orthogonal to vertex labels, it clearly is

not monotonic with respect to skyline dominance. We can still

iterate points in a newly de�ned order, but the (6-:-1)-core may

not shrink as quickly and parallel task workload may not be as

well balanced.

Second, result (2) does not apply to graphs unless one assumes

that labels are distinct. We prove this below by counter-example.

Example 4.1. Consider extracting skyline :-plexes from the

p0 p1

p2

p3

P
r
e
f
e
r
r
e
d

graph to the left with : = 0 and 6 = 2, i.e., edges.

?0 and ?1 are coincident, but distinct points rep-

resented by the same shape. Vertices are ordered

vertically by equivalence class (speci�cally, “sky-

line layer”) such that ?0, ?1 � ?2 � ?3. Observe
that group 612 = {?1, ?2} � 603 = {?0, ?3} under
both Permute and General. Yet, there is nothing
at all to di�erentiate ?0 from ?1 that could de�ne

a per-vertex sort that ensures 603 is encountered
prior to612. This challenge is unique to the graph setting in which

686

(a) Processing p7: Line 11 is hit and one

candidate is generated (line 12). No other

group exists to dominate this group.

(b) Processing p4: Line 11 is hit and two

candidates are generated (line 13). Both

are discarded as they are dominated by

the previously-generated group.

(c) Processing p5: Line 4 is hit. + is the

only candidate left. It is dominated by the

existing group and discarded. The algo-

rithm terminates after this iteration.

Figure 3: Illustration of Example 4.3 showing node processing (of dataset shown in Figure 2) in algorithm 2 to list :-Plexes

and identify skyline ones. The green and red colors indicate new groups and dominated candidates respectively.

Algorithm 2 PSKPlex(� = (+ , �, !), : , 6)
Precondition: nodes ordered by ↑ skyline layer, ↓ labels
Precondition: neighbour lists � [8] ordered by ↓ node id

1: S ← {}, terminate← false

2: + ←MaxKCore((+ , �), 6-:-1) ⊲ Save bucket queue state

3: while not terminate do

4: if |+ | = 6 and �(∈ S , (� + then add + to S
5: if |+ | ≤ 6 then return S
6: assign �rst C nodes in + , D1, . . . , DC , to C threads

7: if ∃ (∈ S such that (+ ≺ !−
8
(!8 layer for DC) then

8: terminate← true; break

9: // begin thread-local parallel region, 8 ∈ [1, C]
10: # ← � [D8] and if not :-clique also 2hops(+ ,D8)
11: if |# | ≥ 6 − 1 then
12: if |# | = 6 − 1 then �8 ← # ∪ {D8 }
13: else �8 ← Pre�xKPlexes([D8], [0], # , �, :, 6)
14: �8 ← {% ∈ �8 : �(∈ S , (� %}
15: // synchronisation step

16: �′
8
← {% ∈ �8 : ∀� 9<8 , �(∈ � 9 , (� %}

17: // end of parallel region

18: Append each �′
8
to S in order

19: + ←MaxKCore(� ′ = (+ [C :], �), 6-:-1)
20: return postprocess(S)

601 = {?0, ?1} is not a :-plex; for group-based skyline queries

without selection predicates (as in [33, 54]) group 601 � 612 and
601 � 603.

4.2 The PSKPlex Algorithm

The broad structure of our algorithm, described in Algorithm 2,

is to blend our batch-parallel algorithm for :-plex listing with a

batch-parallel algorithm for listing skyline groups [54]. In addi-

tion to techniques used in listing (Algorithm 1), we apply prior

result (4) to terminate early (Lines 7–8) and compare :-plexes

to those previously discovered to be skyline teams (Lines 13, 16,

and 18).

The main challenge is to identify an e�ective access order that

ensures correctness. To start, we recall the approach of result (2):

De�nition 4.2 (Sky Layers [33]). Given points % in R3 , the
�rst skyline layer is the skyline, !0 = (. (%). The 8’th skyline

layer is the skyline of all points not in the �rst 8 − 1 layers:

!8 = (. (%\
⋃8−1

9=0 !9).

Clearly a group6with a vertex in layer !8 cannot be dominated

under Permute or General by a group 6′ whose vertices are all in
layers !>8 . While, accessing points in descending skyline order

�nds strong groups fast, it is not monotonic per Example 4.1.

We do not believe that a monotonic order for groups can

be de�ned over single vertices when the existence of groups is

determined by team cohesion thresholds. Instead, we generate

a quasi-monotonic order in which potential false positives are

adjacent in the solution. In Example 4.1, we want {?0, ?3} and
{?1, ?2} to be adjacent in the output, irrespective of how large

the graph may be.

For this, we sort points �rst by skyline layer, then with a full

sort on their labels. Note that the skyline layer is determined by

the labels; so, all coincident points (such as ?0 and ?1) will be

adjacent. We then orient edges per this ordering. For all false

positives, the smallest vertex is coincident to the smallest vertex

of the group that dominates it. All groups beginning with coinci-

dent vertices will be adjacent in the output and are thus easy to

locate.

We conclude with an example to illustrate Algorithm 2.

Example 4.3. We use Algorithm 2 to �nd skyline 1-plexes of

size 4 with one thread, using the input from Figure 2. Figure 3

illustrates the steps. Initially, the (6-:-1)-core, �2, has all nodes

as the minimum degree in � is two. We iterate according to the

skyline layers in Figure 2.

First (a), ?7 is accessed and 60 = {?6, ?7, ?8, ?9} is generated
from its 2-hop neighbourhood. This group is not discarded, as no

group exists to dominate it. Next, ?7 is removed from�2, popping

it o� the back of the neighbour lists of its neighbours. The peeling

of �2 is restarted. The degrees of ?6, ?8, and ?9 all fall below 2;

so, they are lazily removed from �2. Next (b), ?4 is accessed

and two groups are generated from its 2-hop neighbourhood:

61 = {?1, ?2, ?4, ?5} and 62 = {?1, ?3, ?4, ?5}. They are compared

to 60 and discarded as 60 �61 and 60 �62. Point ?4 is removed

from �2. Peeling restarts, but is immediately paused again since

X2, X3, X5 ≥ 2. Now (c), �2 includes only 4 nodes, the group 63 =

{?1, ?2, ?3?5}. It is discarded because 60 � 63. The algorithm

terminates, as no new group can be generated.

5 EMPIRICAL VALIDATION

5.1 Baseline Adaptation

We evaluate the computational performance of PSKPlex (Algo-

rithm 2) relative to Baseline, an improvement to the state-of-the-

artskyline 6-clique algorithm of Zhang et al. [49]. However, [49]

687

Algorithm 3 Baseline (a streamlined, parallelised version of

[49])

Input: skyline layers of graph � = (+ , �, !), size 6
Output: set of skyline 6-cliques

1: S ← ∅ ⊲ Initialise empty skyline

2: semaphore← 0

3: for all layers ! do

4: if ∃ (∈ S such that (− � !+ then return S
5: for all node D ∈ ! in parallel do

6: if |Δ(D) | ≥ 6 − 1 then
7: " ← induced subgraph on Δ(D)
8: cliques_with_u← �;8@D4B (",6 − 1, {D})
9: wait until semaphore = u

10: for all � ∈ cliques_with_u in order do

11: if ∃ (∈ S∪ cliques_with_u, Dom(S, C) then

12: remove � from cliques_with_u

13: else

14: S ← S ∪ �

15: memory fence

16: wait until semaphore = u

17: semaphore← semaphore + 1

18: return postprocess(S)

19: function Dom(�′,�)
20: if �′− � �+ then return true

21: return �′ � �

has been designed instead for the Permute dominance model

of [33], cannot handle :-plexes, assumes non-coincident points,

and lacks parallelism. We adapt it in Algorithm 3 to be more

competitive in this evaluation, though it still inherently cannot

support :-plexes.

Following the notation of [49], Δ(D) denotes the neighbours
of node D that have not been visited earlier in the algorithm.

Method Cliques on line 8 retrieves all cliques of a certain size

from a given graph with the method of Danisch et al. [13]. The

Dom method (Lines 19-21) performs dominance tests per [49],

excluding pruning rules that are not constructive in the General
dominance model.

Dominance checking in Permute is expensive and [49] is heav-
ily optimised to reduce those tests. Their work improves the

complexity of dominance tests (c.f., Table 1), but it still involves

setting up and solving a maximum bipartite matching problem.

By contrast, Avg and Min traverse elements in groups linearly

to compute representatives and General involves a short and

simple quadratic loop to compare the 6 elements of each group.

So, the original algorithm of [49] introduces optimisations to

avoid dominance checks. For example, they store the aggregate

maximum and minimum of each group in an R-tree to permit

early termination of dominance tests (Line 15). These are not

very e�ective (we observe them to fail more than 99% of the time),

but we keep them because their overhead is minimal. Baseline

also stores the aggregate maximum of each skyline layer which

can help terminate the algorithm early on Line 4.

Other optimisations in [49] introduce overhead. For example,

on Line 6, they calculate maximal cliques on each iteration. This

only pays o� when using expensive Permute dominance tests;

we streamline it with a fast-to-compute induced subgraph. We

use the same order and postprocessing as Algorithm 2 so that

Baseline can handle coincident points. We observe Baseline

to execute faster than reported in [49], demonstrating a good

Dataset |+ | = = |� | =< X0E6 Δ Density

Eucore (EU) 986 16064 33 345 .033047

WikiVote (WV) 7115 100762 18 1065 .003981

Enron (EN) 36692 183831 10 1383 .000273

DBLP (DB) 317,080 1,049,866 7 344 .000021

Amazon (AM) 735,323 3,523,472 10 1,077 .000013

YouTube (YT) 1,134,890 2,987,624 5 28,754 .000005

WikiTalk (WT) 2,394,385 4,659,565 4 100,029 .000002

CitPatent (CP) 3,774,768 16,517,947 9 793 .000002

LiveJournal (LJ) 4,846,609 42,851,237 18 20,333 .000004

Table 2: Statistics of datasets used in Section 5

balance between including and excluding optimisations for the

General model.

For parallelisation, we introduce a counting semaphore to en-

sure that a thread cannot enter the critical region involving the

shared, mutable global solution, S , until S has been updated

with the results of all preceding nodes. (This is required for cor-

rectness.) The cost of this critical region is low relative to clique

listing, because, as the following experiments will show, |S | is
typically small.

5.2 Experiment Setup

Datasets and parameters We use nine real datasets from

SNAP
3
that are commonly used for evaluating community search

algorithms and that range in size from< = 16K edges (EU) to< =

42M edges (LJ) and density from d =2E-6 (CP) to d =3.3E-2 (EU).

For each graph, we replace directed edges with de-duplicated,

undirected edges and delete self-loops. Table 2 shows describes

their properties. YT is the largest dataset in the experiments of

[49].

We generate 3-dimensional vertex labels in [0,100) with corre-

lated, independent, and anticorrelated distributions per [2]. Ex-

periments vary the number of vertex attributes (3 = 2 as default);

the correlation between attribute values (attribute distribution,

indep as default); the community size (6 = 3 as default); cohesive-

ness (: = 0 as default) and concurrency (C = 48 as default). As

preprocessing is common between Baseline and PSKPlex, we

measure time from the moment the graph edges are re-oriented

until the �nal set of skyline communities is returned as arrays of

vertex ids.

Environment Experiments are conducted on a cloud that

provisions 2× Intel Platinum 8160F Skylake@ 2.1GHz and 2× Intel
Platinum 8260 Cascade Lake @ 2.4GHz whole nodes with 187GB

RAM and running CentOS 7. All algorithms are implemented in

C++; OpenMP is used for multithreading. If the application is out

of memory or it cannot �nish in 12 hours, then processing time

is reported as INF (numerically 42000 seconds in the plots).

The source code for this work is available at https://github.

com/parisaes/skyline-kplex.

5.3 Comparisons to State-of-the-Art (Cliques)

In these initial experiments, we set : = 0 (i.e., search for skyline6-

cliques rather than :-plexes) to enable comparisons to Baseline.

Group Size (6) To begin, Figure 4 studies how team (or clique)

size a�ects the algorithms on all datasets. On the small, dense

3
http://snap.stanford.edu/

688

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

T
i
m
e
(
s
)

PSKPlex (C = 1) Baseline (C = 1) PSKPlex (C = 48) Baseline (C = 48)

(a) EU (< = 16:, d = 0.033)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(b) WV (< = 101:, d = 0.004)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(c) EN (< = 184:, d = 0.00027)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(d) DB (< = 1.0", d =2E-5)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

T
i
m
e
(
s
)

(e) YT (< = 3.0", d =5E-6)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(f) CP (< = 16.5", d =2E-6)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(g) WT (< = 4.7", d =2E-6)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(h) LJ (< = 42.9", d =4E-6)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

T
i
m
e
(
s
)

(i) AM (< = 3.5", d =1E-5)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(j) AM (correlated)

3 5 7 9 12
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

(k) AM (anticorrelated)

Figure 4: Group size e�ect (varying 6 on G-axis)

datasets, the di�erence between PSKPlex and Baseline is min-

imal; except, of course, that PSKPlex can handle more general

cases. Both algorithms complete within three minutes, irrespec-

tive of group size. Execution slows up to 6 = 9 as the search space

for groups expands combinatorially, before accelerating as fewer

combinations of vertices meet the clique cohesiveness threshold.

For the mid-size graphs (DB, AM, YT, WT), PSKPlex enjoys

a marked improvement of 1.5–3+ orders of magnitude, corre-

sponding to fewer hours of waiting, except when it runs out of

memory on WT at 6 ≥ 7. This is very impressive, considering

that Baseline is specialised only to this case of 6-cliques. On

large graphs (CP, LJ), we observe the same performance gap,

except that memory consumption catches up to PSKPlex sooner

on LJ.

We study parallelism in more depth in Section 5.4, but a few

points can be observed already. The baseline obtains a marginal

improvement from parallelism, but PSKPlex can see gains up to

44.1× on 48 cores as the graph grows (and becomes sparser), de-

spite having already been substantially faster on one thread. Also,

as 6 increases, single-threaded and parallel execution converge.

This is not related to listing cliques (which we show later im-

proves with increasing 6), but to the synchronisation needed for

skyline calculation as thread workload becomesmore imbalanced.

Still, even in the pathological case of6 = 12, multithreading o�ers

improvements.

Attribute Distribution Figures 4(j) and 4(k) vary the correla-

tion among the attributes as this is well known to a�ect skyline

performance [2].We use the AMdataset, where Baseline sees the

best parallel acceleration. Although anticorrelated distributions

are slower, we see the same broad-based trends: sequentially,

PSKPlex is at least 2.9× faster than Baseline, and multicore

parallelism increases that gap to at least 6.0×. Execution slows

to a peak 6 before accelerating again. There are zero cliques at

6 = 12, so PSKPlex terminates very quickly and does not need

multithreading. Our listing algorithm detects this case quickly,

thanks to iterative :-core repeeling, but Baseline cannot, leading

to the exaggerated 2026×.
Dimension (3) Figure 5 repeats the last remaining experiment

from [49], in which we vary 3 . As in all cases prior, we observe

an order of magnitude speedup for sequential PSKPlex relative

to Baseline, and up to an additional 40.6× from multi-threading.

As is usually the case with skylines, an increase in the number of

dimensions leads to an increase in the output size. As the number

of comparisons per group grows, the work per thread and also

the execution time go up as well. This a�ects PSKPlex at C = 48

more as it increases the time between synchronization barriers:

a slow thread takes proportionately longer than it would with

689

2 3 4 5
10
−1
10

0

10
1

10
2

10
3

10
4

INF

T
i
m
e
(
s
)

Baseline (C = 1)

Baseline (C = 48)

PSKPlex (C = 1)

PSKPlex (C = 48)

(a) Processing Time

2 3 4 5
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

O
u
t
p
u
t
S
i
z
e

#skyline :-plex

#:-plex

(b) Output Size

Figure 5: Dimension e�ect on AM (varying 3 on G-axis)

Dataset PSKPlex Baseline

t=4 t=12 t=24 t=48 t=4 t=12 t=24 t=48

EU 1.33 2.22 2.5 1 1.21 1.46 1.29 1.46

WV 1.28 1.91 2.41 2.89 1.12 1.42 1.65 1.82

EN 1.67 2.3 2.85 1.47 1.18 1.41 1.81 1.86

DB 3.58 9.79 17.94 29.88 1.65 3.04 4.02 5.31

AM 3.78 11.1 21.63 40.61 2.24 5.03 7.44 10.64

YT 3.43 9.05 15.99 25.98 1.2 1.4 1.55 1.71

WT 3.26 8.02 12.75 18.62 1.03 0.93 0.97 1

CP 3.84 11.34 22.42 44.12 - - - -

LJ 3.49 9.35 16.3 26.55 - - - -

Table 3: Parallel speed-up relative to C = 1 (: = 0, 3 = 2,

6 = 3)

smaller 3 . The curves for C = 1 and C = 48 are thus converging in

the limit, though the gap to the baseline is maintained.

At 3 = 5, 1.8% of the :-plexes in the graph are skyline groups.

Thus, it is advisable to perform skyline queries on the projection

of the few most important attributes. Still with 48 cores, we

observe a speed-up of 5.6× over Baseline even for this more

severe case.

5.4 Expanded Analysis

The next experiments continue the scalability analysis, but with

respect to parameters that could not be studied in [49].

Parallel scalability (C) Our parallelised PSKPlex makes a lot

of problem instances practical that otherwise would not be. Table

3 reports the ratio of running PSKPlex with 1 thread relative to

C threads for all datasets. On 48 cores, we achieve between 18.6×
(WT) and 44.1× (CP) parallel speed-up for mid- and large-size

graphs. In the case of LJ (the longest-running dataset at 48 cores),

our multithreading reduces time by 26.6× from 42 minutes on

one core to just 1.5 minutes.

This strong parallel scalability comes from how we expose

coarse-grained parallelism. As we progress through the list of

nodes, the processing time per iteration decreases somewhat

evenly as the iterative :-core repeeling dramatically shrinks the

input (c.f., Figure 8). Moreover, the repeeling could be done with

parallel :-core decomposition algorithms using all threads. This

contrasts to Baseline, which generally does not have a mecha-

nism to globally shrink the data. Instead, each thread indepen-

dently computes an induced subgraph, leading to large workload

3 5 7 9 12

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

O
u
t
p
u
t
S
i
z
e

corr anticorr

indep #k-plex

(a) Varying 6 on the G-axis

0 1 2

10
1

10
3

10
5

10
7

10
9

3
7

25

#skyline :-plex

#:-plex

(b) Varying : on the G-axis

Figure 6: Output size, AM

EU WV EN DB AM CP

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

INF

T
i
m
e
(
s
)

k=0 k=1 k=2

Figure 7: Cohesiveness (PSKPlex, 6 − : = 3, 3 = 2, C = 48).

imbalances, L2 cache pollution, and heavy contention on the

memory bus.

Clique relaxation (:) This work makes it possible to relax

cliques to :-plexes (: > 0) and thereby discover new types of

skyline communities. Figure 6 shows output sizes and Figure 7

shows PSKPlex execution times grouped by dataset for 0-, 1-,

and 2-plexes, respectively.

Naturally, increasing : requires more time, irrespective of

dataset. We expect this because all :-plexes are (:+1)-plexes; so,

the search space for skyline communities increasesmonotonically

with : . We expect a pronounced degradation from : = 0 to : = 1

as we can no longer simply intersect neighbour lists, i.e., when

the problem changes from �nding cliques to �nding :-plexes.

Interestingly, the impact of : is non-uniform. For example,

execution time for CP and AM is only ≈ 3× and ≈ 5× slower at
: = 1 than : = 0, respectively, whereas the time for DB increases

from 80ms to 12s. However, on CP, there is a big jump from

: = 1 to : = 2. Likely, these results relate to the size of the 2-hop

neighbourhoods of vertices. Datasets that ran out of memory at

: = 2 are not shown.

As : increases from : = 0 to : = 2, the number of candidate

:-plexes rises dramatically from about 10
7
to about 10

9
. However,

the result size is restricted to just 25 groups, even at : = 2. This

re�ects the better utility of the skyline operator on graphs relative

to arbitrary combinations of tuples.

Skyline overhead Table 4 reports execution time for PSKPlex

versus just ListKPlexes to determine the most expensive part of

the algorithm. We �rst observe that in both datasets, listing time

improves dramatically as 6 increases. The most interesting data

is with respect to YT where at 6 = 3, skylines are 10× faster than

just listing, but at 6 = 12, they are 3× slower. When PSKPlex

690

YT CP

6 PSKPlex ListKPlexes PSKPlex ListKPlexes

3 107.219 1589.689 3550.084 30314.246

5 97.054 393.198 4995.834 2352.071

7 99.294 132.489 3102.361 823.511

9 113.828 56.369 1361.930 256.636

12 112.119 41.704 347.379 69.431

Table 4: Comparing skyline to listing all :-plexes (C = 1)

0 125 250 375 500

0

125

250

375

500

Iteration (×103)

|+
|(
×1

0
3
)

6 = 3 6 = 7 6 = 12

(a) YT

0 1,000 2,000 3,000
0

1,000

2,000

3,000

Iteration (×103)

(b) CP

Figure 8: Input size reduction due to iterative repeeling

is faster than ListKPlexes, it is clear that pushing the skyline

operator into the listing provides tremendous advantage over

generating tens of millions of :-plexes and then piping that to a

skyline algorithm.

Iterative :-core repeeling e�cacy Figure 8 evaluates the

rate at which iterative :-core repeeling shrinks the input graph

for di�erent group sizes. The~-axis shows the number of vertices

that have not yet been peeled as a function of the number of

iterations that have been completed. The dashed lines following

~ = |+ | − G illustrate the rate at which the graph size shrinks

just by processing vertices. The solid lines, by contrast, show the

additional e�ect of :-core repeeling. We see that, for example,

half the iterations on Youtube and one third of the iterations on

CitPatent are eliminated. Moreover, for any given iteration, the

input size is dramatically reduced.

Summary The proposed algorithm typically provides 1–2

orders of magnitude improvement over the state of the art and

then the multicore parallelism provides 20–40× improvement on

top of that. The major improvement comes in the :-plex listing,

where the parallelism is exposed and where the iterative :-core

repeeling can reduce half of the iterations of the algorithm.

6 CASE STUDY

In this experiment, we compare models on arnetminer [43].

Task Description We want to discover the top cohesive re-

search clusters based on prior publications. We label authors

by their paper counts at PVLDB and SIGMOD, dropping ver-

tices with all-zero vectors. Edges pair researchers who have co-

authored at least �ve papers together at any venue. This produces

a graph that contains 5856 vertices with 2d labels and 4474 undi-

rected, unlabelled edges.

Analysis Case study results are shown in Figure 10 for 6 = 6

researchers, a clique relaxation of : = 1, and preferring higher

H. Kriegel N. Mamoulis

M. Renz A. Zü�e

P. Kröge T. Emrich

H. Kriegel N. Mamoulis

M. Renz A. Zü�e

T. Bernecker T. Emrich

C. Schallhart T. Furche

G. Orsi A. Sellers

G. Gottlob G. Grasso

(G1) (G2) (G3)

D. Calvanese D. Lembo

R. Rosati A. Poggi

G. Giacomo M. Lenzerini

C. Kim N. Satish

P. Dubey A. Nguyen

J. Chhugani V. W. Lee

(G4) (G5)

Figure 9: 4-plexes of size 6 in arnetminer

G1: Kriegel+ (1) G2: Kriegel+ (2) G3: Gottlob+ G4: Calvanese+ G5: Dubey+

a) b) c) d)

e)

Model 6 = 6 6 ∈ [6, 7]
Min [29] G4,G5 G4,G5

Avg G1,G2 G1,G2

Permute [49]
G1,G2,G3,

N/A

G4,G5

General G1,G2,G3 G1∪G2,G3

f)

Figure 10: Case study contrasting dominance models for

1-plex co-author communities using arnetminer data with

VLDB and SIGMOD paper counts as measures of skill.

paper counts as a proxy for research skill. Avg, Min, Permute,
and General produce 9, 9, 12, and 10 skyline communities, re-

spectively. Seven 1-plexes are common to all models; the middle

column of subtable (f) reports how the models di�er with respect

to the other 1-plexes. Sub�gures (a)-(e) illustrate dominance re-

lationships to explain the results. All contain 6 = 6 (possibly

coincident) points. Figure 9 shows how researchers in groups are

connected.

Min andGeneral present the clearest contrast, as theMinmodel

excludes groups with members who have specialisations, since

it focuses only on representing group strength per individual

members’ weaknesses. Consider sub-�gure (a) which shows the

purple group (G1), selected by General, and the green group

(G4) selected by Min. The shaded gray area shows the region

dominated by purple points per the General model and it is clear

that this region contains all of G4. In contrast, the gray markers

show dominance in the Min model by aggregating entire groups

into the weakest value for each dimension. G1 has one member

with several VLDB papers but none at SIGMOD and another

member has several at SIGMOD but none at VLDB; therefore,

the entire group is dominated by G4, where everyone has a few

papers at both. Figures (b) and (c) are similar. The Min model

691

excludes strong groups if some members specialise on axes. It

actively penalises diverse groups.

Avg has similarities to General but omits the orange group

(G3), illustrated in sub-�gure (d), though it contains the top SIG-

MOD researcher across all :-plex communities. The reductive

aggregation of the Avg model is unable to capture this type of

group. The Permute model, lacking much selectivity, returns the

union of all other models; sub-�gure (e) illustrates that the domi-

nance region of the orange group (G3) contains all members of

G4 and G5, as we had already seen for the purple group, G1, in

sub-�gure (a).

Variable Group Sizes Next, the right column of (f) investi-

gates how the models could perform if we could relax the con-

straint that 6 were �xed. As before, we search for 1-plexes, but

now 6 can vary from 6 = 6 to 6 = 7. We omit the Permute model

because it is limited to comparing groups of the same size and

thus cannot be used in this context. The Avg and Min models

return the same groups as before: for Avg model, adding more

points to strong groups typically lowers the average; for Min
model, additional points can only decrease the score of a group.

The General model, by contrast, reports G1 ∪ G2 as well as G3,

capturing larger co-authorship communities–if they exist–when

given a wider search space.

Summary This case study shows that we can �nd a small

number of dominant communities on real graphs. The previously

studied models have clear limitations:Min model penalises diver-

sity and Permute model requires �xed group sizes. By contrast,

our General model resolves both weaknesses and �nds commu-

nities missed by Avg model.

7 RELATEDWORK

Problem modelling The skyline operator [2] adapts the max

vector problem [24] for relational databases. Since this operator

is very expensive, selective operators, e.g., selection (f) [6, 31,

37, 38] and projection (c) [44], or both [15] are often pushed

through.

Notably, Papadias et al. [38] compose the skyline and group

by (W) operators, which they call group-by skyline. Thereafter,
Li et al. [25] and Im and Park [22] proposed skyline groups, in
which groups of tuples no longer represent an equivalence class.

In both cases, skyline occurs logically after grouping. Finally,

Liu et al. [33] introduce g-skylines to compare groups directly,

rather than aggregating them. This is a major shift, because it

does not integrate with W , as it requires groups to the same size,

and produces massive output [53]. None of these models were

designed with graph databases in mind. Table 1 and Figure 10

compare them extensively to our proposal.

Quasi-clique listing Listing all :-cliques can be done in par-

allel with $ (:<V:−2 +<) work [13] with degeneracy-oriented

edges by recursively expanding an 8-clique to an (8+1)-clique

from those vertices in the intersection of the neighbour lists of

all of the �rst 8 vertices. Pre-�ltering a graph to a maximal :-

clique [13] or :-core [48] can reduce search space, though the

former does not apply to quasi-cliques. [18] and [4, 5] proposed

a repeeling technique for listing :-plexes where the input graph

is �rst reduced to a :′-core including all potential :-plexes. The

state of the peeling algorithm is preserved allowing it to be re-

sumed after processing each node. [21] propose an index to �nd

the subgraph of graph � that contains the highest concentration

of cliques. [27] proposed orienting edges with a greedy colour-

ing instead of degeneracy and [45] introduced an edge-centric

branch-and-bound strategy. [48] accelerated set intersection for

:-clique listing with vectorisation.

Listing :-plexes is more di�cult because some vertices may

not be incident and thus intersecting neighbour lists will miss

results. [41] introduces the small-diameter property when 6 ≥
2: + 1, which [10] uses to constrain search for :-plexes to the 2-

hop neighbourhood of each vertex [10]. More recently, branching

techniques with heuristic pivots [52], branch-and-bound compu-

tations [12] and merging nodes [34] have brought time complex-

ity on scale-free graphs down to an “almost linear scalability”

with respect to =. These results are for discovering maximal :-

plexes, not listing :-plexes of a speci�c size, and so miss out on

optimisations provided by our corollaries that relate subgraph

size to the :-plex property.

Identifying skyline communities Li et al. [30] initiate this

line of work by studying the univariate case of which commu-

nities have the greatest “in�uence” using Min model. This was

extended by Zhou et al. [51] to heterogeneous information net-

works (HINs). Peng et al. [40] consider a top-k version. Later,

Li et al. extended this model to multi-attributed networks [29].

Zhang et al. [49] improved the dominance model to Permute,
but then focused on �xed-size :-cliques, because of the model’s

limitation. The special case of bipartite graphs with Min [50] has

been considered. Li et al. [26] compute skyline groups in road

networks based on coreness properties, but there are no attribute

values. For a survey of community search techniques, refer to the

survey by Fang et al. [19]. Our work is the �rst to generalise [49]

to the di�cult case of :-plexes.

8 CONCLUSION

In this work, we introduced a generalised model for comparing

attributed sub-communities in social networks and demonstrated

with a case study that it is more e�ective at assembling variable-

sized teams of specialists with diverse skills. We also introduced

an algorithm for listing �xed-size :-plex communities in a graph,

based on cousins-�rst search, and integrated it with team dom-

inance to produce the �rst algorithm that discovers dominant

quasi-cliques in large graphs. It is also up to 950.9× faster at

cliques than our parallelisation of the prior art.

There are plenty of opportunities to extend this work. We

applied our �exible model to �xed-size groups, but it could be

used for any types of communities. We listed (skyline) :-plexes

on large graphs on a multi-core machine, but one could adapt our

BSP algorithm to a distributed context to process larger graphs or

larger values of : . GPU acceleration has been successfully applied

to the skyline operator [3] and may be applicable to skyline

groups. Finally, one could explore the blending of dominance

models for greater individualisation of results. Code for this work

is available online: https://github.com/parisaes/skyline-kplex.

ACKNOWLEDGMENTS

We thank M. Ali Akber for early contributions to this work. This

research was supported by the Natural Sciences and Engineering

Research Council (NSERC) of Canada through the Discovery

Grants program, grant #RGPIN-2020-06639. Compute resources

were provided by the Digital Research Alliance of Canada.

REFERENCES

[1] Mei Bai, Yuting Tan, Xite Wang, Bin Zhu, and Guanyu Li. 2021. Optimized

Algorithm for Skyline Community Discovery in Multi-Valued Networks. IEEE
Access 9 (2021), 37574–37589. https://doi.org/10.1109/ACCESS.2021.3063317

692

[2] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline

operator. In The 17th International Conference on Data Engineering. 421–430.
[3] Kenneth S Bøgh, Sean Chester, and Ira Assent. 2015. Work-E�cient Parallel

Skyline Computation for the GPU. PVLDB 8, 9 (2015), 962–973.

[4] Lijun Chang, Mouyi Xu, and Darren Strash. 2022. E�cient maximum k-plex

computation over large sparse graphs. Proc. VLDB Endow. 16, 2 (Oct. 2022),
127139. https://doi.org/10.14778/3565816.3565817

[5] Lijun Chang and Kai Yao. 2024. Maximum k-Plex Computation: Theory and

Practice. Proceedings of the ACM on Management of Data 2 (03 2024), 1–26.

https://doi.org/10.1145/3639318

[6] Sean Chester, Michael Lind Mortensen, and Ira Assent. 2014. On the Suitability

of Skyline Queries for Data Exploration. In Proc. ExploreDBWorkshop. 161–166.
[7] Sean Chester, Darius Šidlauskas, Ira Assent, and Kenneth Sejdenfaden Bøgh.

2015. Scalable parallelization of skyline computation for multi-core processors.

In IEEE 31st International Conference on Data Engineering. 1083–1094.
[8] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2003. Skyline

with Presorting. In 19th International Conference on Data Engineering. 717–719.
[9] Marek Chrobak and David Eppstein. 1991. Planar orientations with low out-

degree and compaction of adjacency matrices. Theoretical Computer Science
86, 2 (1991), 243–266.

[10] Alessio Conte, Tiziano De Matteis, Daniele De Sensi, Roberto Grossi, Andrea

Marino, and Luca Versari. 2018. D2K: Scalable Community Detection in

Massive Networks via Small-Diameter k-Plexes. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1272–1281.

[11] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search

of communities in large grahps. In ACM SIGMOD International Conference on
Management of Data. 991–1002.

[12] Qiangqiang Dai, Rong-Hua Li, Hongchao Qin, Meihao Liao, and GuorenWang.

2022. Scaling Up Maximal :-plex Enumeration. In CIKM. 345–354.

[13] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing K-Cliques

in Sparse Real-World Graphs*. In Proceedings of the 2018 World Wide Web
Conference. 589–598.

[14] Naga Shailaja Dasari, Ranjan Desh, and M. Zubair. 2014. ParK: An e�cient

algorithm for k-core decomposition on multicore processors. In IEEE Interna-
tional Conference on Big Data. 9–16.

[15] Evangelos Dellis, Akrivi Vlachou, Ilya Vladimirskiy, Bernhard Seeger, and

Yannis Theodoridis. 2006. Constrained Subspace Skyline Computation. ,

415–424 pages.

[16] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically

E�cient Parallel Graph Algorithms Can Be Fast and Scalable. ACM Trans.
Parallel Comput. 8, 1, Article 4 (2021), 70 pages.

[17] David Eppstein, Maarten Lö�er, and Darren Strash. 2013. Listing All Maximal

Cliques in Large Sparse Real-World Graphs. ACM J. Exp. Algorithmics 18,
Article 3.1 (nov 2013), 21 pages. https://doi.org/10.1145/2543629

[18] Parisa Esmaeilian Ghahroudi. 2023. Parallel Discovery of Fixed-sized Connected
k-Core Skyline Communities. Master’s thesis. University of Victoria.

[19] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB
J. 29, 1 (2020), 353–392. https://doi.org/10.1007/S00778-019-00556-X

[20] Fei Hao, Jie Gao, Jianrui Chen, Aziz Nasridinov, and GeyongMin. 2022. Skyline

(_, k)-Cliques Identi�cation From Fuzzy Attributed Social Networks. IEEE
Transactions on Computational Social Systems 9, 4 (2022), 1075–1086. https:

//doi.org/10.1109/TCSS.2021.3101152

[21] Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2023.

Scaling Up k-Clique Densest Subgraph Detection. Proc. ACM Manag. Data 1,
1, Article 69 (May 2023), 26 pages. https://doi.org/10.1145/3588923

[22] Hyeonseung Im and Sungwoo Park. 2012. Group skyline computation. Infor-
mation Sciences 188 (2012), 151–169.

[23] Humayun Kabir and KameshMadduri. 2017. Parallel k-Core Decomposition on

Multicore Platforms. In IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1482–1491.

[24] H T Kung, Fabrizio L Luccio, and Franco P Preparata. 1975. On Finding the

Maxima of a Set of Vectors. Journal of the ACM 22, 4 (1975), 469–476.

[25] Chengkai Li, Nan Zhang, Naeemul Hassan, Sundaresan Rajasekaran, and Gau-

tam Das. 2012. On skyline groups. In Proceedings of the 21st ACM international
conference on Information and knowledge management. 2119–2123.

[26] Qiyan Li, Yuanyuan Zhu, and Je�rey Xu Yu. 2020. Skyline Cohesive Group

Queries in Large Road-social Networks. In IEEE 36th International Conference
on Data Engineering (ICDE). 397–408.

[27] Rong-Hua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Je�rey Xu

Yu. 2020. Ordering heuristics for k-clique listing. Proc. VLDB Endow. 13, 12
(jul 2020), 25362548. https://doi.org/10.14778/3407790.3407843

[28] Rong-Hua Li, Lu Qin, Fanghua Ye, Guoren Wang, Je�rey Xu Yu, Xiaokui

Xiao, Nong Xiao, and Zibin Zheng. 2020. Finding skyline communities in

multi-valued networks. The VLDB Journal 29, 6 (01 Nov 2020), 1407–1432.
[29] Rong-Hua Li, Lu Qin, Fanghua Ye, Je�rey Xu Yu, Xiaokui Xiao, Nong Xiao,

and Zibin Zheng. 2018. Skyline Community Search in Multi-Valued Networks.

In Proceedings of the 2018 International Conference on Management of Data.
457–472.

[30] Rong-Hua Li, Lu Qin, Je�rey Xu Yu, and Rui Mao. 2015. In�uential Community

Search in Large Networks. PVLDB 8, 5 (2015), 509–520.

[31] Ming-Yen Lin, Yueh-Lin Lin, and Sue-Chen Hsueh. 2017. Discovering Group

Skylines with Constraints by Early Candidate Pruning. In International Con-
ference on Advanced Data Mining and Applications. 49–62.

[32] Boge Liu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021.

E�cient Community Search with Size Constraint. In Proc. ICDE. 97–108.
[33] Jinfei Liu, Li Xiong, Jian Pei, Jun Luo, and Haoyu Zhang. 2015. Finding Pareto

Optimal Groups: Group-Based Skyline. PVLDB 8, 13 (2015), 2086–2097.

[34] Shohei Matsugu, Yasuhiro Fujiwara, and Hiroaki Shiokawa. 2023. Uncovering

the Largest Community in Social Networks at Scale. In IJCAI. 2251–2260.
[35] Amir Mehrafsa, Sean Chester, and Alex Thomo. 2020. Vectorising :-Core

Decomposition for GPU Acceleration. In 32nd International Conference on
Scienti�c and Statistical Database Management. 4.

[36] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2013. Dis-

tributed k-Core Decomposition. IEEE Transactions on Parallel and Distributed
Systems 24, 2 (2013), 288–300.

[37] Michael Lind Mortensen, Sean Chester, Ira Assent, and Matteo Magnani.

2015. E�cient caching for constrained skyline queries. In 18th International
Conference on Extending Database Technology (EDBT).

[38] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progessive

Skyline Computation in Database Systems. ACM Transactions on Database
Systems 30, 1 (2005), 41–82.

[39] Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha Kim, and Hyeonseung

Im. 2009. Parallel Skyline Computation on Multicore Architectures. In IEEE
25th International Conference on Data Engineering (ICDE). 760–771.

[40] You Peng, Song Bian, Rui Li, Sibo Wang, and Je�rey Xu Yu. 2022. Finding

Top-r In�uential Communities under Aggregation Functions. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). 1941–1954. https:

//doi.org/10.1109/ICDE53745.2022.00191

[41] Stephen B Seidman and Brian L Foster. 1978. A graph-theoretic generalization

of the clique concept. Journal of Mathematical Sociology 6, 1 (1978), 139–154.

[42] Mauro Sozio and Aristides Gionis. 2010. The community-search problem

and how to plan a successful cocktail party. In ACM, SIGKDD International
Conference on Knowledge Discovery and Data Mining. 939–948.

[43] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008.

ArnetMiner: Extraction and Mining of Academic Social Networks. In KDD’08.
990–998.

[44] Yufei Tao, Xiaokui Xiao, and Jian Pei. 2006. SUBSKY: E�cient Computation

of Skylines in Subspaces. In 22nd International Conference on Data Engineering
(ICDE).

[45] Kaixin Wang, Kaiqiang Yu, and Cheng Long. 2024. E�cient k-Clique Listing:

An Edge-Oriented Branching Strategy. Proc. ACM Manag. Data 2, 1, Article 7
(mar 2024), 26 pages. https://doi.org/10.1145/3639262

[46] Xiaoqin Xie, Chiming Liu, Jiaming Zhang, and Jiahui Li. 2019. In�uential

Attribute Community Search. In 2019 IEEE 21st International Conference on
High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). 2630–2636. https://doi.org/10.1109/HPCC/

SmartCity/DSS.2019.00369

[47] Kai Yao and Lijun Chang. 2021. E�cient Size-Bounded Community Search

over Large Networks. PVLDB 14, 8 (2021), 1441–1453.

[48] Zhirong Yuan, You Peng, Peng Cheng, Li Han, Xuemin Lin, Lei Chen, andWen-

jie Zhang. 2022. E�cient : − clique Listing with Set Intersection Speedup. In

2022 IEEE 38th International Conference on Data Engineering (ICDE). 1955–1968.
https://doi.org/10.1109/ICDE53745.2022.00192

[49] Chen Zhang, Wenjie Zhang, Ying Zhang, Lu Qin, Fan Zhang, and Xuemin Lin.

2019. Selecting the Optimal Groups: E�ciently Computing Skyline k-Cliques.

In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 1211–1220.

[50] Yuting Zhang, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021.

Pareto-optimal Community Search on Large Bipartite Graphs. In Proceed-
ings of the 30th ACM International Conference on Information and Knowledge
Management. 2647–2656.

[51] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. 2023. In�uential

Community Search over Large Heterogeneous Information Networks. Proc.
VLDB Endow. 16, 8 (apr 2023), 20472060. https://doi.org/10.14778/3594512.

3594532

[52] Yi Zhou, Zhou Xu, Zhenyu Guo, Mingyu Xiao, and Yan Jin. 2020. Enumerating

Maximal :-Plexes with Worst-Case Time Guarantee. In AAAI. 2442–2449.
[53] Haoyang Zhu, Xiaoyong Li, Qiang Liu, and Hao Zhu. 2019. Computing Skyline

Groups: An Experimental Evaluation. Tsinghua Science and Technology 24, 2

(2019), 171–182.

[54] Haoyang Zhu, Peidong Zhu, Xiaoyong Li, Qiang Liu, and Peng Xun. 2017.

Parallelization of group-based skyline computation for multi-core processors.

Concurrency and Computation: Practice and Experience 29, 18 (2017), e4195.

693

