
Learned Indexes with Distribution Smoothing via Virtual Points
Kasun Amarasinghe

The University of Melbourne

Melbourne, Australia

kasun.amarasinghe@student.unimelb.edu.au

Farhana Choudhury

The University of Melbourne

Melbourne, Australia

farhana.choudhury@unimelb.edu.au

Jianzhong Qi

The University of Melbourne

Melbourne, Australia

jianzhong.qi@unimelb.edu.au

James Bailey

The University of Melbourne

Melbourne, Australia

baileyj@unimelb.edu.au

ABSTRACT
Recent research on learned indexes has created a new perspective

for indexes as models that map keys to their respective storage

locations. These learned indexes are created to approximate the

cumulative distribution function of the key set, where using only

a single model may have limited accuracy. To overcome this lim-

itation, a typical method is to use multiple models, arranged in a

hierarchical manner, where the query performance depends on

two aspects: (i) traversal time to find the correct model and (ii)

search time to find the key in the selected model. Such a method

may cause some key space regions that are difficult to model to be

placed at deeper levels in the hierarchy. To address this issue, we

propose an alternative method that modifies the key space as op-

posed to any structural or model modifications. This is achieved

through making the key set more learnable (i.e., smoothing the

distribution) by inserting virtual points. Furthermore, we develop

an algorithm named CSV to integrate our virtual point insertion

method into existing learned indexes, reducing both their tra-

versal and search time. We implement CSV on state-of-the-art

learned indexes and evaluate them on real-world datasets. Exten-

sive experimental results show significant query performance

improvement for the keys in deeper levels of the index structures

at a low storage cost.

1 INTRODUCTION
Learned indexes [13] have reported strong query performance

and are attracting much attention from both the academia and

industry in recent years. The core idea of learned indexes is that

an index structure can be seen as a mapping function 𝑓 (·) from
a search key 𝑘𝑖 to the storage location (i.e., the rank 𝑟𝑎𝑛𝑘 (𝑘𝑖)) of
the corresponding data record: 𝑟𝑎𝑛𝑘 (𝑘𝑖) ≈ 𝑓 (𝑘𝑖). The mapping

function (a.k.a. indexing function) is learned and approximated by

machine learning algorithms (models). To enable the learning, a

storage ordering needs to be established. Typically, an ascending

order based on the search keys is used, such that the mapping

function is effectively the cumulative distribution function (CDF)

of the search keys.

Different learned indexes have been proposed [2–4, 7, 10, 14–

16, 20, 23, 24, 28, 30, 32, 34, 38] with a common theme to design

indexing functions and structures that enable better approxima-

tion of the CDF, since approximation errors translate to mapping

errors (i.e., difference between 𝑟𝑎𝑛𝑘 (𝑘𝑖) and 𝑓 (𝑘𝑖)) and hence

extra search costs to examine data at around 𝑓 (𝑘𝑖) and recover

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the

28th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Facebook Covid OSM Genome

1 2 3 4 5 6 7
Level

100

200

Av
er

ag
e

ru
nt

im
e

 p
er

 q
ue

ry
 (n

s)

Figure 1: Query time at each level of the LIPP index for
four real datasets, each with 200 million keys.

from errors. However, such approaches mean the use of either

complex indexing functions (e.g., splines [11, 22]) or piece-wise

functions with many segments [7, 8, 15], both of which could

lead to sub-optimal query efficiency. This is illustrated by Fig. 1

with LIPP [34] – one of the latest learned indexes. The index has

a hierarchical structure built in a top-down manner. When an in-

dex model (i.e., a node in the index) cannot achieve an overall low

mapping error for all keys assigned to it for indexing, sub-index

models are created recursively as a hierarchy, to accommodate for

the “more difficult to learn” keys. As Fig. 1 shows, keys indexed in

deeper levels (higher levels in the figure) reported higher query

times on average, on all four datasets.

In this paper, we approach the problem from an alternate

perspective – we adjust the CDF such that it becomes easier to

be approximated by the indexing functions, to achieve lower

approximation errors and higher query efficiency. Our core idea

is to add virtual points to “smooth” the CDF of a dataset. Take

Fig. 2a as an example, where each black dot represents a data

point (i.e., its search key). Approximating the CDF of the dataset

with a linear function can result in a large approximation error

(and hence high search costs at query time) for keys 𝑘1 and 𝑘2.

We sum up the squared prediction error of every point:

L𝑓 (𝐾) =
𝑛∑︁
𝑖=1

(
𝑓 (𝑘𝑖) − 𝑟𝑎𝑛𝑘 (𝑘𝑖)

)
2

, (1)

where 𝐾 denotes the set of keys and 𝑛 is its size, 𝑘𝑖 ∈ 𝐾 is a

key, 𝑟𝑎𝑛𝑘 (𝑘𝑖) is its rank, and 𝑓 (·) is the indexing function. We

refer to L𝑓 (𝐾) as the loss function, for which we use the sum of
squared errors (SSE). In this case, L𝑓 (𝐾) = 8.33 – a large value

of L𝑓 (𝐾) suggests worse prediction accuracy using 𝑓 for search

key mapping and hence higher query times.

As Fig. 2b shows, we can add virtual points𝑉 = {𝑘𝑣1, 𝑘𝑣2, . . . , 𝑘𝑣5}
represented by the red hollow dots. Here, we assume a smoothing
budget of 0.5𝑛 = 5, i.e., 5 virtual points are allowed. Now the

original data points are spread out, and the CDF of the (original

Series ISSN: 2367-2005 668 10.48786/edbt.2025.54

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.54

0 5 10 15 20 25 30
Keys

0
2
4
6
8

10
12
14
16

Ra
nk

k1

k2

Loss value: 8.33

(a) Before smoothing

0 5 10 15 20 25 30
Keys

0
2
4
6
8

10
12
14
16

Ra
nk

kv1

kv2

kv3kv4

kv5

k1

k2

Loss value: 2.04

(b) After smoothing

Figure 2: Indexing data points (keys) with CDF smoothing.

and virtual) points is closer to a straight line. We refit the points

with a new indexing function 𝑓 ′, with the loss function value

L𝑓 ′ (𝐾) being reduced to 2.04 (and L𝑓 ′ (𝐾 ∪𝑉) = 2.29).

We show that, given a smoothing budget that constrains the

additional space costs, finding the optimal placement of the vir-

tual points to minimise the loss function L𝑓 ′ (𝐾) is NP-hard. We

then propose approximation solutions for two generic scenarios:

(1) smoothing the CDF for index learning with a single indexing

function and (2) smoothing the CDF for a hierarchy of index-

ing functions, which is a common structure for existing learned

indexes.

We propose an algorithm, CDF smoothing via virtual points
(CSV) to smooth the CDF for optimising hierarchical learned

indexes, to reduce the overall height of the structures as well

as the prediction errors of each indexing function, and hence

the query costs. This is performed by collecting sub-trees of the

hierarchical structure and smoothing the CDF of the keys in

them. As a result, the keys that were initially in lower levels of

the sub-tree, could now be placed or ’promoted’ into a new single

node in the root of the sub-tree due to the higher learnability,

provided it surpasses a cost model threshold value. Here, the cost

model is used to balance the reduction in index traversal time

and the potential increase in the leaf-node search time due to the

increase of keys in a node.

It is important to note that our aim is not to propose yet an-

other learned index but rather a technique that can be integrated

with existing or emerging hierarchical learned indexes to op-

timise their query efficiency with controllable extra space. To

show the applicability of CSV we integrate it with three recent

learned indexes ALEX [2], LIPP [34], and SALI [10], which are

the state-of-the-art (SOTA). To summarize, this paper makes the

following contributions: (1) We propose a key space transfor-

mation technique using CDF smoothing via inserting virtual

points to enhance index learnability. (2) We propose an efficient

algorithm, CSV to integrate the CDF smoothing technique with

hierarchical learned indexes to improve the query performance,

with a controllable space overhead (3) We integrate CSV with

three learned indexes ALEX, LIPP, and SALI, and we conduct ex-

periments with four real datasets. The experimental results show

that the learned indexes powered by CSV manage to promote

up to 60% of the keys in lower levels to upper levels, resulting in

up to 34% improvement of their query time, with less than 15%

increase to the storage space overhead.

2 RELATEDWORK
We first review learned indexes in general. Then, we focus on

studies addressing complex distributions, which share a similar

goal with us. We also cover a technique called the poisoning

attacks, which motivates our CDF smoothing technique.

2.1 Learned Indexes
Learned indexes are a trending topic in the database commu-

nity [2, 4, 7, 11, 13, 14, 20, 34, 36, 38]. Their key idea is to treat

indexes as functions that map a search key to the storage posi-

tion of the corresponding data object, which can be learned with

machine learning models. A common approach is to lay out the

data objects by ascending order of their search keys, such that

the indexing functions are effectively (approximations of) CDFs

of the keys.

To index large datasets, multiple indexing functions are used,

typically organized in a hierarchy like a B-tree. The lookup per-

formance of such a structure is then dominated by two steps:

(1) the traversal time to find the leaf-node (every node corre-

sponds to an indexing function) indexing the search key, and

(2) the search time within the selected leaf-node (leaf-node search
time hereafter to distinguish from the traversal time) to locate

the target data object, as the indexing functions have errors and

may not produce the exact storage position of the search tar-

get [29, 33]. It is a challenge to balance the query costs from the

two steps above. While a deeper structure with more indexing

functions may fit the data distribution better and have lower leaf-

node search times, it may also have higher traversal times and

larger index sizes [9, 35]. Some studies impose a maximum error

bound on the indexing functions to reduce the leaf-node search

times [7, 8], also at the cost of more indexing functions. Another

approach is to use more complex indexing functions (as opposed

to linear ones) [11, 13, 30], e.g., splines, which could better fit the

CDFs. The issue with this approach is the higher inference time

for the function, and hence higher query and insertion times [29].

These studies design structures and indexing functions to better

fit the data distribution. We address the challenge from an alter-

nate perspective, i.e., we adjust the data distribution such that it

is easier to be fitted by the indexing functions.

2.2 Addressing Complex Data Distributions
To better index CDFs of complex data distributions, there are

two common approaches. One is to use more complex functions

such as splines and piece-wise linear regression models [7, 11].

The other is to use better data partitioning strategies for easier

CDF learning over each partition, such as by CARMI [37] and

EWALI [18]. Another study, LER [5], uses logarithmic error-based

loss functions (instead of the more commonly used least squared

error-based) to improve the learning of index models that better

fit the CDF.

A latest development, SALI [10], identifies the most frequently

accessed nodes via probability models given a query workload.

The corresponding sub-trees are flattened using a segmentation

approach, similar to the PGM index [7], to reduce their traversal

time. However, this leads to an additional search step for queries,

as we need to find the correct node from the flattened structure.

A couple of studies [17, 35] transform the input key set into a

more uniform distribution to improve the CDF learnability. The

NFL index [35] transforms the key distribution using a numer-

ical normalizing flow that transforms a latent distribution to a

new distribution via generative models. The distribution trans-

formation introduces overheads, while queries also need to be

transformed to use the index. Further, the transformation may

increase the tail conflict degree for certain distributions, making

it unsuitable in those instances. The gap insertion [17] technique

inserts gaps between the keys (i.e., storage positions of the cor-

responding data objects) to straighten the CDF of the keys, by

669

Table 1: Comparison with Existing Works

CSV NFL [35] GI [17]

No extra transformation at query time ✓ ✗ ✓

Low storage overhead ✓ ✓ ✗

Integrable into other learned indexes ✓ ✓ ✗

Robust across different distributions ✓ ✗ ✓

first identifying a better indexing mechanism and using it obtain

new ranks for the key set, thereby improving its learnability.

However, this is performed by manipulating the rank of each key,

and as a result, multiple keys could be given the same position.

An extra array is used to house such conflicting keys, which in

turn introduces search overheads to locate the correct key. This

method leads to a heavy storage space increase of up to 87%.

Several learned indexes [2, 20, 34] leave gaps in their storage

structure (i.e., gapped arrays). While their purpose is to accommo-

date data insertions, a side effect is changing the data distribution,

which is what we do. A core difference to note is that, they do

not consider minimizing the indexes’ model prediction errors

when adding gaps, in contrast to our approach which does.

2.3 Poisoning CDFs
Our idea of adjusting data distribution to fit the indexing func-

tions is rooted from data poisoning – a process of manipulat-

ing the training data to change the results from a predictive

model [12]. Data poisoning has been introduced into learned

indexes to poison the indexing functions and negatively impact

their capability to approximate the CDFs [12]. The main goal of

this process is to identify new points to include into the origi-

nal key set that would cause the maximum increase to the loss

function value (i.e., the SSE). To achieve this goal, they have de-

veloped a greedy method of identifying and inserting a poisoning

point sequentially. Using the properties the loss function such as

it being a composite of convex sub-sequences has led to a more

computationally efficient manner of identifying poisoning keys.

Since the loss function is a collection of convex sub-sequences as

depicted in Fig.3, the best poisoning point can always be found

in one of these endpoints, significantly reducing unnecessary

calculations. This poisoning method only harms the leaf-node

search time for data nodes, ignoring the traversal time needed

to identify the correct leaf-node. Furthermore, recent learned

indexes such as LIPP and SALI does not process data nodes as

they are precise learned indexes.

Motivated by the poisoning technique, we propose a technique

that smooths the data distribution by adding virtual points, to

obtain CDFs that are easier to be approximated by indexing

functions (models), hence leading to a structurewith higher query

efficiency. Since the models are built with virtual points that can

be used to host data insertions, a side benefit of our structure is

that it is more resilient against data insertions. Table 1 highlights

the key difference between our technique CSV, NFL, and gap

insertion (GI).

3 PRELIMINARIES
Problem statement. Consider a dataset 𝐷 of 𝑛 data records,

where each record is associated with a one-dimensional value as

its index key. Let 𝐾 be the list of all index keys associated with

𝐷 , sorted in ascending order.

Suppose that the index keys have been partitioned and indexed

by a set F of𝑚𝑙 indexing functions at level 𝑙 of the index. Each

indexing function 𝑓𝑖 ∈ F has some prediction error (a.k.a “loss”)

for a key 𝑘 ∈ 𝐾𝑖 indexed by it. Here,𝐾𝑖 ⊂ 𝐾 refers to the subset of

keys indexed by 𝑓𝑖 and its sub-tree. The loss refers to the squared

difference between the predicted index position 𝑓𝑖 (𝑘) and the

rank of 𝑘 in 𝐾 , i.e., 𝑟𝑎𝑛𝑘 (𝑘). The sum of squared errors (SSE) is

one of the most commonly used metrics to represent loss in the

existing studies of learned indexes. Let LF be the total sum of
squared errors of all indexing functions in F for level 𝑙 :

LF (𝐾) =
𝑚𝑙∑︁
𝑖=1

∑︁
𝑘∈𝐾𝑖

(
𝑓𝑖 (𝑘) − 𝑟𝑎𝑛𝑘 (𝑘)

)
2

. (2)

Due to these errors in the indexing functions, learned indexes

cannot query the location of a key accurately. To overcome this,

learned indexes tend to sub-divide the key set, and each sub-

division is fitted by an individual indexing function to reduce

the errors. This approach creates a hierarchical structure and

adds extra inference time. Our approach addresses the issue by

manipulating the dataset to better suit the indexing functions

instead. This approach allows us to accommodate more keys with

fewer indexing functions and hence creating shallower hierar-

chical structures. For this purpose, we propose the approach of

CDF smoothing via virtual points. The goal of the approach is

to insert virtual keys into the existing dataset in a manner that

would minimise the loss function of the indexing function. This

is illustrated by Fig. 2, where adding the virtual keys transforms

the CDF of the dataset into a more linear shape.

Eq. 2 is the loss function of our optimisation problem. We aim

to insert values (virtual points) into 𝐾 while keeping it sorted,

such that LF (𝐾) is minimised, i.e., to smooth the CDF of 𝐾 ,

thereby allowing more keys to be fitted with fewer indexing

function at each level of the index.

A naive optimal smoothing scheme is to insert as many virtual

points as needed such that every point 𝑘 ∈ 𝐾𝑖 lies at the 𝑓𝑖 (𝑘)-
th position (i.e., 𝑟𝑎𝑛𝑘 (𝑘) = 𝑓𝑖 (𝑘)) in the list (assuming unique

integer keys). This way, the loss becomes zero after smoothing.

In reality, this smoothing scheme is infeasible, due to the non-

uniqueness of the keys in 𝐾 and the potentially high space cost.

For example, if the keys are 64-bit integers, it will take 2
64 × 8

bytes ≈ 128 exabyte (i.e., 128 × 10
6
TB) to achieve such an index

key layout.

To balance between the space overhead and the smoothness of

the CDF with inserted points, we consider a “smoothing budget”

𝜆, i.e., the number of virtual points allowed to be inserted, such

that the loss is minimised given the constraint of 𝜆. We assume

𝜆 = 𝛼 · 𝑛 where the smoothing threshold 𝛼 is in (0, 1), to retain a

linear space overhead. Formally, we aim to solve the following

problem:

Definition 3.1. [Learned index smoothing] Given a list of

index keys 𝐾 sorted in ascending order and partitioned into𝑚

segments, each of which is indexed by an indexing function

𝑓𝑖 ∈ F , the learned index smoothing problem aims to insert a

set 𝑉 (|𝑉 | ≤ 𝜆) of virtual points into 𝐾 while keeping 𝐾 in order,

such that the loss as defined by Eq. 2 is minimised.

We consider linear indexing functions as they are used in most

existing learned indexes and for their efficiency, although CDF

smoothing can naturally extend to more complex (e.g., quadratic)

functions. To simplify the discussion, we use integer index keys,

while our techniques also apply to real number index keys when

they can be scaled up to become integers. Similarly, Strings can

670

be converted into integers via an encoding such as using ASCII

values prior to indexing [6, 39], hence our proposed method can

be applied after this conversion. We omit duplicate keys as SOTA

learned indexes such as LIPP and SALI does not support them.

NP-hardness analysis. Solving the exact CDF smoothing is

NP-hard as it can be reduced from the Knapsack problem.

Lemma 3.2. Learned index CDF smoothing is NP-hard.

Proof. We reduce from the Knapsack problem which is NP-

hard. The Knapsack problem considers a set of items 𝑆 . Each

item 𝑠 ∈ 𝑆 has a value 𝑐𝑠 and a weight 𝑤𝑠 . The objective is to

determine the subset 𝐴 ⊆ 𝑆 that maximises the total value of the

items in 𝐴 while the total weight of the items is less than a given

limit 𝑡 .

CDF smoothing considers a key set 𝐾 of size 𝑛. We aim to find

a subset 𝑉 (virtual points 𝑘𝑣𝑖) of at most size 𝜆 from a candidate

set 𝐶 that would minimise the loss L (i.e., maximisation of loss

reduction from the loss without CDF smoothing). Naively, the set

𝐶 can be formed by considering 𝜆 candidates between every two

adjacent keys in 𝐾 , i.e., |𝐶 | ≤ 𝜆 · (𝑛 − 1). To reduce the Knapsack

problem to our problem, the set 𝑆 of items is mapped to𝐶 . We set

the weight of every item (a candidate virtual point) to 1 and let

𝑡 be our target number of virtual points to be added, i.e., 𝜆. The

value of an item, 𝑐𝑠 , is mapped to the loss reduction contributed

by the corresponding virtual point. Maximising the values of the

items in subset𝐴 is mapped tomaximising the total loss reduction

of the virtual points in𝑉 . In our problem, the total loss reduction

when multiple virtual points are added together varies from the

sum of the loss reduction when the virtual points are added

individually, represented as: |∑𝑠∈𝐴 𝑐𝑠 | = 𝑟 ∑𝑠∈𝐴 |𝑐𝑠 |, where |𝑐𝑠 |
is the magnitude of the value of a virtual point and 𝑟 ∈ R is a

parameter. Here, 𝑟 is deterministic since it could be calculated

based on Eq. 1. As such, the total value of the combined items

can be transformed to the sum of the individual item values, and

maximising the latter for the Knapsack problem can be mapped

to maximising the former for our problem. The transformation

between the two problems can be done in polynomial time since

there is a one-to-one mapping. Thus, when our problem is solved,

the Knapsack problem is also solved in polynomial time. As such,

our problem is NP-hard. □

Due to the computational complexity in finding an exact op-

timal solution for the learned index smoothing problem over

a large set of keys, next, we consider two practical variants of

the problem and propose highly effective heuristic solutions: (1)

smoothing the CDF for the subset of keys 𝐾𝑖 indexed by an in-

dexing function 𝑓𝑖 (Section 4); and (2) smoothing the CDFs for all

𝑚 subsets 𝐾𝑖 when they are indexed under a hierarchical learned

index (Section 5).

4 CDF SMOOTHING FOR A SINGLE LINEAR
MODEL

We first consider a single indexing function over a segment of

keys 𝐾𝑖 . Given the smoothing budget 𝜆, our optimisation goal is:

argmin𝑉𝑖 ,𝑤,𝑏
L𝑓𝑤,𝑏 (𝐾𝑖 ∪𝑉𝑖), 𝑠 .𝑡 . |𝑉𝑖 | ≤ 𝜆 (3)

This optimisation goal varies from Eq. 2. Importantly, we now

allow the slope (𝑤) and intercept (𝑏) of the indexing function 𝑓

to be refitted based on the keys 𝐾𝑖 (with adjusted ranks) and the

inserted virtual points𝑉𝑖 , rather than just inserting virtual points

to adjust 𝑟𝑎𝑛𝑘 (𝑘) for 𝑘 ∈ 𝐾𝑖 to fit 𝑓 (𝑘) of the original indexing
function 𝑓 . This way, intuitively, we could achieve a lower loss

with fewer virtual points (hence reducing space overhead), as

opposed to the naive optimal smoothing scheme described above

that simply spreads 𝐾𝑖 to fit 𝑟𝑎𝑛𝑘 (𝑘) to a given 𝑓 (𝑘). In Eq. 3,

we include 𝑉𝑖 in the loss calculation, such that the storage space

allocated to the virtual points can be used to accumulate data

insertions, with minimized prediction errors when querying the

inserted data.

Challenges. Allowing to refit the slope and the intercept of

the indexing function makes the optimisation problem more diffi-

cult, as now the loss reduction brought by inserting a virtual point

depends further on the other virtual points to be inserted. To

solve the problem, a simple greedy heuristic is to iteratively select

the best remaining candidate virtual point that leads to the largest

loss reduction and to refit the indexing function after each virtual

point selection. This process is repeated 𝜆 times to identify 𝜆 vir-

tual points to be inserted. There are complexity issues with this

simple heuristic. Challenge 1: Large size of candidate set: Given

keys 𝐾𝑖 , the candidate virtual points can be any key value in

(min{𝐾𝑖 },max{𝐾𝑖 }) (detailed in Section 4.2), which can be a large
range in real datasets. Challenge 2: Repeated loss calculations:

For each candidate virtual point𝑘𝑣 , we need to recalculateL𝑓 (𝐾𝑖∪
𝑉𝑖), where 𝑉𝑖 includes 𝑘𝑣 , to help select the best candidate that

leads to the largest loss reduction, which takes 𝑂 (|𝐾𝑖 | + 𝜆) time.

For 𝜆 iterations and 𝑂 (𝑝) candidate virtual points per iteration,
overall, the greedy solution takes 𝑂 ((|𝐾𝑖 | + 𝜆) · 𝜆 · 𝑝) time.

To overcome these challenges, we present an efficient solution

below to reduce the overall time complexity through (1) reducing

the number of candidate virtual points 𝑝 and (2) the time cost to

calculate the loss for each candidate virtual point.

Our solution. Our solution takes three steps: 1: We propose

an effective approach to reduce the number of candidate virtual

points. The idea is, if there are consecutive candidate virtual

points, we only need to consider the point among these con-

secutive points that minimises the loss, which can be identified

utilising the first-order partial derivative of the loss function (ad-

dressing Challenge 1, detailed in Section 4.2). 2:We propose an

efficient algorithm to calculate the loss. The core idea is to calcu-

late the loss incrementally, and to reuse part of the calculation

from the previous iteration, as only one new candidate virtual

point is included into the calculation each time (addressing Chal-

lenge 2, detailed in Section 4.1). 3: Finally, from the reduced set

of candidate virtual points, and with efficient loss calculation,

we present an efficient algorithm to compute the best subset of

virtual points of size 𝜆 (Section 4.3).

A running example on finding the best virtual point is shown

in Fig. 3, which corresponds to the keys in Fig. 2a. In Fig. 3,

each hollow dot represents a candidate virtual point. Its 𝑦-value

represents the loss (i.e., SSE) if the virtual point is included into

the key set. Adjacent hollow dots are linked together, forming

a segment of candidate virtual point values. For example, the

segment formed by 21 to 25 is between index keys 20 and 26

(the index keys themselves are not considered to be candidate

virtual points; they correspond to the gaps between the curve

segments in Fig. 3). The goal is to search for the virtual point

with the smallest loss value. In the given example, point 23 is the

search target.

In what follows, we present the algorithm to efficiently cal-

culate the loss first (Section 4.1), based on which the strategy

to reduce the candidate virtual points is described (Section 4.2),

and our overall algorithm to compute the best 𝜆 virtual points is

detailed (Section 4.3).

671

5 10 15 20 25 30
Virtual point values

6

8

10

12

14
Lo

ss
 fu

nc
tio

n
va

lu
e

kv1

Original key set
loss value

Figure 3: Loss function (SSE) value corresponding to differ-
ent insertion positions for a virtual point.

4.1 Efficient Loss Calculation and Indexing
Function Refitting

We require to calculate the loss after each candidate virtual point.

However, doing so would be computationally expensive. As such

the idea is to reuse the calculations as much as possible. For the

rest of Section 4, we abuse the notation slightly and use𝐾 instead

of 𝐾𝑖 to denote the segment of keys for which CDF smoothing is

to be done, since the discussion only concerns a single segment.

Similarly, we use 𝑓 instead of 𝑓𝑖 to denote the indexing function,

L instead of L𝑖 to denote the loss function, and 𝑉 instead 𝑉𝑖 to

denote the candidate virtual points for the segment.

Let the rank of a key 𝑘𝑖 be 𝑦𝑖 (assuming that the ranks start

from 0) for the 𝑛 keys in 𝐾 , i.e., 𝑦𝑖 = 𝑟𝑎𝑛𝑘 (𝑘𝑖). First, consider a
virtual point 𝑘𝑣 with its rank (after inserted into 𝐾) being 𝑦𝑣 (we

explain the case for multiple virtual points later). The loss for 𝐾

and 𝑉 = {𝑘𝑣} can be calculated as follows, where 𝑤 and 𝑏 are

the parameters of the indexing function 𝑓 for the existing and

inserted keys:

L({𝐾 ∪𝑉 }) =
𝑛∑︁
𝑖=1

(𝑤𝑘𝑖 + 𝑏 − 𝑦𝑖)2 + (𝑤𝑘𝑣 + 𝑏 − 𝑦𝑣)2 (4)

It is computationally expensive to calculate the loss for each

candidate virtual point using standard Eq. 4, as 𝑤 and 𝑏 can

change when the indexing function 𝑓 is refitted for the candi-

date virtual point, which is governed by the following equations

(derived from the first-order partial derivatives of Eq. 4):

𝑤 =

∑𝑛+1
𝑖=1
(𝑘𝑖 − ¯𝑘𝑣) (𝑦𝑖 − 𝑦𝑣)∑𝑛+1
𝑖=1
(𝑘𝑖 − ¯𝑘𝑣)2

, 𝑏 = 𝑦𝑣 − 𝑤 ¯𝑘𝑣 . (5)

Here,
¯𝑘𝑣 and 𝑦𝑣 are the mean of the key set (i.e., 𝐾 ∪𝑉) and

the rank set after inserting the virtual point (𝑘𝑣, 𝑦𝑣), respectively.
They can be computed by Eqs. 6 as follows:

¯𝑘𝑣 =

∑𝑛
𝑖=1
𝑘𝑖 + 𝑘𝑣
𝑛 + 1

, 𝑦𝑣 =

∑𝑛
𝑖=1

𝑦𝑖 + 𝑦𝑣
𝑛 + 1

. (6)∑𝑛
𝑖=1

𝑦𝑖 is the summation ranks in the original key set (i.e., 𝐾)

after the inclusion of the virtual point 𝑘𝑣 .

To make the calculation efficient we rewrite Eq. 4 for calcu-

lating the loss after each candidate virtual point such that the

candidate virtual point 𝑘𝑣 is separated from the values of 𝐾 . This

enables us to calculate the terms in the equation related to 𝐾

separately and then reuse their values for different candidate

virtual points. This would reduce the time when computing the

loss for different candidate virtual points.

By expanding Eq. 4 we obtain Eq. 7

L({𝐾 ∪𝑉 }) = 𝑤2

𝑛∑︁
𝑖=1

𝑘2

𝑖 + 2𝑤𝑏

𝑛∑︁
𝑖=1

𝑘𝑖

−2𝑤

𝑛∑︁
𝑖=1

𝑘𝑖𝑦𝑖 + 𝑛𝑏2 − 2𝑏

𝑛∑︁
𝑖=1

𝑦𝑖 +
𝑛∑︁
𝑖=1

𝑦2

𝑖 + (𝑤𝑘𝑣 + 𝑏 − 𝑦𝑣)2
(7)

By adding the new point with rank 𝑦𝑣 , we would be increasing

the rank of all keys after 𝑦𝑣 by one, until the final key’s rank is

𝑛. This results in the following Eq. 8, where

∑𝑛
𝑖=1

𝑦𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖 is the

ranks of the original key set prior to the virtual key.

𝑛∑︁
𝑖=1

𝑦𝑖 =

𝑛∑︁
𝑖=1

𝑦𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖 + 𝑛 − 𝑦𝑣, (8)

Similarly, we can define the means of the original key set and

rank after the adding 𝑘𝑣 as,

𝑦 =

∑𝑛
𝑖=1

𝑦𝑖

𝑛
,

¯𝑘 =

∑𝑛
𝑖=1
𝑘𝑖

𝑛
(9)

Substituting Eqs. 8 to 9 into Eq. 7, we can simplify the loss

function as shown in Eq. 10.

L({𝐾 ∪𝑉 }) = 𝑤2

𝑛∑︁
𝑖=1

𝑘2

𝑖 + 2𝑤𝑏𝑛 ¯𝑘 − 2𝑤

𝑛∑︁
𝑖=1

𝑘𝑖𝑦𝑖 + 𝑛𝑏2

−2𝑛𝑏𝑦 +
𝑛∑︁
𝑖=1

𝑦2

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖
+ 𝑛2 − 𝑦2

𝑣 + (𝑤𝑘𝑣 + 𝑏 − 𝑦𝑣)2
(10)

Similarly, we can expand the slope from Eqs. 5 to simplify the

calculation of the indexing function.

𝑤 =

∑𝑛
𝑖=1
(𝑘𝑖𝑦𝑖) + 𝑘𝑣𝑦𝑣 − (𝑛 + 1) ¯𝑘𝑣𝑦𝑣∑𝑛
𝑖=1
𝑘2

𝑖
+ 𝑘2

𝑣 − (𝑛 + 1) ¯𝑘𝑣
2

(11)

Adjustment for multiple virtual points. In the case of in-

serting 𝜆 virtual points, after inserting one virtual point (𝑘𝑣1, 𝑦𝑣1),
to find the next virtual point (𝑘𝑣2, 𝑦𝑣2), the original key set

terms will be adjusted to include the newly added virtual point

(𝑘𝑣1, 𝑦𝑣1). As a result, the loss for the next candidate virtual

point 𝑘𝑣2 can also be efficiently calculated by considering only

the changes induced by 𝑘𝑣2 and its corresponding 𝑦𝑣2.

In the derived equations above, the terms are separated based

on whether they belong to the original key set or dependent on

the candidate virtual key to be inserted. Doing so enables efficient

calculations of the loss by reusing the terms of the original key

set after calculating them just once.

4.2 Filtering Virtual Point Candidates
Next, we present an efficient approach to identify the candidate

virtual points that can potentially reduce the loss, thus providing

a much smaller set of candidate virtual points to consider. This

step is important because while using the equations above helps

improve the efficiency of processing one candidate virtual point,

the number of candidate virtual points to be processed has a

multiplicative impact to the overall algorithm time efficiency.

To reduce the search space for the candidate virtual points, we

bound it in (min{𝐾},max{𝐾}). This is because any virtual points
added prior to min{𝐾} would cause all keys’ ranks to increase at
the same time, while adding virtual points after max{𝐾} would
not impact any key’s rank. As such, neither would help achieve

a better-fitted indexing function. We also skip the index keys

already in 𝐾 , such that our solution can be compatible with

learned indexes that do not support duplicate keys [29].

Below, we present an approach based on the derivative of the

loss function to further reduce the set of candidate virtual points.

Our idea is illustrated using Fig. 4, which plots the partial deriva-

tive of the loss function with respect to a candidate virtual point

𝑘𝑣 . Each sub-sequence (depicted as lines or dots) corresponds to

the partial derivative of the loss of a sub-sequence of key values

of a candidate virtual point (which can also be seen as a sub-

sequence of candidate virtual points). The sub-sequences that

cross the zero-value line (i.e., the 𝑥-axis) imply that there is a min-

imal loss point within the sub-sequence. Otherwise, the minimal

672

point for the sub-sequence must be at one of two endpoints of the

sub-sequence, since each of such sub-sequences has been shown

to be convex [12]. Intuitively, this convex property is because the

loss function is a summation of 𝑛 quadratic terms ((𝑤𝑘𝑖 +𝑏−𝑦𝑖)2)
and only one non-quadratic term ((𝑤𝑘𝑣 + 𝑏 − 𝑦𝑣)2), and the𝑤𝑘𝑣
term is nonlinear variable. We exploit this property to streamline

the selection of candidate virtual points, i.e., to select the best

virtual point from each sub-sequence.

Following the idea above, we propose to filter the candidate

virtual points as follows: (1) For each sub-sequence of candidate

points (that is, where the candidate virtual point values are con-

tinuous), if the length of the sub-sequence is greater than 2, there

can be a candidate virtual point within the sub-sequences with

a local minima of the loss. We compute the partial derivative of

the loss function, which includes the previously added virtual

points (L({𝐾 ∪𝑉 }) shown in Eq. 4) with respect to candidate

virtual point 𝑘𝑣 , i.e., L({𝐾 ∪𝑉 })′ of the two endpoints of such

sub-sequence (we present efficient ways to compute the partial

derivative of a candidate later). (a) If the sign of L({𝐾 ∪𝑉 })′
of the two endpoints are the same, it means that there is no

point with the local minima within this sub-sequence (i.e.„ the

sub-sequence does not cross the zero value in 𝑦-axis as shown

in Fig. 4). In that case, we only need to consider the two end-

points of the sub-sequence as the candidate virtual points, and

we can safely discard all the candidate virtual points in between.

(b) Otherwise, if the sign of L({𝐾 ∪𝑉 })′ of the two endpoints
are opposite, it means that there is a point with a local minima

within the sub-sequence. The minimal point can be calculated by

using the two partial derivative values to find their intersection

with the x-axis. As this minimal point is guaranteed to have a

smaller loss than all the other points in that sub-sequence, only

the point is considered as a candidate virtual point. All other

points in the sub-sequence can be safely discarded.

(2) If the length of the sub-sequence is less than or equal to

2, we need to consider all points in the sub-sequence as the

candidate virtual points.

For datasets that allow duplicate keys, potential virtual points

would not be in sub-sequences divided by the existing points.

Instead, now all key values become candidate virtual points. We

could use a gradient descent approach to find the local optima

for virtual point insertion.

Efficient computation of the first-order derivative of the
loss function value. Similar to the computation of the loss func-

tion, we present an efficient way to calculate the first-order partial

derivative of the loss function with respect to candidate virtual

point 𝑘𝑣 , where 𝑘𝑣 and its related terms are separated from the

other terms to enable reusing the terms that require information

from 𝐾 only. This is achieved by the following equation:

L({𝐾 ∪𝑉 }) ′ = 2(𝑤′ (𝑤
𝑛∑︁
𝑖=1

𝑘2

𝑖 + 𝑛𝑏 ¯𝑘 −
𝑛∑︁
𝑖=1

𝑘𝑖𝑦𝑖)+

𝑛𝑏′ (𝑤 ¯𝑘 + 𝑏 − 𝑦) + (𝑤𝑘𝑣 + 𝑏 − 𝑦𝑣) (𝑤′𝑘𝑣 + 𝑤 + 𝑏′)) .
(12)

Here,𝑤 ′ and 𝑏′ refer to the partial derivatives of𝑤 and 𝑏 with

respect to 𝑘𝑣 , respectively. They can be computed by Eqs. 13 as

follows.

𝑤′ =
𝐴(𝑛 (𝑦𝑣 − 𝑦)) − 𝐵 (2𝑛 (𝑘𝑣 − ¯𝑘))

𝐴2
, 𝑏′ = − (𝑤 + (𝑛 + 1) ¯𝑘𝑣𝑤

′)
𝑛 + 1

(13)

𝐴 = (𝑛 + 1) (
𝑛∑︁
𝑖=1

𝑘2

𝑖 + 𝑘2

𝑣) − ((𝑛 + 1) ¯𝑘𝑣)2, (14)

5 10 15 20 25 30
Virtual point values

1.0

0.5

0.0

0.5

1.0

Fir
st

 p
ar

tia
l d

er
iv

at
iv

e

kv1

Figure 4: First-order partial derivatives of the loss (Eq. 12)
with respect to the key value of a virtual point 𝑘𝑣

𝐵 = (𝑛 + 1) (
𝑛∑︁
𝑖=1

𝑘𝑖𝑦𝑖 + 𝑘𝑣𝑦𝑣) − (𝑛 + 1)2 ¯𝑘𝑣𝑦𝑣 . (15)

𝐴 and 𝐵 are intermediary for the partial derivatives calculation.

4.3 Algorithm for Inserting 𝜆 Virtual Points
After filtering the candidate virtual points, among the remaining

ones, we present an efficient algorithm to find the best subset of

candidate virtual points of size 𝜆. When there are 𝜆 virtual points

to insert, the optimal solution would require computing the loss

for every size-𝜆 subset of the candidate virtual points in the range

of (min{𝐾},max{𝐾}). If there are 𝑝 possible insertion positions

for the virtual points, the time complexity will be 𝑂 (𝑝𝐶𝜆 · 𝑛 · 𝑝),
where

𝑝𝐶𝜆 is the combination of every size-𝜆 subset from 𝑝 .

As this will be prohibitively expensive for a large dataset, we

propose a greedy algorithm that inserts individual virtual points

iteratively.

Our core idea is to identify the virtual point that would min-

imise the loss for each sub-sequence (i.e., local minima for the

sub-sequences) and select the one that reduces the loss the most

(i.e., global minimum). This process needs to be performed 𝜆

times. The algorithm for CDF smoothing by inserting 𝜆 virtual

points is summarised in Algorithm 1 and described below.

Algorithm. Our algorithm takes as input a key set 𝐾 and a

smoothing threshold 𝛼 (or a smoothing budget 𝜆 = 𝛼𝑛). We use

𝐺 to denote a set that stores the potential sub-sequences, where

there can be a candidate virtual point within the endpoints of the

sub-sequences with a local minima of the loss. The endpoints of

the candidate virtual points contributing to this local minima are

stored in an array𝑀 , while𝐶 stores the set of candidate keys for

the virtual points. We use𝑈 to hold the loss for each candidate

virtual point and vector𝑉 to store the final optimal virtual points.

First, the algorithm identifies the sub-sequences of candidate

virtual points that could have their minimal loss at the endpoints

or in-between the sequence. This is shown in Lines 4 to 12. If there

are more than two points in a sub-sequence, the candidate virtual

point with the minimal loss can be within that sub-sequence. As

such, the two endpoints of the sub-sequence are saved in array

𝐺 for calculating the partial derivatives.

Afterwards, in Lines 13 to 22, the partial derivative of the loss

function with respect to the candidate virtual points is calculated

for all point pairs in 𝐺 using the equations derived above. If

the signs of the partial derivatives corresponding to the two

endpoints of a sub-sequence are different (i.e., on opposite sides

of the 𝑥-axis), the two endpoints are added to𝑀 for calculating

theminimumpoint. As shown in Fig. 4, for the sub-sequences that

contain candidate virtual points with minimal loss, the partial

673

Algorithm 1 CDF_smoothing

Require: Key set: 𝐾 , loss function with new virtual point: L(𝐾 ∪ 𝑘𝑣) ,
smoothing threshold: 𝛼

1: 𝑈 = [],𝐶 = [],𝑉 = []
2: 𝐺 = [],𝑀 = [] ⊲ Arrays of point pairs

3: L′ (𝐾 ∪ 𝑘𝑣) = 𝜕𝐿 (𝐾∪𝑘𝑣)
𝜕𝑘𝑣

, 𝜆 = 𝛼 · 𝐾.𝑠𝑖𝑧𝑒 , L𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = L(𝐾 ∪ ∅)
4: Find the endpoint pairs, 𝐸, for each sub-sequence

5: while𝑉 .𝑠𝑖𝑧𝑒 < 𝜆 do
6: for 𝑖 from 1 to 𝐸.𝑠𝑖𝑧𝑒 do ⊲ Separate sub-sequences

7: if 𝐸 [𝑖] .𝑠𝑒𝑐 - 𝐸 [𝑖] .𝑓 𝑖𝑟 ≤ 1 then
8: Append 𝐸 [𝑖] .𝑓 𝑖𝑟 and 𝐸 [𝑖] .𝑠𝑒𝑐 to𝐶
9: else ⊲ There are more than 2 points

10: Append 𝐸 [𝑖] .𝑓 𝑖𝑟 to𝐺.𝑓 𝑖𝑟 and 𝐸 [𝑖] .𝑠𝑒𝑐 to𝐺.𝑠𝑒𝑐
11: end if
12: end for
13: for 𝑖 from 1 to𝐺.𝑠𝑖𝑧𝑒 do ⊲ Calculate the partial derivatives

14: if L′ (𝐾 ∪𝐺 [𝑖] .𝑓 𝑖𝑟) · L′ (𝐾 ∪𝐺 [𝑖] .𝑠𝑒𝑐) < 0 then
15: Append𝐺 [𝑖] .𝑓 𝑖𝑟 to𝑀.𝑓 𝑖𝑟 and𝐺 [𝑖] .𝑠𝑒𝑐 to𝑀.𝑠𝑒𝑐
16: else
17: Append𝐺 [𝑖] .𝑓 𝑖𝑟 and𝐺 [𝑖] .𝑠𝑒𝑐 to𝐶
18: end if
19: end for
20: for 𝑖 from 1 to𝑀.𝑠𝑖𝑧𝑒 do ⊲ Calculate minimum point

21: Append𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑝𝑜𝑖𝑛𝑡 (𝑀 [𝑖] .𝑓 𝑖𝑟 ,𝑀 [𝑖] .𝑠𝑒𝑐) to𝐶
22: end for
23: for 𝑖 from 1 to𝐶.𝑠𝑖𝑧𝑒 do ⊲ Calculate loss value

24: 𝑈 [𝑖] = L(𝐾 ∪𝐶 [𝑖])
25: end for
26: Find index 𝑖 of minimum L
27: if L𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ≤ 𝑈 [𝑖] then
28: break

29: end if
30: Append𝐶 [𝑖] to𝑉 , Append𝐶 [𝑖] to 𝐾 , L𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 𝑈 [𝑖]
31: end while
32: return C

derivatives of the endpoints will appear on the two sides of the 𝑥-

axis. Theseminimal points are added to𝐶 after they are calculated.

If the partial derivatives of the two endpoints are on the same

side of 𝑥-axis, the minima is at one of the endpoints, so the two

endpoints are added to 𝐶 .

Finally, Lines 23 to 31 compute the loss for each candidate

virtual point in 𝐶 and select the point with the minimum loss, as

long as the new loss is smaller than the loss obtained so far.This

process is repeated until at most 𝜆 virtual points are inserted, or

when the loss is not reduced any further. When the algorithm

terminates, the final virtual points in 𝑉 are returned.

Complexity analysis.CDF reduces the computation of loss over

𝐾 to just once, which takes𝑂 (𝑛) time. This process is repeated to

find 𝜆 optimal candidate virtual points. However, there is no need

to recalculate the loss function after adding a virtual point, as we

could treat the key set with the previous virtual point inserted as

the new original or base key set for a constant time calculation.

Thereby, giving a time complexity of 𝑂 (𝜆 + 𝑛).

4.4 Approximation Quality Analysis
The effectiveness of our proposed greedy method of iteratively

identifying the 𝜆 virtual points as opposed to the exhaustive

manner of comparing all 𝜆 subsets, is demonstrated via experi-

mentation in this section. The key set of 10 keys given in Fig. 2

was subjected to CDF smoothing with a smoothing threshold

(𝛼) of 0.5 (smoothing budget of 5) via both methods. Here, the

greedy method improves the loss by 72.34%, while the exhaustive

method improves it by 74.44%. However, the time taken by the

exhaustive method is nearly 3 orders of magnitude more than

the greedy method. This results show that the effectiveness of

the greedy method is similar to the exhaustive method, and the

exhaustive method is impractical to use in real datasets.

5 CDF SMOOTHING FOR HIERARCHICAL
INDEXES

In this section, we present the CDF smoothing to a hierarchical

learned index to improve the performance of queried keys. A di-

rect application to individual nodes would help reduce leaf-node

search time by improving the learnability of the models but fail to

address traversal time. Therefore, a method for addressing both

traversal and leaf-node search is required. As such we present

CSV to smooth segments of the CDF for different sub-trees in

the hierarchical structure of a learned index in order to merge

and reduce the overall structure height. A major challenge is

the balancing between the improvement of traversal time due to

the reduction of the index height and the increase in leaf-node

search time due to more keys being merged into single nodes.

To address this, we present a cost model that takes both of these

factors into consideration.

The core idea is to start from the bottom most level of the

index that contains parent nodes of leaf-nodes and select those

nodes. Then for each of these parents nodes, the keys in the node

and its child nodes are collected, which are then subjected to

smoothing using Algorithm 1. If the minimum cost threshold is

satisfied (more details below), then the sub-tree and the node

are reconstructed to merge the collected nodes. The merging is

performed by creating a new leaf-node in place of the parent

node and placing the keys from the collected nodes. By doing

so, more keys would be placed in upper level nodes of the index

as the indexing functions of these nodes would be improved by

the CDF smoothing, but the cost models would limit the number

of keys as to not offset the performance gain by the increase

in the leaf-node search time. Further details regarding this is

given in Section 5.1. This process is performed until the root

node depicted as level 1 is reached, thus reducing the loss (L).
As shown in Fig. 5, the original keys from the selected node

and its sub-tree are not fitting well to the indexing function used.

However, after the inclusion of the virtual points, the indexing

function becomes more accurate. Due to this, the selected node

manages to accommodate more keys in the node. As such, the

keys that were previously in the level below have the potential

to be placed or promoted to a higher level.

This process is applied to a constructed learned index structure

as the purpose of the method is to enhance the structure of

the index. Further, it is computationally expensive to perform

the smoothing operation on the full key set. As such it is more

reasonable to handle subsets of the key set in the constructed

hierarchical index. For this purpose, unbalanced learned index

structures are better suited as it gives the ability to reduce the

height of taller branches without affecting the rest.

The algorithm for CDF smoothing of a hierarchical learned

index structure is given in Algorithm 2 and described below. First

the algorithm starting from the maximum level of the index,

identifies all nodes with sub-trees in the level, which is shown

in Line 5. Afterwards, as shown in Lines 7-8, each of the node’s

and its sub-tree’s keys are collected and subjected to the CDF

smoothing. Provided that they meet the minimum cost threshold

selected, the node and its sub-tree are reconstructed to promote

674

Algorithm 2 CSV

Require: Nodes with sub trees : 𝑁𝑜𝑑𝑒𝑠 , smoothing threshold : 𝛼 , cost

threshold : 𝑐

1: 𝑁𝑜𝑑𝑒𝑠 = [], 𝑘𝑒𝑦𝑠𝑒𝑡 = [], 𝑘𝑒𝑦𝑠𝑒𝑡_𝑠𝑚𝑜𝑜𝑡ℎ = []
2: 𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙 ← maximum level of index with sub trees

3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 ←𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙

4: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 > 1 do
5: 𝑁𝑜𝑑𝑒𝑠 ← all nodes with sub trees

6: for 𝑖 from 1 to 𝑁𝑜𝑑𝑒𝑠.𝑠𝑖𝑧𝑒 do
7: 𝑘𝑒𝑦𝑠𝑒𝑡 ← collect all keys in the node and its sub tree

8: 𝑘𝑒𝑦𝑠𝑒𝑡_𝑠𝑚𝑜𝑜𝑡ℎ ←𝐶𝐷𝐹_𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 (𝑘𝑒𝑦𝑠𝑒𝑡, 𝛼) ⊲ Using

Algorithm 1

9: if 𝑐𝑜𝑠𝑡 < 𝑐 then
10: Reconstruct the sub-tree and node with 𝑘𝑒𝑦𝑠𝑒𝑡_𝑠𝑚𝑜𝑜𝑡ℎ

11: end if
12: end for
13: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 − 1

14: end while

Rank Rank

KeyKey

Original
keyset

of sub-tree

Inserting
virtual
keys

Reducing
the

hierarchical
structure

Figure 5: The CSV method

as many keys to upper levels as possible as shown in Lines 9-11.

This process is iteratively performed in a bottom up manner for

other levels of the index.

The CSV method is applied after the construction of the ini-

tial learned index structure for two reasons: (1) this makes our

methodmore versatile and applicable to different learned indexes;

(2) this avoids the high cost of repeating the optimal virtual point

calculation process every time a new node is created (recall the

NP-hardness of the problem). It would make an interesting fu-

ture work to further explore how to efficiently run virtual point

insertion during index construction, which could open further

optimisation opportunities.

5.1 Cost Conditions
For indexes that do not contain any searching component such

as LIPP and SALI, their loss function values can be taken as the

cost conditions. This is because if the new model could hold more

keys than before, then it does not have any other component

(that is, leaf-node search time) that would negatively affect the

performance. However, for the indexes with leaf-node search

components like ALEX, there must be a trade-off between the

increase of leaf-node search time over the reduction of traversal

time. The reason is, introducing new keys into the node would

require more time to locate the key. For this purpose, we develop

the following cost model, where reconstruction is performed only

if the cost is less than a specified threshold value, 𝑐 .

𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑠
+𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑖𝑛𝑑𝑒𝑥_𝑙𝑒𝑣𝑒𝑙 (16)

To make the implementation hardware independent, the con-

stants can be measured by sampling queries to measure the time

spent per leaf-node search for 𝑠𝑒𝑎𝑟𝑐ℎ_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and the traversal

time spent per level for 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . The 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚𝑏𝑒𝑟

_𝑜 𝑓 _𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑠 can be calculated via the inbuilt function in ALEX

that uses the 𝑙𝑜𝑔2 error to estimate it. Considering the cost model

depicts the expected query time for the node, the cost threshold,

𝑐 should be set below 0 to identify an improvement. Setting a

lower value would result in fewer keys being able to be promoted

to upper levels but the expected query time improvement will be

greater.

Complexity analysis. For a key set of size𝑛, a smoothing budget

𝜆 and an index with 𝑚 non-leaf nodes, the complexity of the

algorithm can be calculated as follows. The complexity for 𝑛𝑜𝑑𝑒𝑖
with 𝑛𝑖 keys and a smoothing budget of 𝜆𝑖 is𝑂 (𝜆𝑖 +𝑛𝑖). Similarly,

for the𝑚 nodes, we would get a complexity of 𝑂 (𝜆1 + 𝑛1 + 𝜆2 +
𝑛2 + · · · + 𝜆𝑚 + 𝑛𝑚). This can be simplified to 𝑂 (𝜆 + 𝑛).
Choice of smoothing threshold. Increasing the smoothing

threshold would make the algorithm insert more virtual points,

thus reducing the loss function value of the newly fitted model

more. As a result these indexing functions would be able to ac-

commodate more keys which were originally in lower levels

of the index and improve their query time. However, that is a

trade-off between the query time improvement and the higher

space cost for increasing this threshold. Further, key sets that

cause the original index structure to construct poorly should

benefit more from a higher smoothing threshold as shown in the

experiments 6.2.1.

6 EXPERIMENTAL RESULTS
Next, we report experimental results. The implementation of our

evaluation framework is based on an existing benchmark [1]

implementation. All experiments were run on an Ubuntu 20.04.5

virtual machine with an AMD EPYC 7763 64-Core CPU and 128

GB RAM. The CSV pre-processing was performed in parallel

with 32 threads, while all other aspects of the experiments were

performed in a single threaded environment.

6.1 Experimental Settings
Competitors. To show the general applicability of our proposed

techniques, we integrate CSV with recent learned indexes, in-

cluding ALEX [2], LIPP [34], and SALI [10] (SOTA). These
three indexes were chosen because they are the latest and among

the most widely used benchmark learned indexes. They have

reported strong empirical performance, outperforming both tra-

ditional indexes such as the B
+
-tree and learned ones [29, 33]

such as the PGM index [7], XIndex [30], and FINEdex [15]. For

simplicity, we do not repeat the comparison results with these

other indexes. We also compare our method with the two most

comparable baselines, NFL and Gap insertion method. The imple-

mentation for NFL was available, however, Gap insertion method

had to be implemented, according to the descriptions given in

the paper.

ALEX is a learned index with two types of nodes, i.e., internal

nodes and data nodes. An internal node contains an indexing

function and pointers to its children nodes, while a data node

contains an indexing function and data points. It utilises gapped

675

arrays within each data node to accommodate future data inser-

tions. ALEX uses a cost model to calculate the accuracy of an

indexing function. If the accuracy is high, a data node is formed

with the function, otherwise an internal node is formed and the

corresponding data subset is split further.

Similarly, LIPP also uses gapped arrays for data nodes to sup-

port insertions. However, LIPP does not use special internal nodes

i.e., all nodes in LIPP contain data points. Further, there is no

searching within each node at query time, as LIPP resorts to

perfect predictions. This is achieve by collecting keys that are

predicted to the same location in a node and creating a new data

node at the next level of the index to host such keys. This process

is repeated until there are no collisions. SALI is based on LIPP

but modified to support concurrent queries and updates.

All three learned indexes resort to hierarchical structures due

to the errors in the indexing functions, while our CDF smooth-

ing technique can help reducing the depth of the structures by

reducing the errors.

Datasets. We run experiments with six datasets from two

benchmark works [21, 33]: (1) Facebook contains 200 million

integer Facebook user IDs [31]; (2) Covid contains 200 million

integer tweet IDs randomly sampled from tweets tagged with

“Covid-19” [19]; (3)OSM contains 200 million locations randomly

sampled from OpenStreetMap and represented as Google S2 [27]

cell IDs [25]; and (4) Genome contains 200 million entries of

loci pairs in human chromosomes represented as integers [26].

(5) Books contains 200 million book sale popularity data as inte-

gers [21]. (6)Uniform contains 200 million uniformly distributed

sparse integers [21]. For all datasets, duplicate keys were removed

to suit LIPP and SALI’s requirements. Other datasets that were

available in the SOSD benchmark such as WIKI, lognormal and

normal datasets were excluded from the experiments due to their

key distribution being fairly uniformly distributed in each sub-

tree and as such does not contain many keys in lower levels for

our CSV method to promote. Furthermore, in the ALEX index

Books and Uniform manage to place nearly all data in level 1 or

level 2, as such they were omitted from the ALEX results.

Out of the datasets, OSM and Genome are considered more

difficult for learned indexes [33] (hard datasets), while Facebook,

Covid, Books and Uniform are easier (easy datasets). All datasets

except OSM have almost globally linear CDFs with more vari-

ability in the local distribution patterns. Except for Covid, all

datasets deviate from linear CDFs at local level [21, 33].

Workloads. We use the following two types of workloads:

(1) Read-only workload. The learned indexes ALEX, LIPP, and

SALI are constructed over the full datasets. Afterwards, our CSV

algorithm is applied to optimise their structures. Then, the queries

(detailed below) are run. (2) Read-write workload. The learned
indexes are constructed over a random half of each dataset and

then CSV is applied. The other half of the dataset is inserted in

random batches of size 0.1𝑛. Queries are run after each batch

insertion without using CSV again for each batch.

Queries. Considering the main objective of the developed

method is to improve the performance of keys in lower levels,

the experiments are focused on them. Specifically, we report

results for the promoted data, which includes every key that

has been promoted to upper levels in the index by our algorithm.

Parameters.We vary the smoothing threshold, 𝛼 , from 0.05

to 0.8, with a default value of 0.1. To show the scalability of our

algorithm by varying the dataset size, the original datasets were

down sampled by eliminating every 𝑗-th key from the sorted

datasets in order to remove 𝑛/ 𝑗 data points and create smaller

datasets of size 12.5 million, 25million, 50million, and 100million,

respectively. The default datasets are the original ones with 200

million points.

For each queried key, the query timewas recorded by repeating

the query 25 times and taking its average.

For LIPP and SALI, they can create nodes that are indexing

only a few keys [34]. For these two indexes, CSV is run starting at

the second level of the index structures, such that each smoothing

step can benefit more points. This is not an issue for ALEX, and

CSV is run starting at the bottom level. Further, since the query

times of the keys in the top two levels of the index structures are

very close, CSV stops at the second level from the top (i.e., the

root).

Evaluation metrics. We report: (1) the total query times
saved by the CSV-enhanced indexed compared with those of the

original indexes; (2) the query time improvement, which is the

average query time (over all queried keys) of the CSV-enhanced

indexes and that of the original ones (depicted as 𝛼 = 0); (3) the

promoted data, which is the number of keys promoted to upper

levels in the index structure among all keys that can be promoted

(i.e., keys at levels 3 or below of the original indexes); (4) the

storage space increase , which is the index size overhead of the

CSV-enhanced indexes kain bytes; (5) thenode reduction, which
is the number of index models reduced by the CSV-enhanced

indexes over the original ones; and (6) the insert time increase,
which is the increase in the average time per insertion required

by the CSV-enhanced indexes compared to the original ones.

6.2 Results on Read-only Workloads
6.2.1 Impact of Smoothing Threshold. We vary the smoothing

threshold from 0.05 to 0.8 to quantify its impact.

Query time (for promoted data). Here, we report the query
time improvement by CSV for the ‘promoted keys’ (i.e., the keys

that is promoted to an upper level of the index by CSV), compared

to the original index. We depict the total time saved due to the

method in Fig. 6. The general trend is that adding more virtual

points (i.e., increasing the smoothing budget, 𝛼) saves more query

times. LIPP and SALI tend to perform quite similarly due to SALI

using LIPP as the base index. For LIPP and SALI indexes, the easy

to learn datasets (Facebook, Covid, Books and Uniform) stabilise

after a certain number of virtual points are inserted. This is

because the original datasets’ CDFs are already quite linear. The

same pattern was not observed for ALEX, this is because ALEX

has an additional leaf-node search step not required by LIPP and

SALI (CSV forms larger nodes that could lead to longer leaf-node

search times).

Fig. 7 reports the average query over promoted data. It shows

that applying CSV yields a query time improvement of up to

34%, with stronger benefits over the two SOTA indexes, LIPP

and SALI. Smaller performance gain is observed over ALEX due

to its leaf-node search process. It is important to note that CSV

still yields consistent query time improvements in this case. In

ALEX, there are small fluctuations due to the costmodel obtaining

its constants via runtime. Since there is no such cost model in

LIPP and SALI, their query performance is stagnant and the

improvement represents the reduction in the index traversal time

for query processing.

Fig. 8 shows the average query time for randomly selected data

from the entire key set. The 𝐶𝑆𝑉 optimised indexes demonstrate

similar performance to the original index structure (shown as

𝛼 = 0). This is due to the main goal of the proposed method

676

Facebook Covid OSM Genome Books Uniform

0.05 0.1 0.2 0.4 0.80.0
1.5
3.0
4.5

To
ta

l t
im

e
sa

ve
d

(n
s)

×109

(a) LIPP

0.05 0.1 0.2 0.4 0.80
2
4
6

To
ta

l t
im

e
 sa

ve
d

(n
s)

×109

(b) SALI

0.05 0.1 0.2 0.4 0.80.0
1.5
3.0
4.5

To
ta

l t
im

e
 sa

ve
d

(n
s)

×109

(c) ALEX

Figure 6: Total time saved vs. smoothing threshold 𝛼

0 0.05 0.1 0.2 0.4 0.80
400
800

1200

Qu
er

y
tim

e
(n

s)

(a) LIPP

0 0.05 0.1 0.2 0.4 0.80
400
800

1200

Qu
er

y
tim

e
(n

s)

(b) SALI

0 0.05 0.1 0.2 0.4 0.80
250
500
750

Qu
er

y
tim

e
(n

s)

(c) ALEX

Figure 7: Query time improvement vs. smoothing threshold 𝛼

0 0.05 0.1 0.2 0.4 0.80
300
600
900

Qu
er

y
tim

e
(n

s)

(a) LIPP

0 0.05 0.1 0.2 0.4 0.80
300
600
900

Qu
er

y
tim

e
(n

s)

(b) SALI

0 0.05 0.1 0.2 0.4 0.80
400
800

1200

Qu
er

y
tim

e
(n

s)

(c) ALEX

Figure 8: Average query time for random data vs. smoothing threshold 𝛼

of improving keys that perform worse. However, due to many

of the keys being in level 1 and 2 of the index, majority of the

queried keys tend to be selected from these levels, as such the

impact of improving worse case keys cannot be seen in this kind

of experiment.

Size of the promoted data.Due to the similar trends between

LIPP and SALI indexes, SALI is omitted from the results below

for brevity.

Figs. 9a and 9d show the percentage of keys promoted. For the

Facebook dataset, CSV can promote around 60% of all promotable

data (i.e., keys at level 3 or below of the original index), while for

the Covid dataset, CSV promotes around 30% of the promotable

data. For the harder to learn datasets, OSM and Genome, CSV

also manages to promote up to 27% and 57% of the promotable

data, respectively. Books and Uniform promoted 15% and 30%

respectively. The datasets with the most promoted data are again

different for ALEX, due to its structural difference. Overall, as

the smoothing threshold increases, more keys get promoted to

upper levels. This is consistent with the theoretical analysis as

adding more virtual points would allow more keys to be placed

in nodes in upper levels. The difficult to learn key sets (OSM and

Genome) demonstrate this property the most. This can also be

matched with Fig. 6, where the total time saved for OSM and

Genome is higher due to more data being promoted for those

datasets, compared to the other datasets.

Index size. Due to the addition of virtual points, we expect

the storage space consumption to increase. This is reflected in

Figs. 9b and 9e. In most cases, less than 10% of additional storage

space is required by the CSV-enhanced indexes compared to the

original structures, and in the worst case, less than 31%. The space

cost overhead is proportional to 𝛼 , which is also intuitive. The

storage space increase is balanced by the removal of unnecessary

nodes, whose data is promoted to higher levels. Figs. 9c and 9f

report the node reductions achieved by CSV. They follow similar

patterns to the percentage of promoted data as expected.

Pre-processing time for CSV. The times taken to run CSV

to optimise the learned index structures are summarised in Ta-

bles 2 and 3 for LIPP and ALEX, along with the original index

construction times in ’Original’ column.

CSV takes more time to run as 𝛼 grows, which is consistent

with our time complexity analysis. The algorithm running times

vary across different datasets, again because the datasets have

different difficulties in index learning.

To amortize extra construction times with the benefits in query

times, it takes about a billion queries. This number sounds huge,

but it is mainly because learned indexes are already extremely

fast for a single query (e.g., 844 ns per query on the Facebook

dataset). We emphasize that the extra construction times are

one-off pre-processing costs, and that our technique can benefit

query-time sensitive applications. One may further mitigate the

677

Facebook Covid OSM Genome Books Uniform

0.05 0.1 0.2 0.4 0.80.0
0.5
1.0
1.5

Pr
om

ot
ed

da

ta

×107

(a) Number of promoted data (LIPP)

0.05 0.1 0.2 0.4 0.8
0.0
2.5
5.0
7.5

St
or

ag
e

in
cr

ea
se

 (b
yt

es
) ×109

(b) Storage space increase (LIPP)

0.05 0.1 0.2 0.4 0.80.0
2.5
5.0
7.5

No
de

re

du
ct

io
n

×106

(c) Number of model reduction (LIPP)

0.05 0.1 0.2 0.4 0.80.0
0.4
0.8
1.2

Pr
om

ot
ed

da

ta

×107

(d) Number of promoted data (ALEX)

0.05 0.1 0.2 0.4 0.80.0
1.5
3.0
4.5

St
or

ag
e

in
cr

ea
se

 (b
yt

es
) ×106

(e) Storage space increase (ALEX)

0.05 0.1 0.2 0.4 0.80
2500
5000
7500

No
de

re

du
ct

io
n

(f) Number of model reduction (ALEX)

Figure 9: Space cost vs. smoothing threshold 𝛼

12.5M 25M 50M 100M 200M
Dataset size

0.0
0.5
1.0
1.5

To
ta

l t
im

e
sa

ve
d

(n
s)

×109

(a) LIPP

12.5M 25M 50M 100M 200M
Dataset size

0
2
4
6

To
ta

l t
im

e
 sa

ve
d

(n
s)

×108

(b) ALEX

Figure 10: Total time saved vs. dataset cardinality

impact of extra construction times by using original indexes for

queries while constructing a parallel index structure with CSV.

Once the CSV optimised structure is ready, it is switched on for

query processing.

6.2.2 Impact of Dataset Cardinality. The default smoothing

threshold of 0.1 was used for these experiments. To demonstrate

the scalability of CSV against the dataset cardinality, we repeat

the experiments on datasets of 12.5 million to 200 million data

Table 2: CSV Pre-processing Time (s) for LIPP

Original 0.05 0.1 0.2 0.4 0.8

Facebook 52 76 90 132 269 636

Covid 53 101 103 103 152 346

OSM 46 124 166 236 414 870

Genome 52 114 149 221 401 956

Books 63 152 158 149 182 327

Uniform 25 45 46 47 74 191

Table 3: CSV Pre-processing Time (s) for ALEX

Original 0.05 0.1 0.2 0.4 0.8

Facebook 546 110 206 421 890 1823

Covid 373 123 224 311 383 392

OSM 389 1265 1972 5400 9684 20158

Genome 366 225 402 615 696 713

points. Fig. 10 shows the total query times saved by applying

CSV. For all datasets, the times saved grow with the dataset cardi-

nality, with faster growth being observed on the easier datasets

(Facebook and Covid) grows faster. This is because there are not

many keys in the lower levels for these datasets when the dataset

cardinality is small. These results confirm the scalability of CSV

towards dataset cardinality.

6.2.3 Comparison with baselines. Fig. 12 shows the average
query time for randomly selected queries. The LIPP, SALI and

ALEX depicts the performance of the CSV enhanced indexes

while GI indicates the use of the Gap insertion method instead

of the virtual points insertion. Gap insertion method was de-

signed to address the leaf-node search time, in data nodes. But

considering LIPP and SALI does not have any data nodes but

many small nodes, the Gap insertion was performed in a simi-

lar manner to our CSV method, that collects nodes with child

nodes and attempts to create one singular node. In the case of

ALEX, the new results from Gap insertion method was used for

all data nodes. The average query performance from this method

was comparable to or worse than the original index structure

performances. This is due to the introduction of linking nodes

that handle any conflicting key ranks as a result changes the

index structure and query processing methods. Any keys that

are placed into a linking array would initiate a linear search to

find the correct key, resulting in large query times.

In NFL, of the experimented datasets (Facebook, Covid, OSM,

Genome, Books and Uniform) only Facebook dataset was selected

byNFL to perform the numerical flow distribution transformation

that converts the original key set into a more uniform distribu-

tion via generative models. The average query time performance

for Facebook dataset was improved to 275 ns. All other datasets

would have decreased performance if the transformation was

performed instead of using the original key set. As such these

datasets used the original keys to bulk load the NFL index struc-

ture. However, the performance of the datasets that failed to

perform the transformation were similar to that of ALEX.

678

Facebook Covid OSM Genome Books Uniform

0 0.1 0.2 0.3 0.4 0.5
Data insertion (×n)

0.0
0.4
0.8
1.2

To
ta

l t
im

e
sa

ve
d

(n
s)

×109

(a) Total query time saved (LIPP)

0 0.1 0.2 0.3 0.4 0.5
Data insertion (×n)

0.0
0.4
0.8
1.2

St
or

ag
e

in
cr

ea
se

 (b
yt

es
) ×109

(b) Storage increase (LIPP)

0.1 0.2 0.3 0.4 0.5
Data insertion (×n)

0
40
80

In
se

rt
tim

e
in

cr
ea

se
 (n

s)

(c) Insertion time increase (LIPP)

0 0.1 0.2 0.3 0.4 0.5
Data insertion (×n)

0.0
1.5
3.0
4.5

To
ta

l t
im

e
sa

ve
d

(n
s)

×107

(d) Total query time saved (ALEX)

0 0.1 0.2 0.3 0.4 0.5
Data insertion (×n)

1.2
0.6
0.0
0.6

St
or

ag
e

in
cr

ea
se

 (b
yt

es
) ×107

(e) Storage increase (ALEX)

0.1 0.2 0.3 0.4 0.5
Data insertion (×n)

600
0

600

In
se

rt
tim

e
in

cr
ea

se
 (n

s)

(f) Insertion time increase (ALEX)

Figure 11: Performance results vs. data insertions (× n)

CSV
LIPP

CSV
SALI

CSV
ALEX

NFL GI
LIPP

GI
SALI

GI
ALEX

Method

0
1000
2000
3000
4000

Qu
er

y
tim

e
(n

s)

Figure 12: Comparison withe baselines

6.3 Results on Read-write Workloads
Query time (promoted data). Figs. 11a and 11d show the total

query times saved by CSV for LIPP and ALEX, respectively, com-

pared to the original index structures, as more batches of data

are inserted (recall that each batch consists of 0.1𝑛 data points).

Here, the query times saved are decreasing slightly as more data

points are inserted for LIPP, because the inserted data points

have a higher chance of colliding with the promoted data points

which are now in the upper levels, compared to when they are

in lower levels as in the original index structure. For ALEX, the

trend is quite similar except for on the OSM dataset, where there

are two drops after one and three insertion batches (i.e., 0.1𝑛 and

0.3𝑛 data points are inserted). This is because the original index

structure’s query times happen to be slightly lower in these two

cases.

Index size. The index size overhead decreases after each batch
of insertions, as shown in Figs. 11b and 11e, because the initial

gaps left by the virtual points are gradually filled up by inserted

points, hence improving the overall space use. Index size over-

head is at or below 10%, emphasising the space efficiency of CSV.

For ALEX, the storage increase is negligible (< 0.5%). In some

cases, the storage size of the CSV-enhanced ALEX is lower than

the original index, as the original ALEX may need to create more

new nodes to host the insertions which outweighs the space

overhead of CSV.

Insertion time. Figs. 11c and 11f show the average insertion

times of CSV-enhanced indexes compared to the original indexes.

CSV helps improving the insertion times in some cases as the

gaps left by the virtual points are reused for insertions. CSV could

also lead to higher insertion times in other cases. The reason is,

there are more keys at the upper levels of the CSV-enhanced

indexes which may lead to more collisions with the insertions,

which requires new index node creation. Overall, the insertion

times of the CSV-enhanced indexes are on par to the original

indexes.

7 CONCLUSION
We addressed the issue of index learning over data of complex

distributions by a CDF smoothing technique tomodify the key set,

instead of developing yet another indexing function or structure.

We proposed an algorithm named CSV to utilize this technique

on existing hierarchical learned index structures, to improve the

query time for the keys in lower levels of these index structures.

The proposed algorithm is implemented on three recent learned

indexes, which are evaluated on real-world datasets. The results

show significant query performance improvements, i.e., up to

34%, with a controllable and low storage space overhead.

ACKNOWLEDGMENTS
This work is in part supported by the Australian Research Coun-

cil (ARC) via Discovery Project DP230101534. Jianzhong Qi is

supported by ARC Future Fellowship FT240100170. The authors

thank the four anonymous reviewers for their insightful and

constructive comments that helped improve the paper.

REFERENCES
[1] Matthias Bachfischer, Renata Borovica-Gajic, and Benjamin IP Rubinstein.

2022. Testing the Robustness of Learned Index Structures. arXiv preprint
arXiv:2207.11575 (2022). https://doi.org/10.48550/arXiv.2207.11575

[2] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In SIGMOD. 969–984.
[3] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.

Tsunami: A learned multi-dimensional index for correlated data and skewed

workloads. Proceedings of the VLDB Endowment 14, 2 (2020), 74–86.
[4] Yuquan Ding, Xujian Zhao, and Peiquan Jin. 2022. An Error-Bounded Space-

Efficient Hybrid Learned Index with High Lookup Performance. In DEXA.
216–228.

[5] Martin Eppert, Philipp Fent, and Thomas Neumann. 2021. A Tailored Regres-

sion for Learned Indexes: Logarithmic Error Regression. In aiDM. 9–15.

[6] Paolo Ferragina, Marco Frasca, Giosuè Cataldo Marinò, and Giorgio Vin-

ciguerra. 2023. On nonlinear learned string indexing. IEEE Access (2023).

679

[7] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: A fully-

dynamic compressed learned index with provable worst-case bounds. Pro-
ceedings of the VLDB Endowment 13, 8 (2020), 1162–1175.

[8] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and

Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD.
1189–1206.

[9] Jiake Ge, Boyu Shi, Yanfeng Chai, Yuanhui Luo, Yunda Guo, Yinxuan He, and

Yunpeng Chai. 2023. Cutting Learned Index into Pieces: An In-depth Inquiry

into Updatable Learned Indexes. In ICDE. 315–327.
[10] Jiake Ge, Huanchen Zhang, Boyu Shi, Yuanhui Luo, Yunda Guo, Yunpeng

Chai, Yuxing Chen, and Anqun Pan. 2023. SALI: A Scalable Adaptive Learned

Index Framework based on Probability Models. Proceedings of the ACM on
Management of Data 1, 4 (2023), 258:1–258:25.

[11] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons

Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass

learned index. In aiDM. 5:1–5:5.

[12] Evgenios M. Kornaropoulos, Silei Ren, and Roberto Tamassia. 2022. The Price

of Tailoring the Index to Your Data: Poisoning Attacks on Learned Index

Structures. In SIGMOD. 1331–1344.
[13] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. 489–504.
[14] Hai Lan, Zhifeng Bao, J Shane Culpepper, Renata Borovica-Gajic, and Yu

Dong. 2023. A Simple Yet High-Performing On-disk Learned Index: Can

We Have Our Cake and Eat it Too? arXiv preprint arXiv:2306.02604 (2023).

https://doi.org/10.48550/arXiv.2306.02604

[15] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: A fine-

grained learned index scheme for scalable and concurrent memory systems.

Proceedings of the VLDB Endowment 15, 2 (2021), 321–334.
[16] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A

Learned Index Structure for Spatial Data. In SIGMOD. 2119–2133.
[17] Yaliang Li, Daoyuan Chen, Bolin Ding, Kai Zeng, and Jingren Zhou. 2021.

A pluggable learned index method via sampling and gap insertion. arXiv
preprint arXiv:2101.00808 (2021). https://doi.org/10.48550/arXiv.2101.00808

[18] Li Liu, Chunhua Li, Zhou Zhang, Yuhan Liu, Ke Zhou, and Ji Zhang. 2023. A

Data-aware Learned Index Scheme for Efficient Writes. In ICPP. 28:1–28:11.
[19] Christian E Lopez and Caleb Gallemore. 2021. An augmented multilingual

Twitter dataset for studying the COVID-19 infodemic. Social Network Analysis
and Mining 11, 1 (2021), 102.

[20] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang.

2021. APEX: a high-performance learned index on persistent memory. Pro-
ceedings of the VLDB Endowment 15, 3 (2021), 597–610.

[21] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit

Misra, Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Bench-

marking learned indexes. Proceedings of the VLDB Endowment 14, 1 (2020),
1–13.

[22] Mayank Mishra and Rekha Singhal. 2021. RUSLI: Real-time Updatable Spline

Learned Index. In aiDM. 1–8.

[23] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.

Learning Multi-Dimensional Indexes. In SIGMOD. 985–1000.
[24] Sachith Pai, Michael Mathioudakis, and Yanhao Wang. 2024. WaZI: A Learned

and Workload-aware Z-Index. In EDBT. 559–571.
[25] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018.

How good are modern spatial analytics systems? Proceedings of the VLDB
Endowment 11, 11 (2018), 1661–1673.

[26] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D

Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer,

Eric S Lander, et al. 2014. A 3Dmap of the human genome at kilobase resolution

reveals principles of chromatin looping. Cell 159, 7 (2014), 1665–1680.
[27] S2Geometry. 2024. The S2 Geometry Library. http://s2geometry.io/

[28] Yufan Sheng, Xin Cao, Yixiang Fang, Kaiqi Zhao, Jianzhong Qi, Gao Cong,

and Wenjie Zhang. 2023. WISK: A Workload-aware Learned Index for Spatial

Keyword Queries. Proceedings of the ACM on Management of Data 1, 2 (2023),
187:1–187:27.

[29] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index: A Com-

prehensive Experimental Evaluation. Proceedings of the VLDB Endowment 16,
8 (2023), 1992–2004.

[30] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang,

Minjie Wang, and Haibo Chen. 2020. XIndex: A scalable learned index for

multicore data storage. In PPoPP. 308–320.
[31] Peter Van Sandt, Yannis Chronis, and Jignesh M. Patel. 2019. Efficiently

Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In

SIGMOD. 36–53.
[32] Zhonghua Wang, Chen Ding, Fengguang Song, Kai Lu, Jiguang Wan, Zhihu

Tan, Changsheng Xie, and Guokuan Li. 2024. WIPE: A Write-Optimized

Learned Index for Persistent Memory. ACM Transactions on Architecture and
Code Optimization, 21, 2 (2024), 22:1–22:25.

[33] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and

Tianzheng Wang. 2022. Are updatable learned indexes ready? Proceedings of
the VLDB Endowment 15, 11 (2022), 3004–3017.

[34] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao

Xing. 2021. Updatable learned index with precise positions. Proceedings of the
VLDB Endowment 14, 8 (2021), 1276–1288.

[35] Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun Ja-

son Xue. 2022. NFL: Robust learned index via distribution transformation.

Proceedings of the VLDB Endowment 15, 10 (2022), 2188–2200.
[36] Guang Yang, Liang Liang, Ali Hadian, and Thomas Heinis. 2023. FLIRT: A

Fast Learned Index for Rolling Time frames.. In EDBT. 234–246.
[37] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: A cache-aware learned index with

a cost-based construction algorithm. Proceedings of the VLDB Endowment 15,
11 (2022), 2679–2691.

[38] Zhou Zhang, Pei-Quan Jin, Xiao-Liang Wang, Yan-Qi Lv, Shou-Hong Wan,

and Xi-Ke Xie. 2021. COLIN: A cache-conscious dynamic learned index with

high read/write performance. Journal of Computer Science and Technology 36

(2021), 721–740.

[39] Weihong Zhou and Shiyu Yang. 2024. SLIPP: a space-efficient learned index for

string keys. In Proceedings of the 2024 6th International Conference on Big-data
Service and Intelligent Computation. 69–77.

680

