
Dataset Discovery using Semantic Matching
Enas Khwaileh
Utrecht University

Utrecht, The Netherlands
e.t.k.khwaileh@uu.nl

Yannis Velegrakis
Utrecht University & University of Trento

Utrecht, The Netherlands
i.velegrakis@uu.nl

ABSTRACT
The exponential growth of data sizes and heterogeneity has made
increasingly challenging to be able to identify datasets that meets
specific analytical needs. Traditional keyword search methods
often fail in that task since they cannot fully capture the seman-
tics of the datasets and match them to those of the query. We
introduce a novel dataset discovery method that significantly en-
hance both accuracy and retrieval speed. By employing advanced
semantic matching at the individual field level and leveraging
clustering and dimensionality reduction techniques, our method
efficiently and effectively retrieves the datasets related to a query.
Unlike traditional methods that focus on syntactic matches, our
approach uncovers deeper semantic relationships within table
data, providing more precise and relevant results. It achieves
this by using transformers to generate and work with embed-
dings instead of the actual values. We present three different
searchmethods that utilize these embeddings, and experimentally
demonstrate the improvement that is achieved when compared
to the state-of-the-art.

1 INTRODUCTION
Data federations allow organizations to access datasets located
across different physically distributed data sources, without the
need of materialized integration [15]. They provide the neces-
sary accessibility and scalability, which is crucial for modern
data-driven decision-making [23]. Once accessed, the datasets
can be integrated, cleaned, and analyzed to generate valuable
business insights [30]. A necessary first step, however, is the
ability to identify the right datasets for a task at hand. To do
so, a task is typically described though a query, which may be a
set of keywords or seed tables [25, 53]. The query, must then be
matched to the right datasets that are returned as an answer to
the query. This process is referred to as Dataset Discovery and is
known to pose significant challenges [33, 38]. Matching the query
to a dataset based on semantics is of major importance, specifi-
cally in dataset federations where there is no global alignment,
coordination and indexing.

There have already been a great deal of works for Dataset
Discovery given a query. Some focus on matching the query
to metadata or text surrounding web tables [33, 56], but these
methods often fail to consider the actual content of the tables [6].
Techniques in NL2SQL pipelines, such as schema linking and
schema routing, aim to map natural language queries to struc-
tured databases by identifying relevant schema components or
routing queries to appropriate tables [13, 21]. They enhance data-
base systems by allowing users to interact with structured data
without requiring SQL expertise. Nevertheless, NL2SQL systems

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

often rely heavily on predefined schema alignments and high-
quality metadata, making them less effective in scenarios with in-
complete or poorlymaintained schema information. Furthermore,
their focus on query-to-SQL translation frequently overlooks se-
mantic relationships between datasets, limiting their applicability
in federated systems where tables must be linked or integrated
based on deeper contextual relevance. In the field of Information
Retrieval, considerable work has been done in identifying the
top-k related tables to a given keyword query [16, 47]. Unfortu-
nately, they typically rely on syntactic matching, which often
overlooks the deeper, semantic relationships within the data [55].
Some advanced techniques, such as comparing table schemas or
applying local sensitivity hashing (LSH) to determine relatedness,
have been proposed to improve accuracy [4, 58]. Despite these
efforts, challenges remain in discovering datasets that precisely
meet user specifications, especially when semantics are involved
and the datasets are highly heterogeneous [22, 33]. Platforms
like Google Dataset Search1, Kaggle2, and Datahub3 have made
it easier for users to locate publicly available datasets through
keyword searches. However, these platforms face significant lim-
itations when it comes to real-time dataset discovery. Users are
often directed to multiple download links, forcing them to browse
through various sources to locate the needed data, which may
not always be available [48, 49]. These systems, as well, rely on
basic syntactic matching techniques that, as shown in a recent
study [3, 22], often fail to capture the true semantic relationships
between query terms and datasets.

Another critical challenge in dataset discovery is identifying
connections among diverse datasets within a federation. This is-
sue is exacerbated by the rapid growth of heterogeneous datasets,
where existing search algorithms and indexing systems designed
for homogeneous datasets fall short [33]. For example, systems
like Aurum attempt to address this challenge by identifying syn-
tactic relationships between datasets and constructing enterprise
knowledge graphs [16]. Other approaches focus on table union-
ability and joinability, exploring semantic relationships between
table columns [34, 40]. While these techniques represent impor-
tant progress, they still struggle with handling the full complexity
of highly heterogeneous datasets and often miss subtle semantic
relationships across datasets.

In this work, we propose an approach to dataset discovery
that directly tackles the aforementioned challenges by leveraging
advanced semantic matching techniques specifically designed
for federated environments. Our methods embed tabular datasets
at the cell level, capturing deeper semantic relationships across
tables that traditional methods overlook. Since embeddings are
not inherently reversible, our methods can be used in dataset
federations where the datasets are not allowed to leave the origi-
nal premises, yet they become searchable without compromising
privacy or ownership. We introduce and evaluate three distinct
search methods: One that is based on exhaustive search (ExS),

1https://datasetsearch.research.google.com/
2https://www.kaggle.com/
3https://datahub.io/search

 

 

Series ISSN: 2367-2005 649 10.48786/edbt.2025.52

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.52


WHO CDC ECDC
Region Date Vaccine Dosage

North America 2021-01-01 Comirnaty First
Europe 2021-02-01 Vaxzevria Second
Asia 2021-03-01 CoronaVac First
Africa 2021-04-01 Covaxin Second

State Date Immunogen Manufacturer
California 2021-01-01 mRNA Moderna
Texas 2021-02-01 Vector Virus Janssen
Florida 2021-03-01 mRNA Pfizer

New York 2021-04-01 Protein Subunit Novavax

Country Date Trade Name Disease
Germany 2021-01-01 Pfizer-BioNTech COVID-19
France 2021-02-01 AstraZeneca COVID-19
Spain 2021-03-01 Moderna COVID-19
Italy 2021-04-01 Pfizer-BioNTech COVID-19

Figure 1: COVID19 Vaccine Dataset

one based on Approximate Nearest Neighbors (ANNS), and one
on clustering, referred to as Clustered Targeted Search (CTS).
While exhaustive search offers high accuracy by thoroughly ex-
amining all potential matches, it soon become computationally
expensive. To balance accuracy with efficiency, we developed
the ANNS method, which leverages vector databases to speed
up the search process. It employs Product Quantization [19] to
compress high-dimensional embeddings into smaller subvectors
and exploits the Hierarchical Navigable Small World (HNSW)
indexing method [29] for an even more efficient search. Our third
proposal, the CTS, introduces a novel integration of clustering
and dimensionality reduction, allowing it to achieve better search
efficiency without compromising in accuracy. These methods out-
perform the state-of-the-art. Extensive evaluation have shown
that they significantly improve the discovery of relevant datasets,
especially in large-scale, heterogeneous environments.

The main contributions of this work are the following: (i)
We highlight the limitations of the existing works on exploiting
semantics for Dataset Discovery and providing a full fledged ef-
fective and efficient solution; (ii) we formally define the problem
and introduce a novel approach that uses embeddings at the value
level (instead of the tuple or table level); (iii) we propose three
algorithms, that materialize a solution to the specific problem fol-
lowing different approaches; (iv) We experimentally evaluate the
three algorithms and analyze their behavior. Although ExS faces
scalability challenges, while ANNS has limitations in achieving
high accuracy, CTS is free of these issues; (v) we compare our
solutions (and especially the CTS) to the state-of-the-art and
demonstrate that our solution outperforms them, confirming the
correctness of our choices.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide a motivating example to illustrate the chal-
lenges of dataset discovery. Section 3 defines formally the prob-
lem of dataset discovery, outlining the key objectives and con-
straints. In Section 4, we introduce the core semantic matching
methods, with subsections dedicated to the Exhaustive Search
(Sec. 4.1), Approximate Nearest Neighbors Search (Sec. 4.2), and
Clustered Targeted Search (Sec. 4.3). The full experimental eval-
uation is provided in the sequel (Sec. 5), describing datasets,
experiments, results and observations.

2 MOTIVATING EXAMPLE
Sarah is a data analyst at a pharmaceutical institution tasked
with analyzing COVID-19 vaccine data to assess effectiveness
and potential side effects. To accomplish this, she needs to retrieve
datasets from various platforms. Figure 1 illustrates a sample of
three relations from three such platforms, namely, the World
Health Organization (WHO), the Centers for Disease Control
and Prevention (CDC), and the European Center for Disease
Prevention and Control (ECDC). Sarah searches for relations by
posing the keyword "COVID", and clearly she gets as an answer
the ECDC relation since they keyword is contained in the tuples
of the Disease column. Unfortunately, she wont get the WHO or
CDC tables since they contain no COVID keyword. Yet, looking

at the tables, one can see that the WHO and the CDC tables are
also related and should have been returned to Sarah, since they
also talk about COVID. It is just that WHO refers to the COVID
vaccines by their type, i.e., it uses the term ’Comirnaty’ for the
Pfizer-BioNTech vaccine, while CDC uses the Immunogen, i.e.,
mRNA or vector virus. Furthermore, even with the absence of
the Disease column in ECDC, the relation would still be related
to COVID since the Trade Names column contains names of
COVID vaccines. Sarah’s situation underlines the importance of
been able to find datasets related to a keyword query even if the
terms in the query do not appear in their content. In other words,
there is a need for a way to match semantically the query to the
datasets and calculate their relatedness.

Domain ontologies have traditionally be used in the past and
could be used in Sarah’s case to resolve this kind of syntactic
discrepancies and link content semantically. However, they are
laborious to build and not always available in each practical sce-
nario. Ontologies can answer very precise queries, but in cases
of more loose semantics, language technologies may be more
effective, since they can capture more loose semantic relation-
ships, and are better in taking context into consideration. This
flexibility is of major importance in environments in which there
is no global agreement, neither central coordination.

3 PROBLEM STATEMENT
We assume the existence of an infinite set of names 𝑁 and one
of alphanumeric values 𝑉 . An attribute is defined as a pair ⟨𝑛, 𝑣⟩,
where 𝑛 ∈ 𝑁 and 𝑣 ∈ 𝑉 , with 𝑛 being the attribute name and 𝑣
the attribute value. LetA denote the set of all possible attributes,
i.e., A = 𝑁 ×𝑉 .

A tuple, denoted by (𝑡 ) is a sequence [𝑎1, 𝑎2, . . . , 𝑎𝑛], where
each 𝑎𝑖 ∈ A for 𝑖 = 1 . . . 𝑛. The cardinality of a tuple is the num-
ber of attributes it contains. The schema of a tuple [𝑎1, 𝑎2, . . . , 𝑎𝑛]
is the sequence [𝑛1, 𝑛2, . . . , 𝑛𝑛] where 𝑛𝑖 is the name of the at-
tribute 𝑎𝑖 .

A relation is a finite set of tuples that all share the same cardi-
nality and schema.We denote byR the set of all possible relations.
The notion of schema extends naturally to the relation, indicating
the common schema shared by all tuples within the relation. A
dataset is a set of such relations, and a federation is a finite set of
datasets.

A query is defined as a finite set of keywords (𝑘1, 𝑘2, . . . , 𝑘𝑚),
where each 𝑘𝑖 ∈ V , representing a set of concepts that are of
interest to the user. Let Q represent the set of all possible queries.
Given a query 𝑞 and a federation 𝐹 , our goal is to find datasets
within 𝐹 that are related to 𝑞. To define relatedness, we utilize a
match function:

match : F × Q → R

that returns a score based on some metric, such as cosine sim-
ilarity in vector space models, used as an indication of the se-
mantic relatedness of the query 𝑞 and the contents of the dataset.
A dataset is considered related if and only if match(𝐹, 𝑞) ≥ ℎ,
where ℎ is a threshold. The aim of this work is to define and

650



optimize the function match, ensuring it effectively captures the
semantic and contextual alignment between a query and datasets
in a federation.

We primarily consider datasets consisting of a single relation,
although the framework can be generalized to accommodate
multi-relation datasets. For this reason, the terms dataset and
relation will be used interchangeably throughout.

4 SEMANTIC MATCH
The main goal of this work is to develop and optimize a semantic
match functionmatch(R,Q), which evaluates the degree of align-
ment between a query Q and the content of a relation R. This
function is important in identifying the most relevant datasets
in federated environments, where traditional keyword searches
fall short of capturing the contextual nuances embedded in the
data. Our objective is to build a match function that is capable
of understanding the semantic relationships between queries
and datasets, ensuring that the retrieved datasets are contextu-
ally appropriate even when they don’t contain explicit keyword
matches.

To achieve this, we use Natural Language Processing (NLP)
techniques, such as Sentence-BERT (S-BERT) [39], as a mean
to compute the semantic similarity between the query Q and
the attributes 𝑎 within the relation R. The semantic match func-
tion match(R,Q) leverages S-BERT’s sentence embeddings to
represent the meaning of both the query and the attributes in
a high-dimensional vector space. This allows us to capture the
underlying meaning of the terms rather than relying on exact
matches, thus enabling more robust dataset discovery.

S-BERT
produces contextualized embeddings of the input tokens that

are the dataset attribute values and also the query. The individual
attributes are treated as sentences and provided all together to
S-BERT, which in turn generates an embedding for each attribute
value. The embeddings are passed into a similarity scoring func-
tion, such as cosine similarity, which computes the degree of
relatedness between the keyword query Q and an attribute 𝑎
in a relation R. We define the semantic representation of an at-
tribute 𝑎 = ⟨𝑛, 𝑣⟩ as the pair of its attribute name alongside its
embedding, i.e., the pair ⟨𝑛, semImg(𝑣)⟩, where semImg(𝑣) is the
output vector generated by S-BERT. For a tuple 𝑡 , we define its
semantic representation (or the semantic tuple) 𝑡 ′ as the set of
⟨𝑛, semImg(𝑣)⟩ ∈ 𝑡 ′ pairs for which ⟨𝑛, 𝑣⟩ ∈ 𝑡 . The semantic rep-
resentation of the query Q, denoted as semImg(Q), is the vector
representation 𝜔 of the query as generated by S-BERT. Finally,
we define the semantic representation semImg(R) of a relation
R as the set {𝑥 | 𝑥 = semImg(𝑡), 𝑡 ∈ R}.

The match process involves comparing each attribute 𝑎 within
a relation R against the query Q. For each query Q, there may
be one or more attributes 𝑎 within the same relation R, and
potentially across multiple relations within a federation 𝐹 . The
similarity between these matches is determined by assessing the
contextual meanings of 𝑎 and Q, denoted by Q′ ≃ 𝑎′. Our objec-
tive is to identify a subset 𝑇 ⊆ 𝐹 where each relation is related
to the query Q, based on the similarity measures between Q and
the elements of R. By treating each attribute 𝑎 ∈ R indepen-
dently, our approach ensures fine-grained semantic comparisons
between attributes and the query Q. This independent evalua-
tion allows the match function to capture detailed relationships
between each attribute and the query, preserving the contextual
meaning embedded in the data. The semantic representation of

attributes ensures that individual contributions to the overall
similarity score are retained, avoiding potential loss of important
signals.

Having the semantic representation of the relations, the next
challenge is how to measure the relatedness between a query
and a relation. This is done by measuring the similarity between
their respective semantic representations. For this we introduce
3 algorithms that we present next. Our overall framework is
depicted graphically in Figure 2.

4.1 Exhaustive Search (ExS)
The search process for identifying relevant relations R within
federated databases involves a thorough examination of each
relation by evaluating table embeddings and associated vectors.
This process begins by transforming both the keyword query
𝑄 and each attribute value 𝑣 within a relation 𝑅 into semantic
vectors, denoted as 𝑞′ and 𝜔 , respectively, using a sentence trans-
former such as S-BERT. These vector representations allow for a
direct comparison between the query and the data. The vector
representation process of the data is independent of the one for
the query, meaning that the vectors for the data do not depend
on the query at hand.

Once the vectors are created, the system calculates a simi-
larity score 𝑠 between the query vector 𝑞′ and each attribute
vector 𝜔 in the relation 𝑅. For each relation 𝑟 , these individual
similarity scores are averaged to produce an overall score avg_s,
reflecting how well the relation as a whole matches the query.
This approach ensures that the relevance of the entire relation
is captured, not just individual attributes. After calculating the
similarity scores for all relations, they are stored in a result list
and sorted in descending order to prioritize the most relevant
results.

To further refine the search results, a predefined threshold ℎ
is applied, filtering out relations that do not meet the minimum
similarity requirement. This ensures that only the most relevant
relations are retained. Finally, the top-𝑘 relations that exceed the
threshold are returned as the most appropriate matches for the
query 𝑄 . This method guarantees that no relation or attribute is
overlooked, making it an essential approach for comprehensively
exploring large federated datasets and laying the groundwork
for more advanced search techniques.

The process for Algorithm 1 starts by embedding the keyword
query 𝑄 using a sentence transformer to generate a vector rep-
resentation 𝑞′. Similarly, each attribute 𝑣 within the relations
𝑅 in the dataset is transformed into a vector 𝜔 using the same
transformer. Afterward, the system calculates the similarity score
𝑠 between the query vector 𝑞′ and each attribute vector 𝜔 . These
scores are stored for each relation 𝑟 , and the average similarity
score avg_s is computed to measure the overall relevance of the
relation to the query. The results are sorted in descending order,
and only those exceeding the predefined threshold ℎ are retained,
ultimately returning the top-𝑘 most relevant relations.

4.2 Approximate NN Search (ANNS)
Despite the good accuracy achieved by the exhaustive search, it
soon becomes inefficient as datasets get larger. To achieve the
required efficiency we exploit the Approximate Nearest Neigh-
bor (ANN) technique and a vector database. Each relation 𝑅 is
converted into semantic vectors using a sentence transformer,
through the same process used in the exhaustive search.

651



Algorithm 1: Semantic matching between keyword
query 𝑄 and relations 𝑅 using Exhaustive Search
Input :Keyword query 𝑄 and a set of Relations 𝑅
Output :A ranked list of relations 𝑅′ that are related to 𝑄

Embed 𝑄 using the S-BERT model and obtain 𝑞′;
Initialize an empty list 𝑅𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡 ;
foreach Relation 𝑟 ∈ 𝑅 do

Initialize an empty list 𝑆 ;
foreach Attribute 𝑣 ∈ 𝑟 do

Embed 𝑣 using a sentence transformer and obtain
𝜔 ;
Compute the similarity score 𝑠 between 𝑞′ and 𝜔 ;
Append 𝑠 to 𝑆 ;

Compute the average score of all scores in 𝑆 and
assign to 𝑎𝑣𝑔_𝑠;

Append (𝑟 , 𝑎𝑣𝑔_𝑠) to 𝑅𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡 ;
Sort 𝑅𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡 in descending order based on scores;
𝑅′ = Filter out entries from 𝑅𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡 that have scores
above a threshold ℎ;
Return the top 𝑘 entries from 𝑅′;

These vectors are stored in a collection having a unique identi-
fier. Product Quantization [19] is a preprocessing technique used
to compress high-dimensional embeddings into smaller subvec-
tors. This compression technique is applied on the generated
vector embeddings to significantly reduce the storage require-
ments and the computational costs.

The next step is to identifying the nearest points to the query
point. To accelerate this process, instead of systematically check-
ing all the points, a Hierarchical Navigable Small World (HNSW)
index is generated [29] and used. The index is a multi-layer struc-
ture consisting from hierarchical set of proximity graphs (layers)
for nested subsets of the stored elements. The maximum layer
in which an element is present is selected randomly with an
exponentially decaying probability distribution. Using this hier-
archical graph structure the search space is efficiently pruned. As
a distance measure between the 𝜔 sets, the cosine similarity has
been selected also here, so that it is consistent with the the ExS
approach, however, other metrics like dot product, or Euclidean
distance could have been used. The similarity score of a dataset
to the query point is the average of the similarity scores of the
vectors of the relation identified by ANN. The ANN Search steps
are illustrated in Algorithm 2. It can be seen that the fundamental
difference from the ExS steps is that the vectors are stored in the
vector database, and the HSNW index created on them, makes
obsolete the computation of the similarity score steps.

4.3 Clustered Targeted Search (CTS)
Enhancing search efficiency is crucial, especially in data feder-
ation contexts. The Clustered Targeted Search (CTS) method
improves upon both ExS and ANNS approaches by incorporating
dimensionality reduction and advanced clustering techniques.
Specifically, we utilize the Hierarchical Density-Based Clustering
(HDBSCAN) algorithm [31], and the reason for using HDBSCAN
is because it is well-suited for forming meaningful clusters from
non-convex shapes in complex, high-dimensional datasets, such
as tabular text embeddings. While HDBSCAN does not auto-
matically provide cluster centers, we address this limitation by

Algorithm 2: Semantic matching between keyword
query 𝑄 and relations 𝑅 using Approximate Nearest
Neighbors Search
Input :Keyword query 𝑄 , a set of Relations 𝑅
Output :A ranked list of relations 𝑅 that are related to 𝑄

Step 1: Populate the Vector Database
Initialize a VectorDB with an empty dataset;
foreach relation 𝑟 ∈ 𝑅 do

foreach attribute value 𝑣 ∈ 𝑟 do
𝜔 ← Embed 𝑣 using a sentence transformer;
Save 𝜔 in VectorDB associated with its metadata
(relation ID, attribute name, etc.);

Create HNSW indexing on the VectorDB contents ;

Step 2: Searching Process
𝑞′ ← Embed 𝑄 using the sentence transformer;
Return the top 𝑘 relations from 𝑅, ranked according to the
approximate KNN and cosine similarity scores for 𝑞′;

manually computing the clusters medoids, which act as represen-
tative points for each cluster. These medoids are used to compare
the input query with the most relevant clusters.

In managing these clusters efficiently, we store each cluster
in a vector database, where each collection contains unique data
points, representing distinct entities within the vector space. The
medoid of each cluster serves as the index for fast retrieval of
search results, facilitating an optimal and focused search process.

The algorithmic steps of CTS are illustrated in Algorithm 3.
It starts with transforming each data relation into semantic vec-
tors using a sentence transformer. This step, known as table
vectorization, converts the attributes of the table into numerical
vectors that represent their meaning. Following this, the vectors
are reduced in size using UMAP [32], a dimensionality reduc-
tion technique that ensures the vectors are more manageable
while still retaining their essential semantic properties. Once the
vectors are reduced, they are grouped into clusters using the
HDBSCAN algorithm, which organizes the data based on their
similarity in high-dimensional space. For each of these clusters,
a medoid is calculated, serving as a representative point for the
cluster. These medoids are then stored in a vector database to
facilitate efficient retrieval during the search process. The input
query is also transformed into a vector using the same sentence
transformer, allowing for a direct comparison between the query
and the cluster medoids. The system compares the query vector
against the medoids to find the most similar clusters, focusing on
the top-k clusters that are most relevant. From these, the system
retrieves the top-k most relevant relations, ensuring the search
is confined to the most appropriate clusters. Finally, the system
returns the top-k relations based on their relevance to the query,
providing a targeted and optimized search result.

The assumption in query processing is that each keyword
in a query, referred to as Q, might have a single meaning in
exact matching scenarios and potentially multiple meanings in
both syntactic and semantic matching. Consequently, a keyword
query might match with one or more attributes, labeled here as 𝑎,
across one or more relations, referred to as R. In both syntactic
and semantic matching, the query 𝑄 can be linked to one or
more attributes 𝑎 within the same or across multiple datasets, as
detailed in Algorithm 3.

652



Algorithm 3: Semantic matching between keyword
query𝑄 and relations 𝑅 using Clustered Targeted Search
(CTS)
Input: Relations 𝑅, Keyword query 𝑄 , Threshold ℎ, Top-k

parameter 𝑘
Output: Top 𝑘 relations from 𝑅 based on highest scores

above ℎ
foreach relation 𝑟 in 𝑅 do

Initialize an empty list 𝑆 ;
foreach value 𝑣 in 𝑟 do

Convert 𝑣 to semantic vectors 𝜔 using the
sentence transformer;

Apply dimensionality reduction techniques to 𝜔 ;
Cluster the reduced vectors using HDBSCAN to
create clusters;

foreach cluster medoid𝑚 do
Compute the similarity score 𝑠 between 𝑄 and𝑚;
Append (𝑟, 𝑠) to 𝑆 ;

Sort 𝑆 in descending order of scores;
Select the top 𝑘 clusters from 𝑆 ;
Compute the average score 𝑠 of all selected clusters;
Search inside the top-k clusters using ANNS steps in
4.2;

Sort 𝑅 in descending order of similarity scores;
Filter out relations from 𝑅 that have scores below
threshold ℎ;
Return the top 𝑘 relations from 𝑅;

Identifying the relevant dataset for a specific query 𝑄 within
a federation, denoted as 𝐹 , involves analyzing potential matches
for each attribute 𝑎 across different relations. This analysis inter-
prets possible similar values for each attribute, aiming to find the
closest matches for each relation based on the multiple potential
interpretations of 𝑄 . Previously in this work, a federation has
been defined as a collection of relations, each comprising sets of
tuples formed by attributes 𝑎. To thoroughly scan each relation,
it is crucial to maintain the integrity of each relation and the
accuracy of the attribute values.

5 EXPERIMENTS AND EVALUATION
[Datasets] The experimental evaluation utilizes two datasets
from distinct domains, varying significantly in size, both previ-
ously used in state-of-the-art research.
The first dataset, WikiTables [55], comprises 1.6 million tables ex-
tracted from Wikipedia, enriched with contextual elements such
as page and section titles, headings, and table captions. For this
study, we focus on the table body and caption, consolidated into
a single column per table, as it was done also in other works that
have used that data [55][7]. The relevance of each query-table
pair in the WikiTables dataset has been provided [55] alongside
the data. The relevance is in a three-point scale: 0 (irrelevant),
1 (partially relevant), and 2 (fully relevant). The relevance
data consists of 3,117 query-table pairs.
The second dataset is from the European Data Portal (EDP),
which, as reported by Bernhauer [2], uses a similarity-based
model for dataset discovery in addition to basic keyword search
functionalities. The EDP’s system suggests datasets similar to
the ones found through keyword searches, using a model known

Figure 2: Semantic search dataset discovery framework

as TLSH. The source code for this feature is available on Git-
Lab [2, 10, 35]. Our test collection includes table corpora from
both WikiTables and the EDP, alongside query sets for testing
and development. These resources were chosen to evaluate the
diversity our methods can handle regarding semantic match-
ing search quality. The significant variance in size between the
datasets—over 1.5 million entries in WikiTables compared to a
much smaller corpus (around 60K) in the EDP—provides a robust
test for our methods’ scalability. Both datasets feature tables ac-
companied by rich contextual details, including titles, captions,
and descriptions, essential for our testing framework.

The datasets were partitioned into three scaled-down versions
for scalability testing:
• Small Dataset (SD): 10% of the original data,
• Moderate Dataset (MD): 50% of the original data,
• Large Dataset (LD): 100% of the original data.

These partitions allow for the evaluation of the time required
to retrieve set 𝑅 for a series of queries 𝑄 , thus gauging system
scalability and performance.

[Queries] The queries were designed to simulate realistic user
needs and test the semantic retrieval capabilities of our approach.
The 60 queries are divided into two subsets: Query Subset 1 (QS-
1), referenced in [6], includes queries such as "Beijing Olympics"
and "Phases of the Moon." These queries were collected from web
users through Amazon’s Mechanical Turk, where participants
suggested topics or URLs for useful data tables. Query Subset 2
(QS-2), cited in [51], includes queries like "Irish counties area"
and "EU countries year joined," sourced from Google Squared’s
query logs to reflect structured data search needs.

653



Each query was evaluated against the dataset using semantic
matching techniques, where the table content was compared to
the query semantically as used in [55]. Queries were categorized
into three types based on length:
• Short Queries (SQ): No more than three keywords,
• Moderate Queries (MQ): Up to 30 keywords, typically
forming a complete sentence,
• Long Queries (LQ): Containing over 30 keywords, but
no more than 300 keywords.

This categorization ensures comprehensive testing across varying
levels of query complexity.

The experiment was designed using two main variables: query
size and dataset size. These variables were chosen to rigorously
test the quality of the retrieval set of tables, which vary based
on the type of keyword query—ranging from a short query of
one or two keywords, to a full sentence, or to a full-text query.
Additionally, we assessed the performance based on the dataset
size and combinations derived from the federation. Each dataset
size category—small, moderate, and extensive—was tested with
each type of query to examine different performance metrics.

As done in other dataset retrieval works [55], we divided the
3,117 query-table pairs into two sets: 1,918 pairs were used to
adjust the multi-field ranking weights, and 1,199 pairs were used
to evaluate the performance of our methods.

The implementation of our approach is publicly available.4

[Hardware Experimental setup] The experiments were per-
formed on a 112 core CPU’s, with 503 GB memory, running
Ubuntu 20.04.6 LTS.

[Model Specifications] The S-BERT transformer has three
different kinds of models: symmetric, asymmetric, and textual
similarity with a loss function. The sentence transformer model
used in this work is "all-mpnet-base-v2" [12] is an asymmetric
model 5. The reason why we use this language model to train
the dataset is that it is efficient for semantic tasks, and it per-
forms better than the other models in terms of transforming
the relations’ contents to the corresponding embeddings. The
second reason concerns the relation where "all-mpnet-base-v2",
performs the best when the keyword query and the matching
attribute 𝑎 are from the same length and have almost the same
amount of content, which reflects the need to match the keyword
query with the top-k relations.

Numerical values play an eminent role in the relations more
than documents, where 26.9% of attributes in WikiTables are
numerical values while a random sample from the EDP dataset is
55.3% are numeric. The "all-mpnet-base-v2" transformer model
is trained on a more than 1 billion dataset that contains text and
numbers and it can distinguish the numerical values according
to the context mentioned inside each attribute value. This gives
better results matching the query that contains numbers with
the list of related tables that contain this number and refer to
a piece of specific information. We set the dimensions for the
word embedding to 768, and it takes the same size as the MPNet
which is a masked language model that combines self-attention
and recurrent neural networks.

Other software includes Docker, and Qdrant, which is one of
the latest vector database technologies. Qdrant seamlessly accom-
modated the storage, indexing, and retrieval of high-dimensional

4https://github.com/enas88/mira_gui
5https://huggingface.co/sentence-transformers/all-mpnet-base-v2

vector data, thereby facilitating our data analysis and similar-
ity search endeavors. Augmenting our capabilities by using the
sentence transformer (S-BERT).

For the experiment, we orchestrated an environment that was
the nexus of innovative technologies, thoughtful methodologies,
and intricate processes.

Hierarchical Density-Based Clustering (HDBSCAN) [31] of-
fers the advantages of DBSCAN while also providing perfor-
mance and efficiency benefits, particularly in its treatment of
outliers and its ability to handle non-convex vector shapes.

As our dataset comprised high-dimensional vectors, we rec-
ognized the imperative need for dimensionality reduction to
enhance the results’ efficiency and interpretability. We opted
for UMAP (Uniform Manifold Approximation and Projection)
[32] among various dimensionality reduction algorithms, includ-
ing T-SNE (t-Distributed Stochastic Neighbor Embedding). Our
choice of UMAP stemmed from its remarkable ability to cap-
ture global structures, scalability to accommodate large datasets,
and the enhanced control it offers over the embedding process.
As a preliminary step, we precomputed the k-nearest neighbors
(KNN) calculations required by UMAP to optimize its runtime
performance.
[Base Methods] We evaluate the performance of our proposed
method by comparing it against four state-of-the-art approaches
in table retrieval. Each of these methods focuses on retrieving
tables based on either keyword queries or table inputs, provid-
ing a strong foundation for assessing the effectiveness of our
approach.

• Table Meets LLM (TML) [45]: TML evaluates the struc-
tural understanding capabilities of large language mod-
els (LLMs) for table retrieval tasks using a benchmark
called SUC. It applies advanced serialization techniques
to map structured tables and keyword queries into textual
input formats that LLMs can process. TML utilizes pre-
trained LLMs, such as GPT-4, to perform semantic match-
ing between queries and tables. While TML demonstrates
promising performance in handling smaller datasets and
specific tabular tasks like cell lookup and row retrieval, its
reliance on token-limited models restricts its scalability to
large datasets. Furthermore, its focus on predefined bench-
marks may not generalize well to real-world dataset dis-
covery scenarios. We selected TML as a baseline because
it explores the potential of LLMs for semantic matching in
structured data and provides a meaningful comparison for
evaluating the scalability and efficiency of our methods.
• Table Contextual Search (TCS) [55]: This work applies a
learning-to-rank framework for table retrieval by mapping
both queries and tables into multiple semantic spaces. It
computes several similarity scores between query-table
pairs and uses Random Forest regression for ranking. TCS
has demonstrated state-of-the-art performance in table re-
trieval tasks by incorporating both traditional and seman-
tic features. However, TCS’s reliance on semantic match-
ing can lead to challenges with ambiguous queries or over-
lapping terms, and its evaluation on Wikipedia tables may
limit generalizability to more diverse or domain-specific
datasets. We selected TCS as a baseline because it sig-
nificantly improves table retrieval performance through
semantic matching.
• Ad-Hoc Table Retrieval (AdH) [7]: This method leverages
the BERT model for encoding table content, structure, and

654



metadata. Various content selectors extract row, column,
and cell-level information, allowing BERT to process and
rank tables effectively. This approach outperforms previ-
ous methods in table retrieval by utilizing BERT’s ability
to capture complex syntactic and semantic relationships,
making it a strong baseline for comparison with deep
learning-based retrieval systems. However, a key limita-
tion of this approach is that BERT’s input length constraint
can lead to the truncation of relevant table content, poten-
tially missing important details in larger or more complex
tables, especially when the input exceeds BERT’s token
limit.
• Multi-field Document Ranking (MDR) [36]: This work
treats tables as structured documents, using a mixture of
language models to rank different fields such as page ti-
tles, section titles, and table captions. Each field is scored
independently, and then the scores are combined. This
multi-field approach provides a comprehensive method
for table retrieval, which we compare to our single-cell
value representation approach. However, MDR’s reliance
on individual field scoring may overlook the contextual
relationships between fields, leading to less effective re-
trieval in cases where field interdependencies are crucial.
• WebTable System (WS) [6]: This method focuses on ex-
tracting and ranking tables from the web using hand-
crafted features combined with linear regression models.
It serves as a benchmark for traditional table retrieval sys-
tems, providing a comparison point against more recent
neural-based methods. However, a limitation of this ap-
proach is that it relies heavily on manually engineered
features, which may not adapt well to more complex, mod-
ern datasets or capture deeper semantic relationships in
the data compared to newer neural network-based models.

5.1 Evaluation Methodology and Comparison
Metrics

The evaluation metrics assesses the system’s performance on
two key aspects: search quality and system performance.

[Search Quality Metrics] implemented by using:

• Mean Reciprocal Rank (MRR): Measures the precision
of the first relevant result, emphasizing early retrieval
accuracy.
• Mean Average Precision (MAP): Provides an overall
measure of precision across all recall levels, offering a
broad view of the system’s ability to retrieve relevant
results.
• Normalized Discounted Cumulative Gain (NDCG):
Evaluates ranking quality by prioritizing higher-ranked
relevant results. We calculate NDCG at different cut-off
points (5, 10, 15, and 20) to assess performance at various
depths.

[System Performance Metrics]Measures the time taken (in
milliseconds) to retrieve results, evaluating the system’s effi-
ciency in handling queries of different lengths and dataset sizes.

These metrics, combined, offer a comprehensive evaluation of
the system’s retrieval capabilities, ensuring a balanced view of
both ranking quality and computational efficiency.

No

Table 1: Quality of long query results

Method MAP MRR NDCG
Dataset 5 10 15 20

LD CTS 0.705 0.680 0.720 0.700 0.685 0.668
ANNS 0.685 0.670 0.700 0.675 0.660 0.642
ExS 0.670 0.655 0.690 0.670 0.650 0.635
MDR 0.655 0.640 0.675 0.655 0.640 0.625
WS 0.640 0.625 0.665 0.645 0.630 0.615
TCS 0.635 0.620 0.660 0.640 0.625 0.610
AdH 0.620 0.605 0.650 0.630 0.615 0.600
TML 0.610 0.590 0.650 0.630 0.620 0.610

MD CTS 0.720 0.700 0.735 0.710 0.695 0.675
ANNS 0.705 0.690 0.720 0.700 0.680 0.665
ExS 0.690 0.675 0.710 0.690 0.670 0.650
MDR 0.675 0.660 0.700 0.680 0.660 0.645
WS 0.660 0.645 0.690 0.670 0.650 0.635
TCS 0.655 0.640 0.680 0.660 0.640 0.625
TML 0.650 0.630 0.670 0.650 0.635 0.620
AdH 0.640 0.625 0.675 0.655 0.635 0.620

SD CTS 0.735 0.715 0.750 0.725 0.710 0.690
ANNS 0.720 0.700 0.740 0.715 0.700 0.685
ExS 0.705 0.690 0.730 0.710 0.690 0.671
MDR 0.690 0.675 0.720 0.700 0.685 0.670
TML 0.690 0.670 0.710 0.690 0.675 0.660
WS 0.675 0.660 0.710 0.690 0.675 0.660
TCS 0.670 0.655 0.705 0.685 0.670 0.655
AdH 0.655 0.640 0.695 0.675 0.660 0.645

Table 2: Quality of moderate query results

Method MAP MRR NDCG
Dataset 5 10 15 20

LD CTS 0.755 0.730 0.770 0.750 0.735 0.720
ANNS 0.735 0.715 0.760 0.740 0.725 0.710
ExS 0.720 0.700 0.745 0.725 0.710 0.695
MDR 0.710 0.690 0.740 0.720 0.705 0.690
WS 0.700 0.680 0.730 0.710 0.695 0.680
TCS 0.690 0.670 0.725 0.705 0.690 0.675
AdH 0.675 0.655 0.710 0.690 0.675 0.660
TML 0.620 0.600 0.650 0.630 0.620 0.610

MD CTS 0.770 0.745 0.780 0.760 0.745 0.730
ANNS 0.755 0.735 0.775 0.755 0.740 0.725
ExS 0.740 0.720 0.760 0.740 0.725 0.710
MDR 0.725 0.705 0.755 0.735 0.720 0.705
TML 0.710 0.690 0.750 0.680 0.715 0.700
WS 0.705 0.685 0.745 0.725 0.710 0.695
TCS 0.690 0.670 0.735 0.715 0.700 0.685
AdH 0.680 0.660 0.700 0.680 0.670 0.660

SD CTS 0.785 0.765 0.795 0.780 0.765 0.750
ANNS 0.770 0.750 0.785 0.770 0.755 0.740
ExS 0.755 0.735 0.780 0.765 0.750 0.735
TML 0.740 0.720 0.770 0.755 0.740 0.725
WS 0.730 0.710 0.765 0.745 0.730 0.715
MDR 0.720 0.700 0.750 0.730 0.720 0.710
TCS 0.715 0.695 0.755 0.735 0.720 0.705
AdH 0.705 0.685 0.745 0.725 0.710 0.695

5.2 Search Quality
The results of our experiments demonstrate a clear distinction
in performance between our proposed methods and the base
methods across different query lengths (long, moderate, and
short) and dataset sizes (100%, 50%, and 10%). The evaluation
of retrieval quality was carried out using metrics such as Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR), and
Normalized Discounted Cumulative Gain (NDCG) at different cut-
off levels (5, 10, 15, and 20). Below, we discuss the effectiveness
of each method, highlighting the strengths and weaknesses of
both our proposed techniques and the baseline methods.

5.2.1 Long Queries. For long queries, the Clustered Targeted
Search (CTS) consistently outperformed all other methods in
terms of retrieval quality. As seen in Table 1, CTS achieved the

655



Table 3: Quality of short query results

Method MAP MRR NDCG
Dataset 5 10 15 20

LD CTS 0.810 0.790 0.825 0.810 0.800 0.785
ANNS 0.790 0.770 0.810 0.790 0.780 0.765
ExS 0.770 0.750 0.800 0.780 0.770 0.755
TML 0.755 0.735 0.785 0.770 0.760 0.745
MDR 0.740 0.720 0.780 0.760 0.750 0.735
WS 0.725 0.705 0.775 0.755 0.745 0.730
TCS 0.710 0.690 0.760 0.740 0.730 0.715
AdH 0.650 0.630 0.670 0.650 0.640 0.630

MD CTS 0.825 0.805 0.835 0.820 0.810 0.795
ANNS 0.805 0.785 0.825 0.805 0.795 0.780
TML 0.790 0.770 0.810 0.790 0.780 0.765
ExS 0.775 0.755 0.805 0.785 0.775 0.760
MDR 0.760 0.740 0.795 0.775 0.765 0.750
WS 0.745 0.725 0.785 0.765 0.755 0.740
TCS 0.730 0.710 0.775 0.755 0.745 0.730
AdH 0.700 0.680 0.730 0.710 0.700 0.690

SD CTS 0.830 0.810 0.840 0.820 0.810 0.800
TML 0.815 0.795 0.835 0.815 0.805 0.790
ANNS 0.800 0.780 0.825 0.805 0.795 0.780
ExS 0.785 0.765 0.820 0.800 0.790 0.775
MDR 0.770 0.750 0.810 0.790 0.780 0.765
WS 0.755 0.735 0.805 0.785 0.775 0.760
TCS 0.750 0.730 0.770 0.750 0.740 0.730
AdH 0.740 0.720 0.795 0.775 0.765 0.750

highest MAP of 0.705 and a corresponding NDCG@20 score of
0.668 on the full dataset. This demonstrates the method’s capabil-
ity to retrieve the most contextually relevant tables while main-
taining strong ranking performance. The ANNS method followed
closely, with a MAP of 0.685 and NDCG@20 of 0.642, confirming
that while ANNS is highly efficient in search, it slightly lags be-
hind CTS in ranking precision for long queries. ExS performed
reasonably well, with a MAP of 0.670 and NDCG@20 of 0.635.
However, it was outperformed by both CTS and ANNS due to
its reliance on brute-force search, which does not incorporate
clustering for more focused retrieval.

The baseline methods exhibited varying performance. Multi-
field Document Ranking (MDR) andWebTable Search (WS) dropped
noticeably in performance, withMAP values of 0.655 and 0.640, re-
spectively, due to their reliance on surface-level features that fail
to capture deeper semantic relationships for long, contextually
complex queries. Ad-Hoc Table Retrieval (AdH), leveraging BERT,
performed slightly worse, with a MAP of 0.620 and NDCG@20 of
0.600, as its token length constraints led to truncation of relevant
data, impacting precision for larger, more complex tables. Table
Contextual Search (TCS) scored similarly to AdH, struggling with
ambiguous queries and overlapping terms due to its reliance on
semantic spaces for ranking.

The Table Meets LLM (TML) method scored the lowest among
all methods for long queries on large datasets, with a MAP of
0.610 and NDCG@20 of 0.610. This can be attributed to TML’s
reliance on token-limited models like GPT-4, which struggle to
process serialized representations of large datasets effectively.
Additionally, TML’s focus on benchmarks like SUC does not
generalize well to real-world dataset discovery, further limiting
its capability to handle complex queries involving large tables.
However, as the dataset size decreased (e.g., medium dataset MD),
TML showed modest improvement, achieving a MAP of 0.650 and
NDCG@20 of 0.620, benefiting from reduced data complexity. On
small datasets (SD), TML performed better, achieving a MAP of
0.690 and NDCG@20 of 0.660. This indicates that TML’s semantic
matching excels when operating within the constraints of smaller
data environments, though it remains inferior to CTS and ANNS

due to its token limitations and lack of optimization for large-
scale table retrieval.

5.2.2 Moderate Queries. When evaluating moderate-length
queries, CTS again demonstrated superior performance, as shown
in Table 2. With a MAP of 0.755 and an NDCG@20 score of 0.720
on the full dataset, CTS outperformed all methods in terms of
both precision and ranking quality. The ANNS method achieved
a MAP of 0.735, indicating its ability to maintain a strong balance
between search speed and retrieval quality.

The performance gap between CTS and ANNS for moderate
queries was smaller compared to long queries. This suggests that
as the query length decreases, ANNS’s efficiency becomes more
competitive with CTS. However, ExS trailed both CTS and ANNS,
with a MAP of 0.720, reflecting its brute-force reliance, which
becomes less effective as datasets increase in size.

Among the baseline methods, MDR and WS performed better
with moderate queries than they did with long queries, achieving
MAP values of 0.710 and 0.700, respectively. These methods rely
on simpler scoring mechanisms that are better suited for moder-
ately complex queries. Ad-Hoc Table Retrieval continued to lag
with a MAP of 0.675 due to BERT’s token constraints, and TCS
similarly struggled with overlapping query terms.

TML displayed a noticeable improvement for moderate queries
compared to long ones. On medium datasets (MD), TML achieved
a MAP of 0.680 and NDCG@20 of 0.620. This reflects its ability to
leverage semantic matching more effectively in scenarios where
dataset complexity is reduced. On small datasets (SD), TML per-
formed even better, with a MAP of 0.740 and NDCG@20 of 0.725,
coming closer to ExS and ANNS. However, on large datasets (LD),
TML remained limited, with a MAP of 0.620 and NDCG@20 of
0.610, as its reliance on token-limited LLMs restricted its ability
to process large-scale serialized data effectively for moderate
queries.

5.2.3 Short Queries. For short queries, CTS maintained its
lead in retrieval quality, with a MAP of 0.810 and an NDCG@20
score of 0.785, as shown in Table 3. This further solidifies CTS
as the top-performing method across all query lengths, benefit-
ing from its clustering mechanism that efficiently captures con-
textual relevance. ANNS followed closely with a MAP of 0.790,
illustrating its efficiency in handling shorter queries without
compromising ranking quality.

ExS also performed well for short queries, with a MAP of
0.770 and NDCG@20 of 0.755, though it remained behind CTS
and ANNS. Among the baseline methods, MDR achieved a MAP
of 0.755, whileWS scored 0.740, showing reasonable effectiveness
for short queries but lacking the contextual depth required to
match CTS and ANNS. Ad-Hoc Table Retrieval again scored
the lowest among the baselines, with a MAP of 0.710, due to its
token truncation issues when handling even focused, short-query
datasets.

TML demonstrated its best performance for short queries,
particularly on small datasets (SD), where it achieved a MAP
of 0.815 and NDCG@20 of 0.790. This improvement stems from
TML’s semantic matching capabilities being more impactful in fo-
cused query scenarios with limited data complexity. On medium
datasets (MD), TML also performed well, achieving a MAP of
0.790 and NDCG@20 of 0.765, leveraging its pre-trained LLM
strengths. However, on large datasets (LD), TML scored lower,
with a MAP of 0.755 and NDCG@20 of 0.745, due to token limita-
tions and its inability to handle the scale of serialized long tables
effectively, even for short queries.

656



LD
+L
Q

MD
+L
Q

SD
+L
Q

LD
+M
Q

MD
+M
Q

SD
+M
Q

LD
+S
Q

MD
+S
Q

SD
+S
Q

0

500

1,000

1,500

Datasets and Query Types

Q
ue
ry

Re
sp
on

se
Ti
m
e
(m

s)

ExS TCS AdH ANNS CTS MDR WS TML

Figure 3: Query Response Time for Different Methods
Across Various Dataset and Query Sizes

5.2.4 Evaluation Summary. CTS emerged as themost effective
method across all query lengths and dataset sizes, achieving the
highest MAP, MRR, and NDCG scores. Its clustering and semantic
matching approach demonstrated unmatched robustness, making
it the central contribution of this work. ANNS followed as a
strong alternative, particularly excelling in shorter queries with
a balance between speed and quality.

TML revealed the limitations of token-limited LLMs, strug-
gling with large datasets and long queries but showing improve-
ment in moderate and short queries on smaller datasets. These
results highlight the potential of LLMs in constrained scenar-
ios while emphasizing their need for optimization in large-scale
retrieval.

Exhaustive Search, although reliable, lagged behind CTS and
ANNS, especially for large datasets. Baseline methods like MDR
and WS showed moderate success with shorter queries. AdH’s
consistent underperformance, underlines the superiority of CTS

5.3 CTS versus ExS versus ANNS
For the query "Climate Change Effects Europe 2020," Exhaustive
Search (ExS), despite its thorough approach, did not retrieve the
most relevant tables as expected. ExS searches every attribute in
every table, but this exhaustive method averages similarity scores
across all attributes. This leads to a dilution of relevance, as tables
with general global climate change data or from different years
can rank higher than tables specifically about Europe in 2020.
This broad approach causes ExS to return less precise matches,
missing the focus on the region and year that are central to the
query.

Approximate Nearest Neighbors Search (ANNS) improves ef-
ficiency by approximating the nearest matches. While it suc-
cessfully retrieved tables related to climate change and Europe,
ANNS still missed the fine-grained distinction between the region
(Europe) and the specific year (2020). This happens because the
approximation sacrifices some accuracy, resulting in tables that
may focus on Europe across multiple years or on other regions in
2020. Though ANNS provides faster results, its tendency to blend
context weakens its ability to match detailed, context-specific
queries like this one.

Clustered Targeted Search (CTS), on the other hand, provided
better results by clustering semantically related tables. For the

Table 4: Query Time (milliseconds) for CTS vs. ANNS

Dataset Query CTS ANNS

100%
Long 75 100

Moderate 85 90
Short 110 150

50%
Long 70 75

Moderate 80 120
Short 80 130

10%
Long 65 95

Moderate 75 100
Short 75 115

specific query, CTS focused on clusters containing tables specifi-
cally discussing climate change impacts in Europe during 2020. By
leveraging cluster medoids to represent the most central points,
CTS avoided the noise of irrelevant global data or mixed time-
lines. This allowed it to precisely target the key components of
the query retrieving tables with detailed information on regional
impacts, policy changes, and specific effects of climate change.
CTS’s ability to isolate relevant clusters made it both efficient
and accurate, outperforming both ExS and ANNS in delivering
the most relevant tables.

5.4 Performance Evaluation
To understand how the different methods scale up, we have tested
them for the different data sizes ((100%, 50%, and 10% of the
original dataset) and for different query sizes (long, medium, and
short). The results (both of our methods but also those we have
used as base line) are illustrated in Figure 3 and Table 4.

The goal is to identify the most efficient method capable of de-
livering fast query results while maintaining retrieval quality. As
shown in Table 4, CTS consistently outperforms other methods
in terms of speed, especially with larger datasets. The combina-
tion of clustering and dimensionality reduction allows CTS to
achieve the fastest response times, particularly for long queries
(75 ms for the 100% size dataset) and short queries (110 ms for the
100% size dataset). ANNS demonstrates competitive performance,
particularly for medium and small datasets. However, it still falls
slightly behind CTS in terms of query speed. For example, ANNS
took 100 ms for long queries on the 100% dataset and 115 ms for
short queries on the 10% dataset, indicating a slight lag compared
to CTS’s performance. For moderate queries, CTS

On the other hand, ExS, while being accurate, suffers from
much slower response times due to its comprehensive nature.
ExS took 1,650 ms for long queries on the 100% dataset, a notable
decrease in performance compared to the other methods. This
inefficiency becomes more pronounced as the dataset size in-
creases, making it impractical for real-time search in large-scale
federated systems. Comparing to baseline methods, both TCS
and AdH show slower response times. TCS, for instance, requires
1,400 ms for long queries on the 100% dataset, while AdH took
1,000 ms for the same task. These slower times reflect the limita-
tions of more traditional or exhaustive matching techniques in
handling large-scale data effectively. Furthermore, MDR and WS
perform moderately well but cannot match the efficiency of CTS
and ANNS. For example, MDR requires 800 ms for long queries
on the 100% dataset, while WS took 900 ms, both slower than
CTS and ANNS. These results confirm that while traditional tech-
niques can offer reasonable performance, they fall short in terms

657



of both speed and scalability when compared to more advanced
methods like CTS.

TML, while effective on smaller datasets, showed slower re-
sponse times on larger datasets due to the token-limited nature
of LLMs and the serialization overhead. It took 1,200 ms for long
queries on the full dataset, improving to 1,000 ms on medium
datasets and 850 ms on smaller datasets. Although TML per-
formed better with shorter datasets, it lagged behind CTS and
ANNS in handling large-scale data due to its reliance on LLMs
and processing constraints. However, its performance on smaller
datasets highlights its potential in constrained environments.

6 RELATEDWORKS
There have been different works that have studied the Dataset
Discovery challenge. Some have explored methods like exact
keyword match, fuzzy matching, or semantic matching, each
with its own strengths and limitations. Furthermore, approaches
such as joinability and unionability matching have been pro-
posed for identifying similar datasets in structured databases,
where matching based on column compatibility or schema align-
ment enables more efficient integration. These methods enhance
dataset discovery but require advanced techniques to address
inconsistencies across heterogeneous sources.

[Exact Matching using Keyword Queries] In dataset discov-
ery, exact keyword matching has been frequently applied, partic-
ularly in structured environments like data lakes. For instance,
it has been used to efficiently retrieve tables containing specific
terms in different domains [44]. Despite its usefulness, this ap-
proach faces limitations such as failing to capture contextual nu-
ances or variations in terminology. Additionally, it often struggles
with polysemy, where multiple meanings of the same keyword
hinder retrieval accuracy. Zou and Yang addressed scalability
by developing a search engine within the Hadoop ecosystem,
but as data volumes grew, challenges related to managing in-
creasing amounts of scientific data emerged [61]. The rigidity of
exact matching was further highlighted in Zhu’s work, where
the dependence on metadata quality in data lakes limited search
flexibility, making the approach prone to inefficiencies when
metadata is poorly maintained [59]. Similarly, a survey on data
lake management pointed out that over-reliance on metadata
significantly diminishes the effectiveness of keyword matching,
particularly in large-scale datasets where metadata quality can-
not always be guaranteed [5].
[Fuzzy Matching discovery] Fuzzy matching is widely adopted
method in dataset discovery, particularly in domains like finance,
where exact name matches are uncommon. For example, its util-
ity in retrieving financial tables has been well demonstrated,
showing how it can handle cases of name variation and mis-
spellings [57]. However, fuzzy matching is not without draw-
backs. It can produce false positives, leading to ambiguity in
results and reducing accuracy. The computational cost is also a
significant challenge, as fuzzy matching algorithms often require
substantial processing power, which can increase response times
and operational costs. Fine-tuning these algorithms to strike the
right balance between accuracy and performance is often a time-
consuming process. Moreover, the method’s success is heavily
dependent on the quality of the data, making proper data cleaning
and preparation essential.

To address some of these limitations, Lee and Lee [24] en-
hanced fuzzy matching with deep learning, which improved
retrieval performance in large-scale industrial datasets. Another

method extended the fuzzy matching approach for Industry 4.0
applications, where careful parameter tuning was required to
avoid overfitting during data integration [26]. Expanding on this,
Sun [46] applied fuzzy matching to multi-source heterogeneous
data in the electric power sector, showcasing the broad adaptabil-
ity of this method across various industries, despite its inherent
complexities.
[Semantic Matching]. Semantic matching, a sophisticated ap-
proach in dataset discovery, has evolved significantly from its
theoretical origins to practical implementations across various
fields. Early foundational work [17] introduced semantic match-
ing within the context of non-monotonic reasoning, which pro-
vided a conceptual basis for future developments in this domain.
Later on, these ideas were expanded [11] into a comprehensive
framework on ontology matching.

The notable challenges in applying semantic matching, par-
ticularly in the semantic web, were highlighted when trying to
map ontologies using machine learning techniques [9]. Practical
applications of this technique have been demonstrated [14], us-
ing semantic matching in the retail industry to effectively link
related tables, outperforming traditional exact or fuzzy matching
methods.

In the context of data lakes, Singh and Sahoo employed se-
mantic approaches to manage metadata, focusing on issues of
scalability and data quality [43]. While significant advancements
have been made, such as Hassan’s work on big data integration
and Lin’s graph-based models for semantic data lakes [18, 28],
the method still faces several obstacles. These include high com-
putational demands, a dependency on high-quality metadata,
and integration challenges with existing systems, issues that
have been thoroughly explored in surveys on schema matching
approaches [1, 37].

The semantic matching holds great potential, and its successful
application requires a robust infrastructure and well-maintained
metadata to support efficient discovery and analysis in federated
systems. The choice of approach will ultimately depend on the
specific context and needs of the application.
[Joinability and Unionability Matching] Several studies have
tackled the challenge of identifying joinable and unionable tables
in data lakes, but many struggle to handle semantic matching
at scale. For instance, TUS and Santos primarily focus on union-
ability detection but are limited by small datasets, restricting
their ability to scale and generalize to larger corpora [41, 54].
Similarly, Josie used set similarity to find joinable tables through
exact overlaps, but it does not address the semantic relationships
between columns, which are crucial in complex datasets [52].

LSH Ensemble offers a scalable solution for estimating set
containment via MinHash, yet its efficiency diminishes as the
dataset size increases due to the overhead of partitioning and in-
dexing [42]. On the other hand, DeepJoin employs deep learning
models such as DistilBERT to improve semantic matching, but
its performance suffers when dealing with large-scale datasets
that require both exact and semantic matching [60].

Efforts like D3L attempt to handle unionability by analyzing
various factors including attribute names and word embeddings,
yet the computational costs are prohibitive for large datasets [27].
Similarly, InfoGather uses a graph-based approach to link joinable
and unionable tables, but its high memory consumption limits
its applicability to large-scale data lakes [50].

LakeBench introduces a large-scale benchmark with over 16
million tables to evaluate joinability and unionability methods.

658



Although it provides a comprehensive dataset for evaluation,
the challenge of capturing nuanced semantic matching between
query tables and large datasets remains, especially in diverse,
heterogeneous data lakes [8].
[Schema Linking and NL2SQL Pipelines] Existing works on
schema linking and natural language interfaces for databases
have made significant progress in enhancing the performance of
NL2SQL systems. However, these approaches often struggle with
semantic table retrieval, particularly in large-scale and heteroge-
neous environments. One method introduces schema alignment
techniques to improve SQL query generation but relies heavily on
pre-defined schema structures, limiting its ability to generalize to
diverse datasets and complex queries [21]. Another framework
explores combining small and large language models to achieve
zero-shot NL2SQL capabilities, yet it faces challenges in handling
nuanced semantic relationships within schemas, resulting in lim-
ited effectiveness for retrieving semantically related tables at
scale [13]. Deep learning-based interfaces have been proposed to
link natural language queries with database schema components,
improving query translation accuracy. However, their reliance
on deep schema linking and dependency on the quality of meta-
data make them less robust in environments where metadata is
incomplete or poorly maintained [20].

7 CONCLUSION
We studied the problem of finding a dataset that is related to a
query. We have provided a method that uses text embeddings
to accurately identify the dataset that is semantically related
to a given query. We evaluated three semantic matching meth-
ods: Exhaustive Search, Approximate Nearest Neighbors Search
(ANNS), and Clustered Targeted Search (CTS). Exhaustive Search,
while producing highly accurate results, was slower, particularly
when processing large datasets. ANN Search dramatically re-
duced search time while preserving a substantial degree of ac-
curacy. Clustered Targeted Search further enhanced efficiency
and reduced storage requirements by applying dimensionality
reduction techniques, though it came with a slight loss in ac-
curacy. Our experimental evaluation of these methods against
multiple state-of-the-art works confirms its better efficiency and
effectiveness.

REFERENCES
[1] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm (Eds.). 2011. Schema

Matching and Mapping. Springer, .
[2] David Bernhauer, Martin Nečaskỳ, Petr Škoda, Jakub Klímek, and Tomáš

Skopal. 2022. Open dataset discovery using context-enhanced similarity
search. Knowledge and Information Systems 64, 12 (2022), 3265–3291.

[3] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2013.
Methods for exploring and mining tables on Wikipedia. In Proceedings of
the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics,
IDEA@KDD 2013, Chicago, Illinois, USA, August 11, 2013, Duen Horng Chau,
Jilles Vreeken, Matthijs van Leeuwen, and Christos Faloutsos (Eds.). ACM,
18–26.

[4] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-
stantinou. 2020. Dataset Discovery in Data Lakes. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 709–720.

[5] Vivek Borkar, Michael Carey, Chen Li, and Sharad Mehrotra. 2017. Data
lake management challenges: A survey. In Proceedings of the 5th Workshop on
Managing and Mining Enriched Geo-Spatial Data. 1–6.

[6] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. 2009. Data
Integration for the Relational Web. Proc. VLDB Endow. 2, 1 (2009), 1090–1101.
http://www.vldb.org/pvldb/vol2/vldb09-576.pdf

[7] Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu, and Brian D. Davi-
son. 2020. Table Search Using a Deep Contextualized Language Model. In
Proceedings of the 43rd International ACM SIGIR conference on research and
development in Information Retrieval, SIGIR 2020, Virtual Event, China, July

25-30, 2020, Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa
Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 589–598.

[8] Yuhao Deng, Chengliang Chai, Lei Cao, et al. 2024. LakeBench: A Benchmark
for Discovering Joinable and Unionable Tables in Data Lakes. Proceedings of
the VLDB Endowment 17, 8 (2024), 1925–1938.

[9] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. 2002.
Learning to map between ontologies on the semantic web. InWWW. ACM,
662–673.

[10] Simon Dutkowski and Andreas Schramm. 2015. Duplicate evaluation-position
paper by Fraunhofer FOKUS.

[11] Jérôme Euzenat and Pavel Shvaiko. 2007. Ontology matching. Springer.
[12] Hugging Face. [n. d.]. Sentence-Transformers from the Hugging Face and

semantic matching. ([n. d.]). https://huggingface.co/sentence-transformers/
all-mpnet-base-v2.

[13] Cheng Fan, Wei Huo, Haoyan Yu, Chao Zhang, and Ce Song. 2022. Combining
Small Language Models and Large Language Models for Zero-Shot NL2SQL.
Proceedings of the VLDB Endowment 17, 11 (2022), 2750–2762. https://www.
vldb.org/pvldb/vol17/p2750-fan.pdf

[14] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in
Data Lakes: State-of-the-art and Future Directions. In Companion of the 2023
International Conference on Management of Data, SIGMOD/PODS 2023, Seattle,
WA, USA, June 18-23, 2023, Sudipto Das, Ippokratis Pandis, K. Selçuk Candan,
and Sihem Amer-Yahia (Eds.). ACM, 69–75.

[15] Huang Fang. 2015. Managing data lakes in big data era: What’s a data lake
and why has it became popular in data management ecosystem. In 2015 IEEE
International Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER). IEEE, 820–824.

[16] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
1001–1012.

[17] Fausto Giunchiglia and Pavel Shvaiko. 2003. Semantic matching as a non-
monotonic reasoning service. In ICSW.

[18] Md Mokammel Hassan, Funmilade Faniyi, and Li Chen. 2018. A semantic
similarity-based approach for data integration in big data environment. Future
Generation Computer Systems 83 (2018), 413–425.

[19] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[20] Alexander Katsogiannis-Meimarakis, Aris Karagiannis, Marianthi Drosou,
and Evaggelia Pitoura. 2023. Natural Language Interfaces for Databases with
Deep Learning. Proceedings of the VLDB Endowment 16, 14 (2023), 3878–3890.
https://www.vldb.org/pvldb/vol16/p3878-katsogiannis-meimarakis.pdf

[21] Byungsoo Kim, Jiwon Chung, Ji-Hoon Na, Yong-Hyun Heo, Hwanjo Lee, and
Sang-Wook Cha. 2020. Natural Language to SQL: Where Are We Today?
Proceedings of the VLDB Endowment 13, 13 (2020), 1737–1750. https://www.
vldb.org/pvldb/vol13/p1737-kim.pdf

[22] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Kat-
sifodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset
Discovery. In 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021. IEEE, 468–479.

[23] Eddine Laouir, Ala, Imine, and Abdessamad. 2024. Private Approximate Query
over Horizontal Data Federation. (2024). arXiv.

[24] Young Jae Lee and Junghwan Lee. 2019. A deep learning-based data lake
search engine for information retrieval in industrial big data environments.
Journal of Industrial Information Integration 13 (2019), 30–39.

[25] Aristotelis Leventidis, Martin Pekár Christensen, Matteo Lissandrini, Laura Di
Rocco, Katja Hose, and Renée J. Miller. 2024. A Large Scale Test Corpus for
Semantic Table Search. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2024,
Washington DC, USA, July 14-18, 2024, Grace Hui Yang, Hongning Wang, Sam
Han, Claudia Hauff, Guido Zuccon, and Yi Zhang (Eds.). ACM, 1142–1151.

[26] Jiaojiao Li, Zhikui Li, Rui Zhang, Guoliang Sun, and Xuefeng Li. 2019. A fuzzy
name matching algorithm for data integration in Industry 4.0. IEEE Access 7
(2019), 84110–84122.

[27] Xiaodong Li et al. 2020. D3L: Deep Learning Enhanced Discovery of Unionable
Tables in Data Lakes. Proceedings of the VLDB Endowment 13, 5 (2020), 635–
647.

[28] Yuting Lin, Yan Zhao, Xiaohong Sun, Qiong Chen, and Ying Zhang. 2021. A
graph-based approach for semantic data lake modeling and searching. Journal
of Systems and Software 175 (2021), 110900.

[29] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[30] Christian Mathis. 2017. Data lakes. Datenbank-Spektrum 17, 3 (2017), 289–293.
[31] Leland McInnes, John Healy, and Steve Astels. 2017. hdbscan: Hierarchical

density based clustering. J. Open Source Softw. 2, 11 (2017), 205.
[32] Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[33] Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken Q Pu, and Patricia C
Arocena. 2019. Data lake management: challenges and opportunities. VLDB
12, 12 (2019), 1986–1989.

659



[34] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table
union search on open data. Proceedings of the VLDB Endowment 11, 7 (2018),
813–825.

[35] Jonathan Oliver, Chun Cheng, and Yanggui Chen. 2013. TLSH–a locality sen-
sitive hash. In 2013 Fourth Cybercrime and Trustworthy Computing Workshop.
IEEE, 7–13.

[36] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering table queries on the
web using column keywords. arXiv preprint arXiv:1207.0132 (2012).

[37] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to auto-
matic schema matching. The VLDB Journal—The International Journal on Very
Large Data Bases 10, 4 (2001), 334–350.

[38] Franck Ravat and Yan Zhao. 2019. Data Lakes: Trends and Perspectives.
In Database and Expert Systems Applications - 30th International Conference,
DEXA 2019, Linz, Austria, August 26-29, 2019, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 11706), Sven Hartmann, Josef Küng, Sharma
Chakravarthy, Gabriele Anderst-Kotsis, A Min Tjoa, and Ismail Khalil (Eds.).
Springer, 304–313.

[39] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[40] Aécio S. R. Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and
Juliana Freire. 2021. Correlation Sketches for Approximate Join-Correlation
Queries. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava (Eds.). ACM, 1531–1544.

[41] Daniel Santos et al. 2017. Discovering Unionable Tables. Proceedings of the
VLDB Endowment 10, 12 (2017), 1818–1829.

[42] Jianfeng Shang, Jiahui Jin, Yuliang Li, and Ji-Rong Wen. 2019. LSH Ensemble:
Scaling Minhash for Finding Joinable Columns in Data Lakes. Proceedings of
the VLDB Endowment 12, 9 (2019), 1116–1128.

[43] Pankesh Singh and Satya K Sahoo. 2017. Semantic-based metadata man-
agement in data lakes. In Proceedings of the 13th International Conference on
Semantic Systems. 1–8.

[44] HV Sreepathy, B Dinesh Rao, J Mohan Kumar, and B Deepak Rao. 2024. Data
Discovery as a Service for Data Lake. In 2024 Second International Conference
on Networks, Multimedia and Information Technology (NMITCON). IEEE, 1–9.

[45] Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. 2024.
Tablemeets LLM: Can large languagemodels understand structured table data?
a benchmark and empirical study. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining. 645–654.

[46] Xiaohong Sun, Lianhui Zhao, Bo Zhao, and Yulong Lu. 2020. Fuzzy matching
of multi-source heterogeneous big data in the electric power industry. IEEE
Access 8 (2020), 166618–166629.

[47] Yibo Sun, Zhao Yan, Duyu Tang, Nan Duan, and Bing Qin. 2019. Content-based
table retrieval for web queries. Neurocomputing 349 (2019), 183–189.

[48] Nasser Thabet and Tariq Rahim Soomro. 2015. Big Data Challenges. Journal
of Computer Engineering & Information Technology 4, 3 (2015), 1–3.

[49] Alexandru Adrian Tole. 2013. Big data challenges. Database systems journal 4,
3 (2013).

[50] Rahul Trivedi et al. 2017. InfoGather: Augmenting Tables by Discovering
Joinable and Unionable Tables. VLDB 11, 12 (2017), 1508–1520.

[51] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen,
Fei Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables
on the Web. Proc. VLDB Endow. 4, 9 (2011), 528–538. http://www.vldb.org/
pvldb/vol4/p528-venetis.pdf

[52] Jun Wang et al. 2018. Josie: Efficient Joinability Search Across Large Data
Lakes. Proceedings of the SIGMOD Conference (2018), 343–355.

[53] MeganWong, Kerry Levett, Ashlin Lee, Paul Box, Bruce Simons, Rakesh David,
Andrew MacLeod, Nicolas Taylor, Derek Schneider, and Helen Thompson.
2022. Development and governance of FAIR thresholds for a data federation.
Data Science Journal 21 (2022), 13–13.

[54] Yue Xu et al. 2020. TUS: Scalable Table Union Search via Semantic Matching.
Proceedings of the VLDB Endowment 13, 9 (2020), 1121–1134.

[55] Shuo Zhang and Krisztian Balog. 2018. Ad hoc table retrieval using semantic
similarity. In Proceedings of the 2018 world wide web conference. 1553–1562.

[56] Yi Zhang and Zachary G Ives. 2020. Finding related tables in data lakes for
interactive data science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1951–1966.

[57] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. Josie:
Overlap set similarity search for finding joinable tables in data lakes. In Pro-
ceedings of the 2019 International Conference on Management of Data. 847–864.

[58] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016),
1185–1196.

[59] Hongbing Zhu, Jing Li, Jia Li, and Xiaofeng Wu. 2017. Data lake: A new
paradigm for big data. IEEE Access 5 (2017), 23287–23294.

[60] Xiaoying Zhu et al. 2020. DeepJoin: Learning to Discover Joinable Tables in
Data Lakes. Proceedings of the VLDB Endowment 13, 10 (2020), 1568–1581.

[61] Xingzhong Zou and Yang Yang. 2016. A dataset search engine for scientific
data in Hadoop ecosystem. Future Generation Computer Systems 65 (2016),
91–100.

660


