
Deep Skyline Community Search
Minglang Xie

1,2
, Jianye Yang

1,3,∗
, Wenjie Zhang

2
, Shiyu Yang

1
, Xuemin Lin

4

1Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
2School of Computer Science, University of New South Wales, Sydney, Australia

3Department of New Networks, PengCheng Laboratory, Shenzhen, China
4Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China

{minglang.xie,wenjie.zhang}@unsw.edu.au,{jyyang,syyang}@gzhu.edu.cn,xuemin.lin@gmail.com

ABSTRACT

Community search has attracted significant research attention

over the past decades, which aims to find structurally cohesive

subgraphs in a given graph. Recently, the skyline community has

been investigated on multi-valued networks where each node

is associated with a set of attributes. However, this problem is

very challenging, as the computational complexity is exponential

to the number of attributes 𝑑 . As a result, the state-of-the-art

algorithm can hardly process datasets with 𝑑 ≥ 5. To overcome

this challenge, we resort to deep learning techniques and pro-

pose a novel framework, calledDeep SkylineCommunity Search

(DeepSCS). DeepSCS is designed to search skyline communities

for given query nodes through a two-phase approach, namely

offline pre-training and online search. In the offline pre-training

phase, graph convolutional networks (GCN) are adapted to ef-

ficiently process high-dimensional data and complex network

dependencies by combining the attribute dominance loss and the

link loss. In the online search phase, the skyline community score

is computed on the basis of learned representations where an

expected score gain function based community search algorithm

is developed. We conduct extensive experiments on real-world

networks. The experimental results show that, DeepSCS can

achieve up to 3 orders of magnitude efficiency improvement and

competitive accuracy compared to the existing method.

1 INTRODUCTION

Many real-world networks such as social networks, citation

graphs, collaboration networks, biological networks can be mod-

eled as multi-valued networks, in which a node with multiple

numerical attributes represents an entity of the networks, and an

edge represents a link between nodes in a defined relationship of

the networks [4][20], providing a rich framework for modeling

complex relationships. For example, in the real estate network,

each property listing has several numerical attributes, including

the price, square footage, number of bedrooms, number of bath-

rooms, year built, and walkability score, etc. Such network is

typically modeled as a multi-valued network where each node

is associated with 𝑑 (𝑑 ≥ 1) numerical attributes. These multi-

valued networks also contain community structures, as general

networks (i.e., non-attribute networks). Finding the communities

in a network is a fundamental problem in network science.

In the past two decades, a query-dependent community discov-

ery problem called Community Search (CS) [10] has attracted sig-

nificant attention due to its widespread application [8][9][14][21]

[35]. This problem focuses on identifying densely connected

∗ Jianye Yang is the corresponding author.
© 2025 Copyright held by the owner/author(s). Published in Proceedings of the

28th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

subgraphs given a specific query, which can reveal meaningful

structures and relationships within multi-valued networks.

Among existing solutions, the algorithms either only focus on

the structural cohesion of the community or just consider one nu-

merical attribute of the nodes. To address this challenge, a novel

communitymodel called the skyline communitymodel [9] was in-

troduced. The skyline community is a community method based

on the concepts of 𝑘-core [8][30][31] and skyline [7][24][25][26].

The skyline community has many applications, particularly in

scenarios where multiple criteria must be optimized simultane-

ously. For example, on social media platforms like Twitter or

Facebook, a photography enthusiast can discover influential pho-

tography groups that align with specific preferences such as user

activity, engagement levels, content preferences, geographic lo-

cation, and demographic information, etc. Skyline community

can provide users with desired communities that meet multiple

criteria simultaneously. Therefore, from the skyline communities,

the photography enthusiast can find the desired communities

to communicate and make appointments to take photos with

each other. The application of skyline communities in such multi-

valued networks demonstrates the importance of considering

both structural cohesiveness constraints and the influence repre-

sented by the attribute values of nodes.

A skyline community is defined as the largest 𝑘-core that is not

dominated by other connected 𝑘-cores on multiple attributes in

multi-valued networks. Intuitively, given two k-core subgraphs,
𝐻1 and 𝐻2; 𝐻1 dominates 𝐻2 if 𝐻1 is not less than 𝐻2 in all

dimensions and is greater in at least one dimension, donated as

𝐻1 ≺ 𝐻2. The value of𝐻1 or𝐻2 in each dimension is represented

by the minimum value of the nodes in the k-core, with larger

values being preferable in this paper. As shown in Figure 1(a), the

multi-valued graph𝐺 contains 10 nodes, each of which has three

values of different dimensions. Given 𝑘 = 2, the subgraphs 𝐻1 =

{𝑣1, 𝑣2, 𝑣3} with values (3, 7, 13) and 𝐻2 = {𝑣3, 𝑣4, 𝑣5} with values

(2, 7, 8) are two 2-cores of𝐺 . According to the values,𝐻1 is better

than 𝐻2 in every dimension, we called that 𝐻1 dominates 𝐻2,

denoted by𝐻1 ≺ 𝐻2. This example demonstrates how the skyline

community is determined based on the dominance relationships

between k-cores in the multi-valued networks.

Existing Solutions and Limitations. Existing approaches to

the skyline community search problem [5][20][42] typically em-

ploy a candidate generation-and-verification computation par-

adigm. They first identify the candidate communities based on

topological structure (i.e., k-core), and then perform dominance

filtering on candidate communities considering attribute sim-

ilarity. During the process, the space-partition techniques are

developed to accelerate the computation. However, there are two

limitations in existing approaches: 1) Limitation I, relating to the

prevalence of redundant computations in the dominance filtering

and search algorithms. Since the computation time complexity is

exponential to the number of node attributes 𝑑 , the approach is

Series ISSN: 2367-2005 636 10.48786/edbt.2025.51

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.51

(5,10,18) (6,8,13)

(2,9,18)

(3,7,20) (7,8,8)

(5,2,14)

(10,9,15) (13,20,11)

(9,6,18)

(11,10,13)

(a) Multi-valued Graph𝐺 .

(13,20,11)

(11,10,13)(6,8,13)

(3,7,20)

(5,10,18)

(10,9,15)

(5,2,14)

(10,9,15)

(11,10,13)

(b) Skyline communities in𝐺 .

Figure 1: Example of multi-valued graph and skyline community.

rather inefficient for datasets with relatively large 𝑑 . For example,

it takes the state-of-the-art algorithm 10
4 ∼ 10

5
seconds to han-

dle the Delicious dataset with independent attributes for 𝑑 = 5.

2) Limitation II, the algorithm involves a significant amount of

redundant calculations. The number of recursive calculations is

largely related to the number of skyline community results, and

in each recursive step, the algorithm performs a large number of

repeated calculations, primarily equal to the number of nodes in

the graph. For example, there are nearly 10
5
skyline community

results in the Delicious dataset with independent attributes for

𝑑 = 5, this requires approximately 10
5 × |𝑉 | calculations.

Our Approach and Contributions. In this paper, we resort

to deep learning techniques to address limitations on the model

flexibility and computation efficiency of existing solutions. Specif-

ically, we propose a novel framework, Deep Skyline Community

Search (DeepSCS) to find the skyline communities accurately

and efficiently. The overall architecture of DeepSCS is shown

in Figure 2, which consists of two components, namely an of-

fline pre-training phase and an online search phase. The offline

pre-training phase pre-trains the skyline learnable graph convo-

lutional network (SLGCN) that is designed specifically for SCS.

Based on the pre-trainedmodel, we search the skyline community

for the given query node in online search phase.

Specifically, the SLGCN is designed to capture both topological

and attribute-based skyline dominance characteristics of poten-

tial skyline communities. To facilitate training without labeled

data and effectively capture dominance characteristics, we intro-

duce two self-supervised loss functions specifically tailored for

SCS, namely dominance loss and link loss. The dominance loss

is motivated by the skyline property, which enables the model to

learn representations that capture the dominance relationships

between nodes. The link loss, inspired by the cohesiveness prop-

erty of communities, guides the model to learn representations

that capture the structural connectivity in the potential skyline

communities. During the online search phase, we calculate the

skyline community score by measuring the similarity between

the representation of the query node and the representations of

each node in the graph where the representations are inferred

from the pre-trained SLGCN.

To address limitation II, we introduce an expected score gain

function based online community search algorithm. Specifically,

the community score is derived from the pre-trained SLGCN and

reflects the likelihood of a node being included in the community.

Based on this, we define an expected score gain function that

quantifies the potential improvement in community quality with

the addition of each node. Higher expected score gain values indi-

cate more promising candidates for community membership. By

Table 1: Symbols and Descriptions

Notation Description

𝐺 An undirected graph.

𝑉 (𝐺) A set of nodes in 𝐺 .

𝐸 (𝐺) A set of edges in 𝐺 .

𝑋 ∈ R |𝑉 |×𝑑 The feature matrix

𝐴 ∈ R |𝑉 |× |𝑉 | The adjacency matrix

𝑑 The number of node attributes

𝐻 ′ ≺ 𝐻 𝐻 ′ dominates 𝐻

𝑞 = 𝑉𝑞 The query with node set 𝑉𝑞

𝐶𝑞,𝐶𝑞 Ground-truth/predicted skyline community of 𝑞

𝑆 ∈ R |𝑉 | The skyline community score vector

𝑓 𝜃 (·) Skyline learnable graph convolutional network

with parameters 𝜃

scanning all nodes in the graph, we finish the skyline community

retrieval for the query nodes.

Our extensive experiment study on 4 real-world datasets shows

that our method can efficiently find skyline communities with

high accuracy. Compared to the state-of-the-art skyline com-

munity search algorithm, our method can be up to 3 orders of

magnitude faster when the number of node attributes reaches 5.

Our principle contributions are summarized as follows.

•We present a novel unsupervised skyline community search

approach calledDeepSCS, which consists of an offline pre-training

phase and an online search phase.

• In the offline pre-training phase, we design an effective

Skyline Learnable Graph Convolutions Network (SLGCN).

• In the online search phase, we propose an efficient and

effective search algorithm to find promising skyline communities.

• Through extensive experiments, we evaluate the efficiency

and effectiveness of our DeepSCS approach for query dependence

skyline community search over real-world datasets.

Roadmap. The rest of this paper is organized as follows. In

Section 2, we introduce the problem definition and revisit the

state-of-the-art algorithm. In Section 3, we present the overview

of our approach DeepSCS, followed by the offline pre-training

phase and online search phase in Section 4 and Section 5, respec-

tively. In Section 6, we conduct extensive experiments. Section 7

and Section 8 review the related work and conclude this paper,

respectively.

2 PRELIMINARIES

In this section, we introduce the problem definition and state-of-

the-art algorithm. Table 1 summarizes the mathematical nota-

tions frequently used in this paper.

637

2.1 Problem Definition

In this paper, we consider a multi-valued graph 𝐺 = (𝑉 , 𝐸, 𝑋),
where 𝑉 and 𝐸 ⊆ 𝑉 ×𝑉 denote a set of nodes and edges, respec-

tively.𝑋 ∈ R |𝑉 |×𝑑 is the feature matrix to denote the 𝑑 numerical

attributes for nodes in𝑉 . In specific, for each node 𝑣 ∈ 𝑉 , we use
a vector 𝑋𝑣 = (𝑥1𝑣 , ..., 𝑥𝑑𝑣) to denote its 𝑑-dimensional features.

Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be an induced subgraph of 𝐺 , we define the

value of 𝐻 on the 𝑖-th dimension (for 𝑖 = 1, 2, ..., 𝑑) as

𝑓𝑖 (𝐻) = min

𝑣∈𝑉𝐻
{𝑥𝑣𝑖 }. (1)

𝐴 ∈ R |𝑉 |× |𝑉 | is the adjacency matrix where the binary value

𝐴𝑖 𝑗 = 1 indicates that there is an edge between 𝑣𝑖 and 𝑣 𝑗 . The

skyline community score vector is denoted by 𝑆 ∈ R |𝑉 | . We use

𝑞 and 𝑉𝑞 interchangeably to indicate the query, while 𝐶𝑞 and

𝐶𝑞 represent the ground-truth and predicted community, respec-

tively. Note that, a query may contain multiple nodes, and we

aim to find a community covering all nodes in the query.

Definition 2.1 (Dominance relationship). Let 𝐻 = (𝑉𝐻 , 𝐸𝐻)
and 𝐻 ′ = (𝑉𝐻 ′ , 𝐸𝐻 ′) be two communities. we call that 𝐻 ′ domi-
nates 𝐻 , denoted by 𝐻 ′ ≺ 𝐻 , if 𝑓𝑖 (𝐻) ≤ 𝑓𝑖 (𝐻 ′) for all 𝑖 = 1, ..., 𝑑,

and there exists at least one dimension 𝑖 such that 𝑓𝑖 (𝐻) < 𝑓𝑖 (𝐻 ′).

Definition 2.2 (k-core). Given a graph 𝐺 = (𝑉 , 𝐸, 𝑋), a 𝑘-core
𝑆 of 𝐺 is subgraph of 𝐺 with each node in 𝑆 having at least 𝑘
neighbors in 𝑆 .

Definition 2.3 (Skyline Community Search, SCS). Given a

graph𝐺 = (𝑉 , 𝐸, 𝑋), an integer𝑘 , and query𝑞, the problem of sky-

line community search aims to identify a query-dependent con-

nected subgraph (i.e., community) 𝐶𝑞 = (𝑉𝐶𝑞
, 𝐸𝐶𝑞

, 𝑋𝐶𝑞
), where

nodes in the found community are an induced subgraph of 𝐺

that satisfies the following properties.

• 𝐶𝑜ℎ𝑒𝑠𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝐶𝑞 is a connected 𝑘-core;
• 𝑆𝑘𝑦𝑙𝑖𝑛𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: there does not exist an induced subgraph
𝐶′𝑞 of 𝐺 such that 𝐶′𝑞 is a 𝑘-core and 𝐶′𝑞 ≺ 𝐶𝑞 ;
• 𝑀𝑎𝑥𝑖𝑚𝑎𝑙 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦: there does not exist an induced sub-
graph 𝐶′𝑞 of 𝐺 such that (1) 𝐶𝑞 is a connected 𝑘-core (2) 𝐶′𝑞
contains 𝐶𝑞 , and (3) 𝑓𝑖 (𝐶′𝑞) = 𝑓𝑖 (𝐶𝑞) 𝑓 𝑜𝑟 𝑎𝑙𝑙 1, ..., 𝑑 .

Example 2.4. Consider the graph 𝐺 shown in Figure 1(a). Sup-
pose for instance that 𝑘 = 2. Then, by Definition 2.3, the subgraphs
𝐻1 = {𝑣1, 𝑣2, 𝑣3} is a skyline community with values 𝑓 (𝐻1) =

(3, 7, 13), because there does not exist other 2-core subgraph that
can dominate it, and it is also the maximal subgraph that satisfies
the cohesive and skyline properties. Similarly, 𝐻2 = {𝑣6, 𝑣8, 𝑣9}
is a skyline community with 𝑓 (𝐻2) = (5, 2, 13) . The subgraph
𝐻3 = {𝑣6, 𝑣8, 𝑣9, 𝑣10} are not a skyline community, as 𝑓 (𝐻3) =
(5, 2, 11) is dominated by 𝐻2. The skyline communities in 𝐺 are
{𝑣1, 𝑣2, 𝑣3}, {𝑣6, 𝑣8, 𝑣9}, {𝑣8, 𝑣9, 𝑣10}, as shown in Figure 1(b).

Theorem 2.5 (Skyline Community Dimensional Inclu-

sion Property). Given a multi-valued graph𝐺 = (𝑉 , 𝐸, 𝑋) and
an integer 𝑘 , let 𝑆𝑘𝑦𝐶𝑜𝑚𝑚𝑑 (𝐺) be all skyline communities with
𝑑-dimensional features. Then, the set of skyline communities with
𝑑-dimensional features covers all skyline communities with (𝑑 −1)-
dimensional features, i.e., 𝑆𝑘𝑦𝐶𝑜𝑚𝑚𝑑 (𝐺) ⊇ 𝑆𝑘𝑦𝐶𝑜𝑚𝑚𝑑−1 (𝐺).

Proof. We prove the theorem by contradiction. Suppose 𝐻 is
a skyline community in 𝑑 − 1 dimensions with values 𝑓𝑖 (𝐻) that
cannot be obtained in SkyComm𝑑 (𝐺) for all 𝑖 = 1, ..., 𝑑 − 1. Since
𝐻 is not in the union of all skyline communities in 𝑑 − 1 dimension,
there must exist a skyline community 𝐻 ′ in 𝑑 − 1 dimension such

that: 𝑓𝑖 (𝐻 ′) ≥ 𝑓𝑖 (𝐻) for all 𝑖 = 1, ..., 𝑑 − 1. Furthermore, because𝐻
is a skyline community in𝑑 − 1 dimensions,𝐻 cannot be dominated
by any other 𝑘-core subgraph in 𝑑 − 1 dimensions. Hence, there
exists at least one dimension 𝑗 where: 𝑓𝑗 (𝐻 ′) > 𝑓𝑗 (𝐻). This would
mean that 𝐻 ′ dominates 𝐻 in 𝑑 − 1 dimensions, contradicting the
assumption that 𝐻 is a skyline community in 𝑑 − 1 dimensions.
Hence, 𝐻 must be in the union of the skyline communities in 𝑑 − 1
dimensions when considering all the values 𝑓𝑑 . By contradiction, we
show that if 𝐻 is a skyline community in 𝑑 − 1 dimensions, it must
be included in the 𝑑-dimensional skyline communities. Therefore,
𝑆𝑘𝑦𝐶𝑜𝑚𝑚𝑑 (𝐺) ⊇ 𝑆𝑘𝑦𝐶𝑜𝑚𝑚𝑑−1 (𝐺) □

Example 2.6. Consider the graph shown in Fig 1(a), the skyline
community for 2-dimensional attributes is {𝑣8, 𝑣9, 𝑣10} with the
constrain {𝑥1 ≥ 10, 𝑥2 ≥ 9}, which is included in the skyline com-
munity for 3-dimensional attributes. The skyline communities for 3-
dimensional attributes in 𝐺 is {𝑣1, 𝑣2, 𝑣3}, {𝑣6, 𝑣8, 𝑣9}, {𝑣8, 𝑣9, 𝑣10},
as shown in Fig 1(b) with the corresponding restrictions {𝑥1 ≥
3, 𝑥2 ≥ 7, 𝑥3 ≥ 13}, {𝑥1 ≥ 5, 𝑥2 ≥ 2, 𝑥3 ≥ 13}, and {𝑥1 ≥ 10, 𝑥2 ≥
9, 𝑥3 ≥ 11}. Therefore, the constraint for the 2-dimensional skyline
community can be computed simply by ignoring the 𝑥3 constraint,
and employing traditional skyline algorithms for dominance rela-
tionships.

According to Theorem 2.5, we prove that all skyline commu-

nities in high-dimensional space (𝑑 − 1) are contained by these in
low-dimensional space (𝑑). However, we observe that there also

exists a phenomenon called potential information loss. In specific,

if a query vertex 𝑞 belongs to a skyline community in 𝑑 dimen-

sions but not in 𝑑 − 1 dimensions, it would result in an empty

query outcome. This phenomenon is rather significant when the

dimension gap exceeds 3. Despite this limitation, Theorem 2.5

facilitates the development of a single pre-trained model that

encompasses all dimensions, allowing it to address any combi-

nation of dimensions within multi-valued graphs. Additionally,

by training a node embedding on the 𝑑-dimensional attributes

dataset, we can efficiently capture skyline communities across

all dimensional combinations within 𝑑 dimensions. This signifi-

cantly simplifies the process of identifying communities across

multiple feature dimensions since we do not need to develop

separate models for each lower dimension.

2.2 Learnable Graph Convolutional Networks

Graph Convolutional Networks (GCN), as introduced by Kipf

and Welling [17], have been proposed as a method to learn high

dimensional node representations [37] by simultaneously captur-

ing content features and structural topology. The fundamental

principle underlying GCN is the utilization of localized aggre-

gation of neighboring node features to iteratively update node

representations. This approach enables the model to encode both

the local and global graph structure, as well as node-specific at-

tributes, into the node representation. However, the application

of convolutional operations in generic graphs is hindered by the

variable and unordered nature of neighboring units. To address

these challenges, Gao et al. proposed Learnable Graph Convo-

lutional Networks (LGCN) [11]. The core innovation of LGCN

is to automatically select a fixed number of neighboring nodes

for each feature based on value-based ranking in order to trans-

form graph data into grid-like structures in 1-D format, thereby

enabling the use of regular convolutional operations on generic

graphs. By leveraging the graph’s inherent structure, LGCN can

effectively process and analyze complex relational data, making

638

decomposition

Offline Pre-Training

Online Search

SLGCN

Share Weight Attribute dominance Loss
& Link Loss

Data Graph

Query

SCIESG
Solver

0.1

0.2

0.4

0.7

0.9

0.6

0.8

Skyline Score
Computation

k-core

Graph G 3-core Subgraph K = 3

K = 0

K = 1

K = 2

...

Neighborhood
Correlation Readout

Node Representation

Community Representation

K-hop Loss
Function

0.1

0.2

0.4

0.7

0.9

0.6

0.8

Figure 2: The architecture of proposed model.

them particularly well-suited for tasks involving multi-valued

graphs. This offers a more flexible and adaptable approach to

graph-based learning, potentially improving performance in sce-

narios where traditional GCN may be limited by the irregular

structure of the input graph.

2.3 State-of-the-art

The state-of-the-art skyline community search algorithm em-

ploys recursive calculations to obtain the result, based on the

dimension size of the feature, for 𝑑 = 2 and 𝑑 ≥ 3.

For d = 2. The SkylineComm2D algorithm begins by comput-

ing the maximal k-core w.r.t. the second dimension 𝑥2, which

iteratively removes nodes with the smallest 𝑥2 value until no

k-core remains, ensuring that the resulting k-core possesses the
maximum 𝑓2 value among all k-core. Following this, the algo-

rithm shifts its focus to finding the corresponding maximal 𝑓1
value while maintaining the same 𝑓2 value. This process is re-

peated until no valid k-core remains, and then a set of skyline

communities is obtained. It is efficient, with a time complexity of

𝑂 (𝑠 (|𝑉 | + |𝐸 |)) and space complexity𝑂 (|𝑉 | + |𝐸 | + 𝑠), where 𝑠 is
the number of 2D skyline communities. However, the algorithm

is inefficient when 𝑑 ≥ 3.

For d ≥ 3. The Space-Partition algorithm reduces the dimension

recursively and then calls the SkylineComm2D algorithm. This

approach involves deriving all possible 𝑓𝑑 values for the skyline

communities and using these values to recursively partition the

search space into regular subspaces. As a result, this method bears

a time complexity exponential to𝑑 . Moreover, the Space-Partition

algorithm is ineffective when the answer size is large.

Discussion. The existing skyline community algorithm bears

major limitations on computation efficiency when the number

of node attributes is relatively large (e.g., 𝑑 ≥ 5), or more tightly

connected structural cohesiveness constraints exist in the graph.

To address these limitations, we propose a deep learning based

skyline community search, which can effectively capture com-

plex numerical features and relationships within the graph. By

leveraging the power of learnable graph convolutional network,

our model aims to improve the efficiency and accuracy of skyline

community search, even in high-dimensional spaces and large

skyline community results.

3 OUR APPROACH DEEPSCS

Motivation. Because the traditional search algorithm for SCS is

computationally expensive, in this paper, we recast the skyline

community search as an unsupervised classification problem,

which shifts the paradigm from traditional search algorithms

to a machine learning-based approach by leveraging the power

of unsupervised techniques to identify skyline communities in

the multi-valued graph. More specifically, given a multi-valued

graph𝐺 (𝑉 , 𝐸, 𝑋), the objective of pre-training for SCS is to learn
a generic encoder that can encode the skyline community domi-

nance relationship and the graph topology into latent space. Then,

for a given query, we can quickly identify the skyline community

via the learned encoder.

Overview of DeepSCS. The overall architecture of DeepSCS is

shown in Figure 2, which consists of two phases, namely offline

pre-training and online search. In the offline phase, we pre-train

a skyline learnable graph convolutions network (shortened as

SLGCN), which is specifically designed to capture both the topo-

logical and attribute-based skyline dominance relationships of

potential skyline communities. To this end, we propose a novel

node dominance embedding that effectively identifies skyline

community properties as defined in Definition 2.3. The loss func-

tion is a composite of two key components, namely dominance

loss and link loss. In the online phase, we reformulate the skyline

community search problem as a skyline community identifica-

tion problem with expected score gain (shortened as SCIESG).

This approach aims to identify communities that maximize the

639

skyline community score, which is derived from the pre-trained

SLGCN representations. The SCIESG formulation seeks to find a

connected subgraph that contains the query node, satisfies sky-

line community properties, and maximizes the expected score

gain. The details of offline pre-training and online search are

introduced in Section 4 and Section 5, respectively.

4 OFFLINE PRE-TRAINING

4.1 Overview

DeepSCS employs the learnable graph convolutional networks

to learn the vertex embedding. This approach can preserve the

subgraph relationships in the embedding space and support ef-

ficient, accurate skyline community candidate vertex retrieval.

Specifically, given a multi-valued graph, we first generate the

community-level subgraphs with the most consistent features

from different views of a vertex in the graph as positive sam-

ples. Then, we utilize these samples for contrastive training.

Next, we feed the augmented subgraph into a graph encoder

(SLGCN) to extract latent features that encode community in-

formation and graph topology. The graph encoder generates

both vertex-level and community-level representations. Finally,

we use these learned representations for the loss computation,

which includes dominance loss and link loss. The resulting loss

is back-propagated to update the parameters in the SLGCN. This

process enables our model to iteratively enhance the capacity

to capture and represent the complex relationships within the

graph structure.

4.2 Augmented Subgraph Construction

Motivation. The unsupervised learning is based on the aug-

mented subgraphs. To capture the rich graph structure informa-

tion conforming to the cohesive property and maximal property,
we propose a two-step subgraph construction method as shown

in Figure 2. We first compute the 𝑘-core subgraphs, then extract

the 𝐾-hop neighborhood subgraphs within the 𝑘-core subgraphs.

The two-step subgraph construction strategy is based on the

following facts. On the one hand, real-world graphs are usually

large in scale. Thus, it is important to reduce the size of the graph

by pruning the unrelated vertices in advance. On the other hand,

not all vertices in the graph are contained in the skyline com-

munities based on the skyline community property. Therefore,

to reduce the training cost, we start by conducting 𝑘-core de-

composition on the original graph. After that, we extract the

𝐾-hop neighborhood subgraphs in the 𝑘-core subgraphs. Each

𝐾-hop corresponds to a different neighborhood structure, allow-

ing the model to aggregate information from neighbors from

different distances. This is important because relationships and

dependencies in a graph often exist at multiple scales. A vertex

might provide insights into its attribute dominance, which may

affect not only its immediate neighborhood but also the distant

ones. To better understand how each vertex impacts the others,

the 𝐾-hop approach helps capture this information. To strike a

balance between the search space and personalization, we set the

upper limit for 𝐾 at 3, as suggested by the experimental results.

4.3 SLGCN Architecture

Motivation. The graph encoder generates both vertex-level and

community-level representations with the input augmented sub-

graphs. GCN is a powerful tool for processing graph-based data,

offering an effective way to learn the representations of nodes in

Algorithm 1: Forward Propagation

Input: center node 𝑣 , feature matrix 𝑋 , adjacent matrix 𝐴,

LGCN layers 𝐿.

Output: The node representation 𝑍𝑛𝑜𝑑𝑒𝑣 and

community-level representation 𝑍𝑐𝑜𝑚𝑚𝑣

1 X𝑣 ← {𝑥0𝑣 , 𝑥1𝑣 , ..., 𝑥𝐾𝑣 }
2 ℎ
(0)
𝑣 ← X𝑣𝑊

3 for 𝑙 = 0, ..., 𝐿 − 1 do
4

ˆℎ
(𝑙)
𝑣 ← 𝑔(ℎ (𝑙)𝑣 , 𝐴, 𝑘)

5 ℎ
(𝑙+1)
𝑣 ← 𝑐 (ˆℎ (𝑙)𝑣)

6 𝑍𝑛𝑜𝑑𝑒𝑣 ← 0ℎ
(𝐿)
𝑣 ; 𝑍𝑐𝑜𝑚𝑚𝑣 ← {}

7 for 𝑘 = 1, ..., 𝐾 do

8 𝑎𝑔𝑔𝑘𝑣 ←
∑
𝑢∈𝑁 (𝑣)

𝑘ℎ
(𝐿)
𝑣

𝑇
𝑘 ·ℎ (𝐿)𝑢

∥𝑘ℎ (𝐿)𝑣 ∥ ∥𝑘ℎ (𝐿)𝑢 ∥
9 𝑍𝑐𝑜𝑚𝑚𝑣 ← 𝑍𝑐𝑜𝑚𝑚𝑣 + 𝑎𝑔𝑔𝑘𝑣 · 𝑘ℎ

(𝐿)
𝑣

10 return 𝑍𝑛𝑜𝑑𝑒𝑣 , 𝑍𝑐𝑜𝑚𝑚𝑣

a graph while considering the graph’s structure. In this paper, we

follow the state-of-the-art learnable graph convolutional network

(LGCN) [11], which transforms generic graphs into data using

a novel 𝑘-largest node selection process that utilizes ranking

among node feature values. This innovative technique allows for

modifying the node selection and ranking processes to prioritize

nodes that are likely to form skyline communities.

Technical Details. Based on the state-of-the-art LGCN [11], in

this paper, we propose SLGCN as the graph encoder in DeepSCS.

In general, the graph encoder takes a 𝑘-core subgraph as input

and produces both node-level and community-level representa-

tions. Algorithm 1 summarizes the forward propagation process.

Specifically, we implement a propagation procedure to obtain

the token sequence of the 𝐾-hop neighborhood matrices, which

is represented as X𝐾 = 𝐴𝐾X. Here, 𝐴 = 𝐷−
1

2𝐴𝐷−
1

2 denotes the

normalized adjacency matrix, 𝐴𝐾 represents the 𝐾-hop neigh-

borhood adjacency matrix, and 𝐷 is the degree matrix of 𝐴. We

then assemble the aggregated neighborhood sequence of node 𝑣

from X𝑣 = {𝑥0𝑣 , 𝑥1𝑣 , ..., 𝑥𝐾𝑣 }, where X𝑣 ∈ R(𝐾+1)×𝑑 .
In the following, we project X𝑣 to the hidden dimension 𝑑𝑚

of the GCN using a learnable linear projection. This is expressed

as ℎ
(0)
𝑣 = X𝑣𝑊 where𝑊 ∈ R𝑑×𝑑

(0)
𝑚 , and ℎ

(0)
𝑣 ∈ R(𝐾+1)×𝑑

(0)
𝑚 .

Subsequently, we pass ℎ
(0)
𝑣 through 𝐿 LGCN encoder layers. To

enhance the stability and performance of our model, we apply

layer normalization (LN) before each block of the LGCN encoder.

LGCN encoder layer. An LGCN encoder layer consists of two

components: 𝑘-largest node selection denoted as 𝑔(·) and GCN

denoted as 𝑐 (·). In layer 𝑙 , ℎ
(𝑙)
𝑣 is initially processed by the 𝑔(·)

and then fed into 𝑐 (·). The𝑘-largest node selection transforms the

graph data into a grid-like structure by selecting the 𝑘 nodes with

the highest feature values for each feature dimension. A graph

convolutional neural network is applied to aggregate information

from the selected nodes and produce new node representations

as follows.

ˆℎ
(𝑙)
𝑣 = 𝑔(ℎ (𝑙)𝑣 , 𝐴, 𝑘)

ℎ
(𝑙+1)
𝑣 = 𝑐 (ˆℎ (𝑙)𝑣)

(2)

Finally, we obtain the node representation 𝑍𝑛𝑜𝑑𝑒𝑣 = 0ℎ
(𝐿)
𝑣 ∈

R𝑑
(𝐿)
𝑚 with the latent representationℎ

(𝐿)
𝑣 ∈ R(𝐾+1)×𝑑

(𝐿)
𝑚 obtained

640

graph G

0 1

1

2D embedding space

dominating region

Figure 3: Example of node dominance embedding.

after 𝐿 layers. Additionally, we have the latent representations

of the neighborhood tokens {1ℎ (𝐿)𝑣 , ...,𝐾ℎ
(𝐿)
𝑣 }.

Aggregation with Neighborhood Correlation readout.We consider

the correlation between the neighborhood of each node and the

representation of the node itself using the cosine similarity [36].

We also take the weighted neighborhood tokens to obtain the

representation at the community level.

𝑎𝑔𝑔𝑘𝑣 =
∑︁

𝑢∈𝑁 (𝑣)

𝑘ℎ
(𝐿)
𝑣

𝑇
𝑘 · ℎ (𝐿)𝑢

∥𝑘ℎ (𝐿)𝑣 ∥∥𝑘ℎ
(𝐿)
𝑢 ∥

𝑍𝑐𝑜𝑚𝑚𝑣 =

𝐾∑︁
𝑘=1

𝑎𝑔𝑔𝑘𝑣 · 𝑘ℎ
(𝐿)
𝑣

(3)

Here, | | indicates the norms of the feature vectors.

4.4 Training Target

Motivation. In the context of the skyline community, nodes

are assessed based on both graph cohesion and attribute dom-

inance within their communities to capture node dominance

representation. Our SLGCN method aims to capture the domi-

nance relationship between a node 𝑣 and its neighbor 𝑢 in the

embedding space. This embedding strategy is designed to retain

the skyline property and maximal property within the skyline

community. Furthermore, we also introduce a link loss function

to enable the cohesive property within the skyline community.

This function encourages connected nodes to have similar latent

representations, while simultaneously pushing apart the repre-

sentations of unconnected nodes. The link loss contributes to

the preservation of local graph topology, while the dominance

loss captures global information and dominance relationships.

By combining these loss functions, we aim to create a compre-

hensive embedding that encapsulates both local and global graph

properties. Judiciously, this dual approach allows us to effectively

capture the properties of cohesiveness, skyline, and maximality

that are defined on the skyline community.

Loss Function. We design the dominance loss by the margin

triplet loss [29], which ensures that the dominance relationship

between a selected node with its corresponding community and

the other node from the communities. The representation of dom-

inance relationship between two nodes 𝑣 and 𝑢 in a community

is defined as below.

𝑐𝑜𝑚𝑚 (𝑣,𝑢) = 𝑍
node

𝑣 𝑍 comm

𝑢 (4)

Then, following the approach in [41], we calculate the domi-

nance loss as follows.

L𝑑 =
∑︁
𝑣,𝑢∈𝐸

max(0, 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑣)) − 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑢)) + 𝜖) (5)

Algorithm 2: Offline Pre-training

Input: The data graph 𝐺 , batch size 𝑛𝑏𝑎𝑡𝑐ℎ , layer number

𝐿, SLGCN 𝑓 𝜃 (·), learning rate 𝜂, coefficient 𝛼

Output: a pre-trained SLGCN 𝑓 𝜃 (·)
1 Initialize optimizer 𝑜𝑝𝑡𝜃 with learning rate 𝜑 ;

2 Separate 𝑉 into batches {𝑉𝑏 } with the batch size 𝑛𝑏𝑎𝑡𝑐ℎ ;

3 for each 𝑣 ∈ 𝑉 do

4 𝐺𝑣 ← augmented subgraph sampler;

5 for {𝑉𝑏 } ∈ 𝑉 do

6 for each 𝑣 ∈ 𝑉𝑏 do

7 𝑐𝑜𝑚𝑚 (𝑣,𝑣) ← 𝑓 𝜃 (𝑣, 𝑋 (𝐺𝑣), 𝐴(𝐺𝑣), 𝐿)
8 for each 𝑢, 𝑣 ∈ 𝑉𝑏 do

9 L𝑑 = max(0, 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑣)) − 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑢)) + 𝜖)
10 L𝑘 =

−𝐴(𝑢, 𝑣) (𝑐𝑜𝑚𝑚 (𝑣,𝑣)) + (1 −𝐴(𝑢, 𝑣) ((𝑐𝑜𝑚𝑚 (𝑢,𝑣))
11 L += L𝑑 + 𝛼L𝑘
12 Update 𝜃 by 𝑜𝑝𝑡𝜃 with loss

L
|𝑉𝑏 |2

13 return pre-trained SLGCN 𝑓 𝜃 (·);

where 𝜖 and 𝜎 (·) are the margin value and the sigmoid function,

respectively.

Intuitively, when the loss function L𝑑 = 0, the embedding

vector 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑣)) is dominating (or equal to) 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑢)).
Thus, we simply say that 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑣)) dominates 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑢))
(denoted as 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑣)) ≺ 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑢))). Moreover, SLGCN

guarantees that the embedding follows the dominance relation-

ship (i.e., 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑣)) ≺ 𝜎 (𝑐𝑜𝑚𝑚 (𝑣,𝑢))).

Example 4.1. Figure 3 illustrates an example of the node domi-
nance embedding between node 𝑣 and its neighbor nodes 𝑢. Each
node has a 2D embedding vector 𝑐𝑜𝑚𝑚 (𝑣,𝑣) via SLGCN. For ex-
ample, as shown in tables, we have 𝑐𝑜𝑚𝑚 (𝑣,𝑣) = (0.68, 0.66) and
𝑐𝑜𝑚𝑚 (𝑣,𝑢1) = (0.80, 0.79). We plot the embedding vectors of nodes
in a 2D embedding space on the right side of the figure. We can see
that 𝑐𝑜𝑚𝑚 (𝑣,𝑣) is dominating 𝑐𝑜𝑚𝑚 (𝑣,𝑢1) and 𝑐𝑜𝑚𝑚 (𝑣,𝑢2) , which
means that 𝑣 is potentially a skyline constraint of 𝑐𝑜𝑚𝑚 (𝑣,𝑢1) and
𝑐𝑜𝑚𝑚 (𝑣,𝑢2) . On the other hand, since 𝑐𝑜𝑚𝑚 (𝑣,𝑣) is not dominat-
ing 𝑐𝑜𝑚𝑚 (𝑣,𝑢3) in the 2D embedding space, node 𝑣 cannot be the
skyline constraint for 𝑐𝑜𝑚𝑚 (𝑣,𝑢3) in the graph 𝐺 .

Furthermore, we apply a link loss to improve node connectiv-

ity. The link loss ensures neighboring nodes are similar while

distinguishing non-adjacent nodes, as formulated below.

L𝑘 =
1

|𝑉 |2
∑︁
𝑣,𝑢∈𝐸

(−𝐴(𝑢, 𝑣) (𝑐𝑜𝑚𝑚 (𝑣,𝑣))

+(1 −𝐴(𝑢, 𝑣)) (𝑐𝑜𝑚𝑚 (𝑢,𝑣))
(6)

The overall loss function of SLGCN is defined as:

L = L𝑑 + 𝛼L𝑘 (7)

where 𝛼 ∈ [0, 1] is the coefficient to balance two losses.

Algorithm 2 illustrates the training procedure, which incor-

porates the loss function defined in Equation 7. We begin by ini-

tializing the optimizer parameters and by partitioning all nodes

into several batches (Lines 1-2). This batching approach allows

for efficient processing of large graphs. Subsequently, we sam-

ple all augmented subgraphs (Lines 3-4). This sampling step is

crucial for capturing diverse local structures within the graph.

We then train SLGCN batch by batch to obtain both node-level

641

and community-level representations for all nodes (Lines 6-7).

This dual-level representation enables our model to capture both

fine-grained node features and broader community structures

simultaneously. With these representations, we compute the

composite loss, which encompasses both dominance and link

losses (Lines 8-11). We update the parameters in SLGCN via the

computed loss (Line 12). This update step allows the model to

iteratively refine its ability to capture and represent the complex

relationships within the graph structure. Finally, we return a

pre-trained SLGCN 𝑓 𝜃 (·) (Line 13). By implementing this train-

ing procedure, we aim to optimize our model’s performance in

capturing both local and global graph properties, essentially for

effective skyline community detection.

5 ONLINE SEARCH

5.1 General Idea

The overall computation paradigm of online search phase is

illustrated in the bottom part of Figure 2. In specific, with the

learned model, we first compute the skyline community score for

each vertex in the graph by calculating the pairwise similarity

with the query nodes. Then, we use an expected score gain based

method to collect the resulting vertices which are considered

as the output community. Below is a concrete example for the

online search process.

Example 5.1. Consider the data graph and query illustrated in
Figure 2. With the learned model, we compute the community score
of the 8 vertices, i.e., 𝑆 = (0.1, 0.2, 0.4, 0.7, 0.9, 0.6, 0.8, 0.8). Next,
we begin by adding the query node 𝑣6 to the identified community
𝐶𝑞 . At this point, 𝐶𝑞 contains only the query node, and the ESG
(Expected Skyline Gain) is calculated as 1

1
0.5 (0.6− 4.5

8
×1) = 0.0375.

After that, we iteratively consider the neighboring vertices. For a
neighboring vertex 𝑣 , we add it to the result community if it can
increase the ESG score. By continuing this process, we can obtain a
resulting skyline community consisting of nodes 𝑣5, 𝑣6, 𝑣7, and 𝑣8.

5.2 Skyline Community Score Computation

Motivation. SLGCN model is designed to capture both the sky-

line community dominance relationship and graph topology in

the latent representation. However, it is also important to make

sure that the latent representation can reflect the underlying

graph structure effectively. Intuitively, similar nodes in the graph

should have similar node representations, maintain proximity

in the graph structure, and share comparable community-level

information. Leveraging this principle, we compute the skyline

community score by evaluating the similarity for the represen-

tations of the query node and other nodes in the graph. In our

approach, nodes that are likely to be part of the resulting skyline

community should demonstrate higher similarity. By employing

this similarity-based scoring mechanism, we are able to effec-

tively retrieve skyline community members by quantifying their

similarity to the query node in the learned embedding space. This

approach aligns with our goal of developing a robust and effec-

tive method for identifying meaningful community structures in

multi-valued graphs.

Algorithm Details. Algorithm 3 summarizes the details of our

skyline community score computation method. It takes three

parameters as input, including the query nodes, the graph, and

the pre-trained SLGCN. It generates the skyline community score

with respect to the given query as output. Initially, the skyline

community score is set to zero for all nodes in 𝐺 (Line 1). Then,

for each node 𝑣 , we calculate the average similarity between 𝑣

Algorithm 3: Skyline Community Score Computation

Input: The query 𝑉𝑞 , graph 𝐺 , and SLGCN 𝑓 𝜃 (·)
Output: The skyline community score 𝑆

1 Initialize 𝑆 ← {𝑠𝑣 = 0 for 𝑣 ∈ 𝑉 }
2 for 𝑣 ∈ 𝑉 do

3 for 𝑢 ∈ 𝑉𝑞 do

4 𝑠𝑣 ← 𝑠𝑣 +
∑𝑑
(𝐿)
𝑚

𝑖=0
𝑓 𝜃
𝑖
(𝑣) 𝑓 𝜃

𝑖
(𝑢)√︃

𝑓 𝜃
𝑖
(𝑣) 𝑓 𝜃

𝑖
(𝑣)

√︃
𝑓 𝜃
𝑖
(𝑢) 𝑓 𝜃

𝑖
(𝑢)

5 𝑠𝑣 ← 𝑠𝑣
|𝑉𝑞 |

6 return 𝑆 ;

and all query nodes (Lines 3-5). Here, we employ cosine similarity

as our primary metric. The resulting scores are normalized to

the range [0, 1] to ensure consistent comparison across queries

of different sizes (Line 5).

5.3 Skyline Community Search

Motivation. The community score quantifies the likelihood of

a node being included in the community. An ideal community

is one where all nodes exhibit high community scores with the

query nodes. Existing unsupervised learning-based community

search methods typically utilize a threshold-based strategy. That

is, nodes having a community score larger than the threshold are

included in the resulting communities. However, the approach

of using a fixed threshold or a fixed number of nodes would po-

tentially lead to inaccurate community structure. To address this

limitation, we introduce the expected score gain (ESG) function,

which is defined as the sum of nodes scores in the community

subtracted by the sum of expected scores under random node

selection. In this framework, communities that maximize the ESG

are considered high-scoring. This concept is inspired by the well-

established metric of community cohesiveness known as density

modularity, as proposed in the context of density modularity

based community search [16]. Density modularity measures the

number of edges in the community minus the expected number

of edges in the community if the edges were randomly distributed.

A higher density modularity indicates a more cohesive commu-

nity. Compared to the fixed threshold approach, this approach

provides a more flexible way for community identification.

Technical Details. Next, we begin with the metric definition of

the expected score gain, and then introduce the details commu-

nity search algorithm based on this metric.

Definition 5.2 (Expected Score Gain, ESG). Given a graph
𝐺 (𝑉 , 𝐸, 𝑋), a community 𝐶 = (𝑉𝐶 , 𝐸𝐶) and the community score
𝑆 , the expected score gain of 𝐶 is defined as:

𝐸𝑆𝐺 (𝑆,𝐶,𝐺) = 1

|𝑉𝐶 |𝑟
(
∑︁
𝑣∈𝑉𝐶

𝑠𝑣 −
∑
𝑢∈𝑉 𝑠𝑢
|𝑉 | |𝑉𝐶 |) (8)

where 𝑟 ∈ [0, 1] is a hyer-parameter to control the granularity
of the subgraph, and a higher 𝑟 leads to a more fine-grained one.

In Equation 8, the first term

∑
𝑣∈𝑉𝐶 𝑠𝑣 is the sum of the sky-

line community score of the nodes in the selected community.

The second term

∑
𝑢∈𝑉 𝑠𝑢
|𝑉 | |𝑉𝐶 | is the expected skyline community

score by considering the average graph score.

With the concept of ESG, we now aim to identify communi-

ties that not only maximize the community score but also are

642

Algorithm 4: Skyline Community Search

Input: The community score 𝑆 , multi-valued graph 𝐺 , 𝑑

and query 𝑉𝑞

Output: The identified community 𝐶𝑞

1 𝐶,𝐶𝑞, 𝑄 ← 𝑉𝑞

2 𝑚𝑎𝑥𝐸𝑆𝐺 ← −∞
3 while |𝑄 | < |𝑉 | do
4 𝑄 = {𝑣 ∈ 𝑉 \𝑄 |∃𝑁 (𝑣) ∩𝑄}
5 𝑢 ← argmax

𝑣∈𝑄
6 𝑄 ← 𝑄 ∪ 𝑢
7 if 𝐸𝑆𝐺 (𝑆,𝐶𝑞 ∪ {𝑢},𝐺) > 𝑚𝑎𝑥𝐸𝑆𝐺 then

8 for 𝑖 𝑖𝑛 𝑑 do

9 if 𝑓𝑖 (𝑢) < 𝑓𝑖 (𝐶) then
10 𝑓𝑖 (𝐶) ← 𝑓𝑖 (𝑢)

11 𝑚𝑎𝑥𝐸𝑆𝐺 ← 𝐸𝑆𝐺 (𝑆,𝐶𝑞 ∪ {𝑢},𝐺)

12 𝐶𝑞 ← 𝐶𝑞 ∪ {𝑢 ∈ 𝐺 |𝑓𝑖 (𝑢) >= 𝑓𝑖 (𝐶) 𝑓 𝑜𝑟 𝑖 𝑖𝑛 𝑑}
13 return 𝐶𝑞

structurally cohesive fulfill the properties of a skyline commu-

nity. Besides, the identified community is query-dependent and

therefore should contain the query nodes.

Community Search. The overall algorithm of ESG-based Sky-
line Community Search is summarized in Algorithm 4, which

takes the community score, multi-value graph and query nodes

as input, and outputs the retrieved skyline community. In spe-

cific, we use a set 𝐶 to maintain the nodes with the minimal

constraints in𝐶𝑞 , a set𝐶𝑞 to keep track of candidate nodes, and a

set 𝑄 to store the traversed nodes, which are all initialized as 𝑉𝑞 .

Then, the maximum expected score gain is initialized to negative

infinity. (Line 1-2). The algorithm proceeds until all nodes have

been traversed or terminates prematurely when no promising

candidates remain (Lines 3-11). In each iteration, we select the

node 𝑄 = {𝑣 ∈ 𝑉 \𝑄 |∃𝑁 (𝑣) ∩𝑄} with the highest community

score that satisfies two criteria: it has not been traversed and it

is located at the boundary of the traversed node set (Line 4-6).

If the merging of selected nodes increases the expected score

gain of the previous intermediate subgraph, then we update the

constraint values across all dimensions, as well as the maximum

expected score gain. Otherwise, the algorithm terminates pre-

maturely (Lines 7-11). Finally, find all vertices that satisfy the

constraints and the skyline community is returned (Lines 12-13).

5.4 Time Complexity

Time complexity of pre-training. The projection of three ma-

trices incurs a time complexity of𝑂 (3𝑑2
ℎ
(𝐾 + 1)), where 𝑑ℎ is the

dimension of the hidden layer of LGCN and 𝐾 is the number of

hops in the neighborhood aggregation. The dot product between

query and key takes𝑂 (𝑑ℎ (𝐾+1)2) time. Consequently, the overall

time complexity of the LGCN layer is𝑂 (3𝑑2
ℎ
(𝐾 + 1) +𝑑ℎ (𝐾 +1)2).

Since there are |𝑉 | nodes in the graph and our architecture em-

ploys 𝐿 LGCN encoder layers, the time complexity of SLGCN for

a single forward pass is 𝑂 (𝐿 × |𝑉 | × (3𝑑2
ℎ
(𝐾 + 1) + 𝑑ℎ (𝐾 + 1)2)).

Thus, the total time complexity of pre-training is𝑂 (𝑡 × 𝐿 × |𝑉 | ×
(3𝑑2

ℎ
(𝐾 + 1) + 𝑑ℎ (𝐾 + 1)2)) if we train the model for 𝑡 epochs.

Time complexity of community score computation. The

time complexity for calculating a pair-wise similarity is 𝑂 (𝑑ℎ).

Table 2: Dataset

Network |𝑉 | |𝐸 | 𝑑𝑚𝑎𝑥 𝑘𝑚𝑎𝑥

Slashdot 70,068 358,647 2507 54

Delicious 536,108 1,365,961 3216 33

Lastfm 1,191,805 4,519,330 5150 70

Flixster 2,523,386 7,918,801 1474 68

GenCAT 16,384 133,703 255 36

Table 3: Hyper-parameter

Parameters Values

Loss balancer 𝛼 0.01, 0.1, 0.3, 0.5, 0.7, 0.9

Subgraph granularity 𝜏 0.1, 0.3, 0.5, 0.7, 0.9

Hop numbers 1, 2, 3, 4, 5, 6

Epoch numbers 25, 50, 100, 150, 200

Therefore, the overall time complexity for computing the com-

munity score is𝑂 (|𝑉𝑞 | × |𝑉 | ×𝑑ℎ) since we need to consider each
pair of nodes in 𝑉𝑞 and 𝑉 .

Time complexity of Skyline Community Search. The time

complexity for searching nodes with the maximum score is𝑂 (𝑑×
|𝑉 | × log |𝑉 |). This operation may be executed up to |𝑉 | times

in the worst case. Thus, the overall time complexity of skyline

community search is 𝑂 (𝑑 × |𝑉 |2 × log |𝑉 |).

5.5 Discussion

It is worth mentioning that our techniques can be easily extended

to other graph models, such as property graphs or temporal

graphs[38, 39]. The property graphs can be easily converted to

the attributed graph since the properties can be simply considered

as the node attributes. As for the temporal graphs, we can convert

the timestamps or intervals into a relative attribute by applying

techniques such as Fourier Transform to represent temporal

patterns in a frequency domain.

6 EXPERIMENTS

6.1 Experimental Setup

Dataset. We use four real-world datasets (i.e., Slashdot, Delicious,

Lastfm, and Flixster) and a synthetic dataset GenCAT [23] to eval-

uate our proposals. The characteristic of the datasets are summa-

rized in Table 2, where𝑑𝑚𝑎𝑥 and𝑘𝑚𝑎𝑥 denote themaximal degree

and the maximal core number of the network, respectively. The

real datasets are downloaded from http://networkrepository.com.

It is worth mentioning that the original datasets do not contain

numerical attributes. In order to evaluate the performance of our

algorithms, we apply the widely used method in the skyline al-

gorithm [7] to generate the numerical attributes for our datasets.

Following the existing study [7], we generate three different types

of numerical attributes, namely independence, correlation, and
anti-correlation. Independence implies that the attribute values

are generated independently using a uniform distribution. Cor-
relation means that if a node performs well in one dimension, it

also performs well in other dimensions. Anti-correlation indicates
that if a node performs well in one dimension, then it is bad in

one or all other dimensions. Intuitively, the number of skyline

communities in a network with correlated attributes should be

significantly smaller than the number in the same network with

independent or anti-correlated attributes.

Baseline. We use the state-of-the-art traditional algorithm SC-

CP [20] and the state-of-the-art learning based community search

method TransZero[34] as the baselines for performance study.

Note that SC-CP is an exact method.

643

(a) F1-score results (Vary 𝑘 , 𝑑 = 5)

(b) F1-score results (Vary 𝑑 , 𝑘 = 15)

Figure 4: F1-score results under different settings

(a) Slashdot (b) Delicious (c) Lastfm (d) Flixster

Figure 5: F1-score of DeepSCS and TransZero in networks with independent attributes (vary 𝑘 , 𝑑 = 5)

(a) Slashdot (b) Delicious (c) Lastfm (d) Flixster

Figure 6: F1-score of DeepSCS and TransZero in networks with independent attributes (vary 𝑑 , 𝑘 = 15)

Query Generation. We generate all queries randomly from the

available ground-truth communities which are combinations of

all satisfied skyline communities. Our experimental design incor-

porates 100 training queries and 100 testing queries. Following

the approach outlined in [34], we randomly select 1 to 3 nodes

from the ground-truth communities to serve as query nodes.

Metrics. Following existing studies [15, 19], we use F1-score [28]

to evaluate the accuracy of the algorithms. This metric provides

a balanced measure of precision and recall. We also report the

elapsed running time for training and search processing.

Implementation Details. The experimental setup for DeepSCS

involves running the model for 100 epochs with an implemented

early stopping mechanism. The batch size is dynamically set to

the number of nodes in the graph, with an upper limit of 8000 to

accommodate memory constraints. A dropout rate of 0.1 is em-

ployed to mitigate overfitting. The augmented subgraph sampler

utilizes a maximum of 5 hops. The model architecture incorpo-

rates 8 attention heads, consistent with previous research. The

temperature parameter 𝜏 is fixed at 0.5 in all datasets, while the

balance coefficient 𝛼 is set to 0.1. The number of LGCN layers

is follows the configuration described in [11]. To ensure compu-

tational feasibility, the search space is limited to a maximum of

50% of the total number of nodes, not exceeding 10,000 nodes.

All experiments are conducted on a high-performance server

equipped with an Intel(R) Xeon(R) Gold 6342 CPU, 503GB of

memory, and an Nvidia RTX 4090 GPU.

6.2 Effectiveness Evaluation

Exp-1: Effect of 𝑘 on accuracy (𝑑 = 5). We evaluate the ac-

curacy of DeepSCS in Figure 4(a) by varying the core number

𝑘 from 5 to 30. The results reveal that the F1-score of DeepSCS

demonstrates independence from variations in 𝑘-core. This phe-

nomenon can be attributed to several factors. Firstly, the graph

structure is modified according to the value of 𝑘 , requiring the

model to be retrained for each specific value of 𝑘 . Secondly, the

number of ground-truth communities exhibits a positive correla-

tion with increasing 𝑘 values, requiring the online search phase

644

(a) Efficiency results of the training phase

(b) Efficiency results of the search phase

Figure 7: Efficiency results

(a) Slashdot (b) Delicious (c) Lastfm (d) Flixster

Figure 8: Efficiency of DeepSCS, SC-CP, and TransZero in networks with independent attributes (vary 𝑘 , 𝑑 = 5)

(a) Slashdot (b) Delicious (c) Lastfm (d) Flixster

Figure 9: Efficiency of DeepSCS, SC-CP, and TransZero in networks with independent attributes (vary 𝑑 , 𝑘 = 15)

to adapt to predict the community size. Furthermore, mid-range

𝑘 values (15-20) frequently yield optimal performance, with the

F1-score of DeepSCS reaching over 70%.

Exp-2: Effect of 𝑑 on accuracy (𝑘 = 15). We evaluated the

F1-score by varying the dimension 𝑑 from 2 to 5. The results

for all datasets are presented in Figure 4(b). We observed that

the F1-score increases as 𝑑 increases for both independent and

anti-correlated attributes, which is consistent with Theorem 2.5.

Furthermore, a significant finding is the consistency of the F1-

score across all dimensions for correlated attributes. We attribute

this phenomenon to the invariance of ground-truth skyline com-

munities in the presence of correlated attributes. Basically, under

the skyline community constraint, graphs with correlation at-

tribute are less likely to have multiple skyline communities.

Exp-3: Accuracy comparison with baseline. We also com-

pared the accuracy of DeepSCS and TransZero in Figure 5 and

Figure 6. As reported, DeepSCS outperforms TransZero gener-

ally. This is because TransZero does not consider the skyline and

dominance properties during its training phase. These findings

further validate the effectiveness of DeepSCS.

6.3 Efficiency Evaluation

Exp-4: Effect of 𝑘 on efficiency (𝑑 = 5). In Figure 7, we report

the efficiency results, including the efficiency of both the training

and the search phase. Figure 7(a) shows the efficiency of the train-

ing phase, It is reported that the training time decreases with

increasing𝑘 for all datasets and almost all types of attributes. This

observed trend aligns with theoretical expectations, as higher

𝑘-cores represent more constrained subgraphs, indicating that

less data is used for calculations. Figure 7(b) shows the efficiency

of the search phase, for all types of attributes, the search time

remains relatively stable across all 𝑘 values, with only minor

fluctuations in Slahdot, Lastfm, and Flixster. Furthermore, dur-

ing both the training and testing phases, the time spent on the

Delicious dataset decreases significantly as 𝑘 increases.

Exp-5: Efficiency evaluation of all algorithms (vary 𝑘 ,𝑑 = 5).

For 𝑑 = 5, the efficiency tests of DeepSCS, SC-CP, and TransZero

645

(a) F1-score with varying 𝛼

(b) F1-score with varying 𝜏

(c) F1-score with varying hop numbers

(d) F1-score with varying epoch numbers

Figure 10: Hyper-parameter analysis results

in the networks with independent attributes are reported in Fig-

ure 8. As observed, the running time for DeepSCS, SC-CP, and

TransZero gradually decreases as 𝑘 increases. This is because, as

𝑘 increases, the number of vertices within the 𝑘-core of the net-

work gradually decreases. Thanks to the powerful GCN, DeepSCS

and TransZero are observed much faster than SC-CP, achieving

an average speedup of 10.6× and up to 1739.6× across all datasets
compared to SC-CP.

Exp-6: Efficiency evaluation of all algorithms (vary 𝑑 , 𝑘 =

15). We vary 𝑑 from 2 to 5 to evaluate the processing time of

DeepSCS, SC-CP, and TransZero on the four networks with inde-

pendent attributes and 𝑘 = 15. The results in Figure 9 show that,

for 𝑑 ≥ 3, although the performance of DeepSCS and TransZero

is worse than SC-CP in small datasets, DeepSCS and TransZero

still outperforms SC-CP in large datasets. The running time of

SC-CP increases as 𝑑 increases. In contrast, the running time of

DeepSCS and TransZero remains constant across all datasets,

regardless of the increase in 𝑑 .

6.4 Hyper-parameter Analysis (𝑑 = 5, 𝑘 = 15)

Exp-7: Varying 𝛼 . Figure 11(a) evaluates the effect of 𝛼 , which

serves as a weighting factor that determines the relative contri-

bution of the dominance loss and link loss to the overall optimiza-

tion objective in Equation 7. Compared to the correlated ones,

datasets with independent attributes exhibit high sensitivity to

the variations of 𝛼 . The method performs poorly on datasets with

anti-correlated attributes. In general, 𝛼 = 0.1 can strike a good

balance for the two losses.

Exp-8: Varying 𝜏 . In Figure 11(b), we evaluate effect of 𝜏 . As de-

fined in Definition 5.2, 𝜏 serves to regulate the granularity of the

subgraph structure. A larger 𝜏 results in more fine-grained sub-

graph representations. On Delicious, the performance of Deep-

SCS improves with the increase of 𝜏 across all types of attributes.

On the other datasets, the performance decreases with the in-

crease of 𝜏 . In general, 𝜏 = 0.5 demonstrates good performance.

Exp-9: Varying hop numbers. Figure 11(c) reports the effect of

the number of hops. As reported, DeepSCS performs relatively

646

Table 4: Ablation Study

Models Slashdot Delicious Lastfm Flixster GenCAT Average +/-

Full model 0.3423 0.5367 0.3469 0.3454 0.1604 -

w/o L𝑑 0.1395 0.5035 0.3024 0.0679 0.1773 -29.61%

w/o L𝑘 0.2368 0.5233 0.2959 0.0741 0.1618 -25.14%

w/o 𝑆𝐿𝐺𝐶𝑁 0.1466 0.5277 0.3149 0.1061 0.1361 -30.50%

(a) F1-score results (Vary 𝑘 , 𝑑 = 5) (b) F1-score results (Vary 𝑑 , 𝑘 = 15) (c) Efficiency results (Vary 𝑘 , 𝑑 = 5) (d) Efficiency results (Vary 𝑑 , 𝑘 = 15)

Figure 11: Effectiveness and Efficiency evaluation on GenCAT graph

well on 3-hop. This indicates that the relevant structural and

attribute-based features for defining skyline communities are

typically contained within a neighborhood of each node.

Exp-10: Varying epoch numbers. In Figure 10(d), we evalu-

ate the effect of training epochs during the pre-training phase.

On small graphs like Slashdot and Delicious, the performance

increases as the number of epochs increases. In contrast, large

graphs such as Lastfm and Flixster exhibit similar performance af-

ter 50 epochs, indicating that the model convergence is achieved

within the first 50 epochs.

6.5 Additional Experiments

Exp-11: Ablation study with independent attributes (𝑑 = 5,

𝑘 = 15). In this experiment, we evaluate the effectiveness of the

components of DeepSCS, including the dominance loss (L𝑑), the
link loss (L𝑘), and the overall architecture of SLGCN. The re-

sults is summarized in Table 4. The dominance loss (L𝑑) plays
an important role for large graphs. For example, on Flixster, our

method can obtain a remarkable performance improvement of

80.3% when equipped with L𝑑 . In general, it contributes to an

average of 29.61% F1-score improvement. Similarly, link loss (L𝑘)
also demonstrates great performance with an average of 25.14%

improvement for F1-score. To further assess the SLGCN architec-

ture, we replaced it with a classical contrast-based self-supervised

approach for node representations learning. The results reveal

that SLGCN achieves an average improvement of 30.5%. These

results collectively demonstrate the effectiveness of the modules

designed in DeepSCS.

Exp-12: Experiments on synthetic dataset GenCAT. Fig-

ure 11 reports the experiment results on synthetic dataset Gen-

CAT. The F1-score outcomes for vary parameters 𝑘 and 𝑑 are

presented in Figure 11(a) and (b), while Figure 11 (c) and (d)

illustrate the efficiency results on GenCAT with independent

attributes. These findings further validate the effectiveness and

efficiency of DeepSCS.

7 RELATEDWORKS

Traditional community search. Traditional CS methods aim

to identify cohesively connected subgraphs that contain spe-

cific query nodes and satisfy given constraints. Many commu-

nity models have been proposed, including 𝑘-core [8][30][31],

𝑘-truss [2][14][33], and maximal 𝑘-edge connected subgraphs

[3][13][43]. However, these community models only consider the

graph structural information and ignore the attributes associated

with nodes. Li et al. introduced an influential community model

[21] and a skyline community model [20], which considers the in-

fluence of nodes and captures𝑑-dimensional numerical attributes,

respectively. However, these approaches have two limitations:

structural inflexibility and computational inefficiency.

Deep learning based community search. Recently, there has

been increasing interest in learning-based community search

(CS) methods. QD-GNN and AQD-GNN were proposed in [15]

for CS and attributed community search in a supervised manner.

TransZero [34] was introduced for CS in an unsupervised man-

ner, without utilizing labels for the nodes in the ground-truth

community. [12] employs 𝑘-core information as labels for pre-

training and predicts the 𝑘-core community, while it does not

use ground-truth community information.

Multi-valued graph analysis. In many real-world networks,

such as social networks, each node is characterized by multi-

valued attributes. Recent research has introduced variousmethod-

ologies to tackle the challenges of analyzing such networks. Tech-

niques like graph clustering [22, 32, 40], classification [6, 18], and

subgraph matching [1] have become prominent in the fields

of graph mining[27]. In this paper, we investigate the query-

dependent skyline community search problem, and the proposed

techniques are parallel to those in [12][34], but with more con-

straints arising from the properties of skyline community.

8 CONCLUSION

In this paper, we propose a deep unsupervised method for sky-

line community search. In the offline pre-training phase, we

adapt graph convolutional networks to efficiently handle high-

dimensional multi-valued graph, employing a dominance loss

function to enhance community identification. In the online

search phase, we calculate the skyline community score based on

the learned representations, quantifying the similarity between

query nodes and graph nodes. Extensive experiments demon-

strate the efficiency, scalability, and effectiveness of our solutions.

ACKNOWLEDGMENT

This work was supported in part by the National Key R&D

Program of China (2022YFB3103701), in part by the Major Key

Project of PCL (PCL2024A05), in part by the Guangdong Ba-

sic and Applied Basic Research Foundation (202201020131 and

2023A1515011655), in part by the National Natural Science Foun-

dation of China (U20B2046), and in part by the Australian Re-

search Council (DP230101445 and FT210100303).

647

REFERENCES

[1] Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya. 2020. ChiSeL:

graph similarity search using chi-squared statistics in large probabilistic

graphs. Proc. VLDB Endow. 13, 10 (June 2020), 1654–1668. https://doi.org/10.

14778/3401960.3401964

[2] Esra Akbas and Peixiang Zhao. 2017. Truss-based community search: a truss-

equivalence based indexing approach. Proc. VLDB Endow. 10, 11 (Aug. 2017),
1298–1309. https://doi.org/10.14778/3137628.3137640

[3] Uri Alon and Eran Yahav. 2021. On the Bottleneck of Graph Neural Net-

works and its Practical Implications. In International Conference on Learning
Representations. https://openreview.net/forum?id=i80OPhOCVH2

[4] Muhammad Attique, Muhammad Afzal, Farman Ali, Irfan Mehmood, Muham-

mad Fazal Ijaz, and Hyung-Ju Cho. 2020. Geo-Social Top-k and Skyline

Keyword Queries on Road Networks. Sensors (Basel, Switzerland) 20 (2020).
[5] Mei Bai, Yuting Tan, Xite Wang, Bin Zhu, and Guanyu Li. 2021. Optimized

Algorithm for Skyline Community Discovery in Multi-Valued Networks. IEEE
Access 9 (2021), 37574–37589. https://doi.org/10.1109/ACCESS.2021.3063317

[6] Smriti Bhagat, Graham Cormode, and S. Muthukrishnan. 2011. Node Clas-
sification in Social Networks. Springer US, Boston, MA, 115–148. https:

//doi.org/10.1007/978-1-4419-8462-3_5

[7] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline

operator. Proceedings 17th International Conference on Data Engineering (2001),
421–430.

[8] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local

search of communities in large graphs. Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (2014).

[9] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

community search for large attributed graphs. Proc. VLDB Endow. 9, 12 (Aug.
2016), 1233–1244. https://doi.org/10.14778/2994509.2994538

[10] Yixiang Fang, Xin Huang, Lu Qin, Y. Zhang, W. Zhang, Reynold Cheng, and

Xuemin Lin. 2019. A survey of community search over big graphs. The VLDB
Journal 29 (2019), 353 – 392.

[11] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-Scale

Learnable Graph Convolutional Networks. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD
’18). Association for Computing Machinery, New York, NY, USA, 1416–1424.

https://doi.org/10.1145/3219819.3219947

[12] Xiaoxuan Gou, Xiaoliang Xu, Xiangying Wu, Runhuai Chen, Yuxiang Wang

0001, TianxingWu 0001, and Xiangyu Ke. 2023. Effective and Efficient Commu-

nity Search with Graph Embeddings. In ECAI 2023 - 26th European Conference
on Artificial Intelligence, September 30 - October 4, 2023, Kraków, Poland - In-
cluding 12th Conference on Prestigious Applications of Intelligent Systems (PAIS
2023) (Frontiers in Artificial Intelligence and Applications), Kobi Gal, Ann Nowé,

Grzegorz J. Nalepa, Roy Fairstein, and Roxana Radulescu (Eds.), Vol. 372. IOS

Press, 891–898. https://doi.org/10.3233/FAIA230358

[13] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2016.

Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs.

In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM ’16). Association for Computing Machinery,

New York, NY, USA, 1241–1250. https://doi.org/10.1145/2983323.2983748

[14] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014.

Querying k-truss community in large and dynamic graphs. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,

1311–1322. https://doi.org/10.1145/2588555.2610495

[15] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou

Huang. 2022. Query driven-graph neural networks for community search:

from non-attributed, attributed, to interactive attributed. Proceedings of the
VLDB Endowment 15 (02 2022), 1243–1255. https://doi.org/10.14778/3514061.

3514070

[16] Junghoon Kim, Siqiang Luo, Gao Cong, andWenyuan Yu. 2022. DMCS: Density

Modularity based Community Search. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD ’22). Association for Computing

Machinery, New York, NY, USA, 889–903. https://doi.org/10.1145/3514221.

3526137

[17] Thomas Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. ArXiv abs/1609.02907 (2016).

[18] Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. 2020. Factorized

Graph Representations for Semi-Supervised Learning from Sparse Data. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’20). Association for Computing Machinery, New York, NY,

USA, 1383–1398. https://doi.org/10.1145/3318464.3380577

[19] Ling Li, Siqiang Luo, Yuhai Zhao, Caihua Shan, Zhengkui Wang, and Lu Qin.

2023. COCLEP: Contrastive Learning-based Semi-Supervised Community

Search. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
2483–2495. https://doi.org/10.1109/ICDE55515.2023.00191

[20] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao,

and Zibin Zheng. 2018. Skyline Community Search in Multi-valued Networks.

In Proceedings of the 2018 International Conference on Management of Data
(SIGMOD ’18). ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

3183713.3183736

[21] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential community

search in large networks. Proc. VLDB Endow. 8, 5 (Jan. 2015), 509–520. https:

//doi.org/10.14778/2735479.2735484

[22] Mengqing Luo and Hui Yan. 2020. Adaptive Attributed Network Embed-

ding for Community Detection. In Pattern Recognition and Computer Vision:
Third Chinese Conference, PRCV 2020, Nanjing, China, October 16–18, 2020,
Proceedings, Part III. Springer-Verlag, Berlin, Heidelberg, 161–172. https:

//doi.org/10.1007/978-3-030-60636-7_14

[23] Seiji Maekawa, Yuya Sasaki, George Fletcher, and Makoto Onizuka. 2023.

GenCAT: Generating attributed graphs with controlled relationships between

classes, attributes, and topology. Inf. Syst. 115, C (May 2023), 17. https:

//doi.org/10.1016/j.is.2023.102195

[24] Denis Mindolin and Jan Chomicki. 2009. Discovering relative importance

of skyline attributes. Proc. VLDB Endow. 2, 1 (Aug. 2009), 610–621. https:

//doi.org/10.14778/1687627.1687697

[25] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2003. An opti-

mal and progressive algorithm for skyline queries. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data (SIGMOD
’03). Association for Computing Machinery, New York, NY, USA, 467–478.

https://doi.org/10.1145/872757.872814

[26] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. 2007. Probabilistic skylines

on uncertain data. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07). VLDB Endowment, 15–26.

[27] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph

processing. Proc. VLDB Endow. 11, 4 (Dec. 2017), 420–431. https://doi.org/10.

1145/3186728.3164139

[28] Yutaka Sasaki et al. 2007. The truth of the f-measure. 2007. 49 (2007).

[29] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A

unified embedding for face recognition and clustering. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 815–823. https://doi.org/

10.1109/CVPR.2015.7298682

[30] Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5, 3 (1983), 269–287. https://doi.org/10.1016/0378-8733(83)90028-X

[31] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’10).
Association for Computing Machinery, New York, NY, USA, 939–948. https:

//doi.org/10.1145/1835804.1835923

[32] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi

Zhang. 2019. Attributed graph clustering: a deep attentional embedding

approach. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI’19). AAAI Press, 3670–3676.

[33] Jia Wang and James Cheng. 2012. Truss decomposition in massive networks.

Proc. VLDB Endow. 5, 9 (May 2012), 812–823. https://doi.org/10.14778/2311906.

2311909

[34] Jianwei Wang, Kai Wang, Xuemin Lin, Wenjie Zhang, and Ying Zhang.

2024. Efficient Unsupervised Community Search with Pre-Trained Graph

Transformer. Proc. VLDB Endow. 17, 9 (Aug. 2024), 2227–2240. https:

//doi.org/10.14778/3665844.3665853

[35] Jianwei Wang, Kai Wang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. 2024.

Neural Attributed Community Search at Billion Scale. Proc. ACM Manag. Data
1, 4, Article 251 (April 2024), 25 pages. https://doi.org/10.1145/3626738

[36] Jianwei Wang, Ying Zhang, Kai Wang, Xuemin Lin, and Wenjie Zhang. 2024.

MissingData Imputationwith Uncertainty-DrivenNetwork. Proc. ACMManag.
Data 2, 3, Article 117 (May 2024), 25 pages. https://doi.org/10.1145/3654920

[37] Xueyi Wu, Yuanyuan Xu, Wenjie Zhang, and Ying Zhang. 2023. Billion-scale

bipartite graph embedding: A global-local induced approach. Proceedings of
the VLDB Endowment 17, 2 (2023), 175–183.

[38] Yuanyuan Xu, Wenjie Zhang, Xiwei Xu, Binghao Li, and Ying Zhang. 2024.

Scalable and Effective Temporal Graph Representation Learning with Hyper-

bolic Geometry. IEEE Trans. Neural Networks Learn. Syst. (2024), 2162–237X.
[39] Yuanyuan Xu, Wenjie Zhang, Ying Zhang, Maria E. Orlowska, and Xuemin

Lin. 2024. TimeSGN: Scalable and Effective Temporal Graph Neural Network.

In 40th IEEE International Conference on Data Engineering, ICDE 2024, Utrecht,
The Netherlands, May 13-16, 2024. IEEE, 3297–3310. https://doi.org/10.1109/

ICDE60146.2024.00255

[40] Fanghua Ye, Chuan Chen, and Zibin Zheng. 2018. Deep Autoencoder-like

Nonnegative Matrix Factorization for Community Detection. In Proceedings
of the 27th ACM International Conference on Information and Knowledge Man-
agement (CIKM ’18). Association for Computing Machinery, New York, NY,

USA, 1393–1402. https://doi.org/10.1145/3269206.3271697

[41] Yutong Ye, Xiang Lian, and Mingsong Chen. 2024. Efficient Exact Subgraph

Matching via GNN-Based Path Dominance Embedding. Proc. VLDB Endow.
17, 7 (May 2024), 1628–1641. https://doi.org/10.14778/3654621.3654630

[42] Dongxiao Yu, Lifang Zhang, Qi Luo, Xiuzhen Cheng, Jiguo Yu, and Zhipeng

Cai. 2020. Fast skyline community search in multi-valued networks. Big Data
Mining and Analytics 3, 3 (2020), 171–180. https://doi.org/10.26599/BDMA.

2020.9020002

[43] Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin

Li. 2012. Finding maximal k-edge-connected subgraphs from a large graph.

In International Conference on Extending Database Technology. https://api.

semanticscholar.org/CorpusID:13377284

648

