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ABSTRACT
Object detection is the foundation of video query processing

systems, which have been the subject of active research in recent

years. Compared to the use of a single model, model prediction

ensembling is an important practical method to improve the ac-

curacy of object detection, albeit at the expense of additional

inference time. This paper focuses on video query processing

with multiple object detectors, aiming to select an optimal subset

of these detectors and combine their detection outputs for each

video frame. We seek to strike a balance between enhancing accu-

racy and minimizing inference time without prior knowledge of

the video or the detectors. We first introduce a method to quan-

tify the accuracy of detection outputs utilizing reference models

in the absence of ground truth, and propose an algorithm, MES,

designed to effectively allocate computational resources for iden-

tifying appropriate ensembles. We then refine our proposal and

present MES-B, an algorithm that performs ensemble selection

within a specified budget, and SW-MES, which adapts to concept

drift during ensemble selection. We comprehensively describe

and analyze our proposals utilizing real datasets and present

the results of a detailed experimental evaluation of varying pa-

rameters of interest. Our results demonstrate that our proposed

methods significantly improve the effectiveness of ensemble se-

lection, leading to significant optimization in both accuracy and

inference time compared to other applicable methods.

1 INTRODUCTION
The rapid advances in computer vision and deep learning offer

highly sophisticated algorithms for numerous applications of

vast practical significance such as video object detection (OD)

[51, 52], activity recognition [11, 24, 54] and other aspects of video

analytics [4, 7, 62]. Such algorithms form the foundation of a new

generation of data management and query processing systems

and techniques that facilitate structured query processing over

videos [40, 41, 64]. These systems are able to answer queries

involving constraints on query-specified objects [41, 44], with

numerous applications in video surveillance automation, sports

analytics, news clip analysis, and autonomous driving.

Accurate OD (namely determining the label and bounding

box of each object instance in each video frame) is of profound

importance to the correctness of subsequent query results in a

video query processing system [36, 41, 44, 65]. Depending on

the mode of operation of the query processor (offline or stream-

ing), OD is conducted in a pre-processing step or in real time.

Model prediction ensembling, a well-studied approach in many

domains [3, 20, 25, 43], is an important practical method to im-

prove leaderboard accuracy of OD [31, 37, 45]. As demonstrated
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Figure 1: An example of model prediction ensembling: the
ensembling approach E combines the detections produced
by 2 deep models and produces outputs with higher AP
(i.e., average precision). Both models have a YOLOv7 [60]
architecture and are trained on separate datasets. They
both intend to accomplish the vehicle detection task. The
colored boxes represent the BBoxes of the vehicles that
have been detected by the models or ensemble.

in Figure 1, the ensembling approach, E, combines the detections

produced by two models to obtain a final output with higher ac-

curacy. However, it is evident that the cost of improving accuracy

by ensembling models increases inference time. As illustrated

in Figure 2, while bringing higher AP (i.e., average precision),

ensembling OD models trained on different datasets or environ-

ments (e.g., scene types) often increases the overall inference

time.

In this paper, we consider ensemblingmultiple object detectors

to enhance overall accuracy when processing queries. Specifi-

cally, our approach involves processing a query by employing

several object detectors, with the expectation that the query pro-

cessing engine will select an appropriate subset of these detectors

and combine their detection outputs for each video frame. The

subset size is not predefined and can change with each frame. To

illustrate this concept more concretely, consider the following

query:

SELECT frameID
FROM (PROCESS inputVideo PRODUCE frameID , Detections

USING MES(OD1 , OD2 , ...; REF))
WHERE ...

Here, OD1, OD2, ... are all object detectors; MES(...; REF) is the

algorithm for selecting detector ensembles and conducting object

detection, which is one of our proposals. Our objective is to select

the best detector ensembles for each video frame to process the

query, while achieving a balance between enhancing accuracy

and minimizing inference time, all without prior knowledge of

the video and detectors involved.

The payoff in accuracy via ensembling does not appear to

increase proportionately to the resources and inference time re-

quired to utilize these models jointly. As depicted in Figure 2, the
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Figure 2: An example of the inference time and AP of three
deep models and their ensembles on dataset nuScenes [9].
Each model has a YOLOv7-tiny [60] architecture and is
trained on distinct, letter-identified datasets.

ensemble Yolo-R&C&N
1
obtains AP that is 15% higher than Yolo-

C, but it requires 3 times as much time for inference. Utilizing

ensembling in video query processing requires striking a balance

between accuracy and inference time, which in turn necessitates

addressing a number of challenges. The first challenge is to de-

termine which set of models is appropriate for a video frame

currently being processed, developing a strategy that can trade

off accuracy and inference time. In addition, in contrast to a train-

ing phase, in an actual deployment setting, after selecting a set of

models for a video frame and obtaining OD results, one cannot

calculate the resulting accuracy of detection due to the lack of

ground truth labels and bounding boxes for frames. Thus, the

second challenge is the absence of effective measurement to eval-

uate the accuracy that can provide guidance to subsequent model

selection for ensembling purposes. Furthermore, for generality,

we make no assumptions regarding the workings of the various

models to be ensembled. In video monitoring settings, we expect

the surrounding environments, scene types, camera angles, etc.

to change. This in turn will instigate the last challenge–concept
drift [26], and the models in the ensemble have to be dynamically

adjusted to compensate for the drift.

To address the first challenge effectively, we propose a novel
approach in this paper. We develop a scoring function that in-

corporates both accuracy and inference time, providing a com-

prehensive measure of ensemble performance on a video frame.

Furthermore, we develop an efficient algorithm to select the opti-

mal ensemble that can maximize the scores obtained from the

scoring function. The scoring mechanism is tunable, allowing

us to focus on the aspects of detection that are more impor-

tant for the application at hand (accuracy, inference time). To

address the second challenge, we follow a similar approach as

employed in previous studies [39]. Specifically, we require users

to provide a pre-trained reference model (REF) that serves as a
benchmark for quantifying OD accuracy

2
. In the field of object

detection, the LiDAR OD models [46, 49, 50] have been widely

leveraged as a common reference model for identifying errors

in data management [39]. For the last challenge, we develop a

sliding window algorithm that calibrates the ensemble scores

for ensemble selection and subsequently assesses ensembles on

temporally neighboring frames as opposed to the entire video,

leading to vast gains on final scores.

1
Yolo-R&C&N is the ensemble of three models which are all YOLO-v7 [60] models

trained on the three different datasets respectively.

2
The case where no reference model exists presents a challenging situation and is

an interesting direction for future work.

For starters, in order to select the best ensemble of models

that is applicable for a frame, a brute-force approach would enu-

merate all possible ensembles for each video frame. In contrast,

our algorithm focuses on a subset of the ensembles that are more

promising to yield higher scores. Our approach leverages the

scores of ensembles selected on past frames to guide the selec-

tion in the future.We frame the task of Model Ensemble Selection
as a decision-making problem under uncertainty and develop

an algorithm, called MES, that can efficiently identify and priori-

tize the most promising ensembles for further examination (by

biasing the selection towards such ensembles). Specifically, our

algorithm selects an ensemble for each frame and conducts OD

on it iteratively, balancing between exploration (i.e., trying more

ensembles) vs. exploitation (i.e., focusing on the most promising

ensembles). Furthermore, in consideration of the last challenge,
we enhance the proposed MES algorithm and develop SW-MES, a
Sliding-Window algorithm that adapts to concept drift dynami-

cally and performswell on videos with non-stationary underlying

distributions of surrounding environments, scene types, camera

angles, etc.

In summary, this paper presents the following contributions.

• We initiate a study in the context of query processing that

focuses on selecting ensembles of object detectors for each

frame during the preprocessing phase of a video analysis sys-

tem. The aim is to effectively allocate computational resources

for identifying appropriate ensembles. We frame this goal as

determining ensembles that maximize the scoring function.

• We propose an algorithm, MES, to address the ensemble selec-

tion problem, striking a balance between accuracy and infer-

ence time. Our algorithm demonstrates solid improvements in

object detection when evaluated using a generic scoring func-

tion. We adopt an approach to quantify the accuracy of OD

results in the absence of ground truth by utilizing pre-trained

reference models. Furthermore, we refine our proposal and

present SW-MES, an algorithm designed to adapt to concept

drift during ensemble selection.

• We provide a comprehensive experimental evaluation using

real-world datasets and various state-of-the-art object detec-

tors trained on diverse datasets to validate the effectiveness of

our proposed methods. The results reveal that our proposals

lead to a 20% to 50% improvement over other techniques, sub-

stantially improving the effectiveness of ensemble selection.

This paper is organized as follows. We formally define the

problem in §2 and detail the proposed solutions in §3. §4 analyzes

the effectiveness of the algorithms. §5 presents the experimental

results. §6 discusses related work, and §7 concludes this paper.

2 BACKGROUND AND PROBLEM
DEFINITION

2.1 Object Detection and Model Ensembling
A video is a sequence of framesV = {𝑣1, 𝑣2, . . . , 𝑣 |V | }, where |V|
is the number of frames (length) of the video and can be fixed or

unbounded. If |V| is unbounded, we refer toV as a video stream.

A frame 𝑣 ∈ V may hold a variety of object instances of different

types, which can be detected by object detection (OD) algorithms
3

[51, 52]. Each detected object instance is assigned a Bounding

Box (BBox) that describes the position of the object in this frame,

a confidence value that indicates how confident the detector is

3
Without specification, we refer to them as camera-based object detectors, distin-

guishing them from the LiDAR models.
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for this prediction, and an estimated label indicating the object

type of this instance. The accuracy of OD results on each video

frame can be calculated by comparing the ground truth (i.e., GT

BBoxes) with the predicted BBoxes [48, 51]. Correct OD results

are a significant prerequisite for accurate query processing in a

video analysis system.

Without loss of generality, we assume that there are𝑚 object

detectors available. Such detectors may exhibit varying network

structures (such as YOLOv7 [60], MaskRCNN [33]), encompass

diverse network complexity (such as YOLOv7 and YOLOv7-Tiny

[60]), or are trained on diverse datasets with varying scene types

and camera angles, times of day, etc. Note that we are not con-

cerned with the internal specifics of a detector; rather, we treat

it as a black box for greater generality of our approach. This way

we can easily swap models in our collection of available/applica-

ble models, especially as more advanced detectors continuously

become available given the bustling research activities in the

area.

Let𝑀𝑖 denote the 𝑖-th detector andM denote the collection of

all detectors,M = {𝑀1, 𝑀2, . . . , 𝑀𝑚}. For a frame 𝑣∈V , for each

detector 𝑀𝑖 , the OD results of applying 𝑀𝑖 on 𝑣 , 𝐷𝑀𝑖 |𝑣 , is a set
of triplets ⟨𝐵𝐵𝑜𝑥,𝐶𝑜𝑛𝑓 , 𝐿𝑎𝑏𝑒𝑙⟩, encompassing the coordinates of

the BBoxes, the confidence value and the corresponding label

for each object. We use 𝑐𝑀𝑖 |𝑣 to denote the inference time of

applying𝑀𝑖 on 𝑣 , and use 𝑎𝑀𝑖 |𝑣 to denote the Average Precision
4

(AP) [47], which is a commonly used metric in computer vision

to quantify the correctness of the detection [22, 48, 51].

Model ensembling can be done utilizing various approaches,

such as Non-Maximum Suppression (NMS) [29, 52], its variants

[8, 34, 38] or other BBox-based IOU approaches [12, 56, 61, 67].

Although these approaches for computing the ensemble of OD

results need far less resource (incl. time and GPU) than model

inference, they are not free. Formally, for a frame 𝑣 , let 𝑆 be the

set of detectors in an ensemble, where 𝑆 ⊆ M. We use 𝐷𝑆 |𝑣 to
denote the model ensemble results using 𝑆 on 𝑣 . Similarly, we

use 𝑐𝑆 |𝑣 to denote the inference time of applying ensemble 𝑆 on

𝑣 ,

𝑐𝑆 |𝑣 =
∑︁
𝑀𝑖 ∈𝑆

𝑐𝑀𝑖 |𝑣 + 𝑐
𝑒
𝑆 |𝑣 , (1)

where 𝑐𝑀𝑖 |𝑣 is the inference time of each model𝑀𝑖 and 𝑐
𝑒
𝑆 |𝑣 is the

extra inference time used for computing the ensemble. Typically,

ensembling approaches only need to do lightweight calculations

on BBoxes, hence their inference time is much less than that of

detectors composed of deep network structures (given the same

computing resources) thus 𝑐𝑀 |𝑣≫𝑐𝑒
𝑆 |𝑣 . The average precision of

the ensemble is denoted by 𝑎𝑆 |𝑣 . If there is no ambiguity, we will

use 𝑆 to denote the ensemble of models and consider applying

single detectors as a special case of the ensemble where |𝑆 | = 1.

2.2 Scoring Mechanism
Since the payoff in accuracy gains does not increase proportion-

ately to the resources and inference time required to run all

models in the ensemble (as illustrated in Figure 2), we wish to

strike a balance between accuracy and inference time. To com-

bine these two measurements together, we propose to use an

aggregate scoring function to evaluate the ensemble on a video

frame. Let 𝑆𝐶 denote a generic scoring function and 𝑟𝑆 |𝑣 denote
the aggregate score of applying ensemble 𝑆 on frame 𝑣 , which

4
AP assesses not just Precision but rather evaluates the model’s Precision perfor-

mance across various levels of Recall. Mean Average Precision (mAP) is used when

more than one object type is evaluated.

is computed by the scoring function. The specific form of 𝑆𝐶 is

not crucial for our ensuing proposals as long as the following

intuitive criteria are met:

• The score 𝑟𝑆 |𝑣 computed by 𝑆𝐶 must exhibit a positive (linear

or non-linear) correlation with 𝑎𝑆 |𝑣 and a negative (linear or

non-linear) correlation with 𝑐𝑆 |𝑣 ,

𝑟𝑆 |𝑣𝑎𝑆 |𝑣 , 𝑟𝑆 |𝑣 − 𝑐𝑆 |𝑣 ;

• The scores are normalized in [0, 1];

where represents a linear or non-linear positive correlation.

This generic scoring function can assist our ensuing proposals

in identifying the best ensembles for specific user requirements.

The purpose of the first criterion is to assess the OD results of an

ensemble by having the score rise with increasing accuracy or

decreasing inference time, and vice versa. The second criterion is

employed to calibrate the upper bounds of ensemble scores in our

ensuing proposals. Users can assign different weights to the two

components involving 𝑎𝑆 |𝑣 and 𝑐𝑆 |𝑣 to make the scoring function

tunable to balance their impact; for example, in circumstances

where the resource (e.g., available time) is limited, users may set

a higher weight for inference time. We will outline the scoring

function employed in the experiments in Section 5, which is an

example satisfying the criteria presented in this section.

2.3 AP Estimation
Average Precision (AP) is a commonly adopted metric to quantify

the accuracy of the detection results. According to [22, 23, 47], the

general definition for AP identifies the area under the precision-

recall curve representing the value of precision against the recall

of the OD results for different confidence threshold values. Given

the OD results of an ensemble 𝑆 on a frame 𝑣 (denoted by 𝐷𝑆 |𝑣 )
and the ground truth BBoxes on 𝑣 (denoted by 𝐵𝐵𝑜𝑥

GT |𝑣 ), the
true AP of 𝑆 on 𝑣 , denoted by 𝑎𝑆 |𝑣 , is defined as

𝑎𝑆 |𝑣 = 𝐴𝑃

(
𝐷𝑆 |𝑣 , 𝐵𝐵𝑜𝑥GT |𝑣

)
, (2)

where𝐴𝑃 (·) represents the formula for computing AP as detailed

in [22, 23, 47]
5
. However, computing the true AP necessitates

ground truth labels, which are not always available in our setting.

In the absence of ground truth, we will estimate AP utilizing the

user-specified reference model, denoted as REF. An important

observation is that our ensuing proposals do not rely on precise

absolute values of AP for ensembles; rather, the AP values for

each ensemble only need to be calibrated to reflect their relative

accuracy ranking among all ensembles. Consequently, we will

estimate the AP by comparing 𝐷𝑆 |𝑣 with the BBoxes generated

by REF on 𝑣 (denoted by 𝐵𝐵𝑜𝑥REF |𝑣 ),

𝑎𝑆 |𝑣 = 𝐴𝑃

(
𝐷𝑆 |𝑣 , 𝐵𝐵𝑜𝑥REF |𝑣

)
. (3)

LiDARModel as REF.An example of a practical reference model

is the LiDAR model, i.e., REFBLiDAR. In applications such as

autonomous driving, LiDAR has been widely employed to cap-

ture surrounding three-dimensional (3D) point clouds, producing

LiDAR sweeps, as an alternative to cameras. Generally, given

information such as the shooting time and LiDAR rotation angle,

it is feasible to project a point in the LiDAR sweep to its corre-

sponding image captured by cameras (for details on how this is

done consult [9]). LiDAR OD models [46, 49, 50] are proposed to

5
AP is calculated as the weighted mean of precisions achieved at each threshold,

where the weighting is the increase in recall from the previous threshold: AP =∫
1

0
𝑝 (𝑟 ) 𝑑𝑟 , where 𝑟 denotes the recall at various thresholds and 𝑝 (𝑟 ) denotes the

precision at recall equal to 𝑟 .

68



conduct 3D object detection on LiDAR sweeps. Prior works (such

as [39]) have utilized LiDAR models to label video databases for

identifying errors in data labels produced by the (camera-based)

object detector, via comparing the OD results of the LiDAR- and

camera-based OD models. The BBoxes generated by LiDAR can

be obtained by applying the LiDAR model to the correspond-

ing LiDAR sweep of frame 𝑣 , producing 3D OD BBoxes. These

3D BBoxes on the LiDAR sweep can then be converted into 2D

BBoxes on frame 𝑣 , denoted as 𝐵𝐵𝑜𝑥LiDAR |𝑣 .
It has been observed [63] that LiDAR-based OD models offer a

significant advantage in speed compared to camera-based OD

models; i.e. if 𝑐LiDAR |𝑣 represents the inference time for a LiDAR

model on a frame 𝑣 , then 𝑐LiDAR |𝑣≪𝑐𝑀𝑖 |𝑣, ∀𝑀𝑖∈M.

2.4 Problem Definition
Time-Unrestricted Video Ingestion (TUVI). Our objective is
to select a subset (ensemble) of models 𝑆 ⊆ M for each frame 𝑣 ∈
V that will produce OD results maximizing the specific choice

of the scoring function. Formally, let 𝒢 represent a selection

strategy that determines which ensemble𝒢𝑣 ⊆ M is selected on

a frame 𝑣 ∈ V . Given a scoring function 𝑆𝐶 , we are interested in

determining a selection strategy
ˆ𝒢 that identifies an ensemble

for each video frame in the target video V by maximizing the

sum of scores obtained when applying the selected ensembles on

the frames,

ˆ𝒢 = arg

𝒢

max

∑︁
𝑣∈V

𝑟𝒢𝑣 |𝑣 . (4)

We refer to the problem described above as Time-Unrestricted

Video Ingestion (TUVI) and will present a confidence-bound-

based greedy algorithm, MES, in §3 to solve this problem.

Time-Constrained Video Ingestion (TCVI). In practice, when

pre-processing a large number of videos for object detection and

subsequent querying in a video analytics system, one may be

able to invest a fixed amount of time units (up to 𝐵) for accurate

OD utilizing model prediction ensembling. As a result, we also

consider a variant of TUVI, namely Time-Constrained Video In-

gestion (TCVI): Given a scoring function 𝑆𝐶 and a time budget

𝐵, we identify a selection strategy
ˆ𝒢 that maximizes the aggre-

gate scores of all video frames processed within an allotted time

constraint,

ˆ𝒢 = arg

𝒢

max

∑︁
𝑣∈V𝐵

𝑟𝒢𝑣 |𝑣 s.t.

∑︁
𝑣∈V𝐵

𝑐𝒢𝑣 |𝑣 ≤ 𝐵, (5)

where V𝐵 is the sequence of frames processed exhausting the

budget 𝐵 under the strategy
ˆ𝒢. We will present a variant algo-

rithm of MES, named MES-B, in §3 to solve this problem. In such

a case, after exhausting 𝐵 to processV𝐵 utilizing ensembles, if

users wish to continue processing the remaining frames with the

same strategy
ˆ𝒢, they can allocate an additional budget 𝐵extra. We

will present a method to estimate the 𝐵extra required to process

the remaining video frames in §3.

TUVI under Concept Drift (TUVI-CD). Furthermore, in prac-

tice, a streaming video (such as surveillance video) often expe-

riences concept drifts, i.e., the underlying distribution of sur-

rounding environments, scene types, etc. is constantly evolving.

Concept drift occurs abruptly, in accordance with the definition

in [28]: the distribution of scores remain constant during cer-

tain periods, and they change at unknown time instants called

breakpoints, which do not depend on the ensemble selection

strategy or on the sequence of frames. Let 𝜉 represent the num-

ber of breakpoints throughout the entire video V . We refer to

Algorithm 1: MES
Input:V;M; 𝛾 ; 𝑆𝐶 ;

1 Initialize 𝑇𝑆 and 𝜇𝑆 ∀ 𝑆 ⊆ M.

2 for 𝑡 = 1, . . . , 𝛾 do
3 Apply all ensembles on the frame 𝑣𝑡 and calculate the

estimated scores for all ensembles, {𝑟𝑆 ′ |𝑣𝑡 }𝑆 ′⊆M .

4 for 𝑡 = 𝛾+1, . . . , |V| do
5 for each ensemble 𝑆 ′ ⊆ M do
6 𝑈𝑆 ′ |𝑣𝑡 = 𝜇𝑆 ′ |𝑣𝑡−1

+ Γ𝑆 ′ |𝑣𝑡−1
.

7 ˆ𝒢𝑣𝑡 = arg𝑆 ′⊆M max𝑈𝑆 ′ |𝑣𝑡 .
8 Apply

ˆ𝒢𝑣𝑡 on 𝑣𝑡 and collect the est. reward 𝑟
ˆ𝒢𝑣𝑡 |𝑣𝑡

.

9 for each subset 𝑆sub ⊂ ˆ𝒢𝑣𝑡 do
10 Apply 𝑆

sub
on 𝑣𝑡 and collect the est. reward

𝑟𝑆sub |𝑣𝑡 .

the versions of TUVI under concept drift as TUVI-CD. We will

provide algorithms in §3 to solve it as well.

3 METHODOLOGY
In this section, we first present an approach for quantifying the

accuracy of OD results on a frame in the absence of ground truth.

For the TUVI problem, we present MES that can effectively select

ensembles for each video frame in an iterative manner, serving

as an OD pre-processor for video analysis systems. In addition,

we propose MES-B, a variant of MES, that handles the TCVI prob-
lem in which ensemble-based processing and annotation of the

video take place subject to a limited time budget, as well as an

improved selection algorithm, SW-MES, which adapts to concept

drifts naturally.

3.1 MES
To address the TUVI problem, we propose an algorithm called

MES, which selects an ensemble for each frame and processes the

frames iteratively, maximizing the sum of scores computed by a

scoring function 𝑆𝐶 achieved under the selection. The basic idea

is that MESwill select the ensembles for future frames based on the

accuracy and inference time of the ensemble selection for frames

processed in the past. Specifically, MES adapts optimism under

uncertainty [28, 55]. The entire procedure of MES is presented in

Algorithm 1. It accepts as input the sequence of framesV , the set

of modelsM, the number of the initial frames 𝛾 , and a scoring

function 𝑆𝐶 .

3.1.1 Initialization. Throughout the execution of the algo-

rithm, wematerialize two placeholders to record the performance

of each ensemble 𝑆 ⊆ M over all the frames that have been pro-

cessed in previous iterations: 1) the number of times an ensemble

has been utilized for inference in previous iterations, denoted

by 𝑇𝑆 , and 2) the mean value of the estimated score obtained in

previous iterations in which the ensemble was utilized, denoted

by 𝜇𝑆 . Their values after processing the frame 𝑣𝑡 at time 𝑡 are

denoted as 𝑇𝑆 |𝑣𝑡 and 𝜇𝑆 |𝑣𝑡 .
At the beginning, as there is no information on which ensem-

ble performs the best, MES will conduct the initialization for all

the ensembles, evaluating them on the initial frames, estimating

their accuracy, and updating𝑇𝑆 and 𝜇𝑆 . In Lines 2-3 of Alg. 1, MES
conducts the initialization for each ensemble 𝑆 ⊆ M. We detail

the processing of one of the ensembles 𝑆 ′ as an example. Given a
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hyper-parameter 𝛾 , MES first applies 𝑆 ′ onto the first 𝛾 frames of

the video, i.e. {𝑣𝑡 }𝑡 ∈[𝛾 ] , conducts object detection, and obtains

the OD results {𝐷𝑆 ′ |𝑣𝑡 }𝑡 ∈[𝛾 ] . Then, the estimated AP of 𝑆 ′ on
the initial frames, {𝑎𝑆 ′ |𝑣𝑡 }𝑡 ∈[𝛾 ] , is calculated using the approach

indicated as in §2.3. For each frame 𝑣∈{𝑣𝑡 }𝑡 ∈[𝛾 ] , combining the

estimated AP 𝑎𝑆 ′ |𝑣 and the inference time 𝑐𝑆 ′ |𝑣 obtained with

Equation (1), the estimated score 𝑟𝑆 ′ |𝑣 for 𝑆
′
on 𝑣 is calculated

using the scoring function 𝑆𝐶 ,

𝑟𝑆 ′ |𝑣 = 𝑆𝐶 (𝑎𝑆 ′ |𝑣, 𝑐𝑆 ′ |𝑣).

For each ensemble 𝑆 ⊆ M, MES conducts the above process for
initialization purposes. After the initialization, for each ensemble

𝑆 ⊆ M, the two placeholders, 𝑇𝑆 and 𝜇𝑆 , are updated as follows,

𝑇𝑆 = 𝑇𝑆 |𝑣𝛾 = 𝛾 ; 𝜇𝑆 = 𝜇𝑆 |𝑣𝛾 =

∑𝛾

𝑠=1
𝑟𝑆 |𝑣𝑠

𝑇𝑆 |𝑣𝛾
. (6)

3.1.2 Iterative Exploration-Exploitation Approach. Next, MES
continues processing the frames iteratively, utilizing an explo-

ration and exploitation approach [55]. Exploration, refers to the

process of selecting ensembles that have hardly been selected

in previous iterations, while exploitation refers to selecting en-

sembles with higher estimated scores on previously processed

frames (i.e. 𝜇𝑆 ). To determine which ensembles need exploration,

we compute an exploration bonus for each ensemble, which will

be large if an ensemble has not been selected often. Let Γ𝑆 |𝑣𝑡
represent the exploration bonus for ensemble 𝑆 after processing

𝑣𝑡 ,

Γ𝑆 |𝑣𝑡 =

√︃
2 ln 𝑡 / 𝑇𝑆 |𝑣𝑡 .

For the 𝑡-th iteration, as shown in Lines 5-6 of Alg. 1, MES com-

putes the Upper Confidence Bound (UCB) [55] of the estimated

score 𝜇𝑆 |𝑣𝑡−1
for each ensemble 𝑆 ⊆ M, denoted as 𝑈𝑆 |𝑣𝑡 , by

summing up the estimated score and the exploration bonus,

𝑈𝑆 |𝑣𝑡 = 𝜇𝑆 |𝑣𝑡−1
+ Γ𝑆 |𝑣𝑡−1

. (7)

If the UCB𝑈𝑆 |𝑣𝑡 of an ensemble 𝑆 is larger than that of others, it

indicates: either (1) 𝜇𝑆 |𝑣𝑡−1
is larger, which means the ensemble

got higher scores in previous iterations and is more likely to

get a higher score in the future, or (2) Γ𝑆 |𝑣𝑡−1
is larger, which

means the ensemble has not been selected and explored much,

or a combination of (1) and (2).

In Line 7 of Alg. 1, MES then selects the ensemble with the

highest UCB, denoted as
ˆ𝒢𝑣𝑡 . During the early stages of the

iteration procedure, MES primarily concentrates on exploring the

ensembles that have been selected the least. As time progresses,

the exploration bonus term decreases (since as 𝑛 goes to infinity,

log𝑛
𝑛 goes to zero), making the algorithm shift its attention to

exploitation and tends to select ensembles based mainly on the

estimated score 𝜇𝑆 |𝑣𝑡−1
.

3.1.3 Placeholder Update. In Line 8 of Alg. 1, MES applies the

selected ensemble
ˆ𝒢𝑣𝑡 onto frame 𝑣𝑡 , conducts object detection,

and obtains the OD results 𝐷
ˆ𝒢𝑣𝑡 |𝑣𝑡

. Then, MES calculates the esti-

mated score 𝑟
ˆ𝒢𝑣𝑡 |𝑣𝑡

using the scoring function 𝑆𝐶 by combining

the estimated AP 𝑎
ˆ𝒢𝑣𝑡 |𝑣𝑡

obtained using the approach indicated

in §2.3 and the inference time 𝑐
ˆ𝒢𝑣𝑡 |𝑣𝑡

obtained via Equation (1).

Then, the values of 𝑇
ˆ𝒢𝑣𝑡

and 𝜇
ˆ𝒢𝑣𝑡

for the selected ensemble are

updated as follows,

𝑇
ˆ𝒢𝑣𝑡 |𝑣𝑡

= 𝑇
ˆ𝒢𝑣𝑡 |𝑣𝑡−1

+ 1,

𝜇
ˆ𝒢𝑣𝑡 |𝑣𝑡

=

𝜇
ˆ𝒢𝑣𝑡 |𝑣𝑡−1

𝑇
ˆ𝒢𝑣𝑡 |𝑣𝑡−1

+ 𝑎
ˆ𝒢𝑣𝑡 |𝑣𝑡

𝑇
ˆ𝒢𝑣𝑡 |𝑣𝑡

.
(8)

Particularly, the inference time 𝑐
ˆ𝒢𝑣𝑡 |𝑣𝑡

of applying ensemble
ˆ𝒢𝑣𝑡

on frame 𝑣𝑡 is calculated utilizing Equation (1),

𝑐
ˆ𝒢𝑣𝑡 |𝑣𝑡

=
∑︁

𝑀𝑖 ∈ ˆ𝒢𝑣𝑡

𝑐𝑀𝑖 |𝑣𝑡 + 𝑐
𝑒
ˆ𝒢𝑣𝑡 |𝑣𝑡

,

where the inference time for each model in ensemble
ˆ𝒢𝑣𝑡 is

far more than the inference time for computing the ensemble

(i.e. ensembling the OD results produced by the models in
ˆ𝒢𝑣𝑡

utilizing the ensembling approaches),

𝑐𝑀𝑖 |𝑣𝑡 ≫ 𝑐𝑒
ˆ𝒢𝑣𝑡 |𝑣𝑡

∀𝑀𝑖 ∈ ˆ𝒢𝑣𝑡 .

Similarly, for the ensembles corresponding to all subsets of en-

semble
ˆ𝒢𝑣𝑡 , the inference time for calculating ensemble is much

lower than the inference time for each model,

𝑐𝑀𝑖 |𝑣𝑡 ≫ 𝑐𝑒
𝑆sub |𝑣𝑡 ∀𝑀𝑖 ∈ ˆ𝒢𝑣𝑡 , ∀ 𝑆

sub
⊂ ˆ𝒢𝑣𝑡 .

Consequently, at the end of each iteration, as shown in Lines 9-10

of Alg. 1, it applies each of the ensembles corresponding to all

subsets of
ˆ𝒢𝑣𝑡 to the current frame 𝑣𝑡 . Since the OD results of

every single model of
ˆ𝒢𝑣𝑡 on frame 𝑣𝑡 are materialized during

Line 8, they can be reused for calculating the ensembles of all sub-

sets of
ˆ𝒢𝑣𝑡 . Thus, the extra time spent is only

∑
𝑆sub⊂ ˆ𝒢𝑣𝑡

𝑐𝑒
𝑆sub |𝑣𝑡 ,

which is ≪ ∑
𝑀𝑖 ∈ ˆ𝒢𝑣𝑡

𝑐𝑀𝑖 |𝑣𝑡 . Then, the values of 𝑇𝑆sub and 𝜇𝑆sub

for each ensemble 𝑆
sub

⊂ ˆ𝒢𝑣𝑡 are updated as follows,

𝑇𝑆sub |𝑣𝑡 = 𝑇𝑆sub |𝑣𝑡−1
+ 1[𝑆

sub
⊂ ˆ𝒢𝑣𝑡 ],

𝜇𝑆sub |𝑣𝑡 =

𝜇𝑆sub |𝑣𝑡−1
𝑇𝑆sub |𝑣𝑡−1

+ 1[𝑆
sub

⊂ ˆ𝒢𝑣𝑡 ] · 𝑎 ˆ𝒢𝑣𝑡 |𝑣𝑡
𝑇𝑆sub |𝑣𝑡

,

(9)

where 1[·] is an indicator function that takes the value of 1 when

the event is true and 0 otherwise.

Combining the updates of 𝑇𝑆 and 𝜇𝑆 given by Equations (8)

and (9), we present the following formula,

𝑇𝑆 |𝑣𝑡 =

𝑡∑︁
𝑠=1

1[𝑆 ⊆ ˆ𝒢𝑣𝑠 ], ∀𝑆 ⊆ M

𝜇𝑆 |𝑣𝑡 =

∑𝑡
𝑠=1

1[𝑆 ⊆ ˆ𝒢𝑣𝑠 ] 𝑟𝑆 |𝑣𝑠
𝑇𝑆 |𝑣𝑡

, ∀𝑆 ⊆ M

(10)

where we assume that the ensemble selected during initialization

(i.e., the first 𝛾 iterations) is alwaysM, i.e. { ˆ𝒢𝑣𝑡 = M}𝑡 ∈[𝛾 ] .

3.1.4 Discussion. The algorithm we developed does not re-

quire any specific prerequisites for the detectors within M. It

effectively accommodates a variety of detector models with di-

verse structures, types, or configurations. In addition, the hyper-

parameter 𝛾 dictates the number of frames to be iterated during

the initialization process. Choosing a 𝛾 value that is too large can

result in a loss of efficiency. However, if the 𝛾 value is too small,

it may lead to practical issues such as no object appearing within

the first 𝛾 frames, resulting in inaccurate estimation of AP during

the initialization phase. This can cause the selection strategy

in MES to deviate from the optimal choice and ultimately result

in inaccurate results. The SW-MES algorithm, which will be dis-

cussed in §3.3, addresses this issue by implementing a forgetting

strategy.

70



Algorithm 2: MES-B
Input:V;M; 𝛾 ; 𝑆𝐶 ; 𝑩;

1 𝑪 = 0.
2 for 𝑡 = 1, ..., 𝛾 do
3 Apply all ensembles on the frame 𝑣𝑡 and calculate the

estimated scores for all ensembles, {𝑟𝑆 ′ |𝑣𝑡 }𝑆 ′⊆M
4 𝑪 = 𝑪 +

∑

𝑴′∈M 𝒄𝑴′ |𝒗𝒕 +
∑

𝑺′⊆M 𝒄𝒆
𝑺′ |𝒗𝒕

.

5 𝒕 = 𝜸 .

6 while 𝑪 ≤ 𝑩 do
7 𝒕 = 𝒕 + 1.
8 for each ensemble 𝑆 ′ ⊆ M do
9 𝑈𝑆 ′ |𝑣𝑡 = 𝜇𝑆 ′ |𝑣𝑡−1

+ Γ𝑆 ′ |𝑣𝑡−1
.

10 ˆ𝒢𝑣𝑡 = arg𝑆 ′⊆M max𝑈𝑆 ′ |𝑣𝑡 .
11 Apply

ˆ𝒢𝑣𝑡 on 𝑣𝑡 and collect the est. reward 𝑟
ˆ𝒢𝑣𝑡 |𝑣𝑡

.

12 for each subset 𝑆sub ⊆ ˆ𝒢𝑣𝑡 do
13 Apply 𝑆

sub
on 𝑣𝑡 and collect the est. reward

𝑟𝑆sub |𝑣𝑡 .

14 𝑪 = 𝑪 +
∑

𝑴′∈𝓖̂𝒗𝒕
𝒄𝑴′ |𝒗𝒕 +

∑

𝑺sub⊆𝓖̂𝒗𝒕
𝒄𝒆
𝑺sub |𝒗𝒕

.

3.2 MES-B
For the TCVI problem where we can invest up to 𝐵 time units for

conducting more accurate OD utilizing ensembles, we modify

MES and propose a new algorithm MES-B as presented in Alg. 2,

where the modification is highlighted with bold text. This section

focuses mostly on the adaptation of MES to the TCVI problem.

Unlike MES (Alg. 1), MES-B’s input adds a new parameter, the

time budget 𝐵. Due to the limited budget, it may only be able to

perform ensemble selection on some of the video frames before

the time budget is exhausted. It records and updates the elapsed

time consumption, denoted as 𝐶 , on each iteration. MES-B first
initializes 𝐶 to a scalar variable with a value of 0 at Line 1 of

Alg. 2. In Line 4 of Alg. 2, since MES-B needs to explore all ensem-

bles, according to the definition in Equation (1), for each of the

initialization frames 𝑣𝑡 ∈ {𝑣𝑠 }𝑠∈[𝛾 ] , the time that MES-B needs

to spend, 𝐶𝑣𝑡 , is calculated as

𝐶𝑣𝑡 =
∑︁

𝑆 ′⊆M
𝑐𝑆 ′ |𝑣𝑡 =

∑︁
𝑆 ′⊆M

( ∑︁
𝑀 ′∈𝑆 ′

𝑐𝑀 ′ |𝑣𝑡 + 𝑐
𝑒
𝑆 ′ |𝑣𝑡

)
=

(
2
𝑚−1 − 1

)
·

∑︁
𝑀 ′∈M

𝑐𝑀 ′ |𝑣𝑡 +
∑︁

𝑆 ′⊆M
𝑐𝑒
𝑆 ′ |𝑣𝑡 .

(11)

Since the object detection results of each single model can be

reused and thus every single model needs only one inference.

The time consumed shown in Equation (11) can be optimized as

follows,

𝐶𝑣𝑡 =
∑︁

𝑀 ′∈M𝑐𝑀 ′ |𝑣𝑡 +
∑︁

𝑆 ′⊆M𝑐𝑒
𝑆 ′ |𝑣𝑡 . (12)

Similarly, in Line 14, MES-B updates 𝐶 , adding to it the time

consumed in this iteration (processing 𝑣𝑡 ), 𝐶𝑣𝑡 , which is the sum

of the time consumed for applying the ensembles in this iteration,

𝐶𝑣𝑡 =
∑︁

𝑆sub⊆ ˆ𝒢𝑣𝑡

𝑐𝑆sub |𝑣𝑡 =
∑︁

𝑆sub⊆ ˆ𝒢𝑣𝑡

©­«
∑︁

𝑀 ′∈𝑆sub
𝑐𝑀 ′ |𝑣𝑡 + 𝑐

𝑒
𝑆sub |𝑣𝑡

ª®¬
=

(
2
| ˆ𝒢𝑣𝑡 |−1 − 1

) ∑︁
𝑀 ′∈ ˆ𝒢𝑣𝑡

𝑐𝑀 ′ |𝑣𝑡 +
∑︁

𝑆sub⊆ ˆ𝒢𝑣𝑡

𝑐𝑒
𝑆sub |𝑣𝑡 ,

(13)

where | ˆ𝒢𝑣𝑡 | represents the number of models in
ˆ𝒢𝑣𝑡 . Similarly, the

OD results of each model can be reused, and the time consumed

during this iteration shown in Equation (13) can be optimized as

𝐶𝑣𝑡 =
∑︁

𝑀 ′∈ ˆ𝒢𝑣𝑡

𝑐𝑀 ′ |𝑣𝑡 +
∑︁

𝑆sub⊆ ˆ𝒢𝑣𝑡

𝑐𝑒
𝑆sub |𝑣𝑡 . (14)

The iteration of MES-B will terminate when the budget is ex-

hausted, i.e., 𝐶 ≤ 𝐵, as demonstrated in Line 6 of Alg. 2.

LetV𝐵 represent the frames processed with MES-B exhausting
the time budget 𝐵. While some approaches [16, 41] can increase

processing throughput by skipping frames based on the similarity

of adjacent frames in videos, these methods are orthogonal to

our work and will not be elaborated upon in this paper. In the

case where any frames remain unlabelled, i.e., V\V𝐵 ≠ ∅, there
are a couple of possible remedial approaches. For example, they

can be processed 1) with a lightweight detector, such as the

lightest model in M, or 2) using an extra budget 𝐵extra to select

ensembles from M under the same strategy
ˆ𝒢. For the second

approach, we provide a linear regression-based method, named

LRBP, for estimating the extra budget 𝐵extra required to process

the remaining video frames V\V𝐵 under the same selection

strategy:

1. During processing the frames inV𝐵 , obtain the pairs of pro-

cessed frames and the budget consumed after each iteration,

i.e.

{
⟨𝑡,∑𝑡

𝑠=1
𝐶𝑣𝑠 ⟩

}
𝑡 ∈[ |V |𝐵 ] ;

2. Fit the pairs using linear regression and predict the budget

𝐵̂extra required to process |V| frames.

We will evaluate the accuracy of LRBP for predicting the extra

budget 𝐵extra in §5.

3.3 SW-MES
For the problem TUVI-CD, previous work [32] and our empirical

evidence demonstrate that MES is not appropriate for abruptly

changing environments. To address this issue, we propose an im-

proved selection algorithm, called SW-MES, that adopts a sliding-
window technique, in which the past scores utilized to affect the

present selection decision, are derived only from a fixed-length

time window, rather than from all previously processed frames.

This section focuses mainly on how SW-MES differs from MES.
SW-MES introduces a new hyper-parameter 𝜆 that indicates the

size of the time window. After initializing SW-MES in the same

manner as MES, at the 𝑡-th iteration, instead of averaging the

scores over all the frames that have been processed as per Equa-

tion (10), SW-MES relies on a local empirical average of the ob-

served scores derived from only recent 𝜆 preceding frames. Specif-

ically, for each 𝑆 ⊆ M, SW-MES updates the local values of𝑇𝑆 and

𝜇𝑆 after each iteration in the following way,

𝑇𝜆
𝑆 |𝑣𝑡 =

𝑡∑︁
𝑠=𝑡−𝜆+1

1[𝑆 ⊆ ˆ𝒢𝑣𝑠 ],

𝜇𝜆
𝑆 |𝑣𝑡 =

∑𝑡
𝑠=𝑡−𝜆+1

1[𝑆 ⊆ ˆ𝒢𝑣𝑠 ] 𝑟𝑆 |𝑣𝑠
𝑇𝜆
𝑆 |𝑣𝑡

,

(15)

and constructs a UCB 𝑈𝑆 ′ |𝑣𝑡 for the estimated score through

replacing Line 6 in Alg. 1 by the following,

𝑈𝑆 ′ |𝑣𝑡 = 𝜇𝜆
𝑆 ′ |𝑣𝑡−1

+ Γ𝜆
𝑆 ′ |𝑣𝑡−1

, (16)

where the exploration bonus Γ𝜆
𝑆 ′ |𝑣𝑡−1

is calculated as

Γ𝜆
𝑆 ′ |𝑣𝑡−1

=

√√
2

ln min(𝑡−1, 𝜆)
𝑇𝜆
𝑆 ′ |𝑣𝑡−1

.
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The window size 𝜆 should capture the necessary temporal dy-

namics without introducing excessive noise. It can be determined

based on expert knowledge of the video or grid search [5, 6] on

a validation set. We will evaluate the outcomes of SW-MES and

compare it with MES in §5.

4 ANALYSIS
In this section, we analyze the effectiveness of the algorithms

presented in §3.

To evaluate the effectiveness of MES, MES-B and SW-MES, we
define the regret that quantifies the amount of score they lose due

to not selecting an optimal ensemble at each iteration, denoted

by 𝑅MES, 𝑅MES-B and 𝑅SW-MES, respectively,

𝑅MES = 𝑅SW-MES =

|V |∑︁
𝑡=1

(
𝑟𝑆∗𝑣𝑡 |𝑣𝑡 − 𝑟

ˆ𝒢𝑣𝑡 |𝑣𝑡

)
,

𝑅MES-B =

|V𝐵 |∑︁
𝑡=1

(
𝑟𝑆∗𝑣𝑡 |𝑣𝑡 − 𝑟

ˆ𝒢𝑣𝑡 |𝑣𝑡

)
,

(17)

where
ˆ𝒢𝑣𝑡 represents the ensemble selected by each of them for

frame 𝑣𝑡 ; 𝑆
∗
𝑣𝑡

represents the optimal ensemble for frame 𝑣𝑡 in the

sense of achieving the highest score on 𝑣𝑡 ,

𝑆∗𝑣𝑡 = arg max

𝑆 ′⊆M
𝑟𝑆 ′ |𝑣𝑡 .

Clearly, a smaller value of 𝑅MES/𝑅MES-B/𝑅SW-MES indicates a more

effective MES/MES-B/SW-MES algorithm.

Analysis of MES. According to the definition of TUVI, we know
that for MES, the underlying distribution of surrounding environ-

ments, scene types, etc. remains consistent throughout the entire
video. Thus, to facilitate the forthcoming proof, we make the

following reasonable assumption for MES:

Assumption 1. The scores {𝑟𝑆 |𝑣}𝑣∈V for each ensemble 𝑆 ⊆ M
over the video are identical random variables from a stationary
distribution that are unknown and potentially different for each
ensemble.

Theorem 4.1. For problem TUVI, given V and M satisfying
Assumption 1, the expected regret of MES has the following upper
bound,

𝐸 [𝑅MES] ≤ O(|M| log |V|). (18)

Proof sketch. We adapt the proof for algorithm UCB and

several findings in [1], omitting some intermediate steps.

We first introduce some notations for the proof. For simplic-

ity, we use 𝑛 to represent |V|. Let 𝑁𝑆 |𝑣𝑡 represent the number

of times that an ensemble 𝑆 has been selected before the 𝑡-th

iteration
6
,

𝑁𝑆 |𝑣𝑡 =

𝑡∑︁
𝑠=1

1

[
ˆ𝒢𝑣𝑠 = 𝑆

]
. (19)

Let 𝜇∗ represent the average score of the optimal ensemble on

frames over the entire video, 𝜇∗ = 1

𝑛

∑
𝑣∈V 𝑟𝑆∗𝑣 |𝑣 ; let 𝜇𝑆 represent

the mean value of the actual score of an ensemble 𝑆 on the frames

on which the ensemble is inferred, 𝜇𝑆 =

∑𝑛
𝑠=1

1[𝑆⊆ ˆ𝒢𝑣𝑠 ] 𝑟𝑆 |𝑣𝑠
𝑇𝑆 |𝑣𝑛

. We

have

𝐸 [𝑅MES] = 𝑛 · 𝜇∗ −
∑︁
𝑆⊆M

𝐸
[
𝑁𝑆 |𝑣𝑛

]
· 𝜇𝑆 .

(20)

6
The difference between 𝑁𝑆 |𝑣 and 𝑇𝑆 |𝑣 is that the former counts the number of

times 𝑆 (i.e. 𝑆 = ˆ𝒢𝑣 ) is selected and the latter counts the number of times a superset

of 𝑆 (i.e. 𝑆 ⊆ ˆ𝒢𝑣 ) is selected.

We bound 𝑁𝑆 |𝑣𝑛 for each ensemble 𝑆 ⊆ M as follows. Let Γ
𝑦
𝑥 =√︁

2 ln𝑦/𝑥 and 𝓁 be an arbitrary positive integer.

𝑁𝑆 |𝑣𝑛 ≤𝓁+
𝑛∑︁
𝑡=1

1

[
𝜇𝑆∗𝑣𝑡 |𝑣𝑡−1

+Γ𝑆∗𝑣𝑡 |𝑣𝑡−1
≤𝜇𝑆 |𝑣𝑡−1

+Γ𝑆 |𝑣𝑡−1
, 𝑁𝑆 |𝑣𝑡−1

≥𝓁
]

≤𝓁+
𝑛∑︁
𝑡=1

1

[
𝜇𝑆∗𝑣𝑡 |𝑣𝑡−1

+Γ𝑆∗𝑣𝑡 |𝑣𝑡−1
≤𝜇𝑆 |𝑣𝑡−1

+Γ𝑆 |𝑣𝑡−1
,𝑇𝑆 |𝑣𝑡−1

≥𝓁
]

≤𝓁+
𝑛∑︁
𝑡=1

𝑡−1∑︁
𝑠=1

𝑡−1∑︁
𝑠′=𝓁

1

[
𝜇𝑆∗𝑣𝑠 |𝑣𝑠 + Γ𝑡𝑠 ≤ 𝜇𝑆 |𝑣𝑠′ + Γ𝑡𝑠′

]
. (21a)

If the event in (21a), i.e., 𝜇𝑆∗𝑣𝑠 |𝑣𝑠 + Γ𝑡𝑠 ≤ 𝜇𝑆 |𝑣𝑠′ + Γ𝑡
𝑠′ , is true, then

at least one of the following three conditions must be true,

𝐸𝑣𝑡1 : 𝜇𝑆∗𝑣𝑠 |𝑣𝑠 + Γ𝑡𝑠 ≤ 𝜇∗; (22a)

𝐸𝑣𝑡2 : 𝜇∗ < 𝜇𝑆 + 2Γ𝑡𝑠′ ; (22b)

𝐸𝑣𝑡3 : 𝜇𝑆 |𝑣𝑠′ − 𝜇𝑆 ≥ Γ𝑡𝑠′ . (22c)

According to Chernoff-Hoeffding Inequality [35], the probabil-

ity that Inequality (22a) holds is Pr [𝐸𝑣𝑡1] ≤ 𝑡−4
; similarly, the

probability that Inequality (22c) holds is Pr [𝐸𝑣𝑡3] ≤ 𝑡−4
. For In-

equality (22b), when 𝓁 = ⌈ 8 ln𝑛
(𝜇∗−𝜇𝑆 )2

⌉, (22b) fails, 𝜇∗−𝜇𝑆−2Γ𝑡
𝑠′ ≥ 0.

Consequently, Pr

[
𝜇𝑆∗𝑣𝑠 |𝑣𝑠 + Γ𝑡𝑠 > 𝜇𝑆 |𝑣𝑠′ + Γ𝑡

𝑠′

]
≤ 2𝑡−4

. In the end,

𝐸 [𝑅MES] ≤
∑︁

𝑆 :𝜇𝑆<𝜇
∗

8 ln𝑛

𝜇∗ − 𝜇𝑆
+

(
1 + 𝜋

3

) ∑︁
𝑆 ′⊆M

(𝜇∗ − 𝜇𝑆 ′ ) . (23)

Thus, 𝐸 [𝑅MES] ≤ O(|M| log𝑛). □

Analyses of MES-B. To show the upper bound of 𝑅MES-B, we

adapt the proof in [21], omitting some intermediate steps. For

simplicity, we use 𝑛(𝐵) and𝑚 to represent |V𝐵 | and |M|. Let 𝑐𝑆
represent the average cost of the ensemble 𝑆 , 𝑐𝑆 = 1

𝑛

∑𝑛
𝑡=1

𝑐𝑆 |𝑣𝑡 ;
let 𝑆† represent the ensemble with the highest average score,

𝑆† = arg max𝑆⊆M
1

𝑛

∑𝑛
𝑡=1

𝑟𝑆 |𝑣𝑡 .
[21] shows the following lemma, which characterizes 𝑛(𝐵) of

the proposed algorithm MES-B.

Lemma 4.2. For problem TCVI, if ∀𝑆 ⊆ M, ∃𝛿𝑆 > 0, 𝜌𝑆 > 0,

s.t., 𝐸
[
𝑁𝑆 |𝑣𝑛 (𝐵)

]
≤ 𝛿𝑆 ln𝑛(𝐵) + 𝜌𝑆 , then we have

𝐸 [𝑛(𝐵)] ≤ 𝐵 + 1

𝑐†
+ 𝛿 ln 2

(
𝐵 + 1

𝑐†
+ 𝛿 ln 2𝛿 + 𝜌

)
+ 𝜌 ;

𝐸 [𝑛(𝐵)] > 𝐵 − 𝜌′

𝑐†
− 𝛿 ′

𝑐†
ln 2

(
𝐵 + 1

𝑐†
+ 𝛿 ln 2𝛿 + 𝜌

)
− 1.

(24)

where 𝛿 =
∑
𝑆≠𝑆† 𝛿𝑆 , 𝜌 =

∑
𝑆≠𝑆† 𝜌𝑆 , 𝛿

′ =
∑
𝑆≠𝑆† 𝑐𝑆𝛿𝑆 , and 𝜌′ =∑

𝑆≠𝑆† 𝑐𝑆𝜌𝑆 .

Theorem 4.3. For problem TCVI, givenV ,M and 𝐵 satisfying
Assumption 1, the expected regret of MES-B has the following upper
bound,

𝐸 [𝑅MES-B] ≤ O(|M| log𝐵). (25)

Proof sketch. Based on Theorem 4.1 and Lemma 4.2, for

TCVI, we can similarly derive

𝐸 [𝑅MES-B] = 𝑛(𝐵) · 𝜇∗ −
∑︁
𝑆⊆M

𝐸

[
𝑁𝑆 |𝑣𝑛 (𝐵)

]
· 𝜇𝑆

≤
∑︁

𝑆 :𝜇𝑆<𝜇
∗

8 ln𝐸 [𝑛(𝐵)]
𝜇∗ − 𝜇𝑆

+
(
1 + 𝜋

3

) ∑︁
𝑆 ′⊆M

(𝜇∗ − 𝜇𝑆 ′ )

≤ 𝛼 ln

(
𝐵 + 1

𝑐∗
+ 𝛿 ln 2

(
𝐵 + 1

𝑐∗
+ 𝛿 ln 2𝛿 + 𝜌

)
+ 𝜌

)
+ 𝛽,

(26)
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Table 1: Information of Dataset nuScenes.

Group # of Scenes # of Samples Duration (min)

nuScenes 850 42,500 354

nusc-clear 274 13,700 114

nusc-night 79 3,950 33

nusc-rainy 184 9,200 77

Table 2: Information of Dataset BDD.

Group # of Sequences # of Samples Duration (min)

BDD 300 30,000 200

bdd-rainy 120 5,070 80

bdd-snow 132 5,549 90

Table 3: Information of OD model structures.

Structures # of Params Avg. Inference Time (ms)

YOLOv7 37.2M 49.5

YOLOv7-tiny 6.03M 10.0

YOLOv7-micro 2.68M 7.7

Faster R-CNN 42.1M 212

where 𝛼 =
∑
𝑆 :𝜇𝑆<𝜇

∗ 𝛿𝑆 (𝜇∗ − 𝜇𝑆 ), 𝛽 =
∑
𝑆 ′⊆M 𝜌𝑆 (𝜇∗ − 𝜇𝑆 ).

Thus, 𝐸 [𝑅MES-B] ≤ O(|M| log𝐵). □

Analyses of SW-MES. According to the definition of problem

TUVI-CD, the underlying distribution may change abruptly. Con-
sequently, Assumption 1 made for the proof of Theorem 4.1 can

be relaxed where the scores {𝑟𝑆 |𝑣}𝑣∈V for each ensemble are

modeled by a sequence of random variables from potentially

different distributions that may vary across time.

Theorem 4.4. For problem TUVI-CD, given V and M, if an
appropriate 𝜆 is chosen, the expected regret of SW-MES has the
following upper bound,

𝐸 [𝑅SW-MES] ≤ O
(
|M|

√︁
𝜉 · |V| · log |V|

)
, (27)

where 𝜉 is the number of breakpoints throughout the entire video
V .

Proof sketch. Utilizing the regret guarantee for algorithm

SW-UCB [28], we can derive an upper bound of 𝐸 [𝑅SW-MES],

𝐸 [𝑅SW-MES] ≤ 𝐶
∑︁
𝑆⊆M

(
𝐶𝑆

𝑛 log 𝜆

𝜆
+ 𝜆 · 𝜉 + log

2 𝜆

)
, (28)

where 𝐶 and {𝐶𝑆 }𝑆⊆M are all constants that do not involve 𝑛 or

𝜆.

Choosing 𝜆 =
√︁
𝑛 log𝑛/𝜉 ,

𝐸 [𝑅SW-MES] ≤ 𝐶
∑︁
𝑆⊆M

(
𝐶𝑆

√︁
𝜉𝑛 log𝑛 +

√︁
𝜉𝑛 log𝑛 + log

2

√︄
𝑛 log𝑛

𝜉

)
.

(29)

Thus, 𝐸 [𝑅SW-MES] ≤ O
(
|M|

√︁
𝜉 · 𝑛 · log𝑛

)
. □

5 EXPERIMENTAL EVALUATION
In this section, we present the results of our experimental evalu-

ation utilizing real datasets varying settings and parameters of

interest.

0 1
1 cS

0.56

0.71

a S

(a) Vnusc.

0 1
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0.46

0.65

a S

(b) Vnight
nusc .

Figure 3: ⟨𝑎𝑆 , 1−𝑐𝑆 ⟩ values of all the ensembles for datasets Vnusc

and Vnight
nusc . Each circle represents an ensemble.

5.1 Datasets
5.1.1 nuScenes [9]. nuScenes is a large-scale autonomous

driving dataset consisting of 850 scenes with object annotations

for 23 object classes. Each scene contains a sequence of images

consecutively captured by cameras mounted on a moving vehicle,

together with their corresponding LiDAR sweeps captured by

LiDAR mounted on the same vehicle.

Utilizing the scene information provided by nuScenes, we

group all the scenes based on the environmental circumstances

(such as weather and time) at the time of capture and divide them

into 3 categories: clear, night, and rainy, as shown in Table 1.

We use Vnusc to represent the video dataset consisting of all the

frames from videos in nuScenes, andVclear

nusc
,Vnight

nusc
andVrainy

nusc

to represent 3 additional specialized datasets consisting of all

frames from the groups of corresponding categories respectively.

In order to evaluate the effectiveness of our proposals for

TUVI-CD, we create new video datasets,Vc&n,Vn&r andVc&n&r,

by segmenting the specialized datasets (each identified with a

corresponding letter subscript) to 10 segments and combining

the segments in a random order to introduce concept drift. For

example, to create Vc&n, we divide Vclear

nusc
and Vnight

nusc
into 10

segments, and then shuffle and combine the segments together.

5.1.2 BDD [66]. BDD is a video dataset consisting of 100,000

sequences of frames, annotated with various object types, and

enriched with detailed information of each sequence such as the

location (e.g., city streets or parking lots), time (e.g., daytime

or nighttime), and weather conditions (e.g., snowy or rainy).

We randomly select some sequences from BDD for evaluation,

denoted as V
bdd

. Additionally, we utilize sequences with labels

rainy or snow to train different specialized detectors, as shown

in Table 2, which are used to form model candidates M (to be

introduced in §5.2).

5.2 Models
Object Detectors. We utilize three model structures based on

YOLOv7 [60] (YOLOv7, YOLOv7-tiny, and YOLOv7-micro in de-

scending order of network complexity) and a structure based

on Faster R-CNN [52] for training object detection (OD) models.

The structures of YOLOv7-tiny are built based on the description

in [60]. The novel structure of YOLOv7-micro is derived from

YOLOv7-tiny by reducing the number of neural network layers

and prediction grids
7
. Generally, as shown in Table 3, under the

same training settings, the order of detection accuracy and infer-

ence time are YOLOv7 > YOLOv7-tiny > YOLOv7-micro > Faster

7
The shallower structures of complicated models have been used in many works:

for example, [40, 41, 44, 65] refer to them as proxy models or filters for preliminary

filtering of frames that satisfy the specified requirements.
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Figure 4: Scores (ssum) obtained by varying algorithms for TUVI on datasets Vnusc, Vclear
nusc , V

night
nusc , Vrainy

nusc and Vbdd. The red markers
represent the mean values of 𝑠sum for each algorithm; the black rectangles represent standard deviations of the results under 100
independent trials; the extended lines represent extreme values (minimum/maximum) under 100 trials.
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Figure 5: ssum, ā and 1 − ĉ under varying weight combinations of
the scoring function for TUVI on datasets Vnight

nusc and Vrainy
nusc .

R-CNN. Before conducting our experiments, we train models us-

ing these four structures on the datasets specified in Tables 1&2,

aiming to develop as many pre-trained object detection models

as possible. For each dataset, we use a proper set of relevant pre-

trained object detectors to form the pool of their corresponding

model candidatesM.

Ensemble Approaches. Weattempt several ensemble approaches

(including NMS [29, 52], Softer-NMS [34], WBF [56], NMW [67]

and Fusion [61]) for the pre-trained OD models and select WBF,

which produces the most accurate OD outputs, as the ensemble

approach for the subsequent experiments.

Figure 3 presents the ⟨𝑎𝑆 , 1−𝑐𝑆 ⟩ values of all the ensembles

⊆ M for datasets Vnusc and Vnight

nusc
, where 𝑎𝑆 represents the

average AP of ensemble 𝑆 over the video; 𝑐𝑆 represents the nor-

malized average inference time of ensemble 𝑆 over the video.

Similar trends are observed on the other datasets.

Reference Models. We utilize a pre-trained state-of-the-art Li-

DAR model, named MEGVII [68], for quantifying the accuracy

of OD results in the absence of ground truth (i.e. REFBLiDAR).

5.3 Approaches Compared
We compare through experiments the proposed algorithms, MES,
MES-B, and SW-MES, with the following algorithms.

Table 4: Prediction of Bextra utilizing LRBP.

Datasets |V| 𝐵 |V𝐵 | 𝐵
lrbp

𝐵extra

Vnusc 200,000

100 11,115 1,578 1,500

200 23,160 1,456 1,400

400 48,165 1,221 1,200

Vclear

nusc
40,000 500 6,360 1,750 1,750

Vnight

nusc
18,500 30 2,745 191 170

Vrainy

nusc
42,800 150 6,105 327 320

1. OPT : OPT represents an OPTimal approach in which an "ora-

cle" selects the best ensemble based on score (which takes into

account) both accuracy and inference time) for each video

frame, i.e. { ˆ𝒢
opt

𝑣 =𝑆∗𝑣 }𝑣∈V , where
ˆ𝒢
opt

𝑣 is the ensemble chosen

for frame 𝑣 and 𝑆∗𝑣 is the ensemble achieving the highest score

on 𝑣 , 𝑆∗𝑣 = arg𝑆⊆M max 𝑟𝑆 |𝑣 . OPT signifies the best score any

algorithm can achieve, and we include it as a reference. How-

ever, it is impractical on its own, as it is impossible to know

which ensemble is the best for each frame in advance.

2. BF and SGL: BF is a Brute-Force approach applying the largest
ensemble consisting of all detectors

8
on each frame, { ˆ𝒢𝑣=M}𝑣∈V ;

SGL always applies a specific SinGLe detector (which is the

most accurate on average across all frames) to each frame.

3. RAND: It applies an ensemble RANDomly selected fromM
on each frame.

4. EF : Explore-First (EF) implements aMulti-Armed Bandit (MAB)

strategy [55], which initially explores all ensembles in M by

applying each to the first 𝛿EF frames of videoV . Subsequently,

the ensemble with the highest estimated score based on these

frames is selected and applied to the remaining frames.

5.4 Settings
We utilize the following scoring function in the experiments,

𝑟𝑆 |𝑣 = 𝑆𝐶 (𝑎𝑆 |𝑣, 𝑐𝑆 |𝑣) = 𝑤1· log
2

(
𝑎𝑆 |𝑣+1

)
+𝑤2· log

2

(
2−𝑐𝑆 |𝑣

)
(30)

where the weights 𝑤1+𝑤2=1; 𝑐𝑆 |𝑣 is the normalized inference

time of 𝑆 on 𝑣 , 𝑐𝑆 |𝑣=
𝑐𝑆 |𝑣
𝑐max

, where 𝑐max is the maximum inference

time among all the ensembles, 𝑐max=max∀𝑆 ′⊆M 𝑐𝑆 ′ |𝑣 . Any func-
tion that adheres to the criteria identified in §2 can be easily

adopted. We utilize 𝑤1=𝑤2=0.5 in what follows unless stated

otherwise.

Each experiment reports the average of the results of 100

independent trials for each algorithm compared. For each trial,

8
The largest ensemble M usually has the best accuracy but the longest inference

time; thus, BF is not expected to achieve a high score when the time component

plays a significant role in the scoring function.
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Figure 9: Scores obtained by the algorithms with varying weight
combinations in the scoring function.

we re-sample the video datasets following the procedures outlined
in §5.1. All algorithms were implemented in Python and run on

a Linux server with Intel Xeon Gold 6244 3.60GHz CPU, 64GB

memory, and an NVIDIA TITAN Xp GPU.

5.5 Measurements
Weutilize the sum of scores, 𝑠sum, to evaluate the results produced

by applying the selection algorithms on each frame in V . For

problems TUVI and TUVI-CD,

𝑠sum =
∑︁ |V |

𝑡=1

𝑟
ˆ𝒢𝑣𝑡 |𝑣𝑡

,

and for problem TCVI,

𝑠sum =
∑︁ |V𝐵 |

𝑡=1

𝑟
ˆ𝒢𝑣𝑡 |𝑣𝑡

,

where
ˆ𝒢𝑣𝑡 represents the ensemble identified by the selection al-

gorithms for frame 𝑣𝑡 ; 𝑟 ˆ𝒢𝑣𝑡 |𝑣𝑡
is calculated by the scoring function

specified in Equation (30).

In addition, we use 𝑎 (average AP) to measure the accuracy of

the OD results produced by applying the selection algorithms:

for TUVI: 𝑎 = avg
|V |
𝑡=1

𝑎
ˆ𝒢𝑣𝑡 |𝑣𝑡

; for TCVI: 𝑎 = avg
|V𝐵 |
𝑡=1

𝑎
ˆ𝒢𝑣𝑡 |𝑣𝑡

.

Weuse 1−𝑐 to measure the performance of the ensembles selected

by the algorithms, where 𝑐 is the average normalized inference

time:

for TUVI: 𝑐 = avg
|V |
𝑡=1

𝑐
ˆ𝒢𝑣𝑡 |𝑣𝑡

; for TCVI: 𝑐 = avg
|V𝐵 |
𝑡=1

𝑐
ˆ𝒢𝑣𝑡 |𝑣𝑡

.

5.6 Overall Evaluation
This section evaluates the overall performance of the algorithms

proposed in this paper, alongside comparative approaches, on all

the three distinct problem definitions described in §2.4.

5.6.1 Evaluation of Problem TUVI.
Sum of Scores. Under the problem setting of TUVI, we run

the algorithms on each specialized dataset and present Figure 4,

which illustrates the sum of scores 𝑠sum obtained by the algo-

rithms. For approaches RAND, EF and MES, Figure 4 displays

the mean values of 𝑠sum, as well as their standard deviation and

minimum/maximum results from 100 independent trials for each

algorithm. Since the results for OPT, BF and SGL are the same

across all trials, they are represented as single points in the fig-

ure. Figure 4 reveals MES consistently achieves scores higher than
85% of OPT’s scores across all datasets and outperforms SGL, BF,

RAND and EF. Furthermore, the range (between the minimum

and maximum) and standard deviation of MES results are both

smaller compared to EF, indicating that MES is more stable.

Average Precision and Inference Time Cost. To display the

AP and Cost of each algorithm directly, we plot 𝑠sum, 𝑎 and 1−𝑐
(defined in §5.5) under varying weight combinations of accu-

racy and time cost ⟨𝑤1,𝑤2⟩ for the scoring function 𝑆𝐶 for TUVI

on datasetsVnight

nusc
andVrainy

nusc
in Figure 5. We observe that MES

consistently achieves a higher 𝑠sum than EF for all weight com-

binations. In terms of 𝑎 and 1 − 𝑐 , OPT and MES exhibit similar
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Figure 10: A demonstration of the distribution of the number of
times the ensembles are selected at various weight combinations
in the scoring function for MES on Vnusc. Darker color represents
more selections.

trends are are closer to each other than EF: as𝑤1 increases and

𝑤2 decreases, 𝑎 increases and 1 − 𝑐 decreases. Compared to EF,

MES can adapt ensemble selection to various weight combinations

to balance accuracy and cost. Similar trends are observed on the

other datasets.

5.6.2 Evaluation of Problem TCVI.
Sumof Scores. For problem TCVI, Figure 6 shows the total scores
obtained by each algorithm as budget 𝐵 varies. MES outperforms

SGL, BF and EF not only when 𝐵 is sufficient (to the right of

the dashed vertical lines), but also when 𝐵 is small (which might

provide enough budget to process the entire video dataset).

Extra Budget Prediction. To evaluate the approach for extra

budget prediction LRBP (introduced in §3.2), we present Table 4. 𝐵
denotes the initial budget, |V𝐵 | represents the frames processed

upon exhausting𝐵, and𝐵
lrbp

/𝐵extra indicates the predicted/actual

extra budget needed to process the entire video dataset. The table

shows that the errors of 𝐵
lrbp

over 𝐵extra are generally within 10%

for the evaluated datasets. As 𝐵 increases in theVnusc prediction,

the errors of 𝐵
lrbp

over 𝐵extra decrease, suggesting improved

prediction accuracy.

5.6.3 Evaluation of Problem TUVI-CD.
Sum of Scores. For problem TUVI-CD, Figure 7 depicts the 𝑠sum
obtained by MES, SW-MES, and other algorithms on datasetsVc&n,

Vn&r andVc&n&r. While MES remains superior to SGL, BF, and

EF for TUVI-CD, its performance declines compared to TUVI
due to its inability to adapt to the concept drift in the datasets.

Conversely, SW-MES, which adjusts to concept drift using the

sliding-window mechanism, consistently achieves higher scores

than MES and other approaches (except OPT) while maintaining

a relatively smaller standard deviation and a narrower range

between the minimum and maximum scores.

5.7 Detailed Evaluation Analysis
In this section, we conduct a detailed evaluation of the algorithms

introduced in this paper, focusing on the TUVI problem definition,

including the ablation study, parameters analyses, and resource

utilization analyses.

5.7.1 Ablation Study. We also investigate a variant of MES,
named MES-A, which excludes the step of applying ensembles

corresponding to all subsets of the selected ensemble in each

iteration (as shown in Lines 9-10 of Alg. 1). Comparing MES-A
with EF and MES on each dataset, Figure 8 depicts the sum of

scores for each algorithm (normalized by the score of MES) across
all datasets. Despite outperforming EF, MES-A experiences a sig-

nificant drop in performance across all datasets.

5.7.2 Relative Importance of Components in Scoring Functions.
We further explore the relative importance of the accuracy and

time cost components within the scoring function by varying the

weight combinations ⟨𝑤1,𝑤2⟩ and provide insights on choosing

weights.

Relative Importance. Figure 9 shows the scores obtained by the
algorithms under different weight combinations. RAND results

are unsatisfactory and erratic across all combinations. When

𝑤1=0.1 and𝑤2=0.9 (i.e., when the scoring function is dominated

by the Cost component), BF performs significantly worse than

MES, as it always selects the most complex and expensive en-

sembles. SGL’s performance is similar. As𝑤1 increases and𝑤2

decreases (i.e., the weight of the Accuracy component grows),

the scores of SGL, BF and EF gradually approach those of MES
and OPT. For𝑤1=0.9 and𝑤2=0.1, MES still has higher 𝑠sum than

EF, but the advantage diminishes. In summary, our proposed

methods naturally adapt to different application scenarios with

varying importance of accuracy and inference time.

Insights on Choosing Weights. In addition, a suitable weight

combination should be assigned to the scoring function to influ-

ence ensemble selection based on actual application requirements.

If the weight of accuracy is greater than that of efficiency, our

ensemble selection strategy favors ensembles with high accuracy;

otherwise, it leans toward ensembles with faster inference time.

Figure 10 displays the distribution of the number of times the

ensembles are selected in MES under varying weights on dataset

Vnusc, with each circle representing an ensemble and darker col-

ors representing more selections. When𝑤2>𝑤1, MES tends to se-

lect ensembles in the lower right part of the figure; when𝑤2=𝑤1,

MES favors ensembles in the middle part; and when𝑤2<𝑤1, MES
prefers ensembles in the upper left part. Similar trends are ob-

served in the other datasets, allowing users to choose weights

based on these patterns.

5.7.3 Analysis of EnsembleQuantity. Weanalyze the influence

of the number of ensembles, 2
𝑚−1, where𝑚=|M| is the number

of detectors. By reducing the number of detectors in M (from

𝑚=5 to𝑚=3 and𝑚=2), we present Figure 11, which displays the

sum of scores obtained by algorithms over varying𝑚 for TUVI

on datasets Vclear

nusc
, Vnight

nusc
and Vrainy

nusc
. It can be observed that,

compared with𝑚=5 (i.e. a total of 31 ensembles), the gap between

BF/EF and MES becomes smaller as𝑚 decreases. When𝑚=2 (i.e.

a total of 3 ensembles), the mean value of the total scores of EF is

equal to MES. This is because the difficulty of selecting the optimal

ensemble diminishes as the number of ensembles decreases for

all approaches. Similar trends are observed on the other datasets.

5.7.4 Impact of Hyper-parameter Gamma. It depicts the sum

of scores of MES on datasetsVclear

nusc
,Vnight

nusc
andVrainy

nusc
varying

the initialization parameter 𝛾 (as shown in Lines 2-3 of Alg. 1)

in Figure 12. In general, a smaller 𝛾 may lead to less accurate

AP estimation for each ensemble during the initialization phase,

potentially impacting the selection in subsequent iterations. Con-

versely, since the initialization step is computationally demand-

ing, requiring inference on all models, choosing an excessively

large value for 𝛾 could result in lower overall scores. The figure

illustrates that as 𝛾 progresses from smaller to larger values, the

scores initially increase and subsequently decrease.

5.7.5 Details of Resource Utilization. It presents the propor-
tion of the time spent on each of the components of MES through-
out the entire process on dataset Vnusc in Figure 13. As can be

observed from the figure, the time spent on ensembling and other
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optimization components (such as the computations in Lines 5-6

of Alg. 1 and optimizations in Lines 9-10 of Alg. 1) is negligible

(0.4%). This demonstrates that the algorithms we proposed incur

almost negligible overhead. The dominant time spent is on de-

tector inference (90%), followed by the LiDAR model inference

(10%), which are necessary overheads inherent to the process.

6 RELATEDWORK
Model Prediction Ensembling. Object detection (OD) is one of

the most important topics in computer vision since it has many

applications in several fields [12]. Model prediction ensembling

approaches have been used in object detection to improve ac-

curacy [31, 37, 45]. Non-Maximum Suppression (NMS) [29, 52]

is proposed to eliminate redundant bounding boxes predicted

by an OD model, which can be directly used to ensemble the

predictions among various models. Some improved variants of

NMS are proposed, such as Soft-NMS [8] and Softer-NMS [34],

which can also be applied to model ensembling. In addition, other

BBoxes-based IOU ensembling approaches have also been pro-

posed to ensemble OD results, such as Fusion [61], NMW [67]

and WBF [56].

Automated Video Analytics. Automated video analytics utiliz-

ing deep learning models (such as object detection models and

multiple object tracking models) as primitives is an area of grow-

ing research interest in the community [2, 10, 13–15, 19, 42, 44,

64, 65]. Numerous recent works present query processing frame-

works that include both frame content (object types, positions in

frames, etc.) and temporal constraints (object tracking outputs,

etc.) as query primitives [14, 17, 18, 65]. For example, NoScope

and BlazeIt [40, 41] utilize proxy models to detect objects ac-

celerating queries via inference-optimized model search; SVQ

and SVQ++ [14, 44, 64, 65] provide filters to accelerate queries

involving complicated constraints on/between objects present in

the frames. A prerequisite for answering the queries accurately

is the correct extraction of OD metadata by deep learning algo-

rithms (i.e., object detection models). In this work, leveraging the

model prediction ensembling approaches, we propose a general

algorithm to improve the OD accuracy, which is orthogonal to

many of the downstream query processing techniques used in

previous work.

Model/Ensemble Selection. Selecting the appropriate models

or ensembles (from a collection of models/ensembles) for pro-

cessing input is essential. [30] and [53] employ decision trees

to detect drift that occurs in a data stream and select models

that can deliver higher accuracy on recent concepts. ODIN [57]

proposes a selector for picking ensembles of specialized models

for processing a given image input. In our work, due to the lack

of knowledge about the dataset and our treatment of models as

black boxes for generality, it is impossible to adopt the afore-

mentioned algorithms, which select ensembles by classifying

concepts.

Multi-objective Query Optimization (MOQO). MOQO models

the cost of a query plan as a vector instead of a scalar value, to

accommodate multiple (often conflicting) execution metrics such

as time and resource use [59]. The first category of approaches

to the MOQO problem simplifies this by using weighted sums

to collapse these dimensions into a single objective [27], while

the second category of methods identifies Pareto-optimal plans,

where no alternative plan is superior across all metrics [58, 59].

By consolidating multiple criteria into a single scoring function,

the methodology adopted in this paper is akin to the first category

of approaches to MOQO and provides a computationally efficient

and manageable solution. Exploring the full spectrum of optimal

solutions by redefining the problem within the MOQO frame-

work, including identifying Pareto-optimal ensembles, represents

a promising direction for future research.

7 CONCLUSIONS
Object detection algorithms serve as the foundation for video

query frameworks that involve various object constraints. Model

prediction ensembling techniques can enhance object detection

accuracy, but they also incur additional inference costs. In this pa-

per, we address the problem of selecting suitable ensembles that

optimize a score comprising both accuracy and inference time,

without requiring prior knowledge about the video and detectors.

We propose an algorithm, MES, which effectively allocates com-

putational resources for identifying appropriate ensembles. We

further refine our approach by introducing the MES-B algorithm

for conducting ensemble selection within a specified budget and

the SW-MES algorithm for adapting to concept drifts during en-

semble selection. Comprehensive experimental results on real

video datasets confirm the effectiveness of our proposed algo-

rithms under a range of settings. We believe that improving the

quality of preprocessing results in video analysis systems is a

crucial research direction that warrants further exploration.
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