
From Feature Selection to Resource Prediction: An Analysis of
Commonly Applied Workflows and Techniques
Ling Zhang

University of Wisconsin-Madison

ling-zhang@cs.wisc.edu

Shaleen Deep

Microsoft GSL

shaleen.deep@microsoft.com

Joyce Cahoon

Microsoft GSL

joyce.cahoon@microsoft.com

Jignesh M. Patel

Carnegie Mellon University

jignesh@cmu.edu

Anja Gruenheid

Microsoft GSL

anja.gruenheid@microsoft.com

ABSTRACT
Understanding and predicting database workload performance

on different hardware settings in the cloud is crucial for both

the users and providers in order to optimize resource allocation.

Recently, machine learning (ML) based techniques have been

applied to parts of the end-to-end three-step pipeline for work-

load prediction: feature selection, workload similarity, and per-

formance prediction. However, despite its practical importance,

there exists no principled analysis that studies the performance

of such pipelines. In this paper, we examine the state-of-the-art

strategies for these three components, with the goal of identify-

ing which techniques work best in practice. Our experimental

results reveal that while no universal solution exists for the pre-

diction pipeline, certain best practices can improve prediction

performance and reduce computation overhead. Based on our re-

sults, we outline important topics for future work that will benefit

ML-driven recommendation systems for resource allocation.

1 INTRODUCTION
Database workload

1
understanding and prediction in a cloud

computing environment is a complex task. Cloud users can spin

up hundreds of computing instances at a time, and execute work-

loads for various tasks from transaction systems over production

processes to analytical or ML based optimization systems. Under-

standing these deployed workloads offers several benefits. From

the provider’s perspective, being able to reason about and predict

a user’s workloads enables more efficient task scheduling and

resource allocation. From the user’s perspective, analyzing their

workload allows them to calculate the trade-off between the allo-

cated (and paid for) resources with expected performance implica-

tions. Prior work has studied the problem of recommending cloud

configurations [18, 50, 98, 99], workload runtime prediction given

past observations in a fixed configuration setting [38, 66, 96], and

auto-scaling mechanisms [60, 74]. However, to the best of our

knowledge, there exists an unmet need to systematically study

workload resource (scaling) prediction as part of an end-to-end
pipeline. More precisely, prior work has only studied parts of the

problem (such as query scaling, feature selection, task scheduling,

etc.) but has not examined the problem from a holistic point of

view. Our work closes this important gap in the literature by

examining how different approaches compare, and how they can

be utilized in practice effectively.

1
Throughout the paper, we will use workload to mean relational database workloads

(defined in Section 2).

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the

28th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

End-to-end workload prediction pipelines pose a non-trivial

challenge that can be decomposed into several parts, as outlined

by prior work on workload migration to new or different hard-

ware configurations [12]. Here, the authors focused on modeling

a user’s workload as a limited set of resource requirements, uti-

lizing features such as CPU and memory consumption but omit-

ting others such as query plan features, which are commonly

leveraged for query performance prediction [28, 73, 81, 101]. We

observe that in today’s cloud databases, extensive telemetry and

statistics make feature selection, independent of whether the fea-
tures stem from the queries themselves or the workload’s re-

sources, crucial for workload or query prediction [58, 101]. Here,

automatic feature selection is preferred over manual feature en-

gineering due to the high-dimensional nature of available fea-

tures. However, in practice, we observe that practitioners rely on

manual feature engineering rather than use automatic feature se-

lection techniques to maximize prediction performance [12, 28].

This is typically due to an insufficient number of training ob-

servations that accurately capture the behavior of a workload

and/or queries on a given hardware setup. To alleviate this prob-

lem, existing algorithms categorize types of workloads using

clustering [49, 62, 97] or time-series based approaches [53, 86],

focusing on modeling the behavior of workload types rather than

individual user workloads. This approach is also referred to as

workload similarity computation. If these techniques are deployed
effectively, workload prediction algorithms become more accu-

rate as they can utilize a larger pool of training data based on

the workload clusters instead of over-fitting models to a single

workload deployment. Moreover, prior work on individual query

performance prediction [32, 91, 94, 102] enables us to predict

how queries would behave across different hardware configu-

rations. In practice, these query-level prediction models work

well for analytical workloads, where the concurrent performance

is straightforward to model, but struggle with workloads with

transactional queries [75], where the interaction between con-

current workloads are more complex for query-level prediction

methods to model. Naturally, a workload-level method (i.e. a tech-

nique that considers the entire workload rather than each query

in isolation) is more likely to capture the complex interactions

and thus, lead to better predictions.

Example 1.1. A cloud customer wants to move their workload

to a new hardware configuration with more CPUs but they want

to maintain their service-level agreements, meaning that prior

to moving the workload, they want to check that the queries

will execute within a certain timeframe. To calculate the pre-

dicted runtime on the new hardware, the cloud provider lever-

ages the performance numbers of other workloads observed on

comparable cluster configurations. For this example, we exper-

imentally execute four standardized benchmarks provided by

Experiments & Analyses Paper

Series ISSN: 2367-2005 894 10.48786/edbt.2025.73

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.73

Figure 1: Distribution of absolute percentage error of 10
latency predictions, compared across using the entirework-
load versus using individual transaction types.

BenchBase [30]: TPC-C, TPC-H, YCSB, and Twitter. Suppose the

customer has a workload that consists of a mixture of six differ-

ent types of transactions from the YCSB workload and wants to

predict its scaling behavior. Figure 1 shows the prediction error

for query-level scaling prediction (using the prior work on indi-

vidual query performance prediction to prediction the latency

scaling behavior) as well as workload-level scaling prediction

(the consolidated latency prediction on the new hardware for the

entire user workload). We observe that, despite training the pre-

dictors on similar queries and workloads, per-query predictions

still result in significant errors, ranging from 4.75% to as high as

16.57%. In contrast, the prediction error using a workload-level

scaling technique is only 1.99%.

When comparing the runtime prediction of the workload-

level prediction to the aggregated (weighted) query-level, we

find that the workload-level approach is 5.6% more accurate.

While this may seem modest, cloud compute costs can account

for approximately 10% of a mid-sized company’s revenue [4], so

any reduction in compute costs directly improves profit margins.

Contributions. To the best of our knowledge, this is the first

experimental study that analyzes prediction pipelines for data-

base workloads. In this study, we first leverage classical feature

selection strategies to understand features that are optimal for

workload similarity computation. Second, we show how we can

enable workload similarity computation on different types of col-

lected workload-related data (one-off observations vs. temporal

data such as resource utilization) and how different algorithms

perform in this setting. Finally, we explore how we can model re-

source scaling behavior and how the choice of modeling context

as well as algorithm impacts the prediction performance. With

our extensive benchmarking and experimentation, we empirically

demonstrate that there is no one-size-fits-all kind of solution to

end-to-end prediction pipelines but that there are best practices

that we should adhere to in order to avoid certain pitfalls caused

by the choice and application of ML algorithms in this space.

2 PROBLEM DESCRIPTION
In this section, we present an overview of end-to-end database

workload prediction pipelines, the problems we want to analyze

in this paper, and explain the experimental evaluation setup that

we use for our analysis. A database workload is a sequence of

SQL statements (read-only queries and write queries) over a fixed

relational database schema. A transactional workload is a data-

base workload, that executes in real-time, and has a high ratio

of write queries (i.e. insert/update/delete) compared to read-only

queries. In contrast, analytical workloads are database workloads

that exclusively consist of read-only queries. Analytical workload

queries can be several orders of magnitude slower compared to

transactional workload queries. A mixed workload (also known

as hybrid or HTAP workloads) is a mixture of transactional and

Table 1: Workload overview for experimental evaluation.

#Tables #Columns #Indexes Txn Types %Read-Only
Txns

Workload
Type

TPC-C 9 92 1 5 8.0% Transactional

TPC-H 8 61 23 22 100.0% Analytical

Twitter 5 18 4 5 99.0% Analytical
2

YCSB 1 11 0 5 50.0% Mixed

TPC-DS 24 425 0 99 100.0% Analytical

𝑷𝑾 - - - 500+ Mostly Mixed

analytical workloads. It consists of both read-only and write

queries, but with a ratio of write to read-only queries that is

between transactional and analytical workloads. To understand

how we can achieve workload prediction, we first break down

the problem into three subproblems, aligned with the following

questions: (𝑖)Which workload characteristics identify a workload? ;
(𝑖𝑖) How can we compute workload similarity? ; and (𝑖𝑖𝑖) How can
we predict the performance of workloads on a different set of re-
sources? These questions correspond to the building blocks of a

typical end-to-end pipeline for workload predictions as shown

in Figure 2 and are executed as follows:

Feature Selection. As input to feature selection for a workload,

telemetry provides a stream of performance data points as well

as temporal observations on so-called features such as resource

utilization over time, or per-query optimizer statistics such as

estimated row counts or row size. In our experimental analysis,

we show that there are some features that are important across

workloads and some that are specific to a workload. This observa-

tion helps us to determine whether (and which) feature selection

mechanisms uniquely (and minimally) identify a workload.

Workload Similarity Computation. Workload similarity com-

putation then is the task of determining which workloads have

similar feature values and thus similar characteristics. For exam-

ple, we show that the resource utilization and query patterns ob-

served in transaction-heavy DBMS workloads are different than

for analytical workloads. This observation allows us to group

similar workloads and use clusters of workloads for downstream

prediction tasks alleviating one of the typical pain points in such

pipelines, i.e., a lack of training data per workload.

Workload Performance Prediction. As a final step in our

pipeline, we look at the problem of predicting performance for

a workload when it is executed on a different set of hardware.

In a cloud environment, efficient resource provisioning is cru-

cial for customer satisfaction but also for smart load balancing

on the provider’s side. In our experiments, we evaluate several

prediction algorithms and discuss which type of models can and

should be deployed in practice. Furthermore, given the in-depth

analysis of the other two components presented in this paper,

we show that a different feature space as well as adjustments

to the prediction techniques can enhance the precision of the

algorithms and avoid under-fitting of the prediction algorithms.

2.1 Experimental Setting
To evaluate the pipeline and the methods used in each compo-

nents, we use BenchBase [30, 40] to run templated standardized

benchmarks, monitor their runtime resource usage metrics, log

their query plans, and collect performance results.

Workload Overview. For our experimental evaluation, we de-

cided to focus on five standardized benchmarks: 1) TPC-C [88]

with a scale factor of 100, 2) TPC-H [90] with scale factor of 10,

2
Technically, Twitter is aMixed workload since 1% of the queries are write. However,

for all practical purposes, the read-only queries dominate the workload behavior

and thus, we categorize the workload as Analytical.

895

Figure 2: Interaction between the 1) feature selection, 2) workload similarity, and 3) prediction components.

3)TPC-DS [69, 89]) with a scale factor of 1, 4) Twitter [15, 30]

with a scale factor 1600, and 5) YCSB [23] with a skew factor

0.99 and scale factor of 3200 using various hardware settings

and concurrency levels. Note that we chose the scale factors of

each workload so that the database sizes of all workloads are

roughly the same. We run all standardized workloads except TPC-

DS with 4, 8, and 32 concurrent terminals. Since TPC-H always

runs serially, this workloads runs effectively with 1 terminal for

all experiments. The benchmark details of these standardized

workloads are summarized in Table 1. Furthermore, we use the

execution plans of a production workload (𝑃𝑊) that contains

data from a decision support system used for querying telemetry

data to demonstrate similarity computation of workloads through

the use of a real-world example. Note that we only reveal partial

information about 𝑃𝑊 due to privacy concerns.

Execution Overview.We execute all of our workloads on a local

instance of SQL Server with 2, 4, 8 and, 16 CPUs and collect query

plan as well as runtime resource utilization features. An overview

of all collected features is given in Table 2. Each experiment runs

for one hour and during that time, resource utilization metrics

are captured every ten seconds. Each experiment configuration,

i.e., hardware configuration and number of terminals where it

applies, is executed three times. As a result, we collect raw data of

at least 360 observations of system resource utilization features

and three query plan observations of each query per workload.

For our prediction pipeline, we use systematic sampling to gen-

erate ten sub-experiments from one single experiment [14]. To

obtain the resource utilization metrics in each experiment, we

use the perf utility [1]. The perf command accesses the CPU

hardware registers and performance counters for each sample

and can take several hundred CPU cycles. Thus to minimize any

performance measurement overhead, we set the sampling rate

to one sample per second. The query plan statistics are collected

by setting the STATISTICS XML flag [2] on in SQL Server, a stan-

dard approach that is known to be low overhead for query plan

metric collection and used for diagnosing bottlenecks in query

execution [16, 39, 83].

3 RELATEDWORK
Predicting query performance for different hardware settings can

be viewed as part of the workload scaling prediction problem.

Yet, most query performance prediction methods are focused on

individual queries and are bounded to one fixed database set-

ting which makes predictions unsuitable for transfer to other

hardware settings [43]. Prior work predicts individual query per-

formance by creating a performance model that has hardware

configuration, query specific features, and concurrent query infer-

ence as input [32, 91, 94, 102], but they make strong assumptions

on the types of predicted workloads and support usually only

analytical ones. As shown in our introduction example, predict-

ing workloads themselves is more accurate instead of averaging

Table 2: Resource utilization and query plans features.
Resource Utilization Query Plan Statistics

CPU_UTILIZATION StatementEstRows CachedPlanSize
CPU_EFFECTIVE StatementSubTreeCost AvgRowSize
MEM_UTILIZATION CompileCPU CompileMemory
IOPS_TOTAL TableCardinality EstimateRows
READ_WRITE_RATIO SerialDesiredMemory EstimateIO
LOCK_REQ_ABS SerialRequiredMemory CompileTime
LOCK_WAIT_ABS MaxCompileMemory GrantedMemory

EstimateRebinds EstimateCPU
EstimateRewinds MaxUsedMemory
EstimatedPagesCached EstimatedRowsRead
EstimatedAvailableDegreeOfParallelism
EstimatedAvailableMemoryGrant

across queries. Several works [28, 73, 81, 101] have looked at

resource scaling as the database query workload changes dynam-

ically by using specific telemetry. The use of ML based techniques

(such as building decision trees over certain features) for resource

management [25, 42, 64] is also quite popular. We refer the reader

to [67] for an in-depth overview of feature selection algorithms

including the methods considered in our work.

Workload performance or resource usage prediction by study-

ing existing workload falls into two genres: single model pre-

diction [22, 76] or an ensemble of models [6, 19, 26, 54]. We

focus on single model(s) in our work to compare their effec-

tiveness in our problem setting. Prior work routinely uses re-

source time-series data to build the models, and selects models

based on a cost model [76], peak value [6], or time-series simi-

larity [22]. In our work, the choice of models is made based on

the objective of minimizing performance prediction error. Recent

work has further explored historical data and how model the

workload using CNNs [31], Markov Chain based model [27, 63],

LSTM [11, 22, 37, 52, 78, 85], Gated Recurrent Unit [41, 72], Au-

toregressive Integrated Moving Average [13], etc. However, the

effectiveness of these techniques, especially LSTM, remains ques-

tionable [21]. Therefore, in our experimental study, we inten-

tionally keep the pipeline simple and avoid complicated models

for estimation. Finally, database knob tuning using ML methods

is also a related well-researched topic [100]. It is related to our

pipeline optimization because it uses historical execution data

to estimate the workload performance on different hardware

configurations to find the best knob setting. This line of work

also utilizes a similar pipeline [95] to our work and its drawback

is that one needs to train a custom model for each workload.

Beyond ML, [33] describes an intriguing approach to predict-

ing migration costs, duration, and cloud costs of running RDBMS

by modeling a database and workload from prior logs to obtain

cost and duration estimates. Workload migration to optimize for

geographic shifts of load was considered in [80], who propose

Supercloud, an architecture for migrating VMs. VM consolida-

tion has also been studied in the context of IoT applications [68].

However, both of the works only consider VM consolidation to

minimize network latency and do not consider the impact of

co-locating applications that may interfere with each other.

896

4 FEATURE SELECTION
Picking the right features for downstream applications such as

workload similarity computation and predictive modeling is cru-

cial to their success. Ideally, a common set of features would be

able to clearly identify a variety of workloads, however, we ob-

serve that some features are more suited to characterize (specific)

workloads than others. To evaluate different features, we use the

telemetry collected in our experiments in Table 2. Our evaluation

focuses on robust feature selection, as incorrect workload repre-

sentation has immediate effects on downstream applications.

4.1 Feature Selection Strategies
Feature selection is a well-studied topic and there are many algo-

rithms available for this task [9]. The goal of these algorithms

is to ensure that those features most relevant to a given task are

selected in a way that provides good predictive performance. In

our setting, the given task is to maximize our accuracy for work-

load similarity computation. To quantify the effectiveness of the

respective feature selection algorithms, we base our similarity

computation on the selected feature set and compare it with the

ground truth of our experiments. That is, a TPC-DS workload

characterized with a subset of features should be identified as

being similar to TPC-DS and not TPC-H, TPC-C etc. In this work,

we focus on feature selection techniques that give a rank or im-

portance score for each feature. The feature selection methods

we test can be classified into three different categories: Filter,

embedded, and wrapper approaches.

4.1.1 Filter Approach. Feature selection methods in this cat-

egory evaluate the importance of predictors prior to fitting the

model. Predictor relevance is determined separate from themodel

with the help of various variable importance metrics. As most

of these metrics are calculated on a univariate basis, it is possi-

ble that we end up selecting too many predictors or correlated

predictors. However, filter approaches are simple and fast, so we

focus on a subset of four commonly used statistical techniques

to compare against more complex feature selection methods.

VarianceThreshold.Thismethod examines the variance of each

predictor to measure its informative value for model inclusion. It

removes any predictor with zero variance, and keeps predictors

whose variance exceeds a specific threshold.

Pearson Correlation Coefficient [70]. This coefficient is used

to measure the linear dependency of a predictor with the target

variable. It is calculated by normalizing covariance between vari-

ables with each variables’ respective standard deviation. We use

the absolute values of the correlation coefficients as a means of

weighing the importance of each predictor.

Functional Analysis of Variance (fANOVA) [48]. This metric

measures the importance of each feature based on its contribution

to the target variable variance. Features that contribute signifi-

cantly to the variance are considered important and selected.

Mutual Information Gain [8]. This method evaluates the de-

pendency between a feature and the target label. It measures

the reduction in uncertainty (via the difference between entropy

of the feature and conditional entropy given the target) about

the target when the feature is known. A value of zero indicates

independence. These values serve as feature importance scores.

4.1.2 Embedded Approach. Models in this category contains

built-in feature selection mechanisms. In other words, the model

itself will include specific predictors that maximize accuracy such

that the process of feature selection is embedded in model train-

ing. Given that there often exists challenges around collinearity in

our feature set, we examine a subset of regularized linear models

and ensemble learning methods to control model variance:

Lasso. [87] This method adds a penalty term to the standard

sum of squares objective used in ordinary linear regression to

control (or regularize) parameter estimates in cases where multi-

collinearity might exist in the data. Lasso is capable of using

regularization to not only identify a better model but also con-

duct feature selection.

Elastic Net [103].While Lasso provides built-in feature selection

by zeroing out highly correlated predictors, it is indifferent in

its selection, i.e., it can pick an irrelevant predictor from a set of

highly correlated ones, resulting in a model that overlooks the

true predictor. A popular approach that resolves this challenge is

elastic net, which combines two different penalty terms, the L1

regularization from lasso as well as L2 regularization from ridge.

Random Forest [10]. This ensemble learning method aggre-

gates the results of multiple decision trees. Each tree is built

with a random subset of data and its features, ensuring diversity

among trees. As random forests are attained as the linear combi-

nation of many independent learners, e.g., often 1000+ of decision

trees, it achieves variance reduction by selecting complex learn-

ers that exhibit low bias. The importance of each feature is then

evaluated based on its contribution to impurity reduction for all

trees in the forest.

4.1.3 Wrapper Approach. Finally, methods in this category

optimize model performance by iteratively adding or removing

predictors, aiming to find the optimal subset of features. Wrap-

per methods involve multiple rounds of training across various

models to identify a satisfying feature subset, often resulting in

good subsets at the cost of increased computational complexity.

Recursive Feature Elimination (RFE) [20]. This method re-

cursively removes features that have the least feature impor-

tance, until an optimal feature subset is attained based on some

model objective. This backward selection algorithm can work

with many different machine learning strategies as long as they

provide some means of calculating variable importance.

Sequential Feature Selection (SFS) [65, 92]. This method iter-

atively adds or removes one or more features in a greedy manner

based on the prediction performance. Compared to RFE, SFS can

execute both forward and backward selection and can add (or

remove) features based on some user-defined performance met-

ric. SFS does not require the underlying model to output feature

importance scores and thus may result in a more balanced set of

predictors based on the scoring metric selected.

4.2 Evaluating Feature Importance
As mentioned previously, we focus our experimentation on fea-

ture selection strategies that can score or rank features. In general,

we observe that the output of the strategies introduced in the

previous section can be split into two categories: Score-based and
Rank-based feature selection strategies.

Score-based feature selection. Statistics-based selection strate-

gies, such as filtering predictors using variance threshold or MI

gain, and regression-based methods, such as Lasso and elastic net,

fall into this category. They calculate a continuous score for each

feature, and which feature is more important can be determined

by comparing the score between features.

897

0 2 4 6 8
-Log(alpha)

0.2

0.0

0.2

co
ef

fic
ie

nt
s

Lasso Paths TPC-C CPU=2

TableCardinality
CachedPlanSize
SerialDesiredMemory
MaxCompileMemory
CompileMemory
CPU_EFFECTIVE
AvgRowSize

(a) TPC-C Run 1

0 2 4 6 8
-Log(alpha)

0.2

0.0

0.2

0.4

co
ef

fic
ie

nt
s

Lasso Paths TPC-C CPU=2

TableCardinality
CachedPlanSize
MaxCompileMemory
SerialDesiredMemory
CompileMemory
AvgRowSize
CompileTime

(b) TPC-C Run 2

0 2 4 6 8
-Log(alpha)

0.1

0.0

0.1

co
ef

fic
ie

nt
s

Lasso Paths Twitter CPU=2

CachedPlanSize
TableCardinality
MaxCompileMemory
AvgRowSize
CPU_EFFECTIVE
SerialDesiredMemory
CompileCPU

(c) Twitter

0 2 4 6 8 10
-Log(alpha)

0

2

4

6

co
ef

fic
ie

nt
s

Lasso Paths TPC-H CPU=2

EstimateCPU
READ_WRITE_RATIO
MaxCompileMemory
StatementEstRows
EstimateRows
IOPS_TOTAL
StatementSubTreeCost

(d) TPC-H

Figure 3: Lasso path of features for each experiment using hardware setting of 2 CPUs as the strength of regularization
(alpha) decrease. The y-axis shows the resultant coefficient of each feature. Labels show the top-7 (ranked from most
important to least important) with the highest absolute non-zero coefficient.

Rank-based feature selection.Wrapper-based feature selec-

tion methods like RFE and SFS utilize an estimator to gradually

add or remove features. The implementations we used here ef-

fectively assign an integer rank to each feature.

In our evaluation, we generate a feature importance ranking

per experiment and per feature selection strategy. The output of

score-based feature selection strategies is transformed to ranks by

ordering the features according to their scores. For top-k feature

selection, we aggregate the ranks across experiments and select

the top-k features with the lowest aggregate rank.

4.3 Experiments
To evaluate the feature subsets selected by the feature selection

strategies, we first create histograms of the feature’s value distri-

bution as follows: We normalize the value space of each feature

to [0, 1] by using the respective minimum and maximum value

and evenly split the feature value range into ten bins. Note that

we will discuss further details of choice of data representation

and its implications for workload similarity computation in Sec-

tion 5.1.1. As mentioned previously, we measure the success of

feature selection strategies by using similarity computation and

computing the 1-NN distance which in essence determines the

accuracy of a strategy. For the following set of experiments, we

leverage the 𝐿2,1-norm, see Section 5.1.2 for details on this norm.

4.3.1 Picking Features. Given all available features shown

in Table 2, we first observe that some features consistently rank

well across methods, for example, the average returned row size

(AvgRowSize) and the cached plan size (CachedPlanSize) have
high feature importance scores for themajority of selection strate-

gies on multiple hardware settings. However, features like the

estimated degree of parallelism, rebinds, rewinds are usually con-

sidered unimportant independent of the selection mechanism.

Diving deeper into results of the different selection strategies,

we visualize the results of Lasso, a well-performing embedded

technique in Figure 3. Here, we plot the top-7 features selected by

Lasso for a workload on the same hardware setting. The larger the

deviation from 0, the higher the feature importance for the given

workload. We make two observations based on this set of experi-

ments. First, Figure 3a and Figure 3b show the execution of the

sameworkload, TPC-C, on the same hardware for two experimen-

tal runs. Although there is an overlap in the respective feature

spaces, there are also differences. For example, CPU_EFFECTIVE is

only considered an important feature in Figure 3a. There are nu-

merous factors in the cloud that affect collected metrics and thus,

the downstream feature selection results, but generally, the more

often we run feature selection for the same workload, the more

stable our selected features become. Our second observation is

that conceptually similar workloads tend to have a similar set of

important features. Take the features selected by TPC-C Figure 3a

and Twitter Figure 3c: both workloads share common important

features such as the average returned row size (AvgRowSize),
table cardinality (TableCardinality), and the cached plan sizes

(CachedPlanSize), for a total of six overlapping features. This is
expected since both workloads contain point lookup queries

3
. In

contrast, both workloads overlap with only one feature of TPC-H

as shown in Figure 3d. Further, while both Twitter and TPC-H

are analytical workloads, READ_WRITE_RATIO and IOPS_TOTAL
are important features for TPC-H since the analytical queries are

memory intensive and may require large intermediate results

that get flushed to disk in case of a buffer overflow. In contrast,

the Twitter workload queries are point lookup queries (such as

get the tweet for a given tweet id, or get any 20 tweets for a

given user), and thus do not require any intermediate result ma-

terialization. Thus, I/O related features are not as relevant for

this workload. YCSB workloads are significantly more I/O in-

tensive than TPC-C and thus, features such as EstimateIO and
EstimatedAvailableMemoryGrant have increased importance.

However, owing to its similarity to TPC-H as both workloads

contain write operations, CPU_EFFECTIVE, TableCardinality,
and SerialDesiredMemory are also present in the top-7 most

important features.

Insight 1. Which features uniquely identify a workload can
be tied to the type of that workload. Workloads with the same
characteristics often overlap in their representative feature space.

4.3.2 Strategy Evaluation. In addition to determining the im-

pact of selecting different feature sets for workload representa-

tion, we want to examine whether a subset of features is sufficient

to achieve the same (or better) accuracy compared to using all

available features. Table 3 shows an overview of the accuracy

of the various strategies when choosing the top-k features with

𝑘 ∈ {1, 3, 7, 15} and a hardware configuration of 16 CPUs. Again,

we compute the 1-NN clustering accuracy of workloads using

the top-k features as input for the workload similarity algorithm.

3
Point lookup queries are read-only queries that access a small number of rows.

898

Table 3: Comparison of Feature Selection Strategies (Accu-
racy & Elapsed Time).

Features

Strategy top-1 top-3 top-7 top-15 all Time (sec)

Variance 0.483 0.717 0.997 0.997

0.994

0.025

fANOVA 0.969 0.983 0.986 0.989 0.052

MIGain 0.976 0.972 0.986 0.986 2.538

Pearson 0.969 0.983 0.986 0.989 0.031

Lasso 0.467 0.969 0.989 0.989 0.051

Elastic Net 0.467 0.969 0.992 0.989 0.095

RandomForest 0.981 0.972 0.989 0.989 9.923

RFE Linear 0.969 0.972 0.969 0.989 1.128

RFE DecTree 0.247 0.953 0.997 0.997 1.202

RFE LogReg 0.969 0.969 0.989 0.997 18.936

Fw SFS Linear 0.725 0.969 0.969 0.972 580.069

Fw SFS DecTree 0.725 0.969 0.969 0.972 722.072

Fw SFS LogReg 0.969 0.972 0.972 0.972 1829.737

Bw SFS Linear 0.247 0.953 0.997 0.997 2793.939

Bw SFS DecTree 0.969 0.953 0.997 0.997 3978.708

Bw SFS LogReg 0.969 0.978 0.992 0.997 11383.510

Baseline 0.233 0.483 0.975 0.972 0.003

Insight 2. We experimentally observe three different types of de-
pendencies between the number of features and accuracy: Accuracy
increases with an increased number of features; accuracy peaks
with a specific number of features; and the number of features has
inconclusive impact on the measured accuracy.

An overview of the observed behavioral patterns is shown

in Figure 4 aligned with the measured strategies in Table 3, where

strategy name colors correspond to the patterns. Looking at

these numbers in detail, we observe underfitting if only a few

features are used across all approaches. RFE with decision tree

and Backward SFS with linear regression achieve a low accuracy

of 0.247 when selecting only one feature. Both methods select

LOCK_WAIT_ABS which is not an important feature (according

to Lasso) for any of the workloads in the experiment. However,

wrapper-based methods tend to select this feature as it has very

high variance. High variance in a feature means it has a wider

range of values, which can potentially provide more information

for the model to learn from, leading to a larger impact on the

model’s prediction. Other methods that achieves high accuracy

with only one feature (e.g. fANOVA, Mutual Information Gain)

select either AvgRowSize or TableCardinality, which appear

in the top-7 list of important features for all workloads except

TPC-H.When selecting top-3 features, the two under-performing

methods additionally select important features (both methods

pick READ_WRITE_RATIO) which leads to a significant improve-

ment in the accuracy. As the number of features increases, we

observe a performance improvement except for the two inconclu-

sive strategies. Interestingly, for some approaches overfittingmay

occur when all features are used, leading to (slightly) suboptimal

accuracy. Here, some strategies show peaking behavior indicat-

ing its ability in identifying a relevant subset of features, e.g., 7

or 15 features, reducing the overall number of required features

to 24%, resp. 52%, of the number of input features. On average,

we observe that with top-15 features chosen, the same average

accuracy can be reached across all strategies as if all features are

used for clustering, though the actual accuracy varies based on

the respective strategy. Furthermore, we want to highlight that

strategies such as SFS have near-perfect accuracy. The primary

drawback of these strategies is their relatively high execution

time, which is two to three orders of magnitude higher than that

of simple filter-based methods which can obtain the same level

of accuracy with as low as 7 features.

Figure 4: Generalized Accuracy Development Curves.

4.4 Key Takeaways
In our experimental evaluation, we considered 15 feature selec-

tion strategies which were used on 29 resource utilization and

plan features. We observe that the importance of a feature is

dependent on two factors, the chosen feature selection strategy

and the workload that it is applied on. However, we also observe

a correlation between the type of workload and the feature im-

portance ordering; for example, memory-intensive workloads

tend to prioritize I/O related features compared to workloads

containing point lookup queries for which features related to

table cardinality, cached plan sizes, and compilation memory

are the most important. Mixed workloads (such as YCSB) priori-

tize both types of features (i.e., I/O as well as query plan related

features). This takeaway is further validated by looking at the

top-4 features of the production workload (which is also mixed)

being CPU_EFFECTIVE, TableCardinality, StatementEstRows,
and EstimateIO, which are all present in the top-7 features for

YCSB as well. We also observe that for most feature selection

strategies, there exists a trade-off between choosing too few and

too many features, impacting downstream accuracy for work-

load similarity computation. In essence, too few features fail to

capture the characteristics of a workload run while too many

features may lead to overfitting.

5 WORKLOAD SIMILARITY
The second question to examine in this paper is how we can

compute workload similarity with the output of top-k feature

selection as the input. More specifically, given a common feature

set, we want to compute the similarity between workloads where

the difference in feature values or distribution signifies the dissim-

ilarity of the workloads. In this section, we first introduce state-of-

the-art workload similarity computation mechanisms and then

experimentally showcase their advantages and disadvantages.

5.1 Overview of Similarity Computation
Workload similarity computation is the problem of aligning two

workloads such that their feature spaces become comparable,

allowing us to measure the distance between them. The chal-

lenges of computing workload similarity are (𝑖) determining a

suitable feature representation for similarity computation which

we refer to as the data representation problem, and (𝑖𝑖) finding the

similarity algorithm that is most suited to a given feature space,

in the following referred to as similarity computation problem.

5.1.1 Data Representation. During the execution of our work-

loads, we use DBMS built-in tools to extract telemetry for both

query plan and resource utilization statistics. The former con-

tains features characterizing details of a specific query only while

the latter provides a time-series about the state of the workload’s

resource utilization. More generally, these two types of feature

sets present two types of feature spaces: Those that are discrete
and those that are continuous. Continuous feature spaces can

be represented naturally as multivariate time-series (MTS), and

899

Table 4: Similarity computation mechanisms comparison
using mean normalized distances as source of similarity
confidence. − denotes when a mechanism does not achieve
a perfect prediction result.

(a) MTS representation
Resource

3 5 all

𝐿2,1-Norm
mAP 1 0.978 0.978

NDCG 0.993 0.993 0.993

𝐿1,1-Norm
mAP 0.986 0.978 0.992

NDCG 0.993 0.993 0.993

Fro-Norm
mAP 0.986 1 1

NDCG 0.993 0.993 0.993

Canb-Norm
mAP 1 1 1

NDCG 1 1 1

Dependent-DTW
mAP 0.978 0.986 0.986

NDCG 0.993 0.993 0.993

Independent-DTW
mAP 0.981 0.970 0.963

NDCG 0.993 0.993 0.993

Independent-LCSS
mAP 0.896 0.927 0.931

NDCG 0.993 0.986 0.986

(b) Hist-FP representation
Plan Resource Combined

3 7 all 3 5 all 3 7 all

𝐿2,1
mAP 1 1 1 1 1 1 1 1 1

NDCG 1 1 1 0.993 0.993 0.993 1 1 1

𝐿1,1
mAP 1 1 1 0.970 1 1 1 1 1

NDCG 1 1 1 0.993 0.993 0.993 1 1 1

Fro
mAP 1 1 1 1 1 1 1 1 1

NDCG 1 1 1 0.993 0.993 0.993 1 1 1

Canb
mAP 1 1 1 1 0.991 0.991 1 1 1

NDCG 1 1 1 0.993 0.988 0.988 1 1 1

(c) Phase-FP representation
Plan Resource Combined

3 7 all 3 5 all 3 7 all

𝐿2,1
mAP 1 1 1 0.862 - 1 - 1 1

NDCG 0.978 0.989 1 1 - 0.970 - 0.956 0.956

𝐿1,1
mAP 1 1 1 1 1 1 - 1 1

NDCG 0.977 0.988 1 0.998 0.973 0.978 - 0.956 0.956

Fro
mAP 1 1 1 - - - - 1 1

NDCG 0.978 0.990 1 - - - - 0.961 0.956

thus, time-series based distance measures are a good candidate

to measure their similarity as described below. Furthermore, de-

scribing a feature’s value distribution makes comparison between

workloads possible even if the type of observation differs. Equi-

range frequency histograms [29] and techniques like cumula-

tive frequency distribution [47] over set bins is commonly used

to encode distribution information. We will refer to this tech-

nique as Histogram-Based Fingerprinting (Hist-FP) in the follow-

ing. Another strategy is to encode the telemetry values by their

statistics like mean and variance. For example, prior work [46]

introduces Phase-Level Statistical Fingerprinting (Phase-FP) that

deploys change-point detection algorithms, such as Bayesian

change point detection (BCPD) [61], to pinpoint significant shifts

in the statistical properties of the workload. We include the data

representation examples in the full version of the paper [5].

5.1.2 Similarity Computation. Similarity computation is the

task of capturing the difference between two workloads in a sin-

gle numeric score. Depending on the data representation, we

differentiate between two types of similarity computation strate-

gies. First, norm-based distances compute the distance of values

or their distributions. Second, MTS-based similarity computa-

tion relies on the alignment of time-series data to determine the

similarity between workloads.

Norm-Based Similarity. For data pre-processed to matrices of

same sizes, we can compute the distance of a pair of matrices

with the matrix norm. Thus, the norm-based similarity measures

calculate the mathematical space-distance of matrices indepen-

dent of whether the data is stored in a MTS or via distribution

fingerprints. In our experiments, we deploy widely utilized dis-

tance measurement norms such as 𝐿1,1, 𝐿2,1, Frobenius, Canberra,

Chi-Square (Chi2), and the Correlation norm [57]. The advantage

of these norms is their linear time computation. Furthermore,

they are a natural fit for Hist-FP and Phase-FP matrices.

MTS Distance Measure. In addition to norm-based measure-

ments, using MTS-based distance measures allows us to utilize

the ordered nature of time-series. For example, Dynamic Time

Warping (DTW) [77] matches time-series with shapes that are

partially stretched or compressed. Specifically, given two time-

series 𝒂 = (𝑎1, 𝑎2, · · · , 𝑎𝑚) and 𝒃 = (𝑏1, 𝑏2, · · · , 𝑏𝑛), we construct
a matrix𝑴 and𝑴𝑖, 𝑗 = (𝑎𝑖 −𝑏 𝑗)2. We can represent a time-series

alignment by a path traversal from 𝑴1,1 to 𝑴𝑚,𝑛 where each

step can move to the entry below, to the right, or to the bottom

right. A path along the diagonal of 𝑴 is the Euclidean distance

of 𝒂 and 𝒃 . Different from the one-to-one distance comparison in

norm-based similarity measurements, DTW uses one-to-many

comparisons which is more robust. The original uni-variate DTW

algorithm can be further generalized into independent and de-
pendent strategies [82]. Independent multivariate-DTW sum up

the individual DTW distance for each dimension, allowing for

more flexibility for uncorrelated dimensions, whereas the depen-
dent strategy uses squared Euclidean distance for constructing

the matrix 𝑴𝑖, 𝑗 =
∑
𝑘∈𝐾 (𝐴𝑖𝑘 − 𝐵 𝑗𝑘)2 where 𝐴 and 𝐵 are both

multivariate time-series with 𝐾 features.

Another commonly used time-series distancemeasure is Longest

Common Sub-Sequence (LCSS) [45] that computes the edit dis-

tance between multiple time-series’. More specifically, LCSS mea-

sures the length of the most similar sub parts of the two time-

series, making it suitable for time-series with different lengths.

Similarly to the differentiate of dependent and independent DTW,

dependent LCSS aligns and compares all dimensions of a mul-

tivariate time-series together, finding the longest common sub-

sequence across all dimensions while independent LCSS aligns

each dimension of the multivariate time-series independently,

identifying the longest common subsequence for each dimension

separately.

5.2 Experiments
In our experiments, we first normalize and transform the data of

our benchmarks to fit the MTS, Hist-FP, and Phase-FP. For Hist-

FP, we summarize uni-variate time-series data of each feature

by evenly splitting the feature value range into 𝑛 sub-ranges

𝐵1, 𝐵2, · · · , 𝐵𝑛 where each feature value is assigned to a bucket

𝐵𝑖 and we set 𝑛 = 10. For Phase-FP, we use the mean, median,

and variance to capture the distribution of each phase.

As norm-based similarity techniques, we deploy the 𝐿1,1, 𝐿2,1,

Frobenius, Canberra, Chi2, and the Correlation norm in conjunc-

tion with Hist-FP, Phase-FP and MTS. For MTS, we addition-

ally calculate the dependent and independent versions of DTW

and LCSS. Determining which data representation and similar-

ity computation mechanism is most effective is non-trivial. In

our evaluation, we focus on three dimensions: (𝑖) reliability, (𝑖𝑖)

discrimination power, and (𝑖𝑖𝑖) robustness.

Reliability. This dimension describes whether a method cor-

rectly identifies the workloads that exhibit the highest degree

of similarity. Comparative analysis against ground truth or ex-

pert judgments, i.e. correctly identifying a (non-)match which in

900

res_3 res_5 res0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Di

st
an

ce

TPC-C
TPC-H

Twitter

(a) Canberra-norm
on MTS.

plan_3plan_7 plan res_3 res_5 res all_3 all_7 all0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Di

st
an

ce

TPC-C TPC-H Twitter

(b) 𝐿2,1-norm on Hist-FP.

Figure 5: Similarity results of the Twitter workload.

plan_3plan_7 plan res_3 res_5 res all_3 all_7 all0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Di

st
an

ce

TPC-C TPC-H Twitter

Figure 6: Similarity results of the TPC-
C workload of 𝐿2,1-norm on Hist-FP.

essence is the same as finding the most closely related workload

run (1-NN). Additionally, we use the mean Average Precision

(mAP) to compare the confidence of similarity results.

Discrimination Power. An effective approach should differ-

entiate between similar and dissimilar workloads accurately. It

should assign higher similarity scores to workloads with compa-

rable behavior and lower scores to those with distinct patterns.

Furthermore, it should be sensitive to subtle differences while

being robust to noise and variations within the data. After nor-

malizing the distance generated by each methods, we compare

the differences between the most similar workloads to the least

similar workloads as identified by expert judgement. To quantify

the difference, we use the Normalized Discounted Cumulative

Gain (NDCG) [51], a metric commonly used to evaluate ranking

systems based on relevance. In our case, NDCG rewards shorter

distances for workloads that are more similar.

Robustness. This final dimension describes an approach’s re-

silience to noise, outliers, and missing data. In real-world use

cases, we often observe measurement irregularities, thus, robust

similarity computation ensures reliable results, even in the pres-

ence of data imperfections.

5.2.1 Comparison of Similarity Methods. In our first set of

experiments, we compare TPC-C, TPC-H, and Twitter on a 16-

CPU setup and show the results of those similarity computation

methods that achieve perfect 1-NN prediction in Table 4. To

determine the top-k features, we use RFEwith Logistic Regression

and show the selected feature sets in Table 5.

Reliability. Looking at the mAP results, we see that no similarity

computation dominates the others. However, we generally ob-

serve that the 𝐿1,1, 𝐿2,1, Frobenius norms work well if combined

with Hist-FP and Phase-FP across all feature set combinations.

Furthermore, the Canberra and Frobenius norms also work well

with MTS and Hist-FP respectively.

Discrimination Power. Looking at the NDCG results in Table 4,

we observe that Hist-FP using the 𝐿2,1, 𝐿1,1, Frobenius, and Can-

berra norms as well as MTS using the Canberra-norm results

in high NDCG scores. This indicates their high discrimination

power within this setup. Although some norms on MTS have a

relatively good NDCG score of 0.993, most norms do not perform

as well if combined with MTS and Phase-FP. For example, they

fail to identify that the TPC-C workload is a transactional work-

load similar to Twitter, assigning a high distance score instead.

Robustness. Finally, we can visualize the robustness of the dif-

ferent techniques through the error variation of each workload

since we execute each of them multiple times and thus has (po-

tentially) different values within a feature space. An example of

such a visualization is shown in Figure 6. In essence, the smaller

the error bars, the more robust the approach. We observe that in

Table 5: Top-7 features selected by RFE LogReg for set of
only plan query statistics features and set of all features.
Top-5 features selected for set of only resource utilization
features. The features are arranged in descending feature
importance from top to down in each column. Top-3 fea-
tures for each type are colored.

Top-7 Plan

MaxCompileMemory, CachedPlanSize, AvgRowSize,
EstimateIO, StatementSubTreeCost,

SerialRequiredMemory, CompileMemory

Top-5 Resource
LOCK_WAIT_ABS, MEM_UTILIZATION, LOCK_REQ_ABS,

CPU_UTILIZATION, CPU_EFFECTIVE

Top-7 All

LOCK_WAIT_ABS, MaxCompileMemory, AvgRowSize,
CachedPlanSize, EstimateIO,

MEM_UTILIZATION, LOCK_REQ_ABS

this set of experiments, the error for MTS-based approaches is

slightly higher on average. As we will discuss later, this is likely

related to the use of resource utilization features only.

Insight 3. In our experiments, Hist-FP with 𝐿1,1, 𝐿2,1, Frobe-
nius, and Canberra norms have similarity computation results that
satisfy the reliability, discrimination power, and robustness criteria.
Methods based on Phase-FP, DTW, LCSS, Correlation, and Chi2
norm give less satisfactory results across all criteria although they
may have good results across a subset.

5.2.2 Importance of Feature Selection. Next, we investigate
how the choice of feature space impacts similarity computation

results. We focus on the following feature sets: plan-only features,

resource-only features, and a combination of thereof. We choose

scenarios with only one type of features (plan or resource) as

they are collected using different rationales and requires different

implementation in code, and therefore might not be simultane-

ously available in practice. Additionally, we evaluate the impact

of different feature subset sizes, including top-3 and top-7 subsets

for plan-only and combined features. Due to the limited number

of resource-only features, we consider the top-3 and top-5 subsets

(instead of top-7) for this feature set category.

Reliability. Referring again to Table 4, we observe that Hist-

FP and Phase-FP tends to achieve perfect mAP with both plan

and combined features. Furthermore, two similarity computa-

tion techniques (𝐿2,1-norm and Frobenius-norm) on Hist-FP and

one (𝐿1,1-norm) on Phase-FP produce reliable results consistently

across majority of the feature subsets. Other similarity computa-

tion techniques on Hist-FP and Phase-FP achieve perfect 1-NN

prediction accuracy using resource features alone, while getting

lower mAPs. MTS uses resource features only and achieves good

reliability for the Canberra-norm on MTS, top-3 using 𝐿2,1-norm

onMTS, top-5 and all features for Frobenius-norm. In general, our

results show that most fingerprint representations perform better

when using plan or combined features compared to resource-only

features. We also observe that all top-3 feature sets tend to be less

accurate, signified by a low mAP score, as their feature space is

901

plan_3 plan_7 plan0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Di

st
an

ce
TPC-C TPC-H Twitter TPC-DS

Figure 7: Similarity results of 𝑃𝑊 compared to standardized
workloads on different hardware settings.

not diverse enough to allow for effective similarity computation.

This aligns with our insights stated in Section 4.3.2, where we

observed underfitting with too few features chosen.

Discrimination Power. For most feature set combinations, Hist-

FP with 𝐿1,1, 𝐿2,1, Canberra, and Frobenius norms correctly iden-

tify the identical, similar, and different workloads, indicating high

discrimination power. However, using all available features leads

to a smaller normalized distance difference between the identical

and the similar workloads, as shown in Figure 5b and Figure 6. In

contrast, using the top-7 features more distinctively differentiates

theworkloads. This alignswith our insights stated in Section 4.3.2,

where we observed that the performance may start to decrease

if too many features are chosen due to overfitting.

Robustness. Using Figure 5 and Figure 6 for reference, we

observe that experiments using resource-only utilization fea-

tures exhibit a higher standard error compared to other feature

(sub)sets. The bin values for TPC-C and Twitter are more skewed,

and more spread for TPC-H.

Insight 4. Using plan-only or a combined feature set improves
workload similarity computation across data representation and
similarity computation methods. Additionally, the number of fea-
tures should neither be too small (not enough information) nor too
big (too much information).

5.2.3 Similarity Computation using a Production Workload.
Next, we applied our findings to determine whether similarity

computation can be used to describe the characteristics of an

unknown workload. For that purpose, we compare our produc-

tion workload 𝑃𝑊 to four reference workloads: TPC-C, TPC-H,

TPC-DS, and Twitter. In this set of experiments, we use a different

hardware setup consisting of 80 virtual cores. We visualize the

results using Hist-FP applied in combination with the Canberra

norm in Figure 7. Note that we only have access to plan features

for this experiment due to missing resource tracking on the setup

instance. Looking at the resulting numbers, we conclude that 𝑃𝑊

seems to be closer related to the TPC-H workload rather than

TPC-C, TPC-DS, or Twitter. In fact, we manually confirmed that

the queries in 𝑃𝑊 are most commonly simple analytical queries

which align better with TPC-H. We furthermore note for this

workload that, again, using top-3 or all available features is not as

accurate as using the top-7 features, substantiating our findings

from our prior synthetic workload experiments.

5.3 Key Takeaways
In our experimental evaluation, we have discussed two key parts

of workload similarity computation: The raw data encoding and

the similarity computation algorithm. We have furthermore in-

troduced an evaluation scheme for the effectiveness of similarity

computation algorithms along three dimensions, i.e., reliability,

discrimination power, and robustness. In our experiments with

different benchmarks as example workloads, the Hist-FP encod-

ing has shown to be the most promising in providing accurate

similarity computation results. Additionally, using this data rep-

resentation incurs little computational overhead and low storage

requirements. We also observe experimentally that plan-based

features oftentimes lead to better similarity computation results,

substantiating the need for effective feature selection strategies.

6 WORKLOAD RESOURCE PREDICTION
The final question we want to explore in this paper is whether

we can predict the resource utilization of a workload on a new

set of hardware configurations. Recall that resource prediction is

the problem of predicting the performance of the same workload

on a different system setup, leveraging information collected

from similar workloads that are similarly scaled. In this section,

we will split the problem into two parts: (𝑖) defining the context
of the prediction behavior and (𝑖𝑖) defining the strategies that
help to model the it. The former answers the question how we

should think about the big picture of modeling resource predic-

tion, i.e., whether we can assume linear performance improve-

ments with proportionate hardware requirement changes, while

the latter helps us to determine how to use well-established ML

techniques to appropriately represent resource scaling behavior.

6.1 Overview of Modeling Techniques
In cloud settings, providers commonly have the ability to pro-

vision more than one type of resources. For example, Microsoft

Azure allows users to select how many cores are provisioned for

their VM or how much memory is allocated, where each of the

hardware configurations is referred to as a stock keeping unit

(SKU). For both the user and the provider, one important question

in terms of resource utilization is to identify the best trade-off

between workload performance and cost. In other words, if we

can model the performance per SKU, we can calculate the optimal

per-user resource allocation, benefiting both the provider (fewer

resources wasted) and the user (less cost).

6.1.1 Modeling Context. The first question that we need to

examine is how we can define the context of a resource scaling

model. We observe two different approaches:

Single Scaling Model Approach. In this approach, we develop

a comprehensive model capturing the relationship between dif-

ferent SKUs and a specific workload, i.e., showcasing how the

workload develops as a progression over different hardwares.

Pairwise Scaling Model Approach. Instead of developing a

holistic model, we focus on pairwise scaling factors that describe

the relationship between the performance of pairs of SKUs. The

relationship of a pair of data points is linear, simplifying the re-

quired modeling strategies. The scaling factor then represents the

change in performance when moving from one SKU to another.

6.1.2 Modeling Strategies. Next, we describe several ML mod-

eling strategies that are commonly used for predicting workload

behavior. Note that for this specific problem, we do not want to

predict the behavior of a workload itself but of a workload on a

different hardware configuration. Thus, we model the array of

available SKUs as a vector of size 𝑠 , where 𝑠 is the number of avail-

able hardware configurations. We then measure the performance

of a workload, 𝑦, w.r.t. a SKU by using traditional performance

metrics such as latency or throughput.

Linear Models. This type of models are used when we presume

a linear relationship between an independent variable, the SKU,

and a response variable, the performance metric in this case.

902

5 10 15
Num CPU

350

400

450

500

Th
ro

ug
hp

ut

(a) Singlemodel. Each
color encodes a differ-
ent data group.

5 10 15
Num CPU

360

380

400

420

440

Th
ro

ug
hp

ut
5 10 15

Num CPU
5 10 15

Num CPU

2-4 2-8 2-16 4-8 4-16 8-16

(b) Pairwise models. Each plot shows the models for
a data group. Different colored lines in a plot shows
models for pairs of #CPUs (shown in the legend).

Figure 8: Comparison of scaling model approaches using LMM as the mod-
eling strategy and TPC-C as the observed workload on varying hardware
configurations. A model or a set of models is built for each of the three
data groups. The shaded region is the Confidence Interval of prediction.

0 5 10 15
Num CPU

380

390

400

410

420

Th
ro

ug
hp

ut

(a) Single model.

5 10 15
Num CPU

370

380

390

400

410

420

Th
ro

ug
hp

ut

2-4
2-8
2-16
4-8
4-16
8-16

(b) Each color represents a
model for a pair of #CPU.

Figure 9: Comparison of scaling model ap-
proaches using SVM as the modeling strategy
and TPC-C as the observed workload on vary-
ing hardware configurations.

Regression [56]. Regression models come in a variety of types,

such as linear, polynomial, and lasso, for different relationship

between a dependent variable and independent variables.

Linear Mixed Effect Model (LMM) [7]. This is a statistical

technique that extends the traditional linear model to accommo-

date data that is grouped or clustered. LMM allows the model to

have group-specific intercepts and slopes, handling both fixed

effects, the standard independent variable, and random effects,

which accounts for the variation among clusters.

Non-Linear Models. Non-linear models are commonly used if

there is no continuous arc across the data.

MultivariateAdaptive Regression Splines (MARS) [34].MARS

partitions the predictor space into regions and fits linear regres-

sions within each one, providing a piece-wise linear fit.

Support Vector Machine (SVM) [24, 59, 84]. SVM regression,

with its basic version modeling a linear relationship, is similar

to regression, but more effective in modeling non-linear rela-

tionships between various features and our target performance

metric with the help of different non-linear kernels.

Gradient Boosting (GB) [35, 36]. Gradient Boosting builds

a predictive model in a stage-wise fashion, using an ensemble

of weak prediction models, typically decision trees, to create a

strong overall predictor. It gives more weight to the data points

that were incorrectly predicted in the previous iteration.

Neural Networks (NNet) [44, 55]. Neural networks model the

outcome by intermediary set(s) of unobserved variables, called

hidden units or hidden variables, which are linear combinations

of the predictors transformed by sigmoidal functions. These non-

linear functions enable complex patternmatching between inputs

and outputs. We used Multi-Layer Perceptron regressor with 6

layers from Scikit-Learn [71] in our experiments.

6.2 Experiments
To predict the performance of different workloads, we use the

same experimental setup as previously, deploying a variety of

standardized benchmarks on four SKUs with different hardware

characteristics. To simplify the setup, we do not vary all aspects

of the hardware configuration but instead focus on the number

of available CPUs and the throughput of a workload as the target

variable. We pick three times across the day, and each workload

and SKU combination is run at those three times to collect the

metrics, allowing us to capture potential variations in different

runs. The metrics obtained from workloads that were executed at

the same time of the day constitute a data group. Furthermore, as

a data augmentation strategy, we use random sampling without

replacement to down-sample a timeseries to ten smaller-sized

series, and since we run each experiment setup three times, the re-

sult is a total of 30 data points for each workload setting. Next, we

do a 5-fold cross validation for each models. Finally, we calculate

the normalized root mean square error (NRMSE) [79].

6.2.1 Single vs Pairwise Modeling. In our first set of exper-

iments, we want to examine the impact of different modeling

contexts, i.e., using a single vs a pairwise model, on the prediction

outcome. To visualize the difference, we present the application

of a linear model, LMM, in both single and pairwise scaling sce-

narios. To determine whether time-of-day is a factor that impacts

the workload performance, we build models using the metrics

from the three data groups corresponding to the three executions

of the workloads on the SKUs (Figure 8). In Figure 8b, we can

see that that the transition between hardware configurations is

different in each set of experiments although we observe that in

general, the throughput seems to increase with an increase in

available CPUs as one would expect. However, there are varia-

tions in the pairwise model that are not captured if we use the

same data and build a single model (Figure 8a). This observation

is not unique to linear models but we observe similar behavioral

characteristics in non-linear scaling models as shown in Figure 9.

Insight 5. Although a single model can capture workload scal-
ing trends, transitions between specific hardware configurations
can be modeled more accurately using pairwise scaling models.

6.2.2 Modeling Strategies. We now focus our evaluation on

the impact of different modeling strategies. Table 6 shows an

overview of all evaluated algorithms for single as well as pair-

wise models using NRMSE as the evaluation metric. We average

the NRMSE over all upwards scaling pairs within an experiment,

i.e., the six combinations scaling up between 2, 4, 8, and 16 CPU

nodes respectively. We setup a baseline that assumes inverse lin-

ear scaling relationship between CPU and latency, i.e. if number

of CPU increase from 2 to 4, the latency reduce by half. Among

all learning methods, gradient boosting performs the best with a

mean NRMSE of around 0.271 for both contexts, followed closely

by pairwise SVM with a mean NRMSE of 0.279 across all evalu-

ated workloads. However, we observe that on average, the train-

ing time for SVM is 10× to 40× faster than gradient boosting.

We note that neural-network performs the worst, which is ex-

pected as this method is more suitable for datasets with a larger

number of data points and features. Across all models, the low-

est observed NRMSE for a workload is 0.231 while the highest

903

Table 6: Mean throughput prediction (NRMSE) of 5-fold cross validation by models built with each configuration. We use
base workload with varying workload types (workload name) and number of concurrent terminals (subscript in workload
name). The lowest mean NRMSE for each workload setting and overall for each method is shown in bold. The lowest mean
NRMSE among all workloads is shaded green, and the largest (excluding NNet) shaded yellow.

Strategy

Mean Training

Time (s)

Mean Test NRMSE

TPC-C4 TPC-C8 TPC-C32 Twitter4 Twitter8 Twitter32 TPC-H1 Mean

P
a
i
r
w
i
s
e

Regression 0.0597 0.293 0.303 0.269 0.343 0.320 0.315 0.236 0.297

SVM 0.0327 0.276 0.297 0.270 0.304 0.284 0.287 0.237 0.279

LMM 1.2066 0.281 0.306 0.275 0.305 0.290 0.285 0.240 0.283

GB 0.5846 0.271 0.292 0.255 0.290 0.284 0.276 0.231 0.271
MARS 0.1164 0.304 0.322 0.297 0.286 0.337 0.299 0.258 0.300

NNet 2.7698 0.734 0.913 1.034 1.200 2.465 7.695 2.781 2.403

S
i
n
g
l
e

Regression 0.0011 0.304 0.315 0.282 0.316 0.359 0.324 0.249 0.307

SVM 0.0032 0.269 0.290 0.281 0.304 0.294 0.285 0.255 0.283

LMM 0.4234 0.340 0.312 0.322 0.352 0.366 0.296 0.256 0.321

GB 0.1105 0.264 0.287 0.261 0.290 0.283 0.280 0.245 0.273

MARS 0.0187 0.301 0.305 0.279 0.302 0.356 0.307 0.249 0.300

NNet 0.3045 0.667 0.931 1.151 1.185 2.768 8.547 1.971 2.460

Baseline 9.897 12.503 17.959 21.072 67.341 90.970 0.552 31.470

TPC-C TPC-H Twitter YCSB
0

20

Di
st

an
ce

Figure 10: Hist-FP 𝐿2,1 distance of YCSB to other workloads.

2 4 8
Num CPU

1000

1500

Th
ro

ug
hp

ut

Expr1 True Throughput
Expr1 Predict Throughput
Expr2 True Throughput
Expr2 Predict Throughput
Expr3 True Throughput
Expr3 Predict Throughput
Mean True Throughput

Figure 11: Throughput prediction of YCSB scaling up from
2 CPUs to 8 CPUs using pairwise scalingmodels of existing
TPC-C workloads and the 3 runs of YCSB on SKU with 2
CPUs. The different colors show the performance and scal-
ing trends for the 3 TPC-C runs. A prediction is generated
for each experiment run (denoted by the dashed lines).

(excluding NNet) is 0.366, corresponding to a deviation of ≈ 23%

and 37% from the actual observed throughput value ranges re-

spectively. Given our limited scope of experiments, such high

variation can be partially attributed to noise within the experi-

ment execution. Nevertheless, we observe that most strategies

behave similarly within their model restrictions, i.e., independent

of whether a single or pairwise model has been chosen. Finally,

we observe that all methods performs substantially better than

the naive linear scaling baseline.

Insight 6. Simpler ML models are more suitable for modeling
scaling behaviors than complex ones. Among the simple models, the
choice of model context has more impact on the workload prediction
performance than the choice of modeling strategy.

6.2.3 End-to-End Prediction. To test how well our end-to-end

prediction framework works for workloads on different hardware

settings, we set up an experiment using YCSB as our target work-

load and measure its workload on two different SKUs with 2 and

8 CPUs respectively. Using the latter for verification purposes

only, we assume that only the data of the 2 CPU hardware config-

uration is known to the pipeline. Referring back to the insights

found in Section 5.1, the query plans and resource utilization

metrics are encoded via Hist-FP and we use top-7 among all plan

features and resource utilization features obtained by applying

RFE with Logistic Regression. To compute the similarity between

the new and existing workload types, we use the 𝐿2,1 norm and

calculate the distances as shown in Figure 10. Here, we observe

that YCSB is most similar to TPC-C, closely followed by Twitter.

We then use a pairwise model in combination with SVM to

determine the scaling behavior from 2 CPUs to 8 CPUs for our

previously observed TPC-C experiments. Figure 11 shows the

comparison of the actual measurements as well as the prediction

based on TPC-C. We first observe that the ground truth has per-

formance variations due to noise on the virtual machines shown

in the variation of the measurements at different times of day,

each set of experiments is colored differently. However, when

averaging the throughput values, which would happen with a

sufficient number of repeated experiments or measurements used

for training, the resulting scaling trend flattens. This matches

our prediction based on TPC-C which results in a NRMSE of

0.0948 for this experiment. To show that with pairwise scaling

prediction models, we are able to prediction the workload perfor-

mance when scaling multiple hardware configurations, we set

up a second suite of experiments as follows: We use YCSB with

8 concurrent terminals as our target workload and measure its

performance on 2 different SKUs (S1) 4 CPUs and 32 GB memory;

and (S2) 8 CPUs and 64 GB memory. We run TPC-C, TPC-H, and

Twitter on these two configurations and build pairwise scaling

models. To test our scaling predictions, we assume that only met-

rics from the first configuration is known to us (i.e. YCSB run on

S1) and, using the same methodology as in our prior experiment,

we then determine the workload most similar to YCSB which

is TPC-C. Using the scaling model corresponding to TPC-C, we

then predict the workload throughput of YCSB on S2. The pre-

dicted throughput of the model is ∼ 1100 req/sec, a 0.206 mean

average percentage error (MAPE) from the true workload per-

formance (1400 req/sec). On the other hand, if we use Twitter as

the reference workload, the predicted throughput is ∼ 600 with

an error of 0.563 from the actual performance. This experiment

demonstrates the applicability of the prediction framework for

multi-dimensional SKUs, an important topic for future research.

6.3 Key Takeaways
In our evaluation, we have found pairwise scaling prediction

models to have the highest accuracy when modeling the scaling

behavior from one SKU to another. Our observations about the

accuracy for single vs pairwise scaling models will amplify for

904

non-linear scaling decisions, i.e., where we want to scale to a

SKU that has different resources such memory, network, chip

design etc. Furthermore, we observe that a complex model (NNet)

can lead to higher prediction error compared to simple models.

The simple models differed only minimally from each other in

prediction error with gradient boosting and SVM being the best

performing. We see a relatively high prediction error which we

traced to noise in the experimentation runs. We expect the error

to decrease with an increase in training data. Finally, we applied

our end-to-end pipeline to two workload runs, varying only CPU

and CPU-Memory pairs respectively, and showcased how the

framework would function in practice.

7 DISCUSSION
In this work, we explored an end-to-end pipeline for workload

prediction. We now summarize our insights from our experimen-

tal results and outline future work that merits more investigation.

No feature set fits all workloads. In our experiments on feature

selection strategies, we have discovered that although the choice

of representative features correlates across types of workloads,

they can be vastly different when comparing different types of

workloads. Our experiments suggest that while finding a uni-

versally representative (minimal) feature set across workloads is

unlikely if not impossible, there are best practices that we can

follow when choosing features sets for pipelines such as ours:

(1) Using too few features may result in overlooking important

characteristics of a workload.

(2) Using too many features may result in dilution of the dis-

tinctiveness of a workload run, in addition to an increased

computational overhead and chance of overfitting.

(3) Workloads with comparable scaling behavior typically show

a similar feature importance ordering.

(4) Based on our experiments, plan-only or a combination of

plan-based and resource-utilization features often produce

better downstream results.

Not all similarity computation techniques are equal. Work-

load similarity computation is an effective mechanism to reduce

the search space for workload prediction if utilized properly. We

have found that (𝑖) clustering algorithms are highly sensitive

to which features are used for similarity computation, and that

(𝑖𝑖) not all strategies perform well along our evaluation dimen-

sions of reliability, discrimination power, and robustness. Overall,

we have found that norm-based algorithms tend to perform bet-

ter and that fingerprinting-based data representation performs

on average better than timeseries-based data representation.

Predict scaling between rather than across SKUs. In our

experimental evaluation on workload resource prediction, we

have focused on a relatively simple use case, i.e., resource scaling

between SKUs that only vary in the number of CPU cores. Even

for this use case, we have observed that predicting scaling behav-

ior is not trivial: It is neither strictly linear nor fully predictable

in a cloud setting due to environmental noise. Given a wide range

of available SKUs for cloud providers, we believe that pair-wise

scaling prediction models show more promise than models that

assume a continuous performance relationship between hard-

ware configurations. This is substantiated in our experiments,

where the choice of the model context dominates the choice and

impact of the modeling algorithm. We posit that these observa-

tions will amplify if we modify the SKUs not only along one

dimension (CPUs) but multiple (memory, network, storage etc.).

Future Work.We believe that our findings w.r.t. workload re-

source predictions can guide and enhance future research in this

area. Our findings indicate that there are opportunities for im-

proving existing pipelines and exploring novel, more targeted

pipelines for resource prediction based on workload utilization.

They further show that workload modeling and characterization

is still a relatively underutilized space: If we can model (the simi-

larity between) workloads more accurately, we can improve our

ML prediction tasks significantly. More specifically, our work

shows that the wrong choice can oftentimes have detrimental

impact on downstreamML algorithms, thus raising the open ques-

tion of how we can ensure data quality within such pipelines.

The study of dimensionality reduction techniques for feature se-

lection is also an important problem. A more detailed discussion

can be found in the Appendix of the full version of the paper [5].

In this paper, we have focused on the setting where the re-

source usage is not saturated, as is commonly found in prac-

tice [3]. However, there also exist scenarios where resources may

get bottlenecked. For such cases, Roofline modeling [93] proves

valuable. The Roofline model assumes that any execution on a

specific hardware is bounded either by its memory resources or

its compute resources. All executions on this particular hardware

correspond to points within the space bounded by piecewise

linear functions that act as performance ceilings. In our setting,

Roofline models can be seamlessly integrated with linear predic-

tion strategies used in the prediction component of the pipeline.

For instance, a Roofline style model that plots throughput on the

y-axis and #CPUs on the x-axis for a fixed main memory can

reveal that adding more compute resources to a memory-bound

workload is ineffective and thus, unlikely to enhance throughput.

We defer more details to the full version of the paper [5]. In more

complex settings involving distributed systems, extensions of

the Roofline model, such as the Ridgeline model [17], can be

combined with non-linear modeling strategies to better capture

hardware-specific trends across multiple variables, such as net-

work and memory capacity. These research directions pave the

way for an exciting agenda in studying workload scaling predic-

tion. The applicability of our framework to other types of rela-

tional workloads (such as batchedworkloads or high performance

computing workloads), as well to non-relational settings (such as

key-value stores) is also an important problem. Note that our pre-

diction pipeline performs SKU prediction based on workload sim-

ilarity by only looking at metrics obtained from prior runs of dif-

ferent workloads. Thus, in principle, our solution can be applied

to any type of workload as long as the appropriate metrics can be

collected. Since our implementation is built on top of BenchBase,

any relational workload that can be executed via BenchBase can

potentially benefit from our work without additional overhead.

8 CONCLUSION
In this work, we have conducted a thorough analysis of a com-

monML-based end-to-end pipeline for workload resource scaling

prediction. We first discussed its potential pitfalls and impact of

algorithm choices for each of the different building blocks of the

pipeline (feature selection, similarity computation, and resource

prediction) and substantiated our insights with experiments tar-

geted to highlight the different techniques and their impact on

the prediction pipeline. We then summarized our observations

and proposed a series of recommendations based on our exper-

imental observations that are likely to improve the prediction

quality of ML-based resource prediction pipelines.

905

REFERENCES
[1] [n.d.]. https://man7.org/linux/man-pages/man1/perf.1.html

[2] [n.d.]. https://learn.microsoft.com/en-us/sql/t-sql/statements/

set-statistics-xml-transact-sql?view=sql-server-ver16

[3] [n.d.]. 2024 Kubernetes Cost Benchmark Report. https://cast.ai/

kubernetes-cost-benchmark/

[4] [n.d.]. Cutting costs in the cloud: six strategies for SaaS

companies. https://www.ey.com/en_us/insights/tmt/

cutting-costs-in-the-cloud-six-strategies-for-saas-companies

[5] 2024. From Feature Selection to Resource Prediction: A Survey

of Commonly Applied Workflows and Techniques . Extended Ver-

sion. https://github.com/mush-zhang/scaling-prediction/blob/main/

ScalingPerformanceComputation_extended.pdf

[6] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak, and

Rohit Jnagal. 2021. Take it to the limit: peak prediction-driven resource

overcommitment in datacenters. In Proceedings of the Sixteenth European
Conference on Computer Systems (EuroSys ’21). ACM. https://doi.org/10.1145/

3447786.3456259

[7] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2014. Fitting

linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823 (2014).
[8] R. Battiti. 1994. Using mutual information for selecting features in supervised

neural net learning. IEEE Transactions on Neural Networks 5, 4 (1994), 537–550.
https://doi.org/10.1109/72.298224

[9] Verónica Bolón-Canedo, Amparo Alonso-Betanzos, Laura Morán-Fernández,

and Brais Cancela. 2022. Feature Selection: From the Past to the Future.
Springer International Publishing, Cham, 11–34. https://doi.org/10.1007/

978-3-030-93052-3_2

[10] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.

https://doi.org/10.1023/a:1010933404324

[11] David Buchaca, Josep LLuis Berral, ChenWang, andAlaa Youssef. 2020. Proac-

tive Container Auto-scaling for Cloud Native Machine Learning Services. In

2020 IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE.
https://doi.org/10.1109/cloud49709.2020.00070

[12] Joyce Cahoon, WenjingWang, Yiwen Zhu, Katherine Lin, Sean Liu, Raymond

Truong, Neetu Singh, Chengcheng Wan, Alexandra M. Ciortea, Sreraman

Narasimhan, and Subru Krishnan. 2022. Doppler: Automated SKU Recom-

mendation in Migrating SQL Workloads to the Cloud. Proc. VLDB Endow. 15,
12 (2022), 3509–3521. https://www.vldb.org/pvldb/vol15/p3509-zhu.pdf

[13] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya.

2015. Workload Prediction Using ARIMA Model and Its Impact on Cloud

Applications’ QoS. IEEE Transactions on Cloud Computing 3, 4 (Oct. 2015),

449–458. https://doi.org/10.1109/tcc.2014.2350475

[14] George Casella and Roger Berger. 2024. Statistical inference. CRC Press.

[15] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna Gum-

madi. 2010. Measuring User Influence in Twitter: The Million Follower

Fallacy. Proceedings of the International AAAI Conference on Web and Social
Media 4, 1 (May 2010), 10–17. https://doi.org/10.1609/icwsm.v4i1.14033

[16] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. 2008.

Diagnosing Estimation Errors in Page Counts Using Execution Feedback.

In 2008 IEEE 24th International Conference on Data Engineering. 1013–1022.
https://doi.org/10.1109/ICDE.2008.4497510

[17] Fabio Checconi, Jesmin Jahan Tithi, and Fabrizio Petrini. 2022. Ridgeline: A

2d roofline model for distributed systems. arXiv preprint arXiv:2209.01368
(2022).

[18] Yanjiao Chen, Long Lin, Baochun Li, Qian Wang, and Qian Zhang. 2021.

Silhouette: Efficient cloud configuration exploration for large-scale analytics.

IEEE Transactions on Parallel and Distributed Systems 32, 8 (2021), 2049–2061.
[19] Zhijia Chen, Yuanchang Zhu, Yanqiang Di, and Shaochong Feng. 2015. Self-

Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and

Subtractive-Fuzzy Clustering Based Fuzzy Neural Network. Computational
Intelligence and Neuroscience 2015 (2015), 1–14. https://doi.org/10.1155/2015/

919805

[20] Hosik Choi, Donghwa Yeo, Sunghoon Kwon, and Yongdai Kim. 2011. Gene

selection and prediction for cancer classification using support vector ma-

chines with a reject option. Computational Statistics & Data Analysis 55, 5
(may 2011), 1897–1908. https://doi.org/10.1016/j.csda.2010.12.001

[21] Georgia Christofidi, Konstantinos Papaioannou, and Thaleia Dimitra Doudali.

2023. Is Machine Learning Necessary for Cloud Resource Usage Forecasting?.

In Proceedings of the 2023 ACM Symposium on Cloud Computing (SoCC ’23).
ACM. https://doi.org/10.1145/3620678.3624790

[22] Georgia Christofidi, Konstantinos Papaioannou, and Thaleia Dimitra Doudali.

2023. Toward Pattern-based Model Selection for Cloud Resource Forecast-

ing. In Proceedings of the 3rd Workshop on Machine Learning and Systems
(EuroMLSys ’23). ACM. https://doi.org/10.1145/3578356.3592588

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. 2010. Benchmarking cloud serving systems with YCSB. In

Proceedings of the 1st ACM symposium on Cloud computing (SOCC ’10). ACM.

https://doi.org/10.1145/1807128.1807152

[24] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Ma-
chine Learning 20, 3 (Sept. 1995), 273–297. https://doi.org/10.1007/bf00994018

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fon-

toura, and Ricardo Bianchini. 2017. Resource central: Understanding and

predicting workloads for improved resource management in large cloud plat-

forms. In Proceedings of the 26th Symposium on Operating Systems Principles.

153–167.

[26] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fon-

toura, and Ricardo Bianchini. 2017. Resource Central: Understanding and

Predicting Workloads for Improved Resource Management in Large Cloud

Platforms. In Proceedings of the 26th Symposium on Operating Systems Princi-
ples (SOSP ’17). ACM. https://doi.org/10.1145/3132747.3132772

[27] Christopher Dabrowski and Fern Hunt. 2009. Using Markov chain analysis

to study dynamic behaviour in large-scale grid systems. In Proceedings of the
Seventh Australasian Symposium on Grid Computing and E-Research - Volume
99 (AusGrid ’09). Australian Computer Society, Inc., AUS, 29–40.

[28] Sudipto Das, Feng Li, Vivek RNarasayya, and Arnd Christian König. 2016. Au-

tomated demand-driven resource scaling in relational database-as-a-service.

In Proceedings of the 2016 International Conference on Management of Data.
1923–1934.

[29] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey F. Naughton, and

Stratis Viglas. 2020. Comprehensive and Efficient Workload Compression.

Proc. VLDB Endow. 14, 3 (2020), 418–430. https://doi.org/10.5555/3430915.

3442439

[30] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking

Relational Databases. PVLDB 7, 4 (2013), 277–288. http://www.vldb.org/

pvldb/vol7/p277-difallah.pdf

[31] Javad Dogani, Farshad Khunjush, Mohammad Reza Mahmoudi, and Mehdi

Seydali. 2022. Multivariate workload and resource prediction in cloud comput-

ing using CNN andGRU by attentionmechanism. The Journal of Supercomput-
ing 79, 3 (Sept. 2022), 3437–3470. https://doi.org/10.1007/s11227-022-04782-z

[32] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. 2011.

Performance prediction for concurrent database workloads. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of data
(SIGMOD/PODS ’11). ACM. https://doi.org/10.1145/1989323.1989359

[33] Martyn Ellison, Radu Calinescu, and Richard F Paige. 2018. Evaluating

cloud database migration options using workload models. Journal of Cloud
Computing 7 (2018), 1–18.

[34] Jerome H Friedman. 1991. Multivariate adaptive regression splines. The
annals of statistics 19, 1 (1991), 1–67.

[35] Jerome H. Friedman. 2001. Greedy function approximation: A gradient

boosting machine. The Annals of Statistics 29, 5 (Oct. 2001). https://doi.org/

10.1214/aos/1013203451

[36] Jerome H. Friedman. 2002. Stochastic gradient boosting. Computational
Statistics and Data Analysis 38, 4 (Feb. 2002), 367–378. https://doi.org/10.

1016/s0167-9473(01)00065-2

[37] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pan-

choli, and Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navi-

gate the Complexity of Performance Debugging in Cloud Microservices. In

Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’19).
ACM. https://doi.org/10.1145/3297858.3304004

[38] Jiechao Gao, Haoyu Wang, and Haiying Shen. 2020. Machine learning based

workload prediction in cloud computing. In 2020 29th international conference
on computer communications and networks (ICCCN). IEEE, 1–9.

[39] Ashit Gosalia and Xin Zhang. 2008. Automatic plan choice validation using

performance statistics. In Proceedings of the 1st international workshop on
Testing database systems. 1–6.

[40] CMU DB Group. 2024. BenchBase. https://github.com/cmu-db/benchbase

Accessed on 07.16.2024.

[41] Yanghu Guo andWenbin Yao. 2018. Applying gated recurrent units pproaches

for workload prediction. In NOMS 2018 - 2018 IEEE/IFIP Network Opera-
tions and Management Symposium. IEEE. https://doi.org/10.1109/noms.2018.

8406290

[42] Antony S Higginson, Mihaela Dediu, Octavian Arsene, Norman W Paton,

and Suzanne M Embury. 2020. Database workload capacity planning using

time series analysis and machine learning. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 769–783.

[43] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-shot cost models for

out-of-the-box learned cost prediction. Proceedings of the VLDB Endowment
15, 11 (July 2022), 2361–2374. https://doi.org/10.14778/3551793.3551799

[44] Geoffrey E. Hinton. 1989. Connectionist learning procedures. Artificial Intel-
ligence 40, 1–3 (Sept. 1989), 185–234. https://doi.org/10.1016/0004-3702(89)

90049-0

[45] Daniel S. Hirschberg. 1977. Algorithms for the Longest Common Subsequence

Problem. Journal of the ACM 24, 4 (oct 1977), 664–675. https://doi.org/10.

1145/322033.322044

[46] Mohammad Hossain, Derssie Mebratu, Niranjan Hasabnis, Jun Jin, Gau-

rav Chaudhary, and Noah Shen. 2022. CWD: A Machine Learning based

Approach to Detect Unknown Cloud Workloads. arXiv:cs.DC/2211.15739

[47] Robert Hummel. 1977. Image enhancement by histogram transformation.

Computer Graphics and Image Processing 6, 2 (1977), 184–195. https://doi.

org/10.1016/S0146-664X(77)80011-7

[48] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. 2014. An Efficient

Approach for Assessing Hyperparameter Importance. In Proceedings of the
31st International Conference on International Conference on Machine Learning
- Volume 32 (ICML’14). JMLR.org, I–754–I–762.

[49] Salam Ismaeel, Ayman Al-Khazraji, and Ali Miri. 2019. An Efficient Workload

Clustering Framework for Large-Scale Data Centers. In 2019 8th International
Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE.

906

https://doi.org/10.1109/icmsao.2019.8880305

[50] Gueyoung Jung, Tridib Mukherjee, Shruti Kunde, Hyunjoo Kim, Naveen

Sharma, and Frank Goetz. 2013. Cloudadvisor: A recommendation-as-a-

service platform for cloud configuration and pricing. In 2013 IEEE Ninth
World Congress on Services. IEEE, 456–463.

[51] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evalua-

tion of IR techniques. ACM Transactions on Information Systems 20, 4 (Oct.
2002), 422–446. https://doi.org/10.1145/582415.582418

[52] Md. Ebtidaul Karim, Mirza Mohd Shahriar Maswood, Sunanda Das, and Ab-

dullah G. Alharbi. 2021. BHyPreC: A Novel Bi-LSTM Based Hybrid Recurrent

Neural Network Model to Predict the CPU Workload of Cloud Virtual Ma-

chine. IEEE Access 9 (2021), 131476–131495. https://doi.org/10.1109/access.

2021.3113714

[53] Arijit Khan, Xifeng Yan, Shu Tao, and N. Anerousis. 2012. Workload

characterization and prediction in the cloud: A multiple time series ap-

proach. In 2012 IEEE Network Operations and Management Symposium. IEEE.

https://doi.org/10.1109/noms.2012.6212065

[54] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. 2018. CloudInsight:

Utilizing a Council of Experts to Predict Future Cloud ApplicationWorkloads.

In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD).
IEEE. https://doi.org/10.1109/cloud.2018.00013

[55] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic

Optimization. arXiv:cs.LG/1412.6980 https://arxiv.org/abs/1412.6980

[56] Max Kuhn, Kjell Johnson, et al. 2013. Applied predictive modeling. Vol. 26.
Springer.

[57] Avivit Levy, B. Riva Shalom, and Michal Chalamish. 2024. A Guide to Simi-

larity Measures. arXiv:cs.IR/2408.07706 https://arxiv.org/abs/2408.07706

[58] Jiexing Li, Arnd Christian König, Vivek Narasayya, and Surajit Chaudhuri.

2012. Robust estimation of resource consumption for SQL queries using

statistical techniques. Proceedings of the VLDB Endowment 5, 11 (July 2012),

1555–1566. https://doi.org/10.14778/2350229.2350269

[59] Xueyi Liu, Chuanhou Gao, and Ping Li. 2012. A comparative analysis of

support vector machines and extreme learning machines. Neural Networks
33 (2012), 58–66.

[60] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review

of auto-scaling techniques for elastic applications in cloud environments.

Journal of grid computing 12 (2014), 559–592.

[61] lschr and luhk. 2023. schuetzgroup/sdt-python: v18.0. https://doi.org/10.5281/

zenodo.8028374

[62] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,

and Geoffrey J. Gordon. 2018. Query-based Workload Forecasting for Self-

Driving Database Management Systems. In Proceedings of the 2018 Inter-
national Conference on Management of Data (SIGMOD/PODS ’18). ACM.

https://doi.org/10.1145/3183713.3196908

[63] Sayanta Mallick, Gaetan Hains, and Cheikh Sadibou Deme. 2012. A resource

prediction model for virtualization servers. In 2012 International Conference
on High Performance Computing and Simulation (HPCS). IEEE. https://doi.

org/10.1109/hpcsim.2012.6266990

[64] Ryan Marcus and Olga Papaemmanouil. 2016. WiSeDB: A Learning-based

Workload Management Advisor for Cloud Databases. Proceedings of the
VLDB Endowment 9, 10 (2016).

[65] T. Marill and D. Green. 1963. On the effectiveness of receptors in recognition

systems. IEEE Transactions on Information Theory 9, 1 (1963), 11–17. https:

//doi.org/10.1109/TIT.1963.1057810

[66] Mohammad Masdari and Afsane Khoshnevis. 2020. A survey and classifi-

cation of the workload forecasting methods in cloud computing. Cluster
Computing 23, 4 (2020), 2399–2424.

[67] Steffi Melinda. 2016. A survey of feature selection approaches for scalable
machine learning. Ph.D. Dissertation. Doctoral Dissertation, Technische

Universität Berlin.

[68] Irfan Mohiuddin and Ahmad Almogren. 2019. Workload aware VM consoli-

dation method in edge/cloud computing for IoT applications. J. Parallel and
Distrib. Comput. 123 (2019), 204–214.

[69] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The making of TPC-

DS. In Proceedings of the 32nd International Conference on Very Large Data
Bases (VLDB ’06). VLDB Endowment, 1049–1058.

[70] Karl Pearson. [n.d.]. VII. Note on regression and inheritance in the case of

two parents. Proceedings of the Royal Society of London 58 ([n. d.]), 240 – 242.

[71] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research 12 (2011),

2825–2830.

[72] Chenglei Peng, Yang Li, Yao Yu, Yu Zhou, and Sidan Du. 2018. Multi-step-

ahead Host Load Prediction with GRU Based Encoder-Decoder in Cloud

Computing. In 2018 10th International Conference on Knowledge and Smart
Technology (KST). IEEE. https://doi.org/10.1109/kst.2018.8426104

[73] Adrian Daniel Popescu, Andrey Balmin, Vuk Ercegovac, and Anastasia Aila-

maki. 2013. Predict: towards predicting the runtime of large scale iterative

analytics. Proceedings of the VLDB Endowment 6, 14 (2013), 1678–1689.
[74] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling

web applications in clouds: A taxonomy and survey. ACM Computing Surveys
(CSUR) 51, 4 (2018), 1–33.

[75] Jennie Rogers, Olga Papaemmanouil, Ugur Çetintemel, and Eli Upfal. 2014.

Contender: A Resource Modeling Approach for Concurrent Query Perfor-

mance Prediction. In Proceedings of the 17th International Conference on

Extending Database Technology, EDBT 2014, Athens, Greece, March 24-28,
2014, Sihem Amer-Yahia, Vassilis Christophides, Anastasios Kementsietsidis,

Minos N. Garofalakis, Stratos Idreos, and Vincent Leroy (Eds.). OpenProceed-

ings.org, 109–120. https://doi.org/10.5441/002/EDBT.2014.11

[76] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Prze-

myslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witu-

sowski, Steven Hand, and JohnWilkes. 2020. Autopilot: workload autoscaling

at Google. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys ’20). ACM. https://doi.org/10.1145/3342195.3387524

[77] H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm optimization

for spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing 26, 1 (feb 1978), 43–49. https://doi.org/10.1109/tassp.1978.

1163055

[78] Ali Shahidinejad and Mostafa Ghobaei-Arani. 2020. Joint computation of-

floading and resource provisioning for e<scp>dge-cloud</scp> computing

environment: A machine learning-based approach. Software: Practice and
Experience 50, 12 (Sept. 2020), 2212–2230. https://doi.org/10.1002/spe.2888

[79] Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna

Shcherbakova, Anton Pavlovich Tyukov, Timur Alexandrovich Janovsky,

Valeriy Anatol’evich Kamaev, et al. 2013. A survey of forecast error measures.

World applied sciences journal 24, 24 (2013), 171–176.
[80] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robbert van

Renesse, and HakimWeatherspoon. 2016. Follow the sun through the clouds:

Application migration for geographically shifting workloads. In Proceedings
of the Seventh ACM Symposium on Cloud Computing. 141–154.

[81] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011.

Cloudscale: elastic resource scaling for multi-tenant cloud systems. In Pro-
ceedings of the 2nd ACM Symposium on Cloud Computing. 1–14.

[82] Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn

Keogh. 2016. Generalizing DTW to the multi-dimensional case requires an

adaptive approach. Data Mining and Knowledge Discovery 31, 1 (feb 2016),

1–31. https://doi.org/10.1007/s10618-016-0455-0

[83] Tarique Siddiqui, Saehan Jo, Wentao Wu, Chi Wang, Vivek Narasayya, and

Surajit Chaudhuri. 2022. ISUM: Efficiently compressing large and complex

workloads for scalable index tuning. In Proceedings of the 2022 International
Conference on Management of Data. 660–673.

[84] Alex J. Smola and Bernhard Schölkopf. 2004. A tutorial on support vector

regression. Statistics and Computing 14, 3 (Aug. 2004), 199–222. https:

//doi.org/10.1023/b:stco.0000035301.49549.88

[85] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem,

Peter Kokosielis, and Sunil Kamath. 2008. Automatic virtual machine config-

uration for database workloads. ACM Transactions on Database Systems 35, 1
(Feb. 2008), 1–47. https://doi.org/10.1145/1670243.1670250

[86] Cédric St-Onge, Nadjia Kara, Omar Abdel Wahab, Claes Edstrom, and Yves

Lemieux. 2020. Detection of time series patterns and periodicity of cloud

computing workloads. Future Generation Computer Systems 109 (Aug. 2020),
249–261. https://doi.org/10.1016/j.future.2020.03.059

[87] Robert Tibshirani. 2018. Regression Shrinkage and Selection

Via the Lasso. Journal of the Royal Statistical Society: Series B
(Methodological) 58, 1 (12 2018), 267–288. https://doi.org/10.1111/j.

2517-6161.1996.tb02080.x arXiv:https://academic.oup.com/jrsssb/article-

pdf/58/1/267/49098631/jrsssb_58_1_267.pdf

[88] Transaction Processing Performance Council (TPC). 2010. TPC-C Benchmark

Revision 5.11.0. https://www.tpc.org/tpcc/

[89] Transaction Processing Performance Council (TPC). 202. TPC-DS Benchmark

Revision 3.2.0. https://www.tpc.org/tpcds/

[90] Transaction Processing Performance Council (TPC). 2022. TPC-H Benchmark

Revision 3.0.1. https://www.tpc.org/tpch/

[91] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-

Scale Advanced Analytics. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, Santa Clara, CA,

363–378. https://www.usenix.org/conference/nsdi16/technical-sessions/

presentation/venkataraman

[92] A. W. Whitney. 1971. A Direct Method of Nonparametric Measurement

Selection. IEEE Trans. Comput. 20, 9 (sep 1971), 1100–1103. https://doi.org/

10.1109/T-C.1971.223410

[93] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline:

an insightful visual performance model for multicore architectures. Commun.
ACM 52, 4 (2009), 65–76.

[94] Wentao Wu, Yun Chi, Hakan Hacígümüş, and Jeffrey F. Naughton. 2013. To-

wards predicting query execution time for concurrent and dynamic database

workloads. Proceedings of the VLDB Endowment 6, 10 (Aug. 2013), 925–936.
https://doi.org/10.14778/2536206.2536219

[95] Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram

Nathan, Pascal Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan

Narayanaswamy, and Tim Kraska. 2024. Stage: Query Execution Time

Prediction in Amazon Redshift. In Companion of the 2024 International
Conference on Management of Data (SIGMOD/PODS ’24). ACM. https:

//doi.org/10.1145/3626246.3653391

[96] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Bo Cheng, Zexiang Mao, Chun-

hong Liu, Lisha Niu, and Junliang Chen. 2014. A cost-aware auto-scaling

approach using the workload prediction in service clouds. Information Sys-
tems Frontiers 16 (2014), 7–18.

907

[97] Yongjia Yu, Vasu Jindal, I-Ling Yen, and Farokh Bastani. 2016. Integrating

Clustering and Learning for Improved Workload Prediction in the Cloud. In

2016 IEEE 9th International Conference on Cloud Computing (CLOUD). IEEE.
https://doi.org/10.1109/cloud.2016.0127

[98] Miranda Zhang, Rajiv Ranjan, Michael Menzel, Surya Nepal, Peter Strazdins,

Wei Jie, and Lizhe Wang. 2015. An infrastructure service recommendation

system for cloud applications with real-time QoS requirement constraints.

IEEE Systems Journal 11, 4 (2015), 2960–2970.
[99] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022.

Towards dynamic and safe configuration tuning for cloud databases. In

Proceedings of the 2022 International Conference on Management of Data.
631–645.

[100] Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2023. Automatic Database

Knob Tuning: A Survey. IEEE Transactions on Knowledge and Data Engineering
35, 12 (Dec. 2023), 12470–12490. https://doi.org/10.1109/tkde.2023.3266893

[101] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query perfor-

mance prediction for concurrent queries using graph embedding. Proceedings
of the VLDB Endowment 13, 9 (2020), 1416–1428.

[102] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query per-

formance prediction for concurrent queries using graph embedding. Pro-
ceedings of the VLDB Endowment 13, 9 (May 2020), 1416–1428. https:

//doi.org/10.14778/3397230.3397238

[103] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via

the elastic net. Journal of the Royal Statistical Society Series B: Statistical
Methodology 67, 2 (2005), 301–320.

908

