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ABSTRACT
Data preparation is an important step in any data-related appli-
cation, from academic research to industrial decision-making.
Typically, data preparation is not a core contribution of a project
— it transforms raw data into a format that supports further in-
novative work. However, the reality is that data scientists spend
much of their time on data preparation. Because data preparation
scripts are highly project-specific and often written in general-
purpose languages, they are tedious to understand and difficult
to verify. As a result, data preparation scripts can be a breeding
ground for poor engineering and statistical practices, and even
when they are perfectly built, they are difficult to reuse. Ideally,
data preparation scripts should serve the project, but otherwise,
be as simple and as standard as possible — adhering to the best
common practices to process data. We propose a bottom-up script
standardization framework that takes a user’s data preparation
script and transforms it into a more standardized version of itself.
Our framework treats the user’s input script as a semantic sketch
of the user intent, which can be modified even if the changed
script yields a slightly different output. We present an algorith-
mic framework and developed a prototype system. We evaluated
our approach against state-of-the-art methods, including GPT-4,
on six real-world datasets. Our approach improved script stan-
dardization by 39.5% while meaningfully preserving the user‘s
intent, while GPT-4 achieved 2.9%.

1 INTRODUCTION
Data preparation is a crucial step in various domains, from aca-
demic research to data-driven decision making in industry [63,
64]. Custom data preparation programs are often an essential
part of data science pipelines, transforming raw data into a usable
format for further innovative work. However, data preparation
is often overlooked, and analysts rarely detail the process [15].
These “uninteresting" data preparation scripts serve solely to
support downstream innovative efforts.

However, data preparation scripts remain extremely
difficult to understand, verify, and reuse. Data preparation
scripts are highly project-specific and often written in general-
purpose programming languages. These attributes make them
tedious to understand and difficult to verify, without substantial
effort. Consequently, data preparation scripts can be a breeding
ground for poor engineering and statistical practices. For exam-
ple, variability in data preparation was identified as one main
reason for the high rate of false positive results in biomedical
research [15]. Despite the widespread use of standard datasets,
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(a) Input script.

(b) Output script.

Figure 1: Example input and output scripts.

preparation scripts can be constructed to produce desirable exper-
imental results, based on specific data values and characteristics,
rendering scientific conclusions not reproducible [28, 59, 62].

In our view, data preparation scripts should be as stan-
dardized and boring as possible. The ideal data preparation
script does its job and strives for standardization and predictabil-
ity. The data management community has made many attempts
to standardize data preparation, but only in a top-down fashion
by proposing rules and systems [27, 31, 38, 39, 56, 57]. How-
ever, perhaps due to the richness of the project- and data-specific
knowledge needed for data preparation, data scientists still resort
to general-purpose programming languages [67] such as Python.

Intuitively, a script is more standard if it uses data prepara-
tion steps that are frequently used in other scripts processing
the same or similar datasets. In this work, we adopt a common
assumption in crowdsourcing [66]: the majority is presumably
correct. Specifically, if a data preparation step appears repeatedly
across multiple scripts processing the same dataset, it is likely
to be both important and correct. Based on this assumption, we
propose a bottom-up standardization approach, in which the user
inputs a sketch script and gets a modified script as output. This
output script aims to perform the same task as the input script,
but is more similar to previously written scripts. Crucially, the
modified script is allowed to emit data that are not identical to
those emitted by the original script. The modifications to the
input script can be viewed as recommendations for the user, who
has the option to accept or reject them. The following exam-
ple illustrates how bottom-up standardization facilitates data
preparation for data scientists:
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Table 1: An illustration showing the steps in historical
scripts (𝑠1, 𝑠2, 𝑠3), the input script 𝑠𝑢 , and the output script
𝑠𝑢 . Green shows added steps, and red shows removed steps.

Data preparation step su s1 s2 s3 ŝu
𝑎1 import pandas as pd ✓ ✓ ✓ ✓ ✓
𝑎2 df = pd.read_csv(‘diabetes.csv’) ✓ ✓ ✓ ✓ ✓
𝑎3 df = df.fillna(df.median()) ✓
𝑎4 df = df[df["Age"].between(18,25)] ✓ ✓
𝑎5 df = df.fillna(df.mean()) ✓ ✓ ✓
𝑎6 df = df[df["SkinThickness"] < 80] ✓ ✓ ✓
𝑎7 df = pd.get_dummies(df) ✓ ✓ ✓ ✓ ✓

Example 1.1. Alex, a data scientist hired to help a medical
research team, is writing a data preparation script (Figure 1a)
to transform a patient dataset [5]. It will be used to train a pre-
diction model that accurately identifies diabetes in young adults
aged 18-25. She examines previous data preparation scripts on
Papers With Code [20], which were developed for other simi-
lar projects. =Table 3 outlines the data preparation steps used
in Alex’s initial script (𝑠𝑢 ), in three example scripts from the
corpus (𝑠1, 𝑠2, 𝑠3), and in the modified output script (𝑠𝑢 ). Alex
quickly feels discouraged due to the volume and required do-
main knowledge. Consequently, she writes a script from scratch.
Specifically, she: (1) Imputes missing values using the median
value (df.fillna(df.median())), based on her experience with
other projects (Table 1, 𝑎3); (2) Selects only relevant records
(df[df[’Age’].between(18,25)]), based on her modeling ob-
jective (Table 1, 𝑎4).

Every step in Alex’s script is seemingly correct, but unfortu-
nately, she fails to consider the common practices to process this
dataset. The resulting downstream model is less accurate because
outliers in the data were not addressed, leading to distractions
that reduce the model’s accuracy. The error, which arises during
data preparation due to a lack of domain-specific knowledge that
Alex does not possess, is unlikely to be noticed by readers of
Alex’s paper or experimental results.

Now imagine that Alex uses a script-standardization system:

Example 1.2. Alex is writing a data preparation script from
scratch, before giving it to a script standardization system. Then
she sets a 5% threshold for the maximum % change that the
standardization system is allowed to implement. In this case, the
value of 5% refers to the maximum change in predictive accuracy
allowed in the downstream model. The system responds with a
standardized script (Figure 1b) that does the following:
(1) Recognizes that imputing missing values with average is a

more common practice than median imputation for Alex’s
dataset (Table 1, 𝑎3 removed and 𝑎5 added);

(2) Selects only the relevant patient records, to maintain Alex’s
modeling objective (Table 1, 𝑎4 unchanged);

(3) Adds additional step to handle outliers using domain-specific
knowledge1 embedded in other scripts (df[df["SkinThickness"]
< 80] — Table 1, 𝑎6 added).

Alex sees the modified output script, and decides to accept all the
recommendation changes. Her improved script now uses more
standard transformations. She is also pleased that her prediction
accuracy has increased slightly due to the changes (although this
will not happen in all cases).

1Triceps skinfold thickness is a measurement used to estimate body fat by assessing
the thickness of a fold of skin. A value above 80mm is considered abnormal [45].

Our Approach: The goal of our approach is to modify an
input script to produce a new script similar in intent to the
input script, while being more standard (i.e., aligning with com-
mon data preparation steps from prior scripts). The user begins
with a draft program, which our framework treats as a semantic
sketch of their intent. We adjust the semantics of the new script
to balance two objectives: increasing its standardization and
maintaining an agreement with the user’s intent. A straight-
forward approach is to leverage powerful code cleaning tools
such as Sourcery [7], LLMs such as GPT [52], or recommenda-
tion systems predicting the next-best data preparation steps such
as [44, 63]. However, our experimental results show that while
these tools can generate code, they often fail to capture the user’s
original intent and struggle to select data preparation steps that
are particularly relevant to the dataset, as informed by domain
knowledge embedded in the corpus. We argue that to obtain such
a system, there are several challenges to overcome: (C1) Defin-
ing how to capture script standardization in relation to a given
corpus of scripts. (C2) Quantifying how well the user intent is
preserved in the modified script. (C3) Navigating the vast search
space (which is exponential in the number of data preparation
operations present in the corpus) of potential modifications to
the input script to find a sequence of changes that produces an
executable script, maintains the user’s intent, and achieves the
highest degree of standardization.

To address C1, we define the standardness of a script w.r.t. a
corpus of scripts. We assume the availability of a corpus of scripts
processing the same or similar datasets for different objectives
(as done in other frameworks [17, 63]). Our experiments show
that even a small corpus yields valuable results. Our optimiza-
tion objective is to minimize the relative entropy [41] of the data
preparation step distribution between the input draft and the
script corpus. Relative entropy is a common measure of how one
probability distribution (the input script) diverges from a second,
expected probability distribution (the scripts in the corpus). We
extract these distributions using a novel graph-based script repre-
sentation, leveraging NLP techniques such as lemmatization [54]
and n-grams.

To address C2, we need to determine whether the input and
output scripts perform similar tasks by examining their outputs
or the results of their downstream applications. We use two mea-
sures to assess how well the output script preserves the user’s
intent and that the modifications to the input script do not sig-
nificantly alter the data or impact the performance of the down-
stream task: (1) a table distance measure, which compares the
structured datasets generated by the input and output scripts,
and (2) a performance measure that evaluates downstream appli-
cation performance, such as model accuracy or fairness.

User intent is treated as a constraint on the similarity of the
input script and the modified script: the user provides a threshold
indicating how much they are willing to compromise on their
intent. The objective is to find a script that stays within this
threshold of similarity to the original script, remains executable,
and is as standardized as possible (i.e., minimizing the relative
entropy).

To address C3, we need an efficient way to find a sequence
of modifications to the input script, as an exhaustive search is
impractical given the large search space (comprising all combi-
nations of data preparation steps that are present in the corpus),
and even greedy approaches present challenges. Our method has
two phases: during the offline phase, we represent each script in
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the corpus as a graph and curate the search space; during the on-
line phase, we employ a search framework with five algorithmic
components (including diversity, sampling, and early-checking
criteria) to explore enough of the search space while meeting the
constraints.
Usability: The proposed system is particularly useful in scenar-
ios where users are working with datasets that are commonly
used by other researchers, such as in public policy and medicine.
For instance, datasets such as Amazon reviews2 or MIMIC3 are
widely used by researchers and are often accompanied by open-
source data preparation scripts available online (e.g., on platforms
such as Papers With Code4). A researcher new to these open-
source datasets can benefit from our approach by quickly identi-
fying standard data preparation steps used by other researchers.
As we show experimentally, the corpus needed to gain valuable
insights can be relatively small, making the system practical for
real-life scenarios.

A demonstration of our system usability and its suitability for
end-to-end employment was recently shown in [42]. The short
paper accompanying the demonstration provides only a brief,
high-level description of the system, whereas the present paper
provides the theoretical foundations and algorithms underlying
the demonstrated system, as well as the experimental study.

Contribution — Our main contributions are as follows:
• We define a new problem of script standardization that helps
data consumers write standardized data preparation scripts
while preserving their intent (Section 4).

• We present an efficient and effective search framework and
apply optimization techniques (Section 5).

• We evaluated our prototype system, LucidScript, against state-
of-the-art approaches [6, 7, 16, 52, 55] on six real-world datasets
(Section 6). Improvement is measured using our standardiza-
tion measure, and we verified that this measure aligns with
human judgment through a user study. Our approach obtained
a 39.5% improvement on script standardness while, the sec-
ond best competitor, GPT-4, achieved 2.9% (Table 5). We also
evaluated our system in scenarios when high-quality on-topic
script corpora were not available. We tested it using a smaller
corpus, as well as using a corpus from a different dataset. Our
approach still obtained improvements on script standardness.

2 SCRIPT STANDARDIZATION
A data preparation script is a sequence of lines of code that
process some dataset for a downstream task, such as training a
model, generating visualizations, etc. Let S = {𝑠1, 𝑠2, . . . , 𝑠𝑛} be a
collection of 𝑛 scripts (referred to as the corpus). Let 𝑠𝑢 denote an
input user script. We assume that 𝑠𝑢 and all scripts in S process
the same dataset 𝐷𝐼𝑁 . In Section 6, we will empirically show that
this assumption can be relaxed. For simplicity, throughout the
paper we assume that 𝐷𝐼𝑁 comprises a single data file. Applying
a script 𝑠 to 𝐷𝐼𝑁 yields an output dataset 𝐷𝑠

𝑂𝑈𝑇
. The goal of our

system is to modify the input script 𝑠𝑢 to yield a new script 𝑠𝑢
such that they both accept 𝐷𝐼𝑁 as input, and: (1) Both programs
compute a "similar" result, measured by howwell the user intent
is preserved; (2) 𝑠𝑢 is a more conventional program than 𝑠𝑢 ,
according to statistics computed over the corpus S.

2https://jmcauley.ucsd.edu/data/amazon/
3https://archive.physionet.org/physiobank/database/mimicdb/
4https://paperswithcode.com/

2.1 Measuring Goal One: User Intent
Measurement of the semantic similarity of two scripts is an ex-
tensively studied topic, often measured by the output of the
operation [12, 49, 68]. In this work, we measure whether two
scripts are doing something similar by looking at their outputs, or
the outputs of their downstream application. We use these mea-
sures to assess how well 𝑠𝑢 preserves the user’s original intent
embodied in 𝑠𝑢 .

Table Jaccard: An example measure is table distance, which
focuses on a structured dataset emitted by the script. This would
be appropriate when the user produces databases for visualiza-
tion, OLAP pipelines, or machine learning training procedures.
Jaccard index [47] is commonly used to measure how close the
new script’s output dataset 𝐷𝑠𝑢

𝑂𝑈𝑇
is to the original user script’s

output dataset 𝐷𝑠𝑢
𝑂𝑈𝑇

. Formally, let Δ𝐽 (𝐷𝑠𝑢𝑂𝑈𝑇 , 𝐷
𝑠𝑢
𝑂𝑈𝑇

) denote the
table Jaccard similarity defined as:

Δ𝐽 (𝐷𝑠𝑢𝑂𝑈𝑇 , 𝐷
𝑠𝑢
𝑂𝑈𝑇

) =
|𝐷𝑠𝑢
𝑂𝑈𝑇

| ∩ |𝐷𝑠𝑢
𝑂𝑈𝑇

|

|𝐷𝑠𝑢
𝑂𝑈𝑇

| ∪ |𝐷𝑠𝑢
𝑂𝑈𝑇

|

Δ𝐽 (𝐷𝑠𝑢𝑂𝑈𝑇 , 𝐷
𝑠𝑢
𝑂𝑈𝑇

) ranges from 0 to 1, where Δ𝐽 = 1 indicates
that the two tables are identical.

Example 2.1. Script 𝑠𝑢 has an additional step to normalize all
strings to lowercase, which is not present in 𝑠𝑢 . |𝐷𝑠𝑢𝑂𝑈𝑇 | = {‘be-
nign’, ‘Benign’, ‘High Risk’, ‘High risk’, ‘high risk’} and |𝐷𝑠𝑢

𝑂𝑈𝑇
| =

{‘benign’, ‘high risk’}. Table jaccardwould beΔ𝐽 (𝐷𝑠𝑢𝑂𝑈𝑇 , 𝐷
𝑠𝑢
𝑂𝑈𝑇

) =
2
5 = 0.4.
Model Performance: Another example measure of user in-

tent is the performance of the downstream data application,
which is appropriate when we have a downstream task with
an easy-to-measure quality metric, such as accuracy.

Formally, let Δ𝑀 (𝐷𝑠𝑢
𝑂𝑈𝑇

, 𝐷
𝑠𝑢
𝑂𝑈𝑇

) denote the absolute value of
the relative percentage change in model accuracy, which is in
[0%, 100%]. Δ𝑀 = 0% means the two datasets are identical.

Δ𝑀 (𝐷𝑠𝑢
𝑂𝑈𝑇

, 𝐷
𝑠𝑢
𝑂𝑈𝑇

) =

������𝑎𝑐𝑐 (𝐷
𝑠𝑢
𝑂𝑈𝑇

) − 𝑎𝑐𝑐 (𝐷𝑠𝑢
𝑂𝑈𝑇

)
𝑎𝑐𝑐 (𝐷𝑠𝑢

𝑂𝑈𝑇
)

������ × 100%

Example 2.2. Themodel accuracy for 𝑠𝑢 and its 𝑠𝑢 is𝑎𝑐𝑐 (𝐷𝑠𝑢𝑂𝑈𝑇 ) =
0.65 and𝑎𝑐𝑐 (𝐷𝑠𝑢

𝑂𝑈𝑇
) = 0.67, respectively. Themodel performance

measure would be
��� 0.65−0.670.65

��� × 100% = 3.1%.

Our framework can be generalized to support other user-
intent measures, such as earth mover distance or fairness con-
straints [30], as discussed in Section 8. We chose table Jaccard
and model performance as example measures since they are two
of the most straightforward metrics to understand.

2.2 Measuring Goal Two: Standardization
Our overall goal is to create new versions of the input script that
are as standard and conventional as possible. We use relative
entropy (also known as the KullbackâĂŞLeibler divergence) [41]
to measure how standard a script is. Relative entropy is a non-
negative statistical distance of how one probability distribution
𝑃 (𝑥) is different from a reference probability distribution 𝑄 (𝑥).
We adapt the notation of relative entropy to measure script stan-
dardness. Formally, the relative entropy of a script 𝑠 w.r.t. a corpus
S is defined as:

𝑅𝐸 (𝑠,S) =
∑︁
𝑥∈X

𝑃 (𝑥)𝑙𝑜𝑔( 𝑃 (𝑥)
𝑄 (𝑥) )

611



Figure 2: Example DAG of line 5 and line 6 in Figure 1b.
The DAG is made of atoms (blue dashed) and edges (blue).
Inside an atom, there are AST nodes and edges, where in-
vocation nodes are blue, and data nodes are white. Arrows
represent data flows. We color one atom gray to illustrate
Example 3.2.

where X is the sample space shared by both 𝑃 and 𝑄 .
In our problem, X is the space of all the data preparation steps

in S. 𝑃 (𝑥) is the probability distribution of the data preparation
steps in script 𝑠 , while 𝑄 (𝑥) is the probability distribution of
the steps in corpus S. A large distance between 𝑃 (𝑥) and 𝑄 (𝑥)
would indicate that 𝑠 uses many data preparation steps that are
not commonly used in S, while a small distance would mean that
𝑠 does a good job adhering to the standard practices in S.

Formally defining 𝑃 (𝑥) and 𝑄 (𝑥) is a non-trivial task since
scripts need to be in a format that makes it easy to compute these
statistics. We describe such a representation in Section 3. We
then use 𝑅𝐸 (𝑠,S) as our optimization objective in Section 4.

Problem Objective. The script standardization problem is de-
scribed by a tuple comprising: (i) A script corpusS = {𝑠1, . . . , 𝑠𝑛};
(ii) An input user script 𝑠𝑢 ; (iii) An input dataset 𝐷𝐼𝑁 ; (iv) A
user-intent parameter Δ(𝐷𝑠𝑢

𝑂𝑈𝑇
, 𝐷
𝑠𝑢
𝑂𝑈𝑇

)≤𝜏 . The solution is a
new, executable script 𝑠𝑢 that maximizes the standardness mea-
sured by𝑅𝐸 (𝑠𝑢 ,S) while ensuring that the output of the resulting
script is within 𝜏 of the original.

3 SCRIPT REPRESENTATIONS
We face a multifold challenge — to represent an arbitrary script
while also being able to explore the space of legal changes to it.
Concretely, the representation should enable us to compute stan-
dardization statistics efficiently and numerate the space of legal
changes. It should abstract away inessential syntactic differences.
Lastly, it should retain sufficient information about the script so
that it can be translated back to a script. Inspired by previous
work [29, 40, 48], we present a directed acyclic graph (DAG) rep-
resentation of scripts that satisfies the above requirements for
our setting.

We now introduce how we represent the entire search space,
including the DAG representation of scripts and transformations
that can be applied to DAGs. In Section 4, we will describe how
our script representations are used to compute the probability of
observing a particular script 𝑠 .
DAG Representation: We start by representing a single script
using a DAG, in which nodes represent operation invocations,
and edges represent data flows. The DAG representation 𝐺𝑠 =
(𝐴, 𝐸′) of a script 𝑠 is based on its Abstract Syntax Trees (ASTs).
An AST is a tree-like data structure used to represent the syn-
tactic structure of a code snippet in a hierarchical and abstract
way. Each node corresponds to a construct in the code, such as
an operator, a variable, or a control structure, and its children
represent the components or sub-expressions of that construct.
ASTs focus on the logical relationships and structure of the code,

and are widely used in compilers and tools for code analysis,
transformation, and optimization. For a formal definition of ASTs
for Python, see [1].

A simple script can result in hundreds of AST nodes, and most
nodes make sense only in the scope of their context. If we curate
the search space directly on the AST nodes without considering
their neighbors, the space is huge, and most transformations
would be invalid. For example, for line 5 in Figure 1b, replac-
ing the AST node 80 with ‘SkinThickness’ would result in an
execution error since < can only compare numerical values.

Inspired by the natural language processing (NLP) applica-
tions [16, 18, 23, 55], where atoms are defined at the word level,
we construct atoms at the operation-invocation level. The DAG
representation 𝐺𝑠 = (𝐴, 𝐸′) of a script 𝑠 is made of two compo-
nents, atoms𝐴 and edges 𝐸′ (Figure 2). An atom 𝑎, or atomic unit,
in our DAG representation, is an operation invocation. In pro-
gramming languages, an operation invocation refers to a snippet
of code required to call a function, with its arguments. Instead of
AST nodes, the use of atoms helps to make the output scripts free
of syntax and execution errors and also helps to reduce the search
space. Thus, we define each atom 𝑎 = (𝑉 , 𝐸) as a collection of
AST nodes 𝑉 and edges 𝐸. We simplify AST nodes to two types,
data nodes, and invocation nodes (Figure 2). We later perform
lemmatization techniques on atoms, which helps us to further
control the size of the vocabulary and leverage the semantics of
the operator invocations (Section 5).

Definition 3.1. [Atom and DAG] An 𝑎𝑡𝑜𝑚, is the atomic unit
of the DAG representation. Using ASTs, we denote an atom by
𝑎 = (𝑉 , 𝐸). We can express the DAG 𝐺𝑠 = (𝐴, 𝐸′), with atoms
𝐴 and edges between atoms 𝐸′. Specifically, an atom 𝑎 consists
of one invocation node and its parents that are not invocation
nodes.

Example 3.2. An atom is an operation invocation. The right
block shows theDAG representation of df = df[df[‘SkinThickness’]
< 80] (Figure 2). Specifically, the gray-color atom represents
df[‘SkinThickness’], where df and ‘SkinThickness’ are AST
data nodes and slice is an AST invocation node. The black ar-
rows are the edges 𝐸 inside the atom, representing data flows.

Atoms can be used in 1-gram, n-gram, or in a way learned
from the script collection S. We use atoms in two ways, at the
operation-invocation level (1-gram) and the line level (n-gram).
In Figure 2, the gray-color atom is an example of 1-gram atoms,
while the numbered blocks are examples of n-gram atoms.
From Script to DAG: Some components in the standardization
measure of script are now more clear. X denotes all the data
preparation steps in S. As Figure 2 shows, using the DAG repre-
sentation, the data preparation steps are decomposed into atoms
𝐴 and edges 𝐸′. Formally, G = {𝐺𝑠1 , . . . ,𝐺𝑠𝑛 } is the DAG rep-
resentation of S = {𝑠1, . . . , 𝑠𝑛}. Denote by V𝐴 the vocabulary
that contains unique atoms 𝐴∈G and byV𝐸′ the vocabulary that
contains unique edges 𝐸′∈G. We use V𝐸′ to model X, instead of
V𝐴 , since 𝐸′ encodes the data flow information, representing the
order of the steps.

Example 3.3. Figure 2 shows the DAG representation of df =
df[df[‘SkinThickness’] < 80] and df = pd.get_dummies(df),
which are lines 5-6 in Figure 1b. The data flow between lines 5-6
is represented by the blue edge 𝑒′ between the numbered blocks,
connecting two data nodes.

Transformations: Transformations are the actions we perform
to change the DAGs. We define two types of transformations, add
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and delete.5 Each transformation takes the following parameters:
type, what to change (i.e., one atom and its edges), and where to
change (i.e., line number). Next, we formally define the notation
of a transformation over 𝐺𝑠 .

Definition 3.4. [Transformation] A transformation is a func-
tion of the form 𝑓 (type, 𝑎, {𝑒′1, . . . , 𝑒

′
𝑛}, lineno), where type ∈

[add, delete], 𝑎 ∈ V𝐴, 𝑒′𝑖 ∈ V𝐸′ . {𝑒′1, . . . , 𝑒
′
𝑛} is the set of edges

that connect an atom 𝑎 to its neighbors. 𝐹 (𝐺𝑠 ) = (𝑓1, 𝑓2, . . . , 𝑓𝑚)
is sequence of𝑚 transformations that preform on 𝐺𝑠 .

We discuss how we configure transformations in Section 5.2.

4 PROBLEM FORMULATION
We have defined the measure of script standardization (Sec-
tion 2.2) and presented script representations (Definition 3.1),
which help us to explore the space of transformations (Defini-
tion 3.4) that can be applied to the input script. We are now
ready to present our standardization objective and the script
standardization problem.

Definition 4.1. [Standardization Objective] The relative en-
tropy of a script 𝑠𝑢 w.r.t. a collection of scripts S.

𝑅𝐸 (𝑠𝑢 ,S) =
∑︁
X
𝑃 (𝑥)𝑙𝑜𝑔( 𝑃 (𝑥)

𝑄 (𝑥) )

where 𝑃 (𝑥) = 𝑥∑|V𝐸′ |
𝑖=1 𝑥𝑖

, and 𝑥𝑖 =
∑ |V𝐸′ |
𝑖=1 [𝑒 𝑗 = 𝑣𝑖 ], ∀𝑒 𝑗 ∈ 𝐺𝑠𝑢 .

Similarly, 𝑄 (𝑥) = 𝑥∑|V𝐸′ |
𝑖=1 𝑥𝑖

, and 𝑥𝑖 =
∑ |V𝐸′ |
𝑖=1 [𝑒 𝑗 = 𝑣𝑖 ], ∀𝑒 𝑗 ∈ G.

𝑃 (𝑥) is the probability distribution of the data preparation
steps in script 𝑠𝑢 , while 𝑄 (𝑥) is the probability distribution of
the data preparation steps in the script corpus S (Section 2.2).
We use V𝐸′ to derive the model of the data preparation steps X.
We use atoms in Table 1 to illustrate how we compute 𝑃 (𝑥) and
𝑄 (𝑥).

Example 4.2. TheDAG of an input script 𝑠𝑢 is𝐺𝑠𝑢 = (𝐴𝑠𝑢 , 𝐸′𝑠𝑢 ),
where 𝐸′𝑠𝑢 = [(𝑎0, 𝑎1), (𝑎1, 𝑎7)] are the edges of 𝐺𝑠𝑢 . V𝐸′ is the
edge count mapping from G, where V𝐸′ = {(𝑎0, 𝑎1) : 3, (𝑎1, 𝑎2) :
3, (𝑎2, 𝑎7) : 2, (𝑎1, 𝑎7) : 1}. For example, the edge 𝑒′ = (𝑎0, 𝑎1)
appears three times in G, where G = {𝐺𝑠1 ,𝐺𝑠2 , ...,𝐺𝑠𝑛 } is the
DAG representation of the script corpus S = {𝑠1, 𝑠2, . . . , 𝑠𝑛}.

We derive the distribution of the data preparation steps in the
corpus 𝑄 (𝑥) using edge vocabularyV𝐸′ and G. 𝑄 (𝑥) and 𝑥 are
both vectors with a size of |V𝐸′ |. We compute 𝑥 as the number of
occurrences for each edge in G. Then we sum up the occurrences
of each edge and divide 𝑥 by the total occurrences to get 𝑄 (𝑥).

Example 4.3. In𝑄 (𝑥),𝑥 is derived fromV𝐸′ , where𝑥 = [3, 3, 2, 1]
since the number of unique edges |V𝐸′ | is four. The total number
of edges in G is 3 + 3 + 2 + 1 = 9 so 𝑄 (𝑥) = [ 13 ,

1
3 ,

2
9 ,

1
9 ].

Then we compute 𝑃 (𝑥) from 𝐺𝑠𝑢= (𝐴𝑠𝑢 , 𝐸′𝑠𝑢 ). Similarly, 𝑃 (𝑥)
and 𝑥 are vectors of the length of the edge vocabulary |V𝐸′ |. We
compute 𝑥 as the number of occurrences for each edge in 𝐺𝑠𝑢 ,
where 𝐸′ ∈ V𝐸′ .

Example 4.4. In 𝑃 (𝑥), 𝑥 = [1, 0, 0, 1]. The total number of edges
in 𝐺𝑠𝑢 is 1 + 1 = 2, so 𝑃 (𝑥) = [ 12 , 0, 0,

1
2 ] and 𝑅𝐸 (𝑠𝑢 ,S) = 1.38.

We note that 𝑅𝐸 (𝑠𝑢 ,S) accounts for atoms and edges, but is
oblivious to their exact position (i.e., line number) in the script.
We explain how we handle this in Section 5.
5The edit operation is modeled here as a sequence of delete and add operations.

Revisiting the conceptual definition in Section 2.2, we are now
ready to formally define the problem using the script represen-
tations in Section 3. The Script Standardization problem aims
to find a sequence of transformations 𝐹 for an input script 𝑠𝑢
to make it as standard as possible w.r.t. a collection of scripts
S, while ensuring that: (1) There are no execution errors; (2)
No more than 𝑘 transformations are applied; (3) User intent is
preserved. Formally,

Definition 4.5. [Script Standardization] Given a script 𝑠𝑢 and
a collection of scripts S all operating on the data file 𝐷𝐼𝑁 , a
number 𝑘 ≥ 1, and a threshold 𝜏 we search for a script 𝑠 such
that:
(1) (sequence length constraint) 𝑠𝑢 is obtained by sequentially

applying no more than 𝑘 transformations on 𝑠𝑢 .
(2) (execution constraint) 𝑠𝑢 is executable.
(3) (user-intent constraint) Δ(𝐷𝑠𝑢

𝑂𝑈𝑇
, 𝐷
𝑠𝑢
𝑂𝑈𝑇

) ≤ 𝜏 .
(4) (objective function) 𝑅𝐸 (𝑠𝑢 ,S) is minimized.

Each transformation 𝑓 increases or decreases 𝑅𝐸 (𝑠𝑢 ,S).

Example 4.6. Continuing with the simple setup in Example 4.2,
the best transformation 𝑓 is trivial: add 𝑎2 between 𝑎1 and 𝑎7.
This 𝑓 leads to 𝑃 (𝑥) = [ 13 ,

1
3 ,

1
3 , 0], which gives 𝑅𝐸 (𝑠𝑢 ,S) = 0.2.

𝑅𝐸 (𝑠𝑢 ,S) is much smaller than the starting 𝑅𝐸 (𝑠𝑢 ,S) in Ex-
ample 4.4, indicating that 𝑃 (𝑥) has come closer to 𝑄 (𝑥). This
means that the resulting script is more standard w.r.t. the script
corpus S.

To find the best transformations to change 𝑠𝑢 , we need to
find the sequence that minimizes 𝑅𝐸 (𝑠𝑢 ,S). However, the search
space can become intractable quickly, as there could be many
possible places to apply a transformation in 𝑠𝑢 . For example, a
transformation to append a new atom can have multiple possible
existing atoms to append to. In addition, possible next-step trans-
formations depend on the current step. As a result, an exhaustive
search algorithm is exponential in ( |V𝐴 | × |𝐴𝑠𝑢 | + |𝐸′𝑠𝑢 |).

Therefore, in the next section, we will present an efficient
algorithm for our script standardization problem. This algorithm
overcomes the obstacles of the naive exhaustive search algorithm
by taking a greedy-like approach while ensuring that a diverse
set of executable candidate scripts is taken into consideration.

5 METHODOLOGY
5.1 Offline Search Space Curation
In the offline phase, we construct the atom vocabularyV𝐴 and the
edge vocabularyV𝐸′ and obtain the corpus distribution. These
components then serve as inputs to the online phase. We take
the following steps to construct them from the corpus S: (1)
We parse each script 𝑠𝑖 ∈ S into its corresponding DAG 𝐺𝑠𝑖 ,
simultaneously buildingV𝐴 andV𝐸′ through this process. (2) We
compute the probability distribution𝑄 (𝒙) fromV𝐸′ , as described
in Section 3.

Reducing Vocabulary: A single data preparation step can
be represented through various coding operations that convey
an equivalent semantic meaning. For instance, when both df
and train are read from the same CSV file, expressions like
df[‘Age’] and train[‘Age’] refer to the same column.
We address such semantically equivalent steps by leveraging a
rich body of work in NLP [54] and static code lemmatization
techniques. For example, we unify the variables created by read-
ing from the same data file to a consistent name across all scripts.
Lemmatization significantly reduces the size of the vocabulary
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and helps the system better understand the semantics of scripts
without actually executing them.

The semantic similarity of two scripts is an extensively studied
topic in programming languages [12, 49, 68]. LLMs [6, 52] have
also been proven to excel at such tasks. More optimizations can
be extended without changing other system components.

5.2 Online Phase Search Framework
The next goal is to find a sequence of transformations that stan-
dardizes a given script 𝑠𝑢 while satisfying the constraints (Defini-
tion 4.5). We model this sequence searching task as a constrained
optimization problem with the objective to minimize its relative
entropy measured w.r.t. the corpus 𝑅𝐸 (𝑠𝑢 ,S).

Recall in Section 4, a simple greedy approach faces two chal-
lenges. First, the optimal sequence may not always score the
best during the search process. Discarding all but the best in-
progress sequence may eliminate many potentially good candi-
dates. Second, the output script 𝑠𝑢 must satisfy the constraints,
and checking for the constraints only at the end may result in
invalid sequences (e.g., execution errors, failure to satisfy user-
intent constraints). We propose five optimizations that overcome
the limitations and evaluate the impact of these components on
our framework (Section 6).
(1) Beam search: We keep 𝐾 beams rather than a single best,
which retains multiple best options during the search.
(2) Diversity measure: We consider transformations that are
different enough every time we add one step to the beams, which
explores different parts of the search space.
(3) Monotonicity: A transformation sequence cannot go back
and change an earlier portion of the script, denoted by the line
number. This property ensures that once a script becomes non-
executable after a transformation, no further transformation
would make the script executable again. This helps reduce the
search space.
(4) Checking strategies for constraints:We have three con-
straints. (1)We use the sequence-length constraint as the stopping
criterion to limit the number of modifications applied to the input
script. (2) For the execution constraint, we have an early- and
late-checking strategy. In early-checking, we remove candidate
sequences that lead to non-executable scripts after every transfor-
mation is applied. In late-checking, we only check for execution
errors after the sequence is fully developed. (3) We check the
user-intent constraint at the end. These strategies ensure that our
approach always finds valid sequences while keeping runtime in
check.
(5) Sampling:When 𝐷𝐼𝑁 is large, we apply random sampling
on the tuples. This helps reduce runtime.

Algorithm 1 is our search framework, which takes as input a
script collection S, a script 𝑠𝑢 , beam size 𝐾 , user-intent threshold
𝜏 , and an early-checking switch 𝛼 and returns the standardized
script 𝑠𝑢 . In line 1, the candidate script set is initiated with the
input script. In line 2, the vocabularies and distribution of the
data preparation step are computed. In lines 3-8, beam search
is applied to find the top 𝐾 scripts in each transformation step,
until the stopping criteria are met. In lines 9-11, constraints are
verified and the best result is returned.

In Algorithm 1, GetSteps() takes a script 𝑠 and the search space
V𝐴 ,V𝐸′ , and𝑄 (𝒙) as input, and outputs a list of transformations
ranked based on the RE score. This step can be divided into three
parts: (1) Translate 𝑠 to its DAG representation 𝐺𝑠 = (𝐴, 𝐸′). (2)
GivenV𝐴 ,V𝐸′ , enumerate through𝐺𝑠 to find possible next-step

transformations. (3) For each possible transformation, compute
the RE score and determine where in 𝑠 to perform each transfor-
mation.

Algorithm 1: A meta-level framework
Input: S (script collection), 𝑠𝑢 (input script), 𝑠𝑒𝑞 (sequence

length), 𝐾 (beam size), 𝜏 (user-intent threshold), 𝛼 (early
checking)

Output: ˆ𝑠𝑢 (a standardized version of 𝑠𝑢 )
1 𝐶 = {𝑠𝑢 } ; /* Set of all candidates. */
2 V𝐴,V𝐸′ ,𝑄 (𝒙 ) = CurateSearchSpace (S);
3 while not CheckStoppingCriteria (𝐶 , 𝑠𝑒𝑞) do
4 𝐶′ = ∅ ; /* Set of new candidates. */
5 foreach 𝑠 ∈ 𝐶 do
6 F = GetSteps (𝑠,V𝐴,V𝐸′ ,𝑄 (𝒙 ) ) ; /* A ranked set

of next steps based on RE score. */
7 𝐶′ = GetTopKBeams (𝐶′ , 𝑠 , 𝐾 , 𝛼 , F);
8 𝐶 = 𝐶′

9 𝐶 = VerifyAllConstraints (𝐶 , 𝜏 );
10 ˆ𝑠𝑢 = GetTopCandidate (𝐶);
11 return ˆ𝑠𝑢 ;

ConfiguringTransformations: Our approach uses two types
of transformations, add and delete, with two types of atom to
consider, 1-gram and n-gram (Section 4). To generate all possible
transformations, we enumerate the combination of which atom
to change and where to apply the change. Configuring delete
transformations is straightforward. We simply detect all existing
atoms in the script and configure a list of delete transformations
with the atoms, edges, and positions. Configuring add transfor-
mations is more elaborate since the location to add is unknown.
For 1-gram atoms, we leverage the edges to find the possible
locations to append. For every atom 𝑎 in the script 𝑠 , a new atom
𝑎′ ∈ V𝐴 is considered a possible candidate to be appended after
𝑎 if there exists (𝑎, 𝑎′) in V𝐸′ . For n-gram atoms, we use the
script corpus S to find possible locations in 𝑠 . When curating the
search space, we retain the relative location of each n-gram atom
in S. When determining where to add a new n-gram atom, we
compute their possible positions in 𝑠 using the relative locations
observed in S.

After a transformation is configured, its impact on the RE
score is calculated by marginally updating its vector 𝑃 (𝒙) in-
stead of performing the actual transformation in DAG. We have
yet to describe GetTopKBeams(), where we extend each candi-
date sequence by one transformation. We propose a few search
strategies that will be discussed next.

5.3 Extending By One Transformation
Given the list of configured transformations, we have two chal-
lenges when deciding which transformation to append to a se-
quence: (1) The search space is still large due to the exponential
number of possible sequences and the large number of unique
atoms in S; (2) The validity of the execution and user-intent
constraints of a candidate sequence is difficult to estimate during
search.

We design Algorithm 2 that applies the concepts discussed in
Section 5.2 and addresses those challenges with the following.
In line 4, transformation 𝑓 is applied to 𝐺𝑠 . In line 5, the trans-
formed script 𝑠′ is verified for the execution constraint. In lines
6-7, the top 𝐾 beams are updated by swapping out the script
with the highest RE score in 𝐶′ with 𝑠′. The beam search in
our search strategy keeps track of multiple candidate sequences
with potential best RE scores while keeping the search space
tractable. This algorithm also takes a parameter 𝛼 that controls
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Algorithm 2: GetTopKBeams
Input:𝐶 (current candidates), 𝑠 (a script), 𝐾 (beam size), 𝛼 (early

checking), F (a ranked set of next steps)
Output:𝐶′ (updated candidates)

1 valid = True;
2 𝐶′ = 𝐶 ;
3 foreach 𝑓 ∈ F do
4 𝑠′ = ApplyStep (𝑠, 𝑓 ) ;
5 if 𝛼 then valid = CheckIfExecutes (𝑠′);
6 if Score (𝑠′ ) < min𝑠∈𝐶 Score(𝑠 ) or |𝐶 | ≤ 𝐾 then
7 if valid then𝐶′ = UpdateKBeams (𝐶′ , 𝑠′ , 𝐾 );
8 return𝐶′;

the early checking for execution constraints. When 𝛼 = True,
early-checking is 𝑜𝑛, which means that the execution constraint
is verified every time after a transformation 𝑓 is applied to 𝐺𝑠 .
This ensures that the algorithm retains beams that are free of
execution errors during the search.

A problem with beam search is that the top-ranked next trans-
formations can be similar. This is because the 𝑅𝐸 (𝑠′,S) score
compares the atoms in 𝑠′ and S so the high-ranked transforma-
tions would suggest changing the same atom. We then design an
alternative to Algorithm 2 that incorporates a diversity measure
to allow the beams to explore different transformations.

Transformation Diversity Measure: We use K-means clus-
tering [32] to group similar transformations. ClusterSteps() takes
a ranked list of transformations, output by GetSteps(). Cluster-
Steps() then takes the updated vectors and groups them into𝑀
clusters. Within each cluster, we then rank the transformations
according to the RE scores and the output F𝑀 . In GetDiverseTop-
KBeams(), we iterate through each cluster and call Algorithm 2.

Algorithm 3: GetDiverseTopKBeams
Input:𝐶 (current candidates), 𝑠 (a script), 𝐾 (beam size), 𝛼 (early

checking), F (a ranked set of next steps)
Output:𝐶′ (updated candidates)

1 𝐶′ = 𝐶 ;
2 F𝑀 = ClusterSteps (F);
3 foreach F𝑖∈𝑀 do
4 𝐶′ = GetTopKBeams (𝐶′ , 𝑠′ , 𝐾

𝑀
, 𝛼 , F);

5 return𝐶′;

Parameterizing our framework: Algorithm 1 provides the
user with a set of parameters to explore and tailor in a flexible way
to their use case. Based on our main experiment (Section 6.3.3)
and ablation studies (Section 6.4) on six real-world datasets, Ta-
ble 2 lists the possible default parameters based on different
corpus properties. In addition, the user-intent threshold allows
the user to control the difference between the data processed by
𝑠𝑢 and 𝑠𝑢 , which is set to 𝜏𝐽 = 0.9 and 𝜏𝑀 = 1% by default. We
explore how varying the user-intent threshold affects our frame-
work in Section 6.3.2. Lastly, early-checking is set to 𝑜𝑛 as default
to ensure the output script is executable. We discuss potential
ways to automatically tune these parameters in Section 8.

6 EXPERIMENTAL EVALUATION
We embody our algorithm in a prototype system, LucidScript
(LS), which was written in 3,000 lines of predominantly Python
source code. Our current implementation supports straight-line
Python scripts. Support for other programming languages and
more complex programs can be addressed with more engineering
efforts. Our experiment data, code, and artifacts are available [2].

Table 2: Parameterization effected by corpus properties.

Corpus properties Parameters
Large Diverse 𝑠𝑒𝑞 K

# of scripts > 10 # of uniq. edges > 300 16 3
# of scripts > 10 # of uniq. edges ≤ 300 16 1
# of scripts ≤ 10 # of uniq. edges > 300 8 3
# of scripts ≤ 10 # of uniq. edges ≤ 300 8 1

We empirically demonstrate the following claims about our
method as embodied in LS:
(1) An increase in our metrics (relative entropy and user intent)

leads to better outcomes for data scientists.
(2) Our generated scripts are considered to be more standard

than scripts generated by alternative approaches.
(3) LS performs better than competing methods in standardizing

data preparation scripts with the user intent. We evaluated
this on six real-world datasets with varying properties, such
as data file size and corpus size.

(4) Each component of LS contributes meaningfully to its abil-
ity to find a sequence of transformations that satisfies our
optimization goal and constraints.

(5) LS performs well in a reasonable time.
(6) Bottom-up script standardization can also be applied to iden-

tify anomalous data preparation steps.

6.1 Experimental Setting
6.1.1 Competing methods. We evaluate each of the following

methods based on the performance metrics in Section 6.1.4.
• Sourcery: This is a commercial recommendation system to
automatically improve code quality and ensure clean code [7].

• GPT-3.5: GPT-3.5 [6] is a language model with billions of
parameters that enables it to generate text and code.

• GPT-4: GPT-4 [52] is an advanced iteration of GPT-3.5.
• Auto-Suggest [63]: This method uses machine learning mod-
els trained on real-world notebooks to predict a single next
step for an input table based on its characteristics.

• Auto-Tables [44]: This method predicts multi-step transfor-
mations, among a set of table-reshaping operators.
The corpus can be accessed by the GPT baselines in two ways.

Since GPT models are initially trained with scripts crawled from
the internet [6, 52], the Kaggle datasets we used in the experiment
should already be included in their training data. Another way
for the GPT models to use the specific corpus more explicitly is to
incorporate the corpus scripts in the prompt. Due to the limited
token length, it is impossible for the prompts to include the entire
script corpus. Empirically, we observed that prompts that include
more scripts from the corpus achieve better performance. We
describe how we select the prompts next.

6.1.2 GPT prompt survey. The performance of language mod-
els can be highly dependent on the problem prompt. We ensured
that our experiments used a high quality prompt by polling 12
graduate students for prompt ideas, with access to the corre-
sponding script corpus. We then ran all of them and chose the
best-performing prompt to compare against our method. As a
result, we believe that more typical users of LLMs would obtain
worse results than what we report here. The survey and results
are available in [2]. The best prompt randomly picks 4 scripts
from the corpus and asks the LLMs to enhance the performance
of the user script in terms of model accuracy or any other aspect
that the LLMs find relevant.
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Table 3: Examined datasets and their DAG statistics.

Statistics Titanic House NLP Spaceship Medical Sales

Scripts 62 49 24 38 47 26
Data files 3 4 3 3 1 6
Data tuples (k) 2.6 4.3 22.7 17.2 0.7 744.3
Data features 25 163 11 29 9 18
Avg # code lines 64 43 19 44 30 39
Uniq. 1-grams 625 659 175 427 281 347
Uniq. n-grams 548 221 48 201 143 114
Uniq. edges 748 632 193 423 220 308

6.1.3 Data collection and analysis. Weused the Kaggle API [4]
to obtain data preparation scripts in six competitions (Table 3).
Specifically, we downloaded all available scripts attached to the
chosen competitions, and used them as the input corpus. To
evaluate the effectiveness of our system, for each competition,
we treated each script in the corpus as an input user script and
ran the system on the remaining scripts as the corpus. We report
the average improvement on script standardness (calculated as
explained in Section 6.1.4).
• Titanic: The Titanic competition aims to create a model to
predict who survived the Titanic shipwreck.

• Sales: The Predict Future Sale competition aims to predict total
sales for every product and store in the next month.

• House: The House Prices competition aims to use 79 variables
to predict the final price of each home.

• NLP: The NLP with Disaster Tweets competition aims to distin-
guish real and fake tweets.

• Spaceship: The Spaceship Titanic competition aims to predict
which passengers were transported from a spaceship.

• Medical: The Pima Indians Diabetes Database dataset aims to
diagnostically predict if a patient has diabetes.

6.1.4 Performance metrics. We evaluated effectiveness using
the percentage improvement in relative entropy (Definition 4.1),
defined as % improvement = 𝑅𝐸 (𝑠𝑢 ,S)−𝑅𝐸 ( ˆ𝑠𝑢 ,S)

𝑅𝐸 (𝑠𝑢 ,S) . We used the
user-intent constraint to evaluate how well the user intent is
being preserved. Specifically, we varied the Jaccard user intent
threshold 𝜏𝐽 between [0, 1]. The user intent is preserved more
(i.e., given less flexibility to standardize) when 𝜏𝐽 is closer to
1. We varied the absolute percentage difference in the model
performance user intent threshold 𝜏𝑀 between [0%, 5%]. The
user intent is preserved more when 𝜏𝑀 is closer to 0%. For each
dataset, we iterated through the individual scripts as the user
input script 𝑠𝑢 and used the rest as the script corpus. The methods
output 𝑠𝑢 . We then calculated % improvement of each 𝑠𝑢 relative
to its original 𝑠𝑢 .

6.1.5 Default LucidScript (LS) configuration. We set the LS
default configuration as follows: sequence length 𝑠𝑒𝑞 = 16, beam
size 𝐾 = 3, diversity measure 𝑑𝑖𝑣 = on, early-checking 𝛼 = on.
This configuration obtained the best result. We set the user-intent
threshold 𝜏𝐽 = 0.9 and 𝜏𝑀 = 1%. This is a relatively strict user-
intent constraint since, for example, 𝜏𝑀 = 1% means that the
output script should be as standard as possible while keeping the
difference in its model performance within 1%.

6.2 Case Studies & A User Study
6.2.1 Metric Evaluation. Our first goal is to validate that im-

provements in our metrics (relative entropy and user intent)
actually lead to meaningful outcomes for data scientists. We
demonstrate this through the following case study.

Table 4: Case study for metrics evaluation, where 𝑠𝑢 is the
input script, and 𝑠1 and 𝑠2 are the potential outputs.

Script 𝑅𝐸 Δ𝐽 Δ𝑀
𝑠𝑢 import pandas as pd 3.02 1 0%

import numpy as np
df = pd.read_csv("/data/titanic/train.csv")

𝑠1 import pandas as pd 2.49 0.92 <0.1%
import numpy as np
df = pd.read_csv("/data/titanic/train.csv")
y = df["Survived"]
X_train = df.drop("Survived", axis=1)

𝑠2 import pandas as pd 1.37 0.90 <0.1%
import numpy as np
df = pd.read_csv("/data/titanic/train.csv")
df["Age"].fillna(df["Age"].mean())
df["Embarked"].fillna("S")
y = df["Survived"]
X_train = df.drop("Survived", axis=1)

Summary: An increase in our standardizationmetric indicates
a more standardized data preparation script while maintaining
the original user intent.

Results: We consider the Titanic competition. Table 4 shows
an input script 𝑠𝑢 and two output scripts 𝑠1, 𝑠2, with their corre-
sponding 𝑅𝐸 score and user intent measures Δ𝐽 , Δ𝑀 (for table
Jaccard similarity and model performance, respectively). In this
case, the input script 𝑠𝑢 simply loads the dataset. The user intent
measures for 𝑠𝑢 , as in the input script, are Δ𝐽 = 1,Δ𝑀 = 0%. 𝑠1,
one of the potential outputs, involves a common step in which
the target variable "Survived" is separated from the features. This
data preparation step appears in 50% of the scripts within the
corpus. As shown, the corresponding 𝑅𝐸 score increased by 27%,
while remaining within the user intent measures of Δ𝐽 = 0.9 and
Δ𝑀 = 1%. Beyond the steps in 𝑠1, a more “standard" output script,
𝑠2, includes two additional common steps to handle missing val-
ues in the variables "Age" and "Embark". These steps are present
in 45% and 14% of the scripts in the corpus. This modification fur-
ther increases the 𝑅𝐸 score by 55% compared to the input script
𝑠𝑢 . This example shows that the modified scripts incorporate
common and logical data preparation steps. It also shows that
an increase in the 𝑅𝐸 score corresponds to the inclusion of such
steps while preserving user intent.

6.2.2 User Study. Our next goal is to validate that LS gener-
ated scripts that are considered by data scientists more standard
compared to the output of the baselines. We recruited 34 un-
dergraduate and graduate computer science students who are
familiar with data preparation and Python programming. Each
participant was given two use cases, including statistics on the
prevalence of data preparation steps in the corpus (similar to
Table 1), and 5 scripts output by LS and the baselines. In the
without-user-intent case, participants evaluated the methods in a
cold start setting, while in the with-user-intent case, participants
were given an input script.

Participants were asked to rank each of the output scripts on
a scale of 1 to 5 based on: (a) how standardized the script is w.r.t.
the corpus, where standardization represents the commonality of
the chosen data preparation steps; and (b) how helpful the script
is w.r.t. preserving the user intent, measured by their modeling
task. The complete form provided to participants is available [2].

Summary: LS was rated to be the most standard and helpful.
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Figure 3: User study result.

Table 5: % improvement on Kaggle datasets, with 𝜏𝐽 = 0.9
and 𝜏𝑀 = 1%. LS is set as default.

Corpus setup Method % Improvement
min median max mean

Full-size corpus

LS (𝜏𝐽 ) 0.0 33.1 72.3 33.6
LS (𝜏𝑀 ) 0.0 26.9 70.0 25.8
GPT-3.5 -57.3 -1.5 58.4 -3.7
GPT-4 -129.0 0.0 66.1 3.4
Sourcery 0.0 0.0 0.0 0.0
Auto-Suggest 0.0 0.0 0.0 0.0
Auto-Tables 0.0 0.0 0.0 0.0

Small corpus LS (𝜏𝐽 ) 0.0 18.5 69.3 20.3
LS (𝜏𝑀 ) 0.0 15.0 69.3 17.1

Different corpus LS (𝜏𝐽 ) 0.0 11.1 36.4 10.5
LS (𝜏𝑀 ) 0.0 11.8 36.4 11.2

Low-ranked corpus LS (𝜏𝐽 ) 0.0 5.4 32.9 7.8
LS (𝜏𝑀 ) 0.0 5.2 32.9 7.7

Results: In the without-user-intent case, it is statistically sig-
nificant that LS is more standard and helpful than baseline meth-
ods6. In the with-user-intent case, LS is the most standard and
helpful among all 5 methods. Note that we omitted Auto-Suggest
from Figure 3 since it had the same results as Auto-Tables.

6.3 Evaluating Effectiveness
We aim to answer the following three questions. Is our framework
effective in standardizing data preprocessing scripts with the
constraints? How does our method compare to the others? And
how does our method perform on a variety of datasets?

6.3.1 Script standardization with constraints. We evaluated
the % improvement of LucidScript (LS) with the default configu-
ration against the three competing methods on six datasets.

Summary: LS consistently outperforms competing methods
by far. None of the state-of-the-art methods can effectively im-
prove script standardization.

Results: In Figure 4, the most optimal result would be a sharp
peak on the most right, meaning that all input scripts get an
improvement of 100%, while a curve centered around 𝑥 = 0
means that the method does not improve script standardness.
A curve extending to the left (𝑥 ≤ 0) means that the method
decreases script standardness.

LS achieves at least 30% improvement in script standardization
while preserving user intent, other than Sales (Table 5). GPT
models perform similarly with only a small positive average %
improvement on Titanic (GPT-4: 7.7%) and House (GPT-4: 6.2%).
Moreover, LS guarantees a standardness improvement, whereas
GPT models do not produce reliable results, sometimes emitting
a script that uses less common transformations than the user’s
original (GPT-4: -130%). This is because LS aims to preserve

6according to a t-test, 𝑝-value < 0.05

Figure 4: % improvement distribution. Sourcery, Auto-
Suggest, and Auto-Tables are omitted.

Figure 5: Median % improvement of LS-default with varied
table Jaccard threshold 𝜏𝐽 (left); median % improvement of
LS-default with varied model performance threshold 𝜏𝑀
(right).

the user intent while standardizing the script using the specific
collective knowledge of 𝐷𝐼𝑁 . Although GPT models are trained
on all publicly available scripts, they do not standardize the script
with a focus on knowledge specific to 𝐷𝐼𝑁 .

We compared LS to two academic solutions, Auto-Suggest [63]
and Auto-Tables [44], which are, respectively, the state-of-the-art
work for single-step and multi-step table transformation pre-
diction. These methods made a 0% improvement because they
focus on a fixed set of table structural transformations, such as
transpose and pivot. However, the real-world scripts that we
observed focus on feature engineering and data cleaning tasks
(Figure 1a). Our bottom-up approach makes LS robust to the type
of data preprocessing tasks. We also compared with Sourcery,
a commercial product for code cleaning, but observed that it
consistently made no difference on all measures, as it focuses on
syntax standardization.

6.3.2 Evaluating with user intent. We experimented with two
user-intent measures, table Jaccard and model performance. We
evaluated how performance changes with user intent thresholds,
ranging from more lenient to more strict. We only evaluated LS
since competing methods do not have this property.

Summary: LS can adhere to a wide range of user intent while
improving script standardness in the six datasets.
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Results: We varied table Jaccard 𝜏𝐽 between [0, 1] (Figure 5).
𝜏𝐽 = 1 means the 𝐷𝑠𝑢

𝑂𝑈𝑇
and 𝐷𝑠𝑢

𝑂𝑈𝑇
are identical, which is the

most strict user intent constraint, where the intent should be pre-
served in its entirety. We found that as this constraint becomes
more relaxed (i.e., 𝜏𝐽 becomes smaller), LS can make the input
scripts more standardized. In all six data sets, once 𝜏𝐽 < 0.7, the
% improvement plateaus, so we cap the figure at 𝜏𝐽 = 0.5. We
attribute this to the default setting that has a maximum sequence
length of 16, which limits the maximum number of transforma-
tions that can be applied to 𝑠𝑢 .

We varied model performance 𝜏𝑀 between [0%, 5%] (Figure 5).
𝜏𝑀 = 0% means the 𝑎𝑐𝑐 (𝐷𝑠𝑢

𝑂𝑈𝑇
) and 𝑎𝑐𝑐 (𝐷𝑠𝑢

𝑂𝑈𝑇
) are identical. In

general, on all six datasets, as the constraint becomes more re-
laxed, LS can make more improvements to script standardization.
We observed a non-monotonic trend in House, which could be
attributed to the complex interaction between 𝑎𝑐𝑐 (𝐷𝑂𝑈𝑇 ) and
𝐷𝑂𝑈𝑇 . Although 𝑎𝑐𝑐 (𝐷𝑂𝑈𝑇 ) is influenced by 𝐷𝑂𝑈𝑇 , the corre-
lation is complex. Some small changes in the content of 𝐷𝑂𝑈𝑇
may yield a significant improvement or decrease in 𝑎𝑐𝑐 (𝐷𝑂𝑈𝑇 ).

We would expect that when the system has more freedom
to change the script – that is, the constraint on the original
intent is relaxed – we would see highly standardized output
scripts. In contrast, when the system is limited to producing an
output that is extremely fidelity to the user’s original script, it has
little flexibility, and we would expect to see output scripts that
cannot be standardized very much. That is in fact what we see in
Figures 5. As we relax the constraints on user intent, LS indeed
usually produces output scripts that are more standardized.

6.3.3 Script standardization using various corpus settings. We
consider three corpus scenarios to examine robustness (Table 5).

Summary: Overall, LS managed to find common transforma-
tions that improve script standardness, given a variety of corpora.

Results:We experimented with the following three scenarios.
Using a small corpus. We consider the scenario where only a

limited number of scripts are available. We sampled 10 scripts
from each dataset. Overall, LS maintained at least a 13% improve-
ment in all datasets for both user-intent constraints, except Sales.
We observed the most performance reduction on Titanic, House,
and Medical. This is because their original corpus size is larger
(Table 3) compared to the other datasets, providing a richer search
space and potential opportunities to improve standardization.

Using a corpus of a different dataset that has a similar schema.
We consider the scenario where a corpus for the identical dataset
is not available, so the user resorts to a corpus on a similar dataset.
We experimented with improving Spaceship scripts using Titanic
corpus. LS still achieves an 11% improvement. This is because the
competition setup and𝐷𝐼𝑁 for Spaceship and Titanic share many
similarities: they both predict survival, and there are identical
column names in 𝐷𝐼𝑁 . This shows that LS can be used success-
fully by applying one script corpus to a different target, although
— unsurprisingly — the quality improvement is reduced.

Using a low-ranked corpus. We consider the scenario where
the corpus consists solely of low-ranked scripts. Specifically, the
corpus uses the bottom 30% of the scripts, determined by their
count of votes received on Kaggle. Despite being challenged by
a smaller, low-ranked corpus, LS still managed to find common
transformations that improve script standardness by 5%. Our
takeaway here is that when only low-quality scripts are available,
it is more effective to use scripts that process a similar dataset,
as this approach leads to better system performance (Table 5).

Figure 6: Median % improvement of LS-default with varied
sequence lengths (left) and varied beam sizes (right).

6.4 Ablation Studies
We isolate each piece of our algorithm and evaluate their contri-
bution to the overall effectiveness of LS.

6.4.1 Varied sequence lengths. Sequence length is the maxi-
mum number of transformations in a sequence. We use it as the
stopping criterion. We set the sequence length 𝑠𝑒𝑞 to {2, 4, 8, 16}.

Summary: LS makes scripts more standardized as the maxi-
mum sequence length increases.

Results: As Figure 6 shows, on the six datasets, the median
% improvement increases as the maximum number of sequence
length. As 𝑠𝑒𝑞 increases, LS improves standardization at a faster
rate at the start, and then the improvement slowly starts to
plateau from 𝑠𝑒𝑞 = 8 to 𝑠𝑒𝑞 = 16. This could be attributed to
the size of the script corpus and the diversity of atoms and edges
(Table 3). We observed the best performance at 𝑠𝑒𝑞 = 16 on
Titanic and Spaceship, which are two datasets with the most
unique atoms and edges, with a % improvement of 41.4% and 42%
respectively.

6.4.2 Varied beam sizes. The number of beams 𝐾 in {1, 2, 3}
is how many in-progress sequences LS retains.

Summary: LS performs better as 𝐾 increases.
Results: Figure 6 shows that in all six data sets, the beam

search enables LS to increase the % improvement steadily as 𝐾
increases. We observe that the beam search effect is the strongest
on Medical, achieving an increase of 8.5% from 𝐾 = 1 to 𝐾 = 3,
and the weakest on Titanic, obtaining an increase of 2.6%. On
average, the beam search increases the % improvement by 5%
across the six datasets.

6.5 Evaluating Efficiency
We isolate each component and discuss factors that could affect
search performance and end-to-end latency.

On average, LS takes several minutes to generate a standard-
ized version of a given input script (on average, one script takes
7.2 minutes end-to-end). Although this process may take a few
minutes, it involves generating an entire script instead of just
a single-step recommendation. This time frame is typical and
comparable to other systems that generate full pipelines hands-
free [10, 50, 51, 58, 65]. Future work will focus on reducing the
search space, possibly by grouping semantically similar opera-
tions. See Section 8 for further discussion.

Summary: In general, the latency of the search steps (Get-
Steps(), GetTopKBeams()) increases as unique atoms and edges
increase. The size of the data file 𝐷𝐼𝑁 also affects the latency of
the checking steps (CheckIfExecutes(), VerifyConstraints()).
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Figure 7: Median runtime breakdown on 𝑠𝑒𝑞 = 16.

Results: As shown in Figure 7, LS has the lowest latency on
Medical and NLP, which are the two datasets with the lowest
number of atoms and edges. The small number of atoms and
edges implies a more narrow search space, which makes LS faster
to find the potential next steps and converge to a standardized
script. The type of ML models the users choose mainly has an
impact on the latency of VerifyConstraint() since that is where our
framework checks for the user-intent constraint, which includes
model performance. This is the main reason why NLP has a
longer latency than Medical. The size of the data file affects
the latency from the perspective of constraint verification. The
original latency is 20x slower on Sales compared to the other
datasets before sampling is applied. This is because Sales has
744k tuples in 𝐷𝐼𝑁 , which is 30x more than NLP, the second
largest 𝐷𝐼𝑁 . LS checks for the constraints by running the scripts
that inevitably load 𝐷𝐼𝑁 . The larger 𝐷𝐼𝑁 , the more constraint
checking contributes to the latency. We can sufficiently reduce
the latency caused by large datasets with sampling.

Overall, the latency is influenced by both the algorithmic com-
ponents of LS and the characteristics of the dataset. The median
latency can be less than a minute per script in Medical and can
take up to 17.5 minutes on Sales. We also note that the current
latency depends on this specific version of the system prototype,
which could be improved with more engineering efforts. For ex-
ample, we can use parallelism, running each beam on a separate
thread. In general, data preparation is a time-consuming task that
is challenging even for experienced data scientists [21, 22]. In
contrast, we offer a unique and effective solution that can signifi-
cantly standardize data preparation scripts that require minimum
effort from data consumers regardless of their backgrounds.

6.6 Case Study: Target Leakage Detection
Script standardization is the process of simultaneously removing
out-of-the-ordinary steps from the input script and adding the
missing common practices to the input script. Target leakage is
another example of an out-of-the-ordinary step that should be
replaced with one that is more conventional and correct. As a
result, our system can potentially identify it (Figure 8).

6.6.1 Study setup. We performed a qualitative case study.
Target leakage. As one of the common data preparation mis-

takes in practice, target leakage occurs when the target variable
or information derived from it is included in the feature set. This
leads to overly optimistic performance estimates during model
evaluation, as the model has access to information that would
not be available in a real-world scenario. For each dataset, we
sample 10% of the real-world scripts and use GPT-4 [52] to pro-
grammatically inject target leakage code snippets (ground truth).
Prompts used are in [2].

Performance metric. We evaluate the effectiveness using the
accuracy of detecting the ground truth snippets. Specifically, an

Figure 8: Example input 𝑠𝑢 (left); output scripts 𝑠𝑢 (right). 𝑠𝑢
has created a column correlated to the target with random
noises (line 7-9). Green shows the added steps, while red
shows the steps recognized to be removed from 𝑠𝑢 .

Figure 9: Accuracy of LS for target leakage detection.

output script is correct when it satisfies the constraints (Defini-
tion 4.5), and the ground truth snippet is labeled as to be removed.

6.6.2 Study results. We vary sequence lengths to study how
many steps would LS take to detect the ground truth snippets.
Figure 9 shows the effectiveness of our approach in target leakage
detection, where over 66% of ground truth snippets are discovered
within 8 steps for all datasets except Sales.

7 RELATEDWORK
One-Step Recommendations: Automating data preparation
pipelines can be achieved by recommending the next best data
preparation step [8, 33, 34, 36, 63]. These solutions utilize AI
and crowd-sourcing [34], web data [8], available data science
notebooks [63], and learning models [63] to generate recommen-
dations and predict user intent. Close to our work, the authors of
[63] proposed Auto-Suggest [63], which "learns" data preparation
steps from data scientist workflows and recommends the next
step by predicting the next operator and its parameters. Our work
is distinct in that it seeks to standardize an input script as much
as possible while preserving user intent, rather than simplifying
the task of analysts by predicting their next steps.

Multi-Step Recommendations: Researchers have recently
explored multi-step automation for data preparation pipelines.
Ourwork is themost similar to Auto-Tables [44] and Learn2Clean [13,
14]. Auto-Tables uses machine learning models to predict a se-
quence of table structural transformations for a given input table.
Learn2Clean [13, 14] employs reinforcement learning to explore
all possible strategies to process a given dataset to maximize
the performance of a specific machine learning model. Although
multi-step recommendations can be an application of our work,
fundamentally, we solve a different problem. Instead of recom-
mending a sequence of data preparation steps for a given user
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intent in [13, 14, 64], we take the user’s input script merely as a
sketch and tweak the semantics within a threshold to improve
script standardness.

Program Synthesis: Program synthesis is a technique that
seeks to automatically generate code based on user intent, which
can be specified by various forms of constraints such as I/O ex-
amples. Studies have demonstrated that several components of
data preparation can be automated using programming by ex-
ample, including spreadsheet automation [19], code generation
in R [24], and SQL query generation [61]. Closer to our work,
AutoPandas [11] takes input/output examples that demonstrate
the desired transformation and uses a neural-backed synthesis
engine to generate Python programs. Recently, the use of large
language models for program synthesis has become increasingly
popular. OpenAI Codex [18], a GPT [16] language model fined-
tuned on public Python code on GitHub, shows its capabilities
in code writing by generating programs using docstrings. It can
also be used to power many downstream program synthesis ap-
plications, such as GitHub Copilot [3], which suggests code and
functions in real time to save programmers’ time on repetitive
code. The key difference between our problem and this line of
work is that in program synthesis, the semantics and function-
ality of the program should not deviate from user intent, while
we use user intent as guidance and allow it to be refined. This
flexibility enables analysts to explore and integrate the collec-
tive knowledge embedded in the script collection. We evaluated
the GPT models [6, 52] on the script standardization problem,
without putting constraints on the intent of the user.

Code style transfer Learning-based approaches often ana-
lyze common coding styles found in codebases by converting
code into representations like one-hot token embeddings or parse
trees. They then derive formatting conventions and generate
explicit [9, 46] or abstract [53] rules. Another recent system,
DUETCS [17], aims to facilitate automatic code style transfer.
However, these methods typically require the user to pre-define
the coding style or focus solely on formatting issues. In contrast,
our system automatically extracts abstract styles from the corpus.
The goal is to preserve user intent by modifying the script to
align with the most prevalent (i.e., standard) style in the corpus.

AutomatedMachine Learning (AutoML): This line of work
focuses on automated processes that use machine learning algo-
rithms and techniques to build, optimize, and select predictive
models for a given dataset. AutoML is used to automate the pro-
cess of training and tuning machine learning models, allowing
users to quickly and easily generate more accurate models with
less effort and time [35, 60]. Tools such as Auto-sklearn [25, 26],
Auto-WEKA [60], and DeepLine [35] focus on automating ma-
chine learningmodel building. These systems tackle the challenge
of automatic selection and optimization of machine learning mod-
els and their hyperparameters, and combine multiple types of
machine learning model into a single model [35]. We are situ-
ated upstream in the machine learning model-building pipeline,
helping analysts prepare their datasets before feeding them into
machine learning models.

8 CONCLUSION AND LIMITATIONS
We introduce a new problem and propose an efficient framework
to standardize data preparation scripts with minimal effort. When
interpreting the generated script, several limitations should be
considered. First, its quality may be influenced by factors such
as the quality of the input script and the user intent threshold.

Second, the generated script may not be fully ready for produc-
tion, so human validation is necessary to ensure that it performs
as intended and that no unintended biases are introduced [30].

Our framework currently supports scripts written in Python.
In principle, it can be generalized to other programming lan-
guages. However, this would require extending the script-to-DAG
and DAG-to-script procedures, as well as the lemmatization tech-
niques used. We note that other systems on data preparation
recommendations have also focused on Python [63, 64].

Standardizing data preparation scripts is challenging due to
the diverse ways in which the same operations can be expressed
across different frameworks (e.g., Pandas, PySpark,Modin, DuckDB).
To accurately measure the similarity between various operations,
it is crucial to use a high-level abstraction or knowledge base that
ignores specific details such as the frameworks or their versions.
Our current implementation uses simple NLP solutions [54]. Al-
though we recognize existing work in this area and suggest that
LLMs may be effective, our system does not yet incorporate these
advanced approaches. This highlights a key opportunity for ex-
tending our framework. However, despite using LLM-based solu-
tions as baselines, which is expected to perform well in this con-
text, our framework demonstrated superior performance. With
the rapid improvement of LLMs, especially in code generation,
we expect to see improvements in their performance. We plan
to integrate LLMs into our system to automatically verify that
constraints are satisfied without explicitly checking them (i.e.,
ensuring that the code is executable). We also plan to rerun the
experiments with new versions of LLMs in the future to track
their improvement.

Another limitation is that the user must provide a script cor-
pus. We note that similar assumptions are made by other frame-
works [17, 63]. In addition, the dataset may be updated, or differ-
ent datasets that have the same schema become available (e.g.,
MIMIC datasets [37, 43]). As we showed, even a small corpus
or one containing scripts that process similar datasets can still
yield valuable results. To address situations where obtaining a
script corpus is challenging, one potential solution is to generate
scripts using LLMs. Additionally, scripts authored by domain
experts could be weighted differently (e.g., using the vote counts
of Kaggle scripts).

The user also sets a threshold that indicates how much they
are willing to compromise on their intent in exchange for a more
standardized script. Our experiments show that the modified
script not only stays within this threshold, but also, in many
cases, improves model performance. Along with the user-intent
threshold, our framework provides a set of parameters for the
user to customize. While the parameters offer flexibility, they
may require effort to tune. A possible extension to this work is
an algorithm that optimizes configurations, such as exploring
user intent thresholds and returning the Pareto curve.

Our framework currently supports two methods for evaluat-
ing how well user intent is preserved: table Jaccard and model
performance. Future work will focus on incorporating additional
metrics, such as assessing the semantic similarity between scripts,
comparing their bags of operations, or evaluating the fairness
of the model [30]. Lastly, an interesting direction for further ex-
ploration that we intend to pursue is providing explanations for
why a transformation is recommended to the input script. The
explanation would inform the user about the frequency of this
operation in the corpus, its impact on the user intent, and the
rationale behind it, such as scaling the features to improve the
performance of a learning model.
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