
Selective Evolving Centrality in Temporal Heterogeneous
Graphs

Landy Andriamampianina
Activus Group
Toulouse, France

landy.andriamampianina@
activus-group.fr

Franck Ravat
IRIT-CNRS (UMR 5505) - Université

Toulouse Capitole
Toulouse, France

franck.ravat@irit.fr

Jiefu Song
IRIT-CNRS (UMR 5505) - Université

Toulouse Capitole
Toulouse, France

jiefu.song@ut-capitole.fr

Nathalie Vallès-Parlangeau
Université de Pau et des Pays de

l’Adour, France
Pau, France

nathalie.valles-parlangeau@
univ-pau.fr

Yanpei Wang
Université Toulouse Capitole

Toulouse, France
yanpei.wang@ut-capitole.fr

ABSTRACT
Centrality metrics allow quantitatively sorting the nodes of a
graph. However, classic centrality metrics are inadequate when
dealing with a graph that evolves over time and that contains
multiple types of nodes and edges, what is known as Temporal
Heterogeneous Graph. In this paper, we propose an extension of
centrality metrics which takes into account temporal evolution
and heterogeneity of a graph. We define a calculation function
of centrality that depends on several user-defined parameters
(namely, any metric, any graph model, any edge type, any time
period). Accordingly, we propose new usages of centrality values.
Finally, we propose an algorithm coupled with a decentralized
implementation method to perform a centrality analysis based on
our calculation function. We carry out a series of experimental
assessments to study the efficiency and analytical power of our
algorithm. The experimental results have shown that globally,
the algorithm’s runtimes increase linearly with the datasets’ vol-
ume and user-defined parameters. Moreover, the algorithm offers
multiple perspectives for analyzing nodes’ centrality.

1 INTRODUCTION
Graph is a useful structure to model a variety of real-world net-
works such as social networks, epidemiological networks, trans-
portation networks [7]. Entities, such as people, are modeled as
nodes, and relationships connecting entities, such as friendships,
are modeled as edges. A typical analysis of graphs is identifying
central nodes. The centrality of a node refers to the importance
of a node in a graph with respect to its position in the graph [25].
Diverse centrality metrics enable to quantify this importance,
and to rank nodes accordingly. For example, degree centrality
counts the number of incident edges to a node [13]. This can be
used to measure the influence of individuals in a social network
based on the number of relationships they have with others and
to find the most influential ones [25].

Real-world networks are inherently temporal (or dynamic),
with their topology evolving over time as nodes and edges are
added or removed [7]. In social networks, for example, individuals
may gain or lose followers as time progresses [2]. Consequently,

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the influence of individuals within these networks is not static; it
fluctuates over time with changes in connections. Moreover, real-
world networks are heterogeneous. A network is homogeneous if
the entities and relationships are of the same type. In contrast, it
is heterogeneous if entities and relationships have different types
[15]. For instance, individuals in a social network may belong to
different types, such as influencers and casual users, and may en-
gage in distinct types of interactions, such as follows, mentions,
or shares. By leveraging these distinctions, we can differentiate
the ranking of influencers and casual users to better capture their
varying levels of influence within the network. Besides, we can
further refine the analysis by considering how the centrality of
entities varies according to the types of interactions they engage
in. For example, the centrality of an influencer based on mentions
may differ from their centrality based on shares, highlighting
their specific roles in content creation versus content amplifica-
tion. Temporal heterogeneous graphs have therefore emerged as
models to represent temporal and heterogeneous networks. They
refer to a graph that evolves over time, where nodes or edges of
different types change dynamically [1, 2, 4].

However, existing centrality metrics are typically designed for
either temporal graphs or heterogeneous graphs, and even when
applied to the corresponding cases, they have limitations. On
the one hand, centrality metrics designed for temporal graphs
provide a coarse-grained perspective of the importance of a node.
Indeed, they return a single value of a node for a given time inter-
val [5, 6, 11, 17, 27, 28]. This prevents from tracking the variation
of the centrality value of a node at each time step of the time
interval. On the other hand, centrality metrics designed for het-
erogeneous graphs capture the multiple types of entities and their
relationships by incorporating meta-paths, which are sequences
of node types and edge types that define a path schema from an
origin node type to a destination node type [15, 26]. However, this
approach is limited to path-based centrality metrics and cannot
be applied to all centrality metrics and use cases. For instance, if
we aim to capture a person’s influence in a social network using
the degree metric, which counts the number of connections, a
meta-path would only capture one type of connection, such as
Person-Shares-Person. This excludes other semantically related
types of connections, such as Likes, which also impact a person’s
influence.

A general challenge with centrality metrics is their computa-
tional cost. Historically, these metrics were designed for relatively

Series ISSN: 2367-2005 596 10.48786/edbt.2025.48

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.48

small graphs, typically consisting of hundreds of nodes and edges
(Table 1). As a result, they fail to scale efficiently when applied
to large-scale networks, which may contain millions or even
billions of nodes and edges. This scalability issue becomes espe-
cially problematic in temporal heterogeneous graphs, where the
complexity of the model adds further computational overhead.
In response to this issue, one of the two alternatives is generally
taken: (i) approximation algorithms focusing on obtaining an
approximation of a centrality metric by using various forms of
sampling and heuristics to avoid its full computation [29, 30],
(ii) parallel and distributed algorithms that consist of exploit-
ing technical resources (CPUs, GPUs, machines) to speed up the
computation [21, 24].

In this paper, we propose a new approach tomeasure centrality,
in terms of both metric calculation and centrality usages, in a
graph including temporal evolution and heterogeneity. Precisely,
we make the following contributions.

First, we propose a selective centrality function that enables to
measure the centrality of an entity given selected inputs: a graph
model, a metric, a set of relationship types and a time interval.
It has the advantages of (i) returning a list of centrality values
to follow the evolution of an entity’s importance, (ii) allowing
the selection of a set of relationship types in the calculation to
capture multiple contributors of an entity’s importance and, iii)
being generic by enabling the calculation of any metric applied
to any graph model.

Second, our function returns a fine-grained perspective of the
importance of an entity, contrary to the coarse-grained perspec-
tive in existing works. This new perspective opens new usages
of the centrality values. Indeed, we propose approaches to use
the resulting centrality values of our function. It includes the ex-
tension of the classic ranking of entities based on their centrality
values.

Third, we propose an algorithm for computing a complete
centrality analysis, from the calculation of centrality, using on
our selective centrality function, to their results’ usage, using our
proposed approaches. Moreover, we propose an implementation
of our algorithm in a parallel and distributed environment.

Finally, we conduct a systematic study of the application of
our algorithm over several metrics, graph models and real-world
datasets to evaluate its efficiency and analytical power.

The remainder of the paper is organized as follows. First, we
review the literature on centrality in both temporal graphs and
heterogeneous graphs (Section 2). Second, we define the selective
centrality function of centrality and usage approaches of central-
ity values (Section 3). Third, we present the systematic study of
the application of our solution (Section 4). Finally, we conclude
the paper (Section 5).

2 RELATEDWORK
We have studied existing works according to two axes: centrality
metric calculation and usage of centrality.

2.1 Centrality Calculation
Many researchers have studied the importance of nodes in static
graphs, i.e., graphs that do not evolve over time. Among the com-
monly used centrality metrics, one can cite neighborhood-based
centralities such as degree, path-based centralities like between-
ness and closeness, and iterative refinement centralities such
as eigenvector centrality [13]. Centrality metrics are designed
with respect to a specific graph model, meaning their calculation

depends on the chosen graph representation. To the best of our
knowledge, these metrics have been applied either to temporal
graphs or heterogeneous graphs, but not to temporal heteroge-
neous graphs, which combine both temporal and heterogeneous
aspects.

Centrality Metrics for Temporal Graphs. To account for the
evolution of graphs, traditional centrality metrics have been ex-
tended. These extensions generally rely on two graph models:
graph snapshots and temporal property graphs (Table 1).

Graph snapshots represent a sequence of time-ordered static
graphs, each capturing the state of the graph at a particular mo-
ment. Based on this model, centrality metrics are calculated for
each snapshot, and the resulting values are aggregated to pro-
duce a single value over a given time interval. For instance, [11]
define temporal degree centrality as the sum of the degree values
across all snapshots within a specified time interval. Similarly, [5]
proposes a weighted temporal degree metric that incorporates
weights in snapshot calculations.

A temporal property graph is a single graph where nodes
and/or edges carry time-dependent properties. This modeling al-
ternative allows constructing temporal paths (or time-respecting
paths) beginning from a node of one instant ending on a node of
another instant. This model allows the construction of temporal
paths (also called time-respecting paths), which start at a node at
one time instant and end at a node at another instant. Temporal
property graphs are especially useful in applications such as dis-
ease spread modeling or information diffusion, where centrality
measures the importance of nodes as bridges for spatio-temporal
flows [27]. In this context, betweenness and closeness centralities
have been extended by replacing the notion of shortest paths (i.e.,
the shortest spatial distance between two nodes) with temporal
shortest paths (i.e., paths that minimize either the number of
hops between two nodes within a specific time interval and/or
time elapsed from the start to the end of the path within the given
time interval) to return a single value valid for a time interval
[5, 6, 17, 27, 28]. Similarly, [20] proposes a temporal PageRank by
integrating the concept of time-respecting random walks. [16]
defines a temporal H-index of a node based on the temporal
reachability of its neighborhood nodes for a certain time interval.

Existing centrality metrics for temporal graphs do not fully
exploit the temporal aspects of graphs. They provide a coarse-
grained perspective of the importance of a node by returning a
single value for a given time interval. Consequently, they fail to
capture the evolution of a node’s importance over time through
a series of values. At best, incremental graph algorithms retain
previously computed values to update the centrality score when
changes occur in the graph, thereby avoiding recalculations from
scratch [8–10]. However, their goal remains to compute a single
centrality value for a node rather than to track its evolution over
time.

Centrality Metrics for Heterogeneous Graphs. A very limited
number of centrality metrics have been designed for heteroge-
neous graphs, which consist of graphs containing various types
of entities and relationships, modeled as labels attached to nodes
and edges [2]. To capture heterogeneity, these centrality metrics
use the concept of meta-paths. A meta-path is composed of a
pre-defined sequence of relationship types (𝑙1, 𝑙2, ..., 𝑙𝑘) from an
origin entity type 𝑙1 to a destination entity type 𝑙𝑘 .

In [15], the centrality of an entity ismeasured using an entropy-
basedmethod, which calculates the probability of a node reaching
other nodes via a given meta-path. They gave the example of

597

the DBLP bibliographic network1, where authors are connected
through different meta-paths. Their analysis consists in calculat-
ing the influence of an author on other authors via separate meta-
paths with a fixed length, such as Author-Conference-Author.

Similarly, [26] defines a meta-path based betweenness central-
ity of a node 𝑛𝑖 of a type A as the fraction of the shortest paths
that follow a meta-path (with no fixed length) having starting
and ending nodes of type A and that pass through the node 𝑛𝑖 .
As an example, in a movie network, given the meta-path Actor-
Movie-Director-Movie-Actor, we can search for actors who play
important "bridge" roles in promoting cooperation between other
unfamiliar actors with the help of directors.

The concept of meta-path limits the scope of a centrality anal-
ysis. First, it is specifically designed for path-based centrality
metrics, ignoring other centrality metrics such as degree. Second,
a meta-path’s structure imposes a single relationship type be-
tween each couple of entity types from the beginning to the end
of the path. For instance, in the meta-path Author-Conference-
Author, we cannot calculate the influence of an author on another
by also considering another semantically close relationship type,
such as Journal. Third, a meta-path’s structure imposes a fixed
order of connections between entities and, in some cases, a fixed
length of these connections.

2.2 Centrality Usage
In classic graphs (i.e., static and homogeneous), nodes are typi-
cally ranked after computing a centrality metric. This consists in
sorting a list of numerical values, each of which is a centrality
value calculated according to a chosen metric. In both temporal
graphs and heterogeneous graphs, they apply the same ranking
approach [5, 11, 15–17, 26, 27]. The only difference lies in the
interpretation of rankings. In the case of temporal graphs, the
ranking is for a particular time period [5, 11, 16, 17, 27]. In the
case of heterogeneous graphs, the ranking is relative to a specific
meta-path [15, 26]. However, these ranking approaches ignore
the evolution perspective of centrality in a temporal heteroge-
neous graph.

3 PROPOSITION
Our proposal covers both the calculation of centrality in tem-
poral heterogeneous graphs and its usage. Firstly, we propose
a calculation function of the centrality of an entity. Second, we
propose approaches to use the results of our function.

3.1 Preliminaries
Definition 3.1 (temporal heterogeneous graph). A temporal het-

erogeneous graph𝐺 = ⟨𝐸, 𝑅,𝑇 , 𝜙⟩ is composed by a set of entities
𝐸 and their relationships 𝑅 and a timeline𝑇 . Entities are modeled
as nodes. Relationships between entities are modeled as edges.
Each entity and relationship can have several "versions" over time,
as they change over time. These versions can be captured through
existing temporal graph modelizations: graph snapshots [4] or,
by the new concept of "states" in temporal property graphs [2],
which associates each entity and relationship with a time interval
indicating how long the current version is valid. Additionally, 𝐺
is associated with an entity type set denoted 𝐿𝐸 = {𝑙𝐸1 , ..., 𝑙𝐸𝑛 }
and a relationship type set denoted 𝐿𝑅 = {𝑙𝑅1 , ..., 𝑙𝑅𝑞 }. An entity
is connected to other entities via several relationship types. The
function 𝜙 : 𝑤, 𝑒 |𝑙𝐸∗ , 𝐿𝑅∗ → 𝐺 ′ returns: (i) for a time interval
𝑤 ⊆ 𝑇 , a specific entity 𝑒 ∈ 𝐸 and a set of relationship labels 𝐿𝑅∗ ,
1https://dblp.org/

Table 1: Related work on centrality metrics. |N|= number of
nodes, |E|=number of edges, |T|= number of time instances.

Article Graph Model Extended metric Dataset size

[11] graph snapshots
degree,
closenesss,
betweenness

2 contact networks:
- |N|: [12,100]
- |E|: [∼4K,∼64K]
- |T|: [5,280]

[5] weighted graph snapshots degree,
closeness

1 social network:
- |N|: 100
- |T|: 3

[16] temporal property graph H-index

16 multi-domain datasets:
- |N|: [75, ∼3000K]
- |E|: [∼30K,∼40000K]
- |T|: [49,∼2K]

[22] graph snapshots betweenness,
closeness

1 contact network:
- |N|: 151
- |E|: ∼250K
- |T|: ∼1K

[17] temporal property graph closeness

2 social networks:
- |N|:[∼1K, ∼3K]
- |E|: [∼5K,∼30K]
- |T|: [81,120]

[28] temporal property graph closeness

12 multi-domain datasets:
- |N|: [∼8K, ∼3200K]
- |E|: [∼86K,∼40000K]
- |T|: [70,∼730K]

[6] temporal property graph,
graph snapshots

closeness,
eigenvector

6 multi-domain datasets:
- |N|: [62, ∼10K]
- |E|: [∼27K,∼400K]
- |T|: [∼39,∼500]

[23] graph snapshots embedded in
supra-centrality matrix eigenvector

1 social network:
- |N|: 277
- |T|: 65
1 actor network:
- |N|: 55
- |T|: 10
1 citation network:
- |N|: ∼25K
- |T|: 20

[20] temporal property graph page rank
3 social networks:
- |N|: 100
- |E|: ∼100K

[15] heterogeneous graph entropy
3 citation networks:
- |N|: [∼ 1K,∼400K]
- |E|: [∼30K,∼1800K]

[26] heterogeneous graph betweenness

2 movie networks:
- |N|: [∼ 34K,∼1500K]
- |E|: [∼56K,∼2600K]
1 citation network :
- |N|: ∼ 2600K
- |E|: ∼5900K
1 restaurant website:
- |N|: ∼ 9100K
- |E|: ∼15000K

Table 2: Notation table.

𝐺 = ⟨𝐸, 𝑅,𝑇 , 𝜙⟩ a temporal heterogeneous graph
𝐺 ′ ⊂ 𝐺 a subgraph of 𝐺
𝐸 the set of entities in 𝐺
𝑒 an entity in 𝐸

𝑅 the set of relationships in 𝐺
𝑇 the timeline of 𝐺
𝜙 : 𝑤, 𝑒 |𝑙𝐸∗ , 𝐿𝑅∗ → 𝐺 ′ a function to return a subgraph 𝐺 ′
𝐿𝐸 = {𝑙𝐸1 , ..., 𝑙𝐸𝑛 } the set of entity types in 𝐺
𝑙𝐸∗ a type of entity
𝐿𝑅 = {𝑙𝑅1 , ..., 𝑙𝑅𝑞 } the set of relationship types in 𝐺
𝑙𝑅∗ a type of relationship
𝑚 a centrality metric

𝑤 = [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]
a time interval starting at the time 𝑡𝑠𝑡𝑎𝑟𝑡
and ending at the time 𝑡𝑒𝑛𝑑

𝑣𝑡𝑖 the value of𝑚 at the time 𝑡𝑖

the subgraph 𝐺 ′ ⊂ 𝐺 including the entity 𝑒 and its connected
entities via relationships having a type in the set 𝐿𝑅∗ and present
in the time interval 𝑤 ; (ii) for a time interval 𝑤 ⊆ 𝑇 , an entity

598

Solid edges represent interactions between entities at
Dotted edges represent interactions between entities at

(b) an extract of a temporal property graph denoted as

A

B

C

D

E

F

A

B

C

D

E

F

Influencer
A

(a) Graph snapshots denoted as

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

Influencer
B

Casual
User

C
Casual
User

D

Shares

Shares

Likes

Mentions

Follows

Follows

Shares

Likes

Follows

Likes Mentions

Mentions
Likes

Shares
Shares

Shares

Likes

Mentions

Figure 1: Different types of graph datasets.

label 𝑙𝐸∗ and a set of relationship label 𝐿𝑅∗ , the subgraph𝐺 ′ ⊂ 𝐺

containing entities of a type 𝑙𝐸∗ and its connected entities via
relationships having a type in the set 𝐿𝑅∗ and present in the time
interval𝑤 .

It is worth noticing that no matter how the temporal het-
erogeneous graph is modeled, our centrality solution is generic
enough to adapt to different graph temporality and heterogeneity
representations.

3.2 Calculation Function
Current centrality metrics provide a static vision of centrality
metric through a single value of an entity for a certain time in-
terval. Moreover, they provide a strict sequence of relationships
between entities in the calculation. To do so, we propose a calcu-
lation function of an entity’s centrality which is characterized
by two aspects : (i) its ability to return a dynamic version of a
centrality metric to follow changes over time and, (ii) its ability
to take into account a graph model, a metric, a time interval and
a flexible structure of relationships to adapt to diverse analytical
needs. We call this function selective centrality.

Definition 3.2 (selective centrality function). The selective cen-
trality function returns the evolution of an entity’s importance
as a series of values based on several user-defined inputs:
• a temporal heterogeneous graph 𝐺 ;
• the subject of the centrality to compute. It is an entity
𝑒 ∈ 𝐺 ;
• a centrality metric𝑚 to compute;

• a time interval𝑤 = [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] based on the time unit in
𝐺 ;
• an optional relationship label set 𝐿𝑅∗ to focus on a subset
group of relationships 𝑅∗ ∈ 𝐺 . It is by default the whole
set of relationships 𝑅 ∈ 𝐺 .

𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒,𝑚,𝑤, 𝐿𝑅∗) =


• {𝑣𝑡𝑠𝑡𝑎𝑟𝑡 , ..., 𝑣𝑡𝑖 , ..., 𝑣𝑡𝑒𝑛𝑑 }
where 𝑣𝑡𝑖 is the centrality value of 𝑒
at the time 𝑡𝑖 ∈ 𝑤
• not defined, otherwise

Example 3.3 (static centrality VS dynamic centrality). Suppose
that we want to study the evolution of people’s influence based
on the degree metric in a social network during the time interval
[𝑡1, 𝑡5]. As a reminder, the degree metric consists in counting the
number of edges incident to a node [13]. The social network is
modeled as graph snapshots presented in Fig 1 (a) and denoted
𝐺1 = ⟨𝐺𝑡1 ,𝐺𝑡2 ,𝐺𝑡3 ,𝐺𝑡4 ,𝐺𝑡5 ⟩ where each 𝐺𝑡 = ⟨𝐸𝑡 , 𝑅𝑡 ⟩ is the set
of entities and relationships captured at the time 𝑡𝑖 ∈ [𝑡1, 𝑡5].
Changes in the graph are therefore captured by entire graph
snapshots created at different time points. Here, 𝐺1 does not
distinguish relationship types. However, our selective central-
ity function also works on temporal homogeneous graphs by
skipping the selection of the set of relationship labels. For each
person 𝑒𝑖 (i.e, A, B, C, D, E and F) in the graph, we compute two
versions of its centrality: (i) a static version (i.e., a single value)
by aggregating the degree values of each time point of the time
interval as in current work, (ii) a dynamic version (i.e, a time
series) by using our function, i.e., applying for each entity 𝑒𝑖
the operation 𝑆𝑐𝑒𝑛𝑡 (𝐺1, 𝑒𝑖 , 𝑑𝑒𝑔𝑟𝑒𝑒, [𝑡1, 𝑡5], ∅). We obtain the cen-
trality values in Table 3. We observe that if we consider a static
version of centrality, A and B have the same degree values on the
time period [𝑡1, 𝑡5]. If we make a fine-grained analysis using our
selective centrality function, we observe that they have different
evolution trends. We observe that the degree of A is 5 at 𝑡1 but
stagnates to 0 from 𝑡2 to 𝑡4 and then increases sharply to 5 at 𝑡5.
Meanwhile, B has a more stable degree over the period.

Example 3.4 (homogeneous centrality VS heterogeneous central-
ity). We consider that the heterogeneity of a graphmodel impacts
the centrality of an entity. In the previous example, we consider
a social network in the form of graph snapshots that are homoge-
neous (Fig 1 (a)). They do not include different types of entities
and relationships. Now, we consider a social network in the form
of a temporal property graph based on [2]. It is presented in Fig 1
(b) and denoted as, 𝐺2 = ⟨𝐸, 𝑅,𝑇 ⟩ where 𝐸 is all entities and 𝑅

is all relationships over the timeline 𝑇 = [𝑡1, 𝑡2]. Compared to
graph snapshots, changes are captured by using a single graph
where a new version of each relationship is created whenever a
change occurs. This avoids repeating edges that do not change, as
it would introduce redundancy. To do so, this temporal property
graph attaches properties to edges to depict the time occurrence
of interactions. Moreover, it integrates heterogeneity using labels
attached to nodes and edges to distinguish entity and relationship
types. Here, we have two types of entities, Influencer and Casual
User and four types of relationships, Shares, Likes, Mentions and
Follows. Suppose that we want to compute the degree of the indi-
vidual B, i.e., the number of received likes and/or shares and/or
mentions and/or followers, in 𝑡1 to show its influence in the so-
cial network. Using our selective centrality function, we have

599

Table 3: Static centrality VS dynamic centrality for the de-
gree metric in the graph 𝐺1 in Fig 1 (a). The static degree
centrality is the sum of degree values calculated at each
time point 𝑡𝑖 of the time interval [𝑡1, 𝑡5]. The dynamic de-
gree centrality is calculated with the selective centrality
function.

Entity
Degree

Static
version

Dynamic
version

𝐴 10 {5,0,0,0,5}
𝐵 10 {3,2,1,3,1}
𝐶 7 {2,2,1,1,1}
𝐷 4 {1,0,1,1,1}
𝐸 6 {2,1,1,1,1}
𝐹 3 {1,1,0,0,1}

several perspectives of the influence of B in the social network.
We can obtain a homogeneous version of the degree of B without
distinguishing relationship type: 𝑆𝑐𝑒𝑛𝑡 (𝐺1, 𝐵, 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡1, ∅) = 5.
We can obtain several heterogeneous versions of the degree
of B, i.e., with a selected subset of relationship types. If we
want to measure the influence of B only based on the number
of its followers, we have: 𝑆𝑐𝑒𝑛𝑡 (𝐺1, 𝐵, 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡1, {𝐹𝑜𝑙𝑙𝑜𝑤𝑠}) =
2. It is also possible to measure the influence of B with re-
spect to his posts’ visibility through shares, likes and mentions:
𝑆𝑐𝑒𝑛𝑡 (𝐺1, 𝐵, 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡1, {𝑆ℎ𝑎𝑟𝑒𝑠 ;𝐿𝑖𝑘𝑒𝑠;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}) = 4.

Example 3.5 (different metrics). Our selective centrality func-
tion is independent of the metric. Indeed, it can be applied for
different metrics. In Table 4, we compute the degree-, eigenvector-
and betweenness- centrality for each individual in the graph 𝐺2
in Fig 1 (b) for the relationship types Shares, Likes, and Mentions
using our selective centrality function. The goal is to compare
their influence based on the Shares, Likes, and Mentions they
received and the metric used. The details of computations are
presented on the website https://gitlab.com/2573869/centrality_
temporal_graph_edbt. As a reminder, eigenvector centrality com-
putes for each node a score (between 0 and 1) based on the sum
of its neighbors’ centrality values [13]. In other words, the influ-
ence of an individual depends on the influence of the individuals
with whom he interacts (through likes, mentions and shares).
Betweenness centrality of a node is calculated as the sum of the
ratios of all shortest paths that pass through the node to the
total number of shortest paths in the graph [13]. Accordingly,
betweenness centrality looks at the influence of an individual
as a bridge between other individuals. Meanwhile, the degree
centrality here refers to the number of likes, mentions and shares
received by an individual. We notice that in 𝑡1 even if the indi-
vidual C is not influential according to its degree value, he is one
of the most influential person according to the eigenvector score.
Moreover, we observe that B is the only one to have a non-null
betweenness centrality in 𝑡1 because he connects indirectly other
individuals. It is the same for C in 𝑡2.

In previous examples, we show that our selective centrality
function enables to choose interchangeable parameters, namely
a graph model, a metric, a time interval and a set of relationship
types. This is in the objective to offer multi-perspectives of the
importance of an entity: its evolution and a different meaning
according to the chosen metric and the relationship types on

Table 4: Application of different metrics on the graph 𝐺2
in Fig 1 (b) where 𝐿𝑅∗ = {𝑆ℎ𝑎𝑟𝑒𝑠 ;𝐿𝑖𝑘𝑒𝑠;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}.

Operation Centrality
Degree Eigenvector Betweenness

𝑆𝑐𝑒𝑛𝑡 (𝐺2, 𝐴,𝑚, [𝑡1, 𝑡2], 𝐿𝑅∗) {1,2} {0.19,0} {0,0}
𝑆𝑐𝑒𝑛𝑡 (𝐺2, 𝐵,𝑚, [𝑡1, 𝑡2], 𝐿𝑅∗) {4,0} {0.31,0.5} {2,0}
𝑆𝑐𝑒𝑛𝑡 (𝐺2,𝐶,𝑚, [𝑡1, 𝑡2], 𝐿𝑅∗) {0,3} {0.31,0.25} {0,1}
𝑆𝑐𝑒𝑛𝑡 (𝐺2, 𝐷,𝑚, [𝑡1, 𝑡2], 𝐿𝑅∗) {2,2} {0.19,0.25} {0,0}

which it relies. All these different perspectives imply to rank
entities differently as well.

3.3 Usage
Traditionally, after computing the centrality metrics for all enti-
ties in the graph, the resulting list of numerical values are sorted
to produce a rank to the user to identify the most important
entities. However, this ranking approach is not sufficient if the
user takes account for the evolution and heterogeneity perspec-
tives proposed by our selective centrality. Indeed, with this new
perspectives, multiple lists of centrality values (one for each time
step of a given interval) are produced. Aggregating these mul-
tiple centrality lists into a single list disregards the evolution
and heterogeneity of the entities. To address these challenges,
we propose three approaches for utilizing centrality values: (i)
global centrality ranking, (ii) dynamic centrality ranking and (iii)
centrality spreading.

3.3.1 Global Centrality Ranking. A user has a need to rank en-
tities based on their centrality, typically using traditional ranking
approaches. However, these traditional approaches may fail to
provide insights into long-term trends, particularly when short-
term fluctuations dominate. Our approach addresses this need
by providing a global view of centrality that reflects the overall
importance of entities over a given time interval. To do so, we
define an average selective centrality function to rank entities
based on a single centrality value, calculated over a selected time.
The goal is to simplify the analysis for non-expert users, whomay
be more familiar with traditional ranking, and to offer decision-
makers a quick way to assess the most important entities. The
approach proceeds in three steps: (i) compute the selective cen-
trality of each entity considering a centrality metric𝑚, a selected
group of entities given the type 𝑙𝐸∗ (by default all entities 𝐸), a
selected set of relationship types given the set of relationship
labels 𝐿𝑅∗ (by default, all relationships 𝑅), (ii) compute the av-
erage of these centrality values over the time interval, and (iii)
rank entities in descending order of their average centrality. The
average selective centrality is denoted as follows:

𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒,𝑚,𝑤, 𝐿𝑅∗) =
∑
𝑡𝑖 ∈𝑤 𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒,𝑚, 𝑡𝑖 , 𝐿𝑅∗)∑ |𝑤 |

𝑖=1 𝑖

This provides a way to calculate a ranking based on the average
selective centrality for the selected entities, metric, relationship
types, and time period:

𝑆𝑐𝑒𝑛𝑡𝑟𝑎𝑛𝑘,𝑎𝑣𝑔 (𝐺, 𝑙𝐸∗ ,𝑚,𝑤, 𝐿𝑅∗) = (𝑒1, 𝑒2, ..., 𝑒𝑘 | 𝑒1, 𝑒2, ..., 𝑒𝑘 ∈ 𝐸∗

and 𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒1,𝑚, 𝑡𝑖 , 𝐿𝑅∗) ≥ ... ≥ 𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒𝑘 ,𝑚, 𝑡𝑖 , 𝐿𝑅∗))

Example 3.6. Suppose the user has the graph 𝐺2 in Fig 1
(b), and wants to rank entities using the degree metric
over the time interval [𝑡1, 𝑡5] and the relationship types
{𝑆ℎ𝑎𝑟𝑒𝑠;𝐿𝑖𝑘𝑒𝑠;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}. Using the traditional ranking ap-
proach, the classic degree for each entity is computed for

600

Table 5: Centrality for entities in the graph 𝐺2 (Fig 1 (b)),
the degree metric, the time period [𝑡1, 𝑡5] and the set of
relationship types {𝑆ℎ𝑎𝑟𝑒𝑠;𝐿𝑖𝑘𝑒𝑠;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}.

Entity Selective
Degree

Classic
Degree

Average
Selective
Degree

𝐴 {1,2,6,1,7} 17 3.4
𝐵 {4,0,1,1,15} 21 4.2
𝐶 {0,3,1,2,0} 6 1.2
𝐷 {2,2,2,2,4} 12 2.4

each time step, and a sum is obtained for the entire interval
(Table 5). In contrast, in the global centrality ranking approach,
the selective degree values are computed for each entity
and then the average degree for each entity is computed
over the time period [𝑡1, 𝑡5] (Table 5). The classic degree and
the average selective degree rankings are similar, but the
average degree provides a more balanced view, avoiding the
dominance of entities that only appear influential during
certain time windows. The resulting ranking for all entities is:
𝑆𝑐𝑒𝑛𝑡𝑟𝑎𝑛𝑘,𝑎𝑣𝑔 (𝐺2, ∅, 𝑑𝑒𝑔𝑟𝑒𝑒, [𝑡1, 𝑡5], {𝑆ℎ𝑎𝑟𝑒𝑠 ;𝐿𝑖𝑘𝑒𝑠 ;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}) =
(𝐵,𝐴, 𝐷,𝐶). In addition, we can refine the rank-
ing by entity type. For example, ranking just the
"Influencers" versus "Casual Users" might yield:
𝑆𝑐𝑒𝑛𝑡𝑟𝑎𝑛𝑘,𝑎𝑣𝑔 (𝐺2, 𝐼𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒𝑟, 𝑑𝑒𝑔𝑟𝑒𝑒, [𝑡1, 𝑡5], {𝑆ℎ𝑎𝑟𝑒𝑠;𝐿𝑖𝑘𝑒𝑠;
𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}) = (𝐵,𝐴) and
𝑆𝑐𝑒𝑛𝑡𝑟𝑎𝑛𝑘,𝑎𝑣𝑔 (𝐺2,𝐶𝑎𝑠𝑢𝑎𝑙 𝑈𝑠𝑒𝑟, 𝑑𝑒𝑔𝑟𝑒𝑒, [𝑡1, 𝑡5], {𝑆ℎ𝑎𝑟𝑒𝑠 ;𝐿𝑖𝑘𝑒𝑠;
𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}) = (𝐷,𝐶).

3.3.2 Dynamic Centrality Ranking. A user wants to track how
the importance of entities evolves over time. Traditional ranking
approaches fail to highlight key moments when entities become
more or less influential. By using dynamic ranking, we offer an
approach to track rankings at each time step, providing insights
into temporal shifts in centrality. This approach ranks entities at
each time step of a time interval𝑤 in three steps: (i) compute the
selective centrality of each entity considering a centrality metric
𝑚, a selected group of entities given the type 𝑙𝐸∗ (by default all
entities 𝐸), a selected set of relationship types given the set of
relationship labels 𝐿𝑅∗ (by default, all relationships𝑅), (ii) for each
time step in𝑤 , create a list grouping entities and their centrality
values, (iii) in each list, sort entities by descending order of their
centrality values. The dynamic ranking is represented as follows:

𝑆𝑐𝑒𝑛𝑡𝑟𝑎𝑛𝑘 (𝐺, 𝑙𝐸∗ ,𝑚,𝑤, 𝐿𝑅∗) = {𝑟𝑎𝑛𝑘𝑡𝑠𝑡𝑎𝑟𝑡 , ..., 𝑟𝑎𝑛𝑘𝑡𝑖 , ..., 𝑟𝑎𝑛𝑘𝑡𝑒𝑛𝑑 }
where 𝑟𝑎𝑛𝑘𝑡𝑖 = (𝑒1, 𝑒2, ..., 𝑒𝑘 | 𝑒1, 𝑒2, ..., 𝑒𝑘 ∈ 𝐸∗

and 𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒1,𝑚, 𝑡𝑖 , [𝐿𝑅∗]) ≥ ... ≥ 𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒𝑘 ,𝑚, 𝑡𝑖 , [𝐿𝑅∗]))

Example 3.7. Suppose the user has the graph 𝐺2 in Fig 1 (b),
and wants to analyze the evolution of the ranking of entities
using the degree metric over the time interval [𝑡1, 𝑡5] and the re-
lationship types {𝑆ℎ𝑎𝑟𝑒𝑠 ;𝐿𝑖𝑘𝑒𝑠 ;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}. Using the traditional
ranking approach, we obtain a single degree value for each entity
which prevents from tracking the evolution of entity rankings
(Table 5). Using the dynamic ranking approach, we obtain:
𝑆𝑐𝑒𝑛𝑡𝑟𝑎𝑛𝑘 (𝐺2, ∅, 𝑑𝑒𝑔𝑟𝑒𝑒, [𝑡1, 𝑡5], {𝑆ℎ𝑎𝑟𝑒𝑠;𝐿𝑖𝑘𝑒𝑠;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠}) =

{(𝐵, 𝐷,𝐴,𝐶), (𝐶,𝐴 − 𝐷, 𝐵), (𝐴, 𝐷, 𝐵 − 𝐶), (𝐵,𝐴, 𝐷,𝐶)}. This
reveals the fluctuations in entity rankings across time, such as
entity B being top-central individual at 𝑡1 but less influential at
𝑡2 and 𝑡3, before regaining prominence by 𝑡5.

3.3.3 Centrality Spreading. A user wants to better understand
the magnitude of differences in centrality among entities within
a ranking. While rankings show the order of entities, they do not
reveal the spread of centrality values. We propose an approach to
analyze how centrality values are distributed among entities. This
approach involves two scenarios: calculating the centrality values
for each entity, using either the selective centrality or the average
selective centrality. Then, based on the previous computed values,
the following aggregate statistics are computed: the minimum,
the maximum, the first quartile2, the second quartile3 and the
thrid quartile4.

In the first scenario, the approach works as follows: (i) calcu-
late the selective centrality of each entity considering a centrality
metric𝑚, a selected group of entities given the type 𝑙𝐸∗ (by de-
fault all entities 𝐸), a selected set of relationship types given the
set of relationship labels 𝐿𝑅∗ (by default, all relationships 𝑅), (ii)
for each time step in𝑤 , create a list grouping entities and their
centrality values, (iii) for each list, apply the minimum, maximum
and first quartile, second quartile and third quartile functions.
In the second scenario, we have to : (i) calculate the average
selective centrality for each entity considering some selected
parameters, (ii) apply the minimum, maximum and first quar-
tile, second quartile and third quartile functions on the average
selective centrality values. The corresponding functions are:

𝑆𝑐𝑒𝑛𝑡𝑚𝑖𝑛 (𝐺, 𝑙𝐸∗ ,𝑚,𝑤, 𝐿𝑅∗) =

• {𝑚𝑖𝑛𝑡𝑠𝑡𝑎𝑟𝑡 , ...,𝑚𝑖𝑛𝑡𝑖 , ...𝑚𝑖𝑛𝑡𝑒𝑛𝑑 }
s.t𝑚𝑖𝑛𝑡𝑖 =𝑚𝑖𝑛(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒 𝑗 ,𝑚, 𝑡𝑖 , 𝐿𝑅∗))
•𝑚𝑖𝑛(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒 𝑗 ,𝑚,𝑤, 𝐿𝑅∗))

𝑆𝑐𝑒𝑛𝑡𝑚𝑎𝑥 (𝐺, 𝑙𝐸∗ ,𝑚,𝑤, 𝐿𝑅∗) =

• {𝑚𝑎𝑥𝑡𝑠𝑡𝑎𝑟𝑡 , ...,𝑚𝑎𝑥𝑡𝑖 , ...,𝑚𝑎𝑥𝑡𝑒𝑛𝑑 }
s.t𝑚𝑎𝑥𝑡𝑖 =𝑚𝑎𝑥 (∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒 𝑗 ,𝑚, 𝑡𝑖 , 𝐿𝑅∗))
•𝑚𝑎𝑥 (∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒 𝑗 ,𝑤, 𝑡𝑖 , 𝐿𝑅∗))

𝑆𝑐𝑒𝑛𝑡𝑞1 (𝐺, 𝑙𝐸∗ ,𝑚,𝑤, 𝐿𝑅∗) =

• {𝑞1𝑡𝑠𝑡𝑎𝑟𝑡 , ..., 𝑞1𝑡𝑖 , ..., 𝑞1𝑡𝑒𝑛𝑑 }
s.t 𝑞1𝑡𝑖 = 𝑞1(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒 𝑗 ,𝑚, 𝑡𝑖 , 𝐿𝑅∗))
•𝑞1(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒 𝑗 ,𝑚,𝑤, 𝐿𝑅∗))

𝑆𝑐𝑒𝑛𝑡𝑞2 (𝐺, 𝑙𝐸∗ ,𝑚,𝑤, 𝐿𝑅∗) =

• {𝑞2𝑡𝑠𝑡𝑎𝑟𝑡 , ..., 𝑞2𝑡𝑖 , ..., 𝑞2𝑡𝑒𝑛𝑑 }
s.t 𝑞2𝑡𝑖 = 𝑞2(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒 𝑗 ,𝑚, 𝑡𝑖 , 𝐿𝑅∗))
•𝑞2(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒 𝑗 ,𝑚,𝑤, 𝐿𝑅∗))

𝑆𝑐𝑒𝑛𝑡𝑞3 (𝐺, 𝑙𝐸∗ ,𝑚,𝑤, [𝐿𝑅∗]) =

• {𝑞3𝑡𝑠𝑡𝑎𝑟𝑡 , ..., 𝑞3𝑡𝑖 , ..., 𝑞3𝑡𝑒𝑛𝑑 }
s.t 𝑞3𝑡𝑖 = 𝑞3(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡 (𝐺, 𝑒 𝑗 ,𝑚, 𝑡𝑖 , 𝐿𝑅∗))
•𝑞3(∪𝑒 𝑗 ∈𝐸∗𝑆𝑐𝑒𝑛𝑡𝑎𝑣𝑔 (𝐺, 𝑒 𝑗 ,𝑚, 𝑡𝑖 , 𝐿𝑅∗))

Example 3.8. Suppose the user has the graph 𝐺2 in Fig 1
(b), and wants to analyze the evolution of the spreading of
"Influencers" and "Casual Users" based on the degree metric
over the time interval [𝑡1, 𝑡2] and the set of relationship types
{𝑆ℎ𝑎𝑟𝑒𝑠;𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠;𝐿𝑖𝑘𝑒𝑠}. To do so, we apply the first scenario
of the approach. Using boxplots5 to visualize the results (Fig 2),
we find that degree values for "Casual Users" are more concen-
trated at lower values, while "Influencers" exhibit a greater spread.
For example, 75% of casual users have fewer than 6 interactions
over the period (q3), while 75% of influencers have more than 8
2The first quartile marks the 25th percentile, meaning 25% of the data points fall
below this value.
3The second quartile marks the 50th percentile, dividing a dataset in half.
4The third quartile represents the 75th percentile, meaning 75% of the data points
fall below this value.
5In a box plot, the minimum is at the end of the lower whisker. The first quartile
q1 is at the bottom of the box. The median q2 is the line inside the box. The third
quartile q3 is at the top of the box. The maximum is at the end of the upper whisker.

601

𝑡1 𝑡2

0

5

10

15

20

25

30

Time

D
eg
re
e
V
al
u
e

Casual Users
Influencers

Figure 2: Evolution of box plots of degree values of entities
in 𝐺2.

interactions (q1). Moreover, the top 25% casual users have degree
values than close to the rest of entities. Conversely, the top 25%
influencers have degree values significantly higher than the rest
of the group.

3.4 Algorithm
In this section, we propose an algorithm, independent of a tech-
nical environment, called SelectiveCentralityAnalysis (or SCA)
to execute a complete analysis of the centrality of a group of
entities in a graph, i.e., from the computation of entities’ cen-
trality to their rankings and spreadings (Algorithm 1). It takes
as inputs a graph, an optional entity group defined by a type,
a metric, a time interval and an optional relationship type set.
Then, it implements the propositions of the previous sections
to return several outputs: the evolving centrality of entities, the
evolving ranking of entities, the evolving spreading of entities,
the average centrality of entities, the average ranking of entities,
and the average spreading of entities.

First, the algorithm calculates all the centrality values of a
selected group of entities of the type 𝑙𝐸∗ (by default 𝐸) by im-
plementing the selective centrality function. For each time step
𝑡 within the chosen time interval𝑤 , the algorithm does in par-
allel the following sequential tasks (lines 5-13): (i) it selects the
sub-graph that includes entities from the chosen type 𝑙𝐸∗ and
relationships from the chosen relationship type set 𝐿𝑅∗ having
timestamps intersecting the time step 𝑡 (line 7), (ii) for each entity
in the selected subgraph, it does in parallel the calculation of the
chosen metric𝑚, and adds the triple (entity, metric value and
time step) in a set of entities’ centrality 𝑆𝐶𝑡 for the time step
𝑡 ∈ 𝑤 (lines 8-11).

Second, the algorithm computes the ranking of entities for
each time step in𝑤 by implementing a selective centrality rank-
ing. To do so, for each set of entities’ centrality 𝑆𝐶𝑡 calculated
at the previous step, it sorts entities of the set by the descending
order of their centrality values (lines 14-18).

Third, the algorithm computes the spread of entities for each
time step in𝑤 . More precisely, for each set of entities’ centrality
𝑆𝐶𝑡 calculated at the previous step, it applies the minimum, max-
imum, and quartiles functions and records the resulting values
in the set 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑡 (lines 19-23).

Algorithm 1 SelectiveCentralityAnalysis (SCA)
1: Input: a temporal heterogeneous graph𝐺 , an optional entity

type 𝑙𝐸∗ , a metric𝑚, a time interval𝑤 , an optional relation-
ship type set 𝐿𝑅∗

2: Output: the selective centrality values of entities 𝑆𝐶 , the
dynamic ranking of entities 𝑆𝐶𝑟𝑎𝑛𝑘 , the dynamic spreading
of entities 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑 , the average selective centrality values
of entities 𝑆𝐶𝑎𝑣𝑔 , the average ranking of entities 𝑆𝐶𝑟𝑎𝑛𝑘,𝑎𝑣𝑔 ,
the average spreading of entities 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑎𝑣𝑔

3: Initialize 𝑆𝐶 ← {}, 𝑆𝐶𝑟𝑎𝑛𝑘 ← {}, 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑 ← {}
4: Initialize 𝑆𝐶𝑎𝑣𝑔 ← {}, 𝑆𝐶𝑟𝑎𝑛𝑘,𝑎𝑣𝑔 ← {}, 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑎𝑣𝑔 ← {}
5: Selective Centrality Calculation:
6: for each 𝑡 in𝑤 do in parallel
7: 𝐺𝑡 ← 𝜙 (𝑡, 𝑙𝐸∗ , 𝐿𝑅∗)
8: for each 𝑒 in 𝐺𝑡 do in parallel
9: 𝑣 ←𝑚(𝐺𝑡 , 𝑒)
10: 𝑆𝐶𝑡 ← 𝑆𝐶𝑡 ∪ {(𝑒, 𝑣, 𝑡)}
11: end for
12: 𝑆𝐶 ← 𝑆𝐶 ∪ {𝑆𝐶𝑡 }
13: end for
14: Selective Centrality Ranking:
15: for each 𝑆𝐶𝑡 ∈ 𝑆𝐶 do
16: 𝑆𝐶𝑟𝑎𝑛𝑘,𝑡 ← 𝑠𝑜𝑟𝑡 (𝑆𝐶𝑡 , 𝑣, 𝑑𝑒𝑠𝑐)
17: 𝑆𝐶𝑟𝑎𝑛𝑘 ← 𝑆𝐶𝑟𝑎𝑛𝑘 ∪ 𝑆𝐶𝑟𝑎𝑛𝑘,𝑡
18: end for
19: Selective Centrality Spreading:
20: for each 𝑆𝐶𝑡 ∈ 𝑆𝐶 do
21: 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑡 ← {𝑚𝑖𝑛(𝑣 | (𝑒, 𝑣, 𝑡) ∈ 𝑆𝐶𝑡), 𝑄1 (𝑣 | (𝑒, 𝑣, 𝑡) ∈

𝑆𝐶𝑡), 𝑄2 (𝑣 | (𝑒, 𝑣, 𝑡) ∈ 𝑆𝐶𝑡), 𝑄3 (𝑣 | (𝑒, 𝑣, 𝑡) ∈ 𝑆𝐶𝑡),𝑚𝑎𝑥 (𝑣 |
(𝑒, 𝑣, 𝑡) ∈ 𝑆𝐶𝑡)}

22: 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑 ← 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑 ∪ 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑡
23: end for
24: Average Selective Centrality Calculation:
25: for each 𝑒 ∈ 𝑆𝐶 do
26: 𝑆𝐶𝑎𝑣𝑔 ← 𝑆𝐶𝑎𝑣𝑔 ∪ {(𝑒, 𝑎𝑣𝑔({∪(𝑒,𝑣𝑖 ,𝑡) ∈𝑆𝐶𝑡 ∈𝑆𝐶𝑣𝑖 })}
27: end for
28: Average Selective Centrality Ranking:
29: 𝑆𝐶𝑟𝑎𝑛𝑘,𝑎𝑣𝑔 ← 𝑠𝑜𝑟𝑡 (𝑆𝐶𝑎𝑣𝑔, 𝑣, 𝑑𝑒𝑠𝑐)
30: Average Selective Centrality Spreading:
31: 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑎𝑣𝑔 ← {𝑚𝑖𝑛(𝑣 | (𝑒, 𝑣) ∈ 𝑆𝐶𝑎𝑣𝑔), 𝑄1 (𝑣 |
(𝑒, 𝑣) ∈ 𝑆𝐶𝑎𝑣𝑔), 𝑄2 (𝑣 | (𝑒, 𝑣) ∈ 𝑆𝐶𝑎𝑣𝑔), 𝑄3 (𝑣 | (𝑒, 𝑣) ∈
𝑆𝐶𝑎𝑣𝑔),𝑚𝑎𝑥 (𝑣 | (𝑒, 𝑣) ∈ 𝑆𝐶𝑎𝑣𝑔)}

32: return 𝑆𝐶, 𝑆𝐶𝑟𝑎𝑛𝑘 , 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑 , 𝑆𝐶𝑎𝑣𝑔, 𝑆𝐶𝑟𝑎𝑛𝑘,𝑎𝑣𝑔, 𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑎𝑣𝑔

Fourth, the algorithm calculates the average centrality values
of the entity group for the time interval𝑤 by implementing the
average selective centrality (lines 24-27). To do so, for each entity,
it applies the average function on all metric values over all time
steps of𝑤 . Then, it adds the double (entity, average metric value)
in a set of entities’ average centrality 𝑆𝐶𝑎𝑣𝑔 .

Fifth, the algorithm computes the ranking of entities based
on their average centrality values for the time interval𝑤 . To do
so, it sorts the entities of the set 𝑆𝐶𝑎𝑣𝑔 calculated in the previous
step by the descending order of their average centrality values
(lines 28-29).

Finally, the algorithm computes the spread of the entities based
on their average centrality values for the time interval𝑤 . More
precisely, it applies the minimum, maximum, and quartile func-
tions to the set of entities’ average centrality 𝑆𝐶𝑎𝑣𝑔 calculated

602

at the previous step and records the resulting values in the set
𝑆𝐶𝑠𝑝𝑟𝑒𝑎𝑑,𝑎𝑣𝑔 (lines 30-31).

3.5 Algorithm’s Complexity
The time and space complexity of the algorithm is primarily de-
termined by the Selective Centrality Calculation (lines 5-13). As
a result, the complexity discussion in this section will primar-
ily focus on the Selective Centrality Calculation. Since various
centrality metrics can be integrated into our algorithm, this com-
plexity varies depending on the specific metric used.

The average-case time complexity of the algorithm is:

𝑂
(
|𝑤 | · (|𝐸 | + |𝑅 | +𝑇𝐶𝑚 (¯|𝑒 |, ¯|𝑟 |)

)
,

The average-case space complexity of the algorithm is:

𝑂
(¯|𝑒 | + ¯|𝑟 | + 𝑆𝐶𝑚

(¯|𝑒 |, ¯|𝑟 |
)
+ |𝑤 | · |𝐸 |

)
,

where:
• |𝑤 |: length of the selected time interval,
• |𝐸 |: number of entities in the graph,
• |𝑅 |: number of relationships in the graph,
• ¯|𝑒 |: average number of entities in subgraphs per time step,
• ¯|𝑟 |: average number of relationships in subgraphs per time
step,
• 𝑇𝐶𝑚 : time complexity of the selected metric calculation,
• 𝑆𝐶𝑚 : space complexity of the selected metric calculation.

4 EXPERIMENTAL EVALUATION
We propose the Algorithm 1 to make a complete analysis of
centrality in a temporal heterogeneous graph. In this section, we
conducted a series of experiments that:
• assess the compatibility of our algorithm on different tem-
poral graph models (Section 4.2);
• analyze the scalability of our algorithm across datasets
of different volumes and parameters (centrality metric,
relationship type set and time interval) (Section 4.3);
• highlight the analytical performance of our algorithm
across evolution and heterogeneity aspects (Section 4.4).

4.1 Experimental Setup
4.1.1 Datasets. To avoid any bias in our experiments, we

have tested our algorithm on six real datasets. They include
both temporal homogeneous graphs and temporal heterogeneous
graphs. The detailed information of these datasets is provided in
the Table 6. All experiments with the DBLP dataset resulted in a
timeout, which was set to one day of computation. Therefore, no
results could be obtained and presented in the paper.

4.1.2 Technical Environment. Our experiments were con-
ducted in a decentralized environment, in accordance with a par-
allel and distribution computation approach. The decentralized
environment consists of a cluster SLURM (Simple Linux Utility
for Resource Management) installed on the OSIRIM6 plateform
(Open Services for Indexing and Research Information in Multi-
media contents) provided by IRIT (Computer Science Research
Institute of Toulouse). It consists of a storage area with a capacity
of approximately 1PB and a computing cluster of 928 cores and 31
GPUs. Our experiments were conducted on the partition named
"24CPUNodes" which consists of 12 computing nodes with dual
Intel Xeon Gold 6136 processors at 3 GHz, with 24 processors

6https://osirim.irit.fr/docs/slurm/

and 192 GB of RAM each. We installed for each computing node
one Neo4j graph database, thus they could work on the same
dataset in parallel. The goal is to optimize the computation of
our algorithm by distributing a part of its processing over the
12 computing nodes and parallelizing another part over the 24
processors of each node.

4.1.3 Implementation of the algorithm. In this section, we
present the implementation of the Algorithm 1 based on the
decentralized environment presented in Section 4.1.2. The pro-
gramming language used to implement the algorithm is Python
3.7. We use the library Neo4j Python Driver7 to work with Neo4j
database in Python. The algorithm is implemented through tasks
that are distributed over the cluster’s nodes and parallelized over
the processors of each node:
• Task 1 (line 1) In each node, the input temporal hetero-
geneous graph dataset 𝐺 is stored in a Neo4j database.
Mapping details of these datasets into Neo4j are avail-
able at: https://gitlab.com/2573869/centrality_temporal_
graph_edbt.
• Task 2 (line 5-13) Each time instance 𝑡 ∈ 𝑤 is assigned
to a node of the cluster. A query in CYPHER (Neo4j’s
query language) is executed to extract a sub-graph from
the Neo4j database according to the optional input param-
eters: 𝑀𝐴𝑇𝐶𝐻 (𝑒 : 𝑙𝐸∗) − (𝑟 : 𝐿𝑅∗) − ()𝑊𝐻𝐸𝑅𝐸 𝑟 .𝑡𝑖𝑚𝑒 =

𝑡 𝑅𝐸𝑇𝑈𝑅𝑁𝑒.𝑖𝑑, 𝑟 where 𝐿𝑅∗ = 𝑙1 |...|𝑙𝑘 . If 𝑙𝐸∗ is not speci-
fied, we will have (𝑒) as the first element in the𝑀𝐴𝑇𝐶𝐻

clause referring to all entities. If 𝐿𝑅∗ is not specified, we
will have (𝑟) as the second element of the𝑀𝐴𝑇𝐶𝐻 clause
referring to all relationships. Then, the calculation of the
metric𝑚 for each entity of the sub-graph is done in par-
allel. Using Python, the result is recorded in the set 𝑆𝐶𝑡
and entities of the set are sorted by the descending order
of their centrality values to obtain the ranking of entities
for the time 𝑡 .
• Task 3 (line 19-32) Finally, the results of each node are
collected on a single node. Using Python, for each set 𝑆𝐶𝑡
obtained in the previous step, we apply the minimum,
maximum, first quartile, second quartile and third quar-
tile functions to obtain the evolution of the spreading of
entities’ centrality. Then, for each entity across the sets
𝑆𝐶𝑡 , we apply the average of its centrality values and sort
entities of the set by the descending order of their average
centrality values to obtain an average ranking of entities.
Finally, the minimum, maximum, first quartile, second
quartile and third quartile functions are applied to the
average centrality values of entities to obtain an average
centrality spreading of entities.

We propose to implement our algorithm according to three
different centrality metrics, one which is neighborhood-based (de-
gree), one which is path-based (betweenness) and another which
is iterative refinement-based (eigenvector). The algorithm’s im-
plementation differs with the chosen metric since their calcula-
tion are different in the Task 2:
• Degree centrality: The calculation of the degree central-
ity for an entity at 𝑡 ∈ 𝑤 is translated by the addition of
the function 𝐶𝑂𝑈𝑁𝑇 in the 𝑅𝐸𝑇𝑈𝑅𝑁 clause of the query
for extracting the sub-graph of interest. Here, the function
counts the number of edges incident to an entity node at
the time 𝑡 .

7https://neo4j.com/docs/api/python-driver/current/

603

Table 6: Dataset characteristics. Raw datasets are available here: (a) http://realitycommons.media.mit.edu/socialevolution.
html, (b) https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset, (c) https://www.citibikenyc.com/system-data,
(d) https://snap.stanford.edu/data/sx-mathoverflow.html, (e) https://snap.stanford.edu/data/wiki-talk-temporal.html, (f)
http://konect.cc/networks/dblp_coauthor/.

Dataset Social Experiment (a) E-commerce (b) Citibike (c) Math Overflow (d) wiki-talk (e) [DBLP (f)]

Nodes 65 4 315 735 2 861 24 818 1 140 149 1 824 701
Edges 2 168 270 4 447 430 2 181 077 506 550 7 833 140 29 487 744
Nb days 106 130 59 2 350 2 320 29 219
Nb of node types 1 3 1 1 1 1
Nb of edge types 9 5 1 3 1 1

• Eigenvector centrality: In Neo4j, for each time instance
in 𝑤 , we repeatedly query, for each entity identifier, its
direct neighbors. With the result extracted, we create an
adjacency matrix. Then, we use the Python library scipy8
to compute eigenvectors and choose the one with the
highest eigenvalue.
• Betweenness centrality: In Neo4j, for each time instance,
we repeatedly query for each entity all shortest paths start-
ing from it. For each path, start nodes, end nodes and all
traversed nodes would be noted. With the result extracted,
the betweenness of each time instance is calculated on
Python using the Brandes algorithm [3].

4.2 Impact of Graph Models
In this analysis, we demonstrate that our algorithm can be ap-
plied to multiple graph models, including the graph snapshots [4]
and the temporal property graph [2]. This experiment was exe-
cuted on the Social Experiment dataset modeled in the two graph
models. Transformation details of this dataset into the graph snap-
shots model and the temporal property graph model are available
on the website https://gitlab.com/2573869/centrality_temporal_
graph_edbt. For each centrality metric (degree, eigenvector, and
betweenness), we capture the CPU time from the moment when
the program takes the raw temporal heterogeneous graph as in-
put until the end of execution when analysis results are produced.
We measure this time throughout our experiments.

In Fig 3, we observed that the algorithm can be applied to both
models. Additionally, execution times between the two graph
models are almost the same, except for the betweenness central-
ity. The temporal property graph model allows reducing execu-
tion times of graph snapshots by 20 times for the betweenness
centrality. This is partly due to the amount of data processed
by the algorithm. The temporal property graph model reduces
significantly data redundancy generated by graph snapshots [2].

4.3 Scalability
We executed a series of experiments to evaluate the efficiency of
our algorithm and to explore how dataset nature and parameter
setting impact the execution time.

We run the algorithm in the decentralized environment by
progressively integrating random edges in the six datasets at the
following percentages: 20%, 40%, 60%, 80%, and 100%. We did
not define scale factors with respect to node volume because the
variation in the number of nodes impacts the variation in the
number of edges. The six datasets were modeled as temporal

8https://scipy.org/

Figure 3: Application of selective centrality on different
graph models.

property graphs. Transformation details are available on the web-
site https://gitlab.com/2573869/centrality_temporal_graph_edbt.
Experimentation over 24 hours was regarded as "timeout". In
Figure 4, we compare the algorithm’s runtimes for the different
graph sizes. Due to resource limitations, the degree centrality
timed out on DBLP dataset, the eigenvector centrality calcula-
tion timed out on the E-commerce and DBLP datasets, and the
betweenness centrality calculation timed out on E-commerce,
Math Overflow, Wiki-Talk, and DBLP datasets. We observe that,
for each dataset, the algorithm’s runtimes generally increases
linearly with the scale factors.

Referring to parameter setting, a semantic or temporal se-
lection can also impact the execution time of the algorithm. A
semantic selection enables the inclusion of only a specific subset
of relationships in centrality calculations, rather than using the
entire graph. This approach helps to reduce the scale on which
the subsequent processes operate. We run our algorithm with
degree centrality on the Social Experiment dataset, using a sub-
set of relationship types. To highlight the differences between
execution times, this experiment was conducted in a single com-
putation node. As shown in Fig 5, the execution time increases
linearly with the number of relationships of the selected set of
types.

A temporal selection corresponds to a time interval on which
centrality calculations are done. The length of the time interval
affects execution time of the algorithm, as each time instant of
the time interval requires the selection of a corresponding sub-
graph. Thus, we executed our algorithm with degree centrality
on the Math Overflow dataset with randomly extracted 200-days,
400-days, 600-days, 800-days, and 1000 days, each 10 times. In

604

20% 40% 60% 80% 100%
0

150

300

450

600

750

Scale Factor

Ex
ec
ut
ion

Ti
me

(s)

SE
CB
EC
MO

0

0.5

1

1.5

·104

Ex
ec
ut
ion

Ti
me

(s)
(W

T)

WT

a) Degree centrality

20% 40% 60% 80% 100%
0

180

360

540

720

900

Scale Factor

Ex
ec
ut
ion

Ti
me

(s)

SE
CB
MO

0

0.5

1

1.5

·104

Ex
ec
ut
ion

Ti
me

(s)
(W

T)

WT

b) Eigenvector centrality

20% 40% 60% 80% 100%
0

2

4

6

8
·104

Scale Factor

Ex
ecu

tio
nT

im
e(
s)

SE
CB

c) Betweenness centrality

Figure 4: Runtimes over graph sizes. (SE=Social Experiment, CB=Citibike, EC=E-commerce, MO=Math Overflow,WT=wiki-talk.
The right y-axis is for wiki-talk dataset and left y-axis for other datasets.)

Fig 6, we observe that the average execution time for each time
interval length, and they are roughly linear.

To sum up, semantic selection reduces the graph scale on
which centrality metric operates, while temporal selection di-
minishes the length of time interval in the Selective Centrality
Calculation. Therefore, both of them can impact significantly the
execution time of our algorithm.

1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

2

4

6

Number of Relationships

Ex
ec
ut
io
n
Ti
m
e
(s
)

Figure 5: Runtimes with semantic selection.

200 400 600 800 1,000
0

100

200

300

400

Days

Ex
ec
ut
io
n
Ti
m
e
(s
)

Figure 6: Runtimes with temporal selection.

4.4 Analytical Performance
In this section, we demonstrate the analytical power of our algo-
rithm by presenting the use cases where the traditional metrics
do not work well.

4.4.1 Evolution. Traditionally, the temporal centrality anal-
ysis of entities consists of (i) calculating a centrality metric of
an entity, which returns an aggregated value for a time interval
and (ii) producing a ranking of all entities based on previous
calculated values. Our algorithm expands the temporal centrality
analysis of entities by (i) calculating the centrality value of an
entity at each time point of a time interval to produce a list of

values, as well as (ii) producing the evolution of the ranking and
spreading of a selected group of entities over time. This exten-
sion provides a complete perspective of the centrality of entities
within a graph with evolution.

In Fig 7, we present the evolution of degree centrality within
a time interval of 106 days for 3 students in the Social Experi-
ment dataset having closed average degree values. We notice that
these students behave quite differently. Some students become
more or less active together (such as the students 67 and 33);
for others, their activity varies individually (such as the student
26). More precisely, we notice that the student 33 seems to be
relatively evenly active day by day, while the student 26 is nor-
mally silent but with several activity picks. If using traditional
metrics that only return one aggregated value, these students
will be considered similar while all these mentioned details will
be hidden.

Additionally, our algorithm can help to identify variations at
individual and group level. In Fig 8, we present the evolution of
the spreading of degree centrality values within a time interval
of 15 days in the Social Experiment dataset using box plots. The
dots outside the box plots represent outliers, i.e., the top-students
having very high degree values compared to the rest of students.
In each box plot, a blue dot represents the degree value of a
specific student at each day. Thus, the blue line represents the
variation of his position within the group of students over time.

4.4.2 Selectivity. Real-world graph datasets contain semanti-
cally rich information with multiple types of entities and relation-
ships. Thus, on the same graph, diverse centrality analyses can
be expressed. According to the analytical need, some relationship
(or entity) types may be more relevant than another. Traditional
centrality metrics do not distinguish between these types. They
include all relationship (or entity) types in the calculation, even if
they may be semantically unrelated to each other. Our algorithm
enables to do a selection of the relationship (or entity) types iden-
tified as relevant for an analytical need. In the following, wemake
an experiment to show the potential gap between a non-selective
centrality metric (i.e., available in traditional metrics) and our
selective centrality metric.

Using our algorithm, we compute for all entities in the Social
Experiment and E-commerce datasets of a given time interval
(i) the average degree centrality for each type of relationship
and (ii) the average degree centrality without distinguishing rela-
tionship types. Then, we produce (i) selective rankings (rankings
considering a selected relationship type) and (ii) a non-selective
ranking (a ranking considering all relationship types). We use the
Spearman’s rank correlation coefficient to evaluate the similarity

605

1 11 21 31 41 51 61 71 81 91 101
Day

0

500

1000

1500

2000

Te
m

po
ra

l D
eg

re
e

C
en

tra
lit

y

Entity 67

1 11 21 31 41 51 61 71 81 91 101
Day

0

200

400

600

800

Te
m

po
ra

l D
eg

re
e

C
en

tra
lit

y

Entity 33

1 11 21 31 41 51 61 71 81 91 101
Day

0

1000

2000

3000

Te
m

po
ra

l D
eg

re
e

C
en

tra
lit

y

Entity 26

Figure 7: Evolution of degree centrality evolution over time for selected entities.

20
09

-01
-16

20
09

-01
-17

20
09

-01
-18

20
09

-01
-19

20
09

-01
-20

20
09

-01
-21

20
09

-01
-22

20
09

-01
-23

20
09

-01
-24

20
09

-01
-25

20
09

-01
-26

20
09

-01
-27

20
09

-01
-28

20
09

-01
-29

20
09

-01
-30

Date

0

1000

2000

3000

4000

5000

6000

Te
m

po
ra

l D
eg

re
e

Ce
nt

ra
lit

y

Figure 8: Evolution of degree centrality spreading

Al
l_r

el
at

io
ns

hi
ps Ca
ll

Re
ce

iv
eS

M
S

Se
nd

SM
S

Pr
ox

im
ity

Bl
og

Liv
ej

ou
rn

al
Tw

itt
er

Cl
os

eF
rie

nd

Fa
ce

bo
ok

Al
lTa

gg
ed

Ph
ot

os

Po
lit

ica
lD

isc
us

sa
nt

So
cia

liz
eT

wi
ce

Pe
rW

ee
k

All_relationships

Call

ReceiveSMS

SendSMS

Proximity

BlogLivejournalTwitter

CloseFriend

FacebookAllTaggedPhotos

PoliticalDiscussant

SocializeTwicePerWeek

1.00 0.11 0.17 0.01 0.93 0.22 0.26 0.12 0.34 0.26

0.11 1.00 0.23 0.34 0.14 0.08 0.16 0.05 0.24 0.17

0.17 0.23 1.00 0.79 0.03 -0.23 0.03 -0.27 0.05 -0.14

0.01 0.34 0.79 1.00 -0.05 -0.15 0.10 -0.20 0.10 -0.18

0.93 0.14 0.03 -0.05 1.00 0.22 0.17 0.12 0.31 0.24

0.22 0.08 -0.23 -0.15 0.22 1.00 0.47 0.87 0.51 0.63

0.26 0.16 0.03 0.10 0.17 0.47 1.00 0.51 0.63 0.64

0.12 0.05 -0.27 -0.20 0.12 0.87 0.51 1.00 0.48 0.75

0.34 0.24 0.05 0.10 0.31 0.51 0.63 0.48 1.00 0.66

0.26 0.17 -0.14 -0.18 0.24 0.63 0.64 0.75 0.66 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9: Correlation of average degree centrality rankings
by relationship types

between two rankings. If it is close to 1, it means that both rank-
ings are similar. If it is close to −1, it means that both rankings are
dissimilar. We illustrate the results of this calculation in the form
of a correlation matrix in Fig 9. Each label of a row and column
corresponds to a type of relationship. Each cell of the matrix
corresponds to a correlation coefficient between two rankings
of two different relationship types. The more a cell tends to the
red color, the more the corresponding pair of rankings of two
relationship types are similar.

Table 7: Kendall Tau of centrality ranking by different
types of metrics for two use cases.

Metric Analysis 1 Analysis 2
Static Centrality 0.07 0.31

Non-selective Temporal Centrality 0.33 0.17
Temporal Centrality with meta-path - 1

Selective Evolving Centrality 1 -

We observe that the non-selective ranking (All_relationships)
is highly correlated with the ranking of one type of relation-
ships, Proximity9, with a correlation coefficient of 0.93. Con-
versely, all other selective rankings are not similar to the non-
selective ranking. Indeed, selective rankings themselves are not
necessarily similar to one another. We have similar observations
for E-commerce dataset. The details are given on the website
https://gitlab.com/2573869/centrality_temporal_graph_edbt.

In Table 7. we show how existing metrics, namely static cen-
trality, non-selective temporal centrality, temporal centralitywith
meta-path, and our selective centrality cover two analytical needs.
The first analysis is on the Social Experiment dataset and asks for
the importance of these students in online social networks in the
form of eigenvector centrality. The second analysis looks at Math
Overflow data over a given time interval, to determine which
response triggered discussion. For the first analysis, we can use
our selective evolving centrality with a selection on relationship
types concerning communication on online social networks. For
the second, we can use our algorithm implemented with between-
ness centrality with the meta-path: (User)<-[Answer]-(User)<-
[Comments to Answers]-(User). We apply static centrality and
non-selective temporal centrality to both datasets and compare
their results with those obtained using semantically aware met-
rics—either selective evolving centrality or temporal centrality
with meta-path. Thus, in Table 7, the first column presents the
similarity (measured using the Kendall Tau coefficient10) between
the entity rankings in the Social Experiment dataset, as computed
by static centrality and non-selective temporal centrality, and
the rankings obtained using selective evolving centrality. The
second column presents the similarity between entity rankings
in the Math Overflow dataset, comparing static centrality and
non-selective temporal centrality with temporal centrality with
meta-path.

We observe that the entity ranking by static centrality and non-
selective temporal centrality has small Kendall Tau value with the
ranking by selective evolving centrality and temporal centrality
with meta-path. This implies their results are irrelevant to the
9physical proximity of students recorded by Bluetooth proximity of students’ cell
phone
10Kendall Tau, ranging from 0 to 1, indicates the similarity between two rankings.
A higher value signifies greater similarity.

606

analysis demand and in these cases using semantic aware metrics
is necessary. Additionally, the meta-path is not suitable for the
first analysis because it is too challenging to enumerate patterns
of online communication with different types of relationship
and different length of paths. Moreover, it can only be applied to
centrality metrics related to path, like betweenness centrality. For
the second analysis, simply making restrictions on relationship
types can involve extraneous patterns in the calculation.

In conclusion, in case of semantic concern needed, using a
static or non-selective temporal metric can lead to erroneous
results. We should choose the proper method based on analysis
need, for example keeping irrelevant semantics out of calculation
or define appropriate semantic pattern.

5 CONCLUSION
In this paper, we propose a complete approach for measuring
centrality in graphs, including evolution and/or heterogeneity.

First, we define the selective centrality function to calculate
the centrality of an entity. This function has the advantages of
(i) following the changes in centrality over time, (ii) allowing
the analysis to focus on a subset of relationship types, (iii) being
generic by allowing the calculation of any graph model and
metric.

Second, we propose three approaches to use the results of
our calculation function: (i) the global centrality ranking that
provides a synthetic view of ranking, (ii) the dynamic centrality
ranking that provides an evolution view of ranking, and (iii)
the centrality spreading that highlights the differences between
entities.

Third, we propose an algorithm to implement our approach
coupled with a basic parallel and distributed computation ap-
proach. On the basis of real-world datasets, the experimental
results have shown that our implementation method guarantees
the algorithm’s efficiency in terms of runtimes. Globally, the
algorithm’s runtimes increase linearly with the graph size, the
relationship type set and the time interval length.

Finally, our algorithm has a great analytical power thanks to
the evolution and selectivity capabilities of our centrality function
and approaches to use centrality values. Indeed, we were able to
analyze entities’ centrality from multiple perspectives.

In future work, we will further improve the efficiency of our
solution by using some state-of-the-art distributed systems for
graph analytics [12, 14, 18, 19]. This study will be done with
synthetic datasets to cover more variability (topological charac-
teristics, etc). Moreover, in existing work, centrality metrics are
used individually. Each metric integrates a fragmented vision of
centrality. In the future, we would like to identify the metrics
that complement each other to provide a panoramic view, as it is
done in this article with the degree, eigenvector and betweenness
metric. Then, we would like to propose a classification of metrics
to be able to propose a framework that assists a user in the choice
of metrics, as well as ranking techniques adapted to business
needs.

REFERENCES
[1] Landy Andriamampianina, Franck Ravat, Jiefu Song, and Nathalie Vallès-

Parlangeau. 2023. Semantic Centrality for Temporal Graphs. In European
Conference on Advances in Databases and Information Systems. Springer, 163–
173. https://doi.org/10.1007/978-3-031-42941-5_15

[2] Landy Andriamampianina, Franck Ravat, Jiefu Song, and Nathalie Vallès-
Parlangeau. 2022. Graph data temporal evolutions: From conceptual modelling
to implementation. Data & Knowledge Engineering 139 (May 2022), 102017.
https://doi.org/10.1016/j.datak.2022.102017

[3] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. The Journal
of Mathematical Sociology 25, 2 (June 2001), 163–177. https://doi.org/10.1080/
0022250X.2001.9990249

[4] Ariel Debrouvier, Eliseo Parodi, Matías Perazzo, Valeria Soliani, and Alejandro
Vaisman. 2021. A model and query language for temporal graph databases.
The VLDB Journal (May 2021). https://doi.org/10.1007/s00778-021-00675-4

[5] Mahmoud Elmezain, Ebtesam AOthman, and Hani M Ibrahim. 2021. Temporal
degree-degree and closeness-closeness: A new centrality metrics for social
network analysis. Mathematics 9, 22 (2021), 2850. https://doi.org/10.3390/
math9222850

[6] Marwan Ghanem, Clemence Magnien, and Fabien Tarissan. 2019. Centrality
Metrics in Dynamic Networks: A Comparison Study. IEEE Transactions on
Network Science and Engineering 6, 4 (Oct. 2019), 940–951. https://doi.org/10.
1109/TNSE.2018.2880344

[7] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports
519, 3 (2012), 97–125. https://doi.org/10.1016/j.physrep.2012.03.001

[8] Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis. 2018. Parallel Algorithm
for Incremental Betweenness Centrality on Large Graphs. IEEE Transactions
on Parallel and Distributed Systems 29, 3 (March 2018), 659–672. https://doi.
org/10.1109/TPDS.2017.2763951

[9] Miray Kas, Kathleen M Carley, and L Richard Carley. 2013. Incremental
closeness centrality for dynamically changing social networks. In Proceedings
of the 2013 IEEE/ACM International Conference on advances in social networks
analysis and mining. 1250–1258. https://doi.org/10.1145/2492517.2500270

[10] Miray Kas, Matthew Wachs, Kathleen M Carley, and L Richard Carley. 2013.
Incremental algorithm for updating betweenness centrality in dynamically
growing networks. In Proceedings of the 2013 IEEE/ACM international con-
ference on advances in social networks analysis and mining. 33–40. https:
//doi.org/10.1145/2492517.2492533

[11] Hyoungshick Kim and Ross Anderson. 2012. Temporal node centrality in
complex networks. Physical Review E 85, 2 (Feb. 2012), 026107. https://doi.
org/10.1103/PhysRevE.85.026107

[12] Nicolas Kourtellis, Gianmarco De Francisci Morales, and Francesco Bonchi.
2015. Scalable online betweenness centrality in evolving graphs. IEEE
Transactions on Knowledge and Data Engineering 27, 9 (2015), 2494–2506.
https://doi.org/10.1109/TKDE.2015.2419666

[13] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng
Zhang, and Tao Zhou. 2016. Vital nodes identification in complex networks.
Physics Reports 650 (Sept. 2016), 1–63. https://doi.org/10.1016/j.physrep.2016.
06.007

[14] Maria Massri, Zoltan Miklos, Philippe Raipin, and Pierre Meye. 2022. Clock-G:
A temporal graph management system with space-efficient storage technique.
In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE,
Kuala Lumpur, Malaysia, 2263–2276. https://doi.org/10.1109/ICDE53745.2022.
00215

[15] Soheila Molaei, Reza Farahbakhsh, Mostafa Salehi, and Noel Crespi. 2020.
Identifying influential nodes in heterogeneous networks. Expert Systems
with Applications 160 (Dec. 2020), 113580. https://doi.org/10.1016/j.eswa.2020.
113580

[16] Lutz Oettershagen, Nils M. Kriege, and Petra Mutzel. 2023. A Higher-Order
Temporal H-Index for Evolving Networks. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, Long
Beach CA USA, 1770–1782. https://doi.org/10.1145/3580305.3599242

[17] Raj Kumar Pan and Jari Saramäki. 2011. Path lengths, correlations, and
centrality in temporal networks. Physical Review E 84, 1 (July 2011), 016105.
https://doi.org/10.1103/PhysRevE.84.016105

[18] Christopher Rost, Kevin Gomez, Matthias Täschner, Philip Fritzsche, Lucas
Schons, Lukas Christ, Timo Adameit, Martin Junghanns, and Erhard Rahm.
2022. Distributed temporal graph analytics with GRADOOP. The VLDB Journal
31, 2 (March 2022), 375–401. https://doi.org/10.1007/s00778-021-00667-4

[19] Christopher Rost, Kevin Gómez, Philip Fritzsche, Andreas Thor, and Erhard
Rahm. 2021. Exploration and Analysis of Temporal Property Graphs. In Pro-
ceedings of the 24th International Conference on Extending Database Technology,
EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021, Yannis Velegrakis, Demetris
Zeinalipour-Yazti, Panos K. Chrysanthis, and Francesco Guerra (Eds.). Open-
Proceedings.org, 682–685. https://doi.org/10.5441/002/edbt.2021.83

[20] Polina Rozenshtein and Aristides Gionis. 2016. Temporal pagerank. InMachine
Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II 16.
Springer, 674–689. https://doi.org/10.1007/978-3-319-46227-1_42

[21] Kshitij Shukla, Sai Charan Regunta, Sai Harsh Tondomker, and Kishore Kotha-
palli. 2020. Efficient parallel algorithms for betweenness- and closeness-
centrality in dynamic graphs. In Proceedings of the 34th ACM International
Conference on Supercomputing (ICS ’20). Association for ComputingMachinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3392717.3392743

[22] John Tang, MircoMusolesi, Cecilia Mascolo, Vito Latora, and Vincenzo Nicosia.
2010. Analysing information flows and key mediators through temporal
centrality metrics. In Proceedings of the 3rdWorkshop on Social Network Systems.
ACM, Paris France, 1–6. https://doi.org/10.1145/1852658.1852661

[23] Dane Taylor, Sean A. Myers, Clauset Aaron, Mason A. Porter, and Peter J.
Mucha. 2017. Eigenvector-based centrality measures for temporal networks.
Multiscale modeling & simulation : a SIAM interdisciplinary journal 15, 1 (2017),
537–574. https://doi.org/10.1137/16M1066142

607

[24] Ioanna Tsalouchidou, Ricardo Baeza-Yates, Francesco Bonchi, Kewen Liao,
and Timos Sellis. 2020. Temporal betweenness centrality in dynamic graphs.
International Journal of Data Science and Analytics 9, 3 (April 2020), 257–272.
https://doi.org/10.1007/s41060-019-00189-x

[25] Zelin Wan, Yash Mahajan, Beom Woo Kang, Terrence J. Moore, and Jin-Hee
Cho. 2021. A Survey on Centrality Metrics and Their Network Resilience Anal-
ysis. IEEE Access 9 (2021), 104773–104819. https://doi.org/10.1109/ACCESS.
2021.3094196

[26] Xinrui Wang, Yiran Wang, Xuemin Lin, Jeffrey Xu Yu, Hong Gao, Xiuzhen
Cheng, and Dongxiao Yu. 2024. Efficient Betweenness Centrality Computation
over Large Heterogeneous Information Networks. Proceedings of the VLDB
Endowment 17, 11 (July 2024), 3360–3372. https://doi.org/10.14778/3681954.
3682006

[27] Matthew J Williams and Mirco Musolesi. 2016. Spatio-temporal networks:
reachability, centrality and robustness. Royal Society open science 3, 6 (2016),
160196. https://doi.org/10.1098/rsos.160196

[28] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.
2014. Path problems in temporal graphs. Proceedings of the VLDB Endowment
7, 9 (May 2014), 721–732. https://doi.org/10.14778/2732939.2732945

[29] Shiqi Zhang, Renchi Yang, Jing Tang, Xiaokui Xiao, and Bo Tang. 2023. Efficient
Approximation Algorithms for Spanning Centrality. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM,
Long Beach CA USA, 3386–3395. https://doi.org/10.1145/3580305.3599323

[30] Tianming Zhang, Yunjun Gao, Jie Zhao, Lu Chen, Lu Jin, Zhengyi Yang,
Bin Cao, and Jing Fan. 2024. Efficient Exact and Approximate Betweenness
Centrality Computation for Temporal Graphs. In Proceedings of the ACM on
Web Conference 2024 (WWW ’24). Association for Computing Machinery, New
York, NY, USA, 2395–2406. https://doi.org/10.1145/3589334.3645438

608

