Ezxperiments & Analyses Paper

O

proceedings

GPU Architectures in Graph Analytics:
A Comparative Experimental Study

Peichen Xie Zhigao Zheng’ Yongluan Zhou
Wuhan University Wuhan University University of Copenhagen
Wuhan, China Wuhan, China Copenhagen, Denmark
xpc2000@whu.edu.cn zhengzhigao@whu.edu.cn zhou@di.ku.dk
Yang Xiu Hao Liu Zhixiang Yang
Wuhan University Shanghai Jiao Tong University CSSC Lingjiu Hi-Tech (Wuhan) Co.,
Wuhan, China Wuhan Digital Engineering LTD

xiuyang@whu.edu.cn

Research Institute
Shanghai, China

Wuhan, China
yzhx_cq@163.com

liuhao2020@sjtu.edu.cn
Yu Zhang Bo Du*
Huazhong University of Science and Wuhan University
Technology Wuhan, China
Wuhan, China dubo@whu.edu.cn
zhyu@hust.edu.cn

ABSTRACT

In recent years, there has been a lot of focus on developing graph
analytics algorithms that utilize the high parallelism of GPUs to
speed up graph analytics tasks. Meanwhile, the two main GPU
manufacturers, NVIDIA and AMD, have made different design
decisions that can impact the performance of graph computation.
In this paper, we seek to understand the effects of those decisions
through experimentation. Since there is currently no graph ana-
lytics software for the ROCm-like platform used by AMD-like
GPUs, we have created adGRAPH by porting nvGRAPH, a ma-
ture graph analytics library optimized for CUDA, to ROCm-like
platforms. AAGRAPH! allows us to use AMD-like GPUs to accel-
erate graph analytics and compare the performance of the two
types of GPUs.

We tested the performance of several commonly used graph
algorithms of varying complexities on two NVIDIA GPUs, A100
and V100, and two AMD-like GPUs developed in China, Z100
and Z100L. Through thorough experiments, we discovered that
while NVIDIA GPUs perform better on complex graph analyt-
ics algorithms, thanks to their SIMT paradigm, the larger warp
size and independent shared memory of AMD-like GPUs make
them more efficient than NVIDIA GPUs for graph algorithm
implementations with lower branching complexity.

1 INTRODUCTION

Graphs are fundamental data structures that play a crucial role
in simulating and analyzing relational data due to their ability
to represent complex relationships with flexibility [1]. Graphs
are extensively utilized in various applications such as social

“Zhigao Zheng, Bo Du are the corresponding authors (zhengzhigao,
dubo@whu.edu.cn).

IThe source code of adGRAPH is open
https://anonymous.4open.science/r/adGRAPH-E319

and available at

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

881

network analysis, recommendation systems, biological modeling,
and traffic optimization. They demonstrate an inherent ability to
represent and capture intricate connections.

High-performance graph analytics is an emerging focus of
academic research and a crucial element of practical solutions,
helping organizations make data-driven decisions, uncover hid-
den knowledge, and achieve research breakthroughs or com-
petitive advantages. In recent years, the volume of real-world
data has increased exponentially, creating a high demand for
high-performance graph analytics tools and technologies. Taking
social networks as an example, the number of users on plat-
forms like Twitter and Instagram has surpassed one billion, and
the number of connections between likes and followers is even
greater. The scale and complexity of graph data in these fields
necessitate efficient computational methods.

A promising direction is the incorporation of graph processing
units (GPUs) into graph analytics workflows. Originally designed
for graphic rendering, GPUs have evolved into highly parallel
and large-scale processors, proficient at managing data parallel
tasks [2]. Therefore, GPUs have become powerful tools for accel-
erating graph analytics. However, a significant challenge of using
GPUs to speed up graph algorithms is that most graph algorithms
access memory irregularly, leading to low memory access effi-
ciency. Moreover, the high variance of the vertex degrees leads to
load imbalance, hindering the efficiency of GPU’s parallel compu-
tation. Therefore, leveraging the GPU’s memory bandwidth and
computing power for graph analytics is challenging. To address
this challenge, it is crucial to optimize both graph algorithms and
their implementations and explore hardware-level optimization.

The hardware architecture and characteristics of GPUs can
impact the performance of different graph algorithms. Certain
algorithms may benefit from parallelism on specific GPUs, while
others may need optimizations to run efficiently on different
GPUs. An in-depth understanding of GPU characteristics and
their impacts on graph algorithms provides valuable information
not only for optimizing graph systems and algorithms for GPUs
but also for developing hardware for accelerating graph analytics.
Hence, such a study is crucial to advance this research direction.

10.48786/edbt.2025.72

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.72

To close this gap, this paper provides an in-depth comparison
between two popular types of GPU architecture: NVIDIA GPUs
and AMD-like GPUs. Our experimentation includes representa-
tive GPUs of each architecture, namely A100 and Z100L. A100 is
one of NVIDIA’s most successful GPGPU products, widely used
in AI and high-performance computing. Z100L is a relatively
mature GPGPU developed by a well-known Chinese company?
based on authorization from AMD. In addition, we have added
experiments on two older GPUs, NVIDIA’s V100 and the AMD-
like Z100, to provide more experimental evidence, especially
regarding the scalability and generalizability of the findings. To
establish a practical benchmark, we adopt nvGRAPH, a graph
analytics library developed by NVIDIA, which includes parallel
algorithms for high-performance graph analytics. As there is a
general lack of graph analytic systems or libraries on AMD-like
GPUs, we ported nvGRAPH to Z100L and Z100 to enable a level-
ground comparison between the GPUs. We provided both the
overall performance metrics as well as various detailed profiling
metrics to reveal the differences between the two GPUs in terms
of running graph algorithms.

In summary, our contributions are as follows:

e We analyze the differences between the two existing main-
stream GPU architectures and their possible impacts on
large-scale graph analytics.

e We implemented adGRAPH, a ported version of nvGRAPH,
to allow generic graph analytics algorithms to be acceler-
ated by AMD-like GPUs. We are making adGRAPH avail-
able as open-source software, which will allow others not
only to reproduce the experiments described in this paper
but also to adopt AMD-like GPUs for real-world graph
applications.

e We conducted a set of experiments to evaluate graph ana-
lytics performance on four GPUs: V100, Z100, A100, and
Z100L, and reported various metrics to provide insights
into how the choice of GPU architecture can impact the
efficiency of graph analytics.

e The experimental results provide evidence for several in-
teresting findings and insights. It has been observed that
some graph traversal algorithms, such as BFS, work more
efficiently on AMD-like GPUs using adGRAPH as com-
pared to NVIDIA GPUs using nvGRAPH, while algorithms
with more complex branching have a better performance
on NVIDIA GPUs. Additionally, it has been noted that
only when the branching complexity of graph algorithms
is low can the larger GPU warp size and independent
shared memory of AMD-like GPUs significantly enhance
their execution efficiency.

This paper is organized as follows: In Section 2, we present
related work and background, including architectural differences
between NVIDIA GPUs and AMD-like GPUs. In Section 3, we
discuss existing libraries of high-performance graph analytics on
GPUs and explain the reason for choosing nvGRAPH to be used in
the experiments. Then we present our work on porting nvGRAPH
for an AMD-like GPU named adGRAPH. Section 4 compares the
performance of various graph algorithms on NVIDIA’s A100
and V100, and AMD-like Z100 and Z100L to assess the impact of
different GPU architectures on high-performance graph analytics.
Additionally, we conduct a more in-depth discussion through

2We are not allowed to mention the name of GPUs, ROCm-like Toolkit and company
because of the agreement with the GPU provider. The Z100 and Z100L used in our
experiments are matured commercial products and have been widely applied in
data centers across China.

882

fine-grained profiling. Finally, we further discuss the insights
from the experimental results in Section 5 and conclude our
study in Section 6.

2 BACKGROUND

In this paper, we selected the most common NVIDIA and AMD-
like GPU architectures for evaluation. In this section, we first
present the related work, followed by a presentation of the two
GPU architectures and their respective strengths, weaknesses,
and expected impacts on graph analytics.

2.1 Related work

Processing large-scale graphs, e.g., with billions of vertices and
edges, is challenging in computation power. Employing GPUs to
accelerate graph processing is a promising solution due to their
parallelism and high memory bandwidth. However, researchers
face several challenges in using GPUs to accelerate large-scale
graph computations. First, graph computations often exhibit ir-
regular data access patterns [3]. Therefore, it is difficult to par-
allelize them efficiently with GPU architectures. Furthermore,
the limited memory of GPUs compared to CPU may become a
potential performance bottleneck. Finally, the condition branches
(like an if-else statement) in graph computations do not fully uti-
lize the high parallelism offered by GPU, which leads to branch
divergence and may dramatically degrade the performance [4].

Existing studies on general graph processing systems and opti-
mization strategies of graph analytics on GPUs can be categorized
into four main directions. Some studies, such as Graphlt [5] and
SIMD-X [6], have investigated programming models for graph
processing on GPUs. Other studies like C-SAW [7] and Real-
GraphGPU [8] have focused on workload mapping and thread
management. Additionally, some other studies, such as Frog [9]
and GunRock [10], have concentrated on optimizing memory
access. Furthermore, research like EMOGI [11], DiGraph [12],
EvoGraph [13] and DBR [14] has targeted specific optimizations
for certain scenarios, such as BFS, graph traversal and path-based
Iteration.

Despite the abundant studies of graph processing on GPUs
mentioned above, there is a lack of investigation into the differ-
ences in GPU architectures and their impacts on computation
efficiency. Non-NVIDIA GPUs were only briefly introduced in
the literature [15-17] when necessary. With the increased atten-
tion to GPU options other than NVIDIA, there are some recent
studies on performance portability [18] of parallel programs on
AMD and NVIDIA GPUs. However, these studies have mostly
focused on tasks of deep learning [19], which exhibit significant
differences from graph analytics. For example, the weak locality
problem of graph analytics does not exist in deep learning work-
loads. Consequently, previous conclusions cannot be directly
applied to high-performance graph analytics on GPUs.

2.2 NVIDIA GPU

NVIDIA, as a prominent figure in the field of parallel accelerators
like GPUs, has sequentially introduced the Fermi, Kepler, Volta,
Turing, and Ampere architectures. In this section, a brief intro-
duction to NVIDIA’s GPU architecture is provided [20], shown
in Figure 1.

To support large-scale parallel computing, an NVIDIA GPU is
equipped with a substantial number of Streaming Multiproces-
sors (SM), which are the fundamental components of the GPU.
Each SM contains multiple Stream Processor Cores, specialized

On Device Memo
0
d < dled e O
Core Core Core Core
Core Core Core Core
Core Core Core Core | .
Core Core Core Core
Core Core Core Core
Core Core Core Core
Core Core Core Core
Core Core Core Core

Figure 1: NVIDIA GPU Architecture Diagram

functional units, registers, double precision units, and a thread
scheduler. GPU utilizes its large number of Cores to handle many
computing tasks simultaneously, achieving parallel computing
efficiency far beyond CPUs. In NVIDIA’s thread hierarchy, 32
threads make up one warp, several warps form a block, and mul-
tiple blocks compose a grid. Moreover, NVIDIA GPUs adopt the
SIMT (Single Instruction Multiple Threads) paradigm. With SIMT,
multiple threads in an NVIDIA GPU execute the same instruction
asynchronously on different data without the need to organize
data into particular vector lengths, and each thread is allowed
to have different logical branches. So, it enables each thread to
execute a conditional branch statement in parallel according
to the situation, making SIMT more flexible than SIMD (Single
Instruction Multiple Data).

The storage units in NVIDIA GPUs can be classified into two
hierarchies based on their location: on-device memory and on-
chip memory. On-device memory consists of DRAM, which pri-
marily includes global memory with large capacity but high
latency. On-chip memory comprises register, shared memory
(a specialized cache in GPUs that facilitates data sharing and
collaboration between threads), L1 cache (which shares the same
space with shared memory), and L2 cache. While on-chip memory
has limited capacity, it offers exceptionally fast memory access
speeds.

2.3 AMD-like GPU

AMD has also launched GPU architectures such as TeraScale,
VLIW, GCN, RDNA, and CDNA. The AMD-like GPU utilized
in our study bears a resemblance to the AMD GCN (Graphics
Core Next) [21] accelerator. In this section, we briefly introduce
an AMD-like GPU architecture launched by a Chinese manufac-
turer who has previously collaborated with AMD, as depicted in
Figure 2.

AMD-like GPUs employ a parallel microarchitecture that of-
fers a robust platform for not only computer graphics applications
but also for general data-parallel applications. The component
unit of an AMD-like GPU is referred to as the "Compute Unit"
(CU), analogous to the SM in NVIDIA GPU architecture. Addi-
tionally, each CU is comprised of four SIMD units and equipped
with data registers and various auxiliary functional units, collec-
tively forming a comprehensive computing module. Each SIMD

883

Global Memory

Cuo

L1 Cach
aceI '

Register

-
EDS(LocaI Data Store)

Figure 2: AMD-like GPU Architecture Diagram similar to
AMD GCN [22]

unit serves as the primary computing core component of the
CU, which corresponds to the Core in NVIDIA GPU. Each SIMD
unit contains numerous VALU (Vector Arithmetic logic Units)
and supports ten wavefronts, with each wavefront having a size
of 64, in contrast to the warp size of 32 in NVIDIA GPUs. The
VALU within an SIMD unit adopt the SIMD (Single Instruction
Multiple Data) paradigm. In this paradigm, all threads within one
SIMD can synchronously execute the same instruction on differ-
ent data, but cannot concurrently execute different conditional
branch statements.

The storage hierarchy of AMD-like GPUs is basically compara-
ble to Nvidia’s, except for the Local Data Store (LDS), which has
the same functionality of the shared memory in NVIDIA GPUs
but is separated from the L1 cache in AMD-like GPUs.

2.4 Architectural Differences

The architectural distinctions between AMD-like GPUs and NVIDIA
GPUs can be summarized as follows:

o AMD-like GPUs adopt the SIMD (Single Instruction, Multi-
ple Data) paradigm, while NVIDIA’s GPUs adopt the SIMT
(Single Instruction, Multiple Thread) paradigm.

e Warpsize or wavefront size in AMD-like and AMD GPUs
is 64, which is twice that of NVIDIA GPUs.

e The local data store (LDS) and L1 cache in AMD-like GPUs
are completely separated including data paths, unlike the
corresponding shared memory in the NVIDIA GPU stor-
age hierarchy.

2.5 Strengths, Weaknesses, and Expected
Impacts

The aforementioned architectural choices have their respective
advantages, disadvantages, and expected impacts on performance.
The larger wavefront size of AMD-like GPUs means that
threads on them have theoretically higher parallelism than NVIDIA
GPUs. Moreover, the separated LDS of AMD-like GPUs, which
serve similar functions as shared memory in NVIDIA GPUs,
allows the L1 cache and LDS to have independent data trans-
fer paths [23], meaning that LDS’s bandwidth is not affected
by the data transfer of L1 cache. Previous experimental stud-
ies [24] have shown that non-shared cache designs, like those

in NVIDIA’s Maxwell GPUs, significantly outperform shared de-
signs regarding bandwidth utilization and other performance
metrics of shared memory. The independence of the shared mem-
ory is a major factor contributing to this performance difference.
However, this design comes with a drawback: it results in higher
access latency between the LDS (or shared memory) and L1 cache.

The use of SIMT by NVIDIA GPUs implies that compared to
AMD-like, they have higher flexibility during program execu-
tion, making them more suitable for handling parallel tasks with
complex program branches. The L1 cache and shared memory
of NVIDIA GPUS bring a lower data-transmission latency be-
tween the two components with the cost of potential mutual
interferences between the L1 cache and shared memory, espe-
cially when the one occupies so much bandwidth that it hinders
the operations on the shared memory.

The expected impacts discussed above are intertwined, and
some may potentially offset the others. Without empirical ev-
idence, it is challenging to determine the overall impact and
relative significance of each of these factors. The objective of
this paper is to measure such impacts to gain insight into the
relationship between graph analytics and GPU architectures by
conducting extensive experiments.

3 GRAPH PROCESSING LIBRARY ON GPUS
3.1 High-performance graph analytics

Researchers have been developing specialized libraries for GPUs
to speed up large-scale graph analytics [25]. These libraries can be
broadly categorized into two categories based on the abstractions
that they adopted: linear algebra-based and graph abstraction-
based.

The linear algebra-based libraries abstract a graph as a sparse
matrix and transform graph algorithms into matrix operations.
When combined with algebraic semirings, a small set of prim-
itives can form a wide range of graph algorithms. There exist
various implementations of linear algebra-based graph analyt-
ics models, such as the GBTL [26], nvGRAPH [27], and Graph-
BLAST [28].

Most graph abstraction-based analytics libraries adopt the
vertex-centric or edge-centric models to optimize processing. The
optimizations mainly focus on workload mapping and memory
access. The vertex-centric model emphasizes parallelization over
vertices, while the edge-centric model parallelizes over edges. Ex-
amples under this category comprise CuSha [29], MapGraph [30],
and Gunrock [10]. Meanwhile, there are some other frameworks
that employ the path-centric [31] or subgraph-centric [32] mod-
els, which can be regarded as variants of vertex-centric and edge-
centric models.

3.2 nvGRAPH and adGRAPH

3.2.1 nvGRAPH for NVIDIA. For various reasons, we chose
nvGRAPH as the graph analytics library for the experiments in
this paper. Firstly, nvGRAPH [27], as a mature graph analytics li-
brary developed by NVIDIA, is included in CUDA ToolKit, which
is widely used in practice. Secondly, although nvGRAPH is not
currently SOTA, the implementation of graph algorithms in nv-
GRAPH has been widely adopted in more recent graph analysis
libraries like cuGRAPH [33] and GraphBLAST [28], and serves
as the cornerstone of optimization strategies in these libraries
(more details will be explained along with the specific benchmark
algorithms in Section 4). This means the insights obtained from

884

the nvGRAPH experiment are more likely to be extended to other
scenarios.

The following are the principal characteristics of the nvGRAPH
library:

o nvGRAPH represents many graph analytics problems through

linear algebra and matrix computations, introducing semi-
ring Sparse Matrix-Vector Product (SPMV) for executing
some graph operations.

e nvGRAPH incorporates a range of performance optimiza-
tion techniques in its underlying implementation, such as
triangle counting operations that rely on set intersection
and direction-optimizing BFS.

3.22 adGRAPH for AMD-like GPUs. Due to NVIDIA’s first-
mover advantage in GPU hardware and software, almost all GPU
graph analytics software only supports NVIDIA GPUs. This limi-
tation restricts their use on different hardware. Due to the general
lack of graph analytics software on non-NVIDIA GPUs, we have
to implement one on AMD-like GPUs in order to conduct the
study of this paper.

However, developing a software library® on an AMD-like GPU
from scratch poses significant engineering challenges. Develop-
ing such libraries involves time-consuming and labor-intensive
work and requires strong development capabilities and a thor-
ough understanding of the relevant software stacks, such as
NVIDIA’s CUDA or AMD’s ROCm. Therefore, many developers
now opt to port CUDA software to non-Nvidia devices. The het-
erogeneous programming model HIP developed by AMD makes
such porting feasible.

In addition, porting can better help us draw correct conclu-
sions in comparative experiments. As our objective is to study
the impact of GPU architectures, we aim to minimize the differ-
ences in the software running on the GPUs so that the observed
impacts are more likely caused by the GPU hardware. Compared
to redevelopment from scratch, porting can better ensure code
consistency across different hardware to the greatest extent pos-
sible, allowing us to focus on observing the impacts brought by
GPU differences without the need to consider the architecture
and characteristics of the different graph analytics libraries. So,
we opt for porting over redevelopment. Our ported version of
nvGRAPH for AMD-like GPUs is called adGRAPH.

3.3 Implementation of adGRAPH

To implement adGRAPH, we designed and implemented a porting
process as shown in Fig 3. The key steps in the entire process are
as follows. First, we utilized automated tools to substitute most
CUDA interfaces with HIP’s counterparts. Then, we conducted
manual adjustments or modifications to replace all the CUDA’s
variables with HIP’s and resolve system heterogeneity issues.
Nonetheless, porting large-scale software, such as nvGRAPH,

is non-trivial, which is also concurred by industrial feedback [34] [35].

First, automated tools [36] are unable to recognize complex code
constructs like templates, structs, encapsulation classes, and other
user-defined data types. This defect can lead to automation tools
easily missing CUDA elements in complex code structures when
executing the porting. Second, there is a high level of hetero-
geneity in the interface between HIP and CUDA, especially in
some interface parameters. For example, compared to the cuspar-
seXcsriluo interface of CUDA, the hipsparseXcsriluo interface of
HIP requires a larger number of parameters. Such mismatchings

3As executing CUDA software through a translation layer like ZLUDA on non-
NVIDIA GPUs is banned by NVIDIA, we do not consider this option.

Install Dynamic

Link Library
Automatically modify source
replace CUDA code Test adGRPAH
Variables N if failed,
N Generate retuen to
m makefile files Step2
Manually
replace CUDA
\ Variables }

!

porting

Application Layer

CUDA Toolkit ROCm-like Toolkit
Stack Platform Layer Stack using HIP

Nvidia GPU AMD-like GPU

Figure 3: Porting Process of nvGRAPH

occurred very frequently during porting. We overcome these
challenges through manual intervention, which, unfortunately,
involves extraordinarily time-consuming and laborious tasks.

Due to the porting method, the main differences between
nvGRAPH and adGRAPH lie in the interfaces and variables. Ad-
GRAPH replaces the CUDA variables or interfaces in nvGRAPH
with their HIP counterparts (e.g., replacing cudaStream_t with
hipStream_t, and cudaMemcpy with hipMemcpy, and so on).
Moreover, the HIP elements are functionally identical to their
counterparts of CUDA. At the platform layer shown in Fig 3,
the ROCm-like Toolkit corresponding to AMD-like GPUs is de-
signed and developed to mimic and be compatible with the CUDA
Toolkit and is relatively close in terms of software architecture
and application ecology. So, for the convenience of conducting the
experiment, we assume that the difference between the ROCm-
like Toolkit and the CUDA Toolkit will not have a significant
impact on the experimental phenomena. We did not make special
optimization modifications to adGRAPH, thereby preserving the
consistency of the graph algorithms in the two libraries. There-
fore, even though we cannot ensure the two software stacks are
identical and do not have any impact on the observed perfor-
mance differences, it is the best that one can do, with a reasonable
amount of resources, to minimize the interference from the soft-
ware stacks.

4 EVALUATION

In this section, we conduct the experimental of this paper.

4.1 Experimental Metrics

We evaluate the nvGRAPH or adGRAPH on different GPUs
through two main performance metrics: runtime and traversed
edges per second (TEPS). We report runtimes in milliseconds and
TEPS as millions of traversals per second [MTEPS].

To explore nvGRAPH or adGRAPH performance on different
hardware platforms, we utilized two profiling tools: Nsight Com-
pute for CUDA (ncu) and its ROCm-like equivalent (hiprof) to
measure various profiling metrics of GPUs. We select 8 sets of
micro-profiling metrics commonly used to evaluate GPU com-
ponents and categorize them into two categories: fine-grained
metrics and coarse-grained metrics.

o For fine-grained level metrics, we record the number
of instructions issued by different components (including
SIMD/Core, shared memory, and global memory) of the
GPU, as well as the four similar metrics of adGRAPH. The

885

result of these metrics combined with operation runtime
expresses the speed of the above components in GPUs
during operation. Table 1 provides a detailed explanation
of these metrics.

For the coarse-grained metrics, we record the utiliza-
tion efficiency of four components(including L2 cache,
SIMD/Core, shared memory and global memory) of GPUs.
These metrics reveal the efficiency of utilizing the poten-
tial of above components on the GPU during operation.
Table 2 lists detailed explanations.

Due to the fact that fine-grained metrics are related to the
runtime of the program, in subsequent profiling, we will divide
the metric values by the run time of each program to obtain the
speed of instruction issuance for the different components and
use such speed values to compare the efficiency of different com-
ponents. Due to the differences in the statistical methods adopted
by the different types of GPUs, we are unable to compare the
coarse-grained profiling metrics across them directly. Therefore,
we only separately report them to observe the operational char-
acteristics of the graph framework on the two types of GPUs. All
metrics, except runtime, are better with higher values.

Table 1: Specification of Fine-Grained Metrics

CUDA metrics and its implication

ROCm metrics and its implication

inst_issued(number of instructions is-
sued)

SQ_INSTS_VALU(Number of VALU
instructions issued)

inst_executed_shared_stores(Warp
level instructions for shared stores)

SQ_INSTS_LDS(Number of LDS in-
structions issued)

inst_executed_global_loads(Warp
level instructions for global loads)

SQ_INSTS_VMEM_RD(Number of
VMEM read instructions issued)

inst_executed_global_stores(Warp
level instructions for global stores)

SQ_INSTS_VMEM WR(Number of
VMEM write instructions issued)

Table 2: Specification of Coarse-Grained Metrics

CUDA metrics and its implication

ROCm metrics and its implication

achieved_occupancy(Ratio of the av-
erage active warps per active cycle
to the maximum number of warps
supported on a multiprocessor)

VALUBusy(Percentage of GPUTime
vector ALU instructions are pro-
cessed.)

shared_efficiency(Ratio of requested
shared memory throughput to re-
quired shared memory throughput
expressed as percentage)

1-ALUStalledByLDS(Percentage of
GPUTime ALU units are stalled by
the LDS input queue being full or
the output queue being not ready.)

12_tex_hit_rate(Hit rate at L2 cache
for all requests from texture cache)

L2CacheHit(Percentage of fetch,
write, atomic, and other instructions
that hit data in L2 cache.)

gld_efficiency(Ratio of requested
global memory load throughput
to required global memory load
throughput expressed as percent-
age.)

MemUnitBusy(Percentage of
GPUTime the memory unit is active.
The result includes the stall time.)

4.2 System Configuration

In this experimental study, we use NVIDIA’s A100 [37] and V100
and the AMD-like Z100 and Z100L, representing NVIDIA GPU
architecture and AMD-like GPU architecture, respectively. A100
and Z100L are the latest products we can obtain based on our re-
sources, while V100 and Z100 are their prior-generation products.
Table 3 outlines the hardware specifications of the four GPUs.
As illustrated in Table 3, despite the gap in RAM specifications,

Z100L and A100 are nearly identical in key metrics such as FP64
computing power. This enables us to assess the actual impact
of different GPU architectures on the performance of graph al-
gorithms, given their similar hardware specifications. Similarly,
although Z100 is slightly inferior to V100 in some specifications,
it is comparable to V100 in terms of computing power and most
specifications as shown in Table 3.

Table 3: Specification of GPUs

Features Z100 V100 Z100L A100

FP64 5.9TFLOPS 7.0TFLPS 10.1TFLOPS | 9.7TFLOPS
FP32 11.8TFLOPS | 14.0TFLOPS | 12.2TFLOPS | 19.5TFLOPS
RAM Volume 16GB 32GB 32GB 80GB

RAM Band- | 800GB/s 900GB/s 1024GB/s 1935GB/s
width

RAM Bitwidth 4096bit 4096bit 4096bit 5120bit
RAM Type HBM2 HBM2 HBM2 HBM2e
SM/CU 64 80 64 108
Cores/SP 4096 5120 4096 6912

All experiments in this article were conducted on workstations
running CentOS Linux 7.6.1810, whose kernel version is 3.10.0 —
957.el7.x86_64. One workstation is equipped with an NVIDIA
GPU, while the host is equipped with a memory size of 192GB,
and Toolkit using CUDA 10.2; the other is equipped with an
AMD-like GPU, while the host is equipped with 128GB memory
and Toolkit is developed by manufacturers of Z100 and Z100L
based on open source ROCm 5.0.

In this experiment, all graph data was presented in double-
precision floating-point format (represented in 64-bit binary) on
the computer, so the GPU’s computing power benchmark is FP64
instead of FP32.

4.3 DataSet

As the major challenges of graph analytics using GPUs are the
irregular access and workload imbalance brought by power law
distribution often exhibited in large real-world graphs, the design
of most graph libraries for GPUs like nvGRAPH mainly focused
on optimizations to overcome such challenges. Therefore, we
selected seven real-world graph datasets from the SNAP (Stan-
ford Network Analysis Project) [38] and Network Repository
websites [39], taking into account the characteristics of power
law and large diameter in real-world graphs. More detailed infor-
mation about these graphs is provided in Table 4.

Table 4: Specifications of DataSet

DataSet Number of vertex Number of edge maxDegree
web-Stanford 281,903 2,312,497 38,626
web-Google 916,428 5,105,039 6,353
cit-Patents 6,009,554 16,518,948 739
soc-liveJournall 4,847,571 68,475,391 22,887
soc-sinaweibo 58,655,849 261,321,071 278,489
web-uk-2002-all 18,520,486 298,113,762 194,955
twitter-mpi 52,579,682 1,963,263,821 3,691,240

These selected datasets encompass various real-world disci-
plines, such as social networks, citation links, and web data, cover-
ing many classical application scenarios for graph analysis. More

886

specifically, Web-Stanford, web-Google, and web-uk-2002-all are
examples of web graphs, while soc-liveJournall, soc-sinaweibo,
and twitter-mpi are social networks. Additionally, cit-patents
represents a citation network, and the three largest graphs, soc-
sinaweibo, web-uk-2002-all, and twitter-mpi, contain vertices
with very high degrees, which could potentially lead to commu-
nication or computing bottlenecks due to workload imbalance.

4.4 Benchmark Algorithm

For the evaluation of the graph analytics library’s performance
on A100 and Z100L, we use three algorithms that maintain con-
sistency in the implementation of nvGRAPH and adGRAPH:
Breadth First Search (BFS), Triangle Count (TC), and Subgraph
Extraction by Vertex (ESBV). These algorithms cover two major
categories of graph analytics: traversal and mining. BFS repre-
sents a low-complexity algorithm, TC represents a moderate-
complexity algorithm, and ESBV represents a high-complexity
algorithm. Collectively, they provide a representative sample of
graph analytics workloads.

BFS. BFS is the simplest of the three algorithms. In both ad-
GRAPH and nvGRAPH, it is executed using a conventional bottom-
up approach, focusing on expanding the frontier layer by layer as
the main operation [40]. Subsequent research results often adopt
further optimization techniques on the basis of this method, such
as developing a special programming model [41] that combines
custom hardware microarchitecture to address intra-warp load
imbalance issues. However, it is unknown whether such special
optimizations can be applied to AMD-like GPUs.

TC. In nvGRAPH and adGRAPH, the counting of triangles
is done by summarizing the intersection elements in the adja-
cent node sets of adjacent nodes [42], which relies on bitmaps
and atomic operations. This process requires more conditional
judgments and branching statements than BFS, depending on
the topology of the graph. This approach has pioneered one of
the two mainstream paradigms for solving the TC problem, the
other being the binary search-based paradigm. Specific optimiza-
tions for each of the two solutions have been proposed. E.g., a
recent work [43] followed the latter paradigm and proposed a
hash-based trie data layout to improve efficiency.

ESBV. Subgraph extraction involves not only traversing and
retrieving subgraphs but also constructing them into new graph
objects. So, ESBV is the most complex among the three, as it
requires more frequent conditional checks and branching state-
ments. In nvGRAPH and adRGAPH, the solution follows canoni-
cal computing of partial clustering [44]. But in recent years, new
research has introduced methods such as Signed Graph Represen-
tation Learning [45] and other machine learning approaches [46]
based on partial clustering to improve efficiency, but these imple-
mentations go beyond the scope of the graph analysis algorithms
targetted by this study.

4.5 Performance Result

We divide the four GPUs used in the experiment study into two
groups. The first consists of NVIDIA’s V100 and AMD-like Z100,
while the second consists of NVIDIA’s A100 and AMD-like Z100L.
We run adGRAPH on AMD-like GPUs and nvGRAPH on NVIDIA
GPUs. Through experiments, we observe and compare the perfor-
mance differences between NVIDIA and AMD-like GPUs within
each group, respectively. Table 5 shows the performance results
of the experiment.

Table 5: Performance Result of nvGRAPH and adGRAPH

Group 1 Group 2
Runtime(ms) Edge Throughout Runtime(ms) Edge Throughout
Task | Workload (Million/s) (Million/s)
7100 V100 7100 V100 Z100L A100 Z100L A100
web- 15.68 10.04 147.48 230.33 9.28 9.6 249.19 240.89
Stanford
web-Google 0.91 4.11 5609.99 1242.12 0.58 2.93 8801.88 1742.35
cit-Patents 3.13 3.61 5277.62 4575.88 1.91 2.13 8648.66 7755.37
soc- 7.27 8.29 9418.90 8260.00 4.6 5.04 14885.95 13586.29
BFS liveJournal1l
soc- 4.25 9.08 61487.31 28779.85 2.55 5.22 102478.85 50061.51
sinaweibio
web-uk- 24.86 35.73 11991.70 8343.51 13.09 13.87 22774.16 21493.36
2002-all
twitter-mpi 95.85 89.36 20482.67 21970.28 65.21 57.59 30106.79 34090.42
web- 37.15 26.52 62.25 87.20 21.98 18.18 105.21 127.20
Stanford
web-Google 40.72 43.44 125.37 117.52 34.64 64.05 147.38 79.70
cit-Patents 60.31 60.49 273.90 273.09 35.62 57.29 463.75 288.34
soc- 212.95 398.43 321.56 171.86 137.37 234.58 498.47 291.91
TC liveJournal1l
soc- 4953.03 1064.35 52.76 245.52 2436.70 388.43 107.24 672.76
sinaweibio
web-uk- 628.57 189.46 474.27 1573.49 397.76 163.86 749.48 1819.32
2002-all
twitter-mpi 146945 107912 13.36 18.19 103518 55642.12 18.97 35.28
web- 3 3.42 770.83 676.17 1.78 1.81 1299.16 1277.62
Stanford
web-Google 3.24 2.6 1575.65 1963.50 2.11 1.41 2419.48 3620.63
cit-Patents 4.17 4.13 3961.38 3999.74 2.44 1.25 6770.06 13215.15
soc- 9.39 8.39 7292.37 8161.55 5.65 2.77 12119.54 24720.36
ESBV | liveJournall
soc- 30.41 21.01 8593.26 12437.94 18.43 11.36 14179.11 23003.62
sinaweibio
web-uk- 39.42 38.74 7562.50 7695.24 17.87 14.17 16682.36 21038.37
2002-all
twitter-mpi OOM OOM OOM OOM OOM OOM OOM OOM

It is interesting to note that neither nvGRAPH nor adGRAPH
can form a crushing advantage over the other in all algorithms.
For simple BFS, the performance of adGRAPH on AMD-like ac-
celerators (Z100L or Z100) is much better than that of nvGRAPH
on the NVIDIA counterparts (A100 or V100). On the other hand,
for the more complex ESBV, the performance of nvGRAPH is far
superior to that of adGRAPH. Regarding TC, which is of mod-
erate complexity, the performance of nvGRAPH and adGRAPH
varies depending on different datasets.

BFS. The throughput of adGRAPH is higher than that of nv-
GRAPH when executing BFS. In group 1, the acceleration ratio
of adGRAPH on Z100 compared to nvGRAPH on V100 ranges
from 0.64x to 4.52x, with an average speedup ratio of 1.69x, as
shown in Figure 4. In group 2, the acceleration ratio of adGRAPH
on Z100L compared to nvGRAPH on A100 ranges from 0.88x to

887

5.05x, with an average speedup ratio of 1.76x, as shown in Figure
5. Among the seven graph datasets, adGRAPH has a lower run-
time than nvGRAPH on almost all graphs except for twitter-mpi
in both groups, which has an average degree of 74.68, at least
twice that of the other datasets.

TC. The overall difference in throughput between adGRAPH and
nvGRAPH for triangle counting is not significant. In group 1, the
acceleration ratio of adGRAPH on Z100 compared to nvGRAPH
on V100 ranges from 0.21 to 1.87x, with an average speedup ratio
of 0.84x, as shown in Figure 4. In group 2, the acceleration ratio
of adGRAPH on Z100L compared to nvGRAPH on A100 ranges
from 0.15 to 1.85x, with an average speedup ratio of 1.01x, as
shown in Figure 5. Among experiments on the seven datasets,
the throughput of adGRAPH was greater than that of nvGRAPH

Speed Up

10.00

4.52
1.87 214 ”
. 1.15 . i
1.14 .0780 00 11 .89 0.98 (.93
1.00 0.71 i 0.99 0.69 0.73
0.
.30
.21
0.10 Il I 11 = Hll HII
e & > & N >
Q\o‘b & \eé & 4,:? q’,o 3
7 > & & ~ o
& & e, &5 & S av
& o S ; & A
<& N & v
& i &

[d BFS @ Triangle Counting (| Extracting Subgraph by vertex

Figure 4: Speed Up of nvGRAPH on Z100 relative to V100

10.00
5.05
-85 161 i 20
11 1.1
103, g3 1.02 106 5 088
1.00 .67 51 9 0.62 54
) \ 41
.19 H
0.10 1= 1= 1 1 HI | 1=
& N 3 > R N &
& o s & & o <*
& > g & » 3
W & g & o 4 &
o« < pY & 5 5

0
‘6‘/

[Z BFS [Triangle Counting [| Extracting Subgraph by vertex

Figure 5: Speed Up of nvGRAPH on Z100L relative to A100

2.50

2.21
2.03
200 16 1.90
.00 1, 69
169 > 157154 169171 4.6 167 [1.65
L LsghS 147, ,
1.50 " *
18
1.00
0.50
H F I I 0 N
& A N S
& & &(‘"" & »° & &
& & L & A) &
3 bd & Cl & W &
& & © Na 43 > &
N & o ;!6’

[BFS @ Triangle Counting [Extracting Subgraph by vertex

Figure 6: Speed Up of nvGRAPH on Z100L relative to Z100

in cit-Patents, soc-liveJournall, and web-Google, accounting for
3 out of 7 cases.

ESBV. Due to the requirement of edge weight data and the sub-
stantial storage space occupied by edge weights, the workstations
used in the experiments are unable to support executing the ESBV
algorithm of nvGRAPH or adGRAPH on the twitter-mpi dataset.
Among the remaining six graph datasets, the throughput of ad-
GRAPH was consistently lower than the throughput of nvGRAPH
across all datasets except for web-Standford. In group 1, the accel-
eration ratio of adGRAPH on Z100 relative to nvGRAPH on V100
ranges between 0.69x and 1.14x, with an average acceleration
ratio of 0.92x, as shown in Figure 4. In group 2, the acceleration
ratio of adGRAPH on Z100L relative to nvGRAPH on A100 ranges

2

888

between 0.49x and 1.02x, with an average acceleration ratio of
0.68x, as shown in Figure 5.

Verification of adGRAPH. In both Group 1 and Group 2, even
though the hardware parameters of the AMD-like GPUs are
slightly inferior to the NVIDIA ones, nvGRAPH cannot fully
outperform adGRAPH and is often even overtaken by adGRAPH.
Due to the high similarity in the code between nvGRAPH and
adGRAPH and the high throughput demonstrated on their respec-
tive GPUs, it is reasonable to confirm that adGRAPH is on par
with the original nvGRAPH in terms of exploiting the potential of
GPUs’ acceleration capability. Besides, while the FP64 computing
power of Z100L is nearly 1.71 times that of Z100, the average
acceleration ratio of adGRAPH on Z100L compared to Z100 can
reach 1.65, with an average acceleration ratio of 1.64 on BFS tasks
and 1.59 on TC tasks and 1.74 on ESBV tasks respectively (shown
in Fig 6). This indicates that the parallel efficiency of adGRAPH
is high. In summary, the evaluation results demonstrate that ad-
GRAPH is effective and sufficient to serve as a benchmark on
AMD-like GPUs.

Sensitivity to Graph Properties. It is not difficult to see from
the overall trends that adGRAPH has an advantage on relatively
smaller graphs, while nvGRAPH has an advantage on relatively
larger graphs, especially when the number of vertices is more
than 100 million. AAGRAPH has an advantage on BFS, but lags
behind nvGRAPH on the largest graph twitter-mpi, and its advan-
tage gradually degrades as the graph size and maximum degree
increase. The overall trend on TC is more obvious: adGRAPH
dominates on most small graphs, while nvGRAPH dominates
on large graphs. Although most datasets have similar topologi-
cal structures except for cit-patents, the two libraries may have
different inclinations in different scenarios. AAGRAPH is often
more advantageous when the maximum degree is much relatively
smaller than total number of edges, which helps to enhance its ad-
vantages on small graphs such as running BFS on web-Google, or
partially offset its disadvantages on large graphs such as running
TC tasks on twitter-mpi.

4.6 Profiling Result

Table 6 presents the results of profiling analysis at the fine-
grained level for the two GPUs. It is worth noting that the data
presented in Table 6 is the speed at which different components
issue instructions, obtained by dividing the number of instruc-
tions by the program runtime. We compare the efficiency of two
GPU architectures by comparing speed rather than instruction
number. Since Z100L and A100 are the more advanced and widely
used varieties in AMD-like and NVIDIA architectures, it is more
interesting to explore the process of running adGRAPH or nv-
GRAPH on these two GPUs. Therefore, our profiling will only
be conducted on these two GPUs. We identify the following:

e Z100L outperforms A100 on inst_issued, which means
that Z100L can issue more instructions, especially those
related to warp or wavefront when executed BFS and TC
algorithm.

e A100 performs significantly better than Z100L when exe-

cuted ESBV, while performing equally to Z100L in other

algorithms when it comes to inst_executed_global_loads.

This indicates that A100 is slightly more efficient than

Z100L in global memory read operations.

Z100L lags far behind A100 in global memory write opera-

tions, as indicated by its significantly inferior performance

in inst_executed_global_stores.

Table 6: Fine-grained Profiling Results of 2 GPUs running nvGRAPH or adGRAPH

BFS ESBV TC
Metrics Type Workload
A100 Z100L A100 Z100L A100 Z100L
web-Stanford 5.18K/ms 3.91K/ms 2.39K/ms 2.22K/ms 18.57M/ms 19.30M/ms
web-Google 147.48K/ms 994.35K/ms 2.67K/ms 1.67K/ms 18.86M/ms 21.75M/ms
cit-Patents 129.73K/ms 191.68K/ms 4.80K/ms 2.61K/ms 23.93M/ms 28.21M/ms
Type 1* soc- 1.74M/ms 6.04M/ms 4.44K/ms 1.86K/ms 22.43M/ms 59.48M/ms
liveJournall
soc-sinaweibio 3.95M/ms 5.16M/ms 384.75/ms 215.55/ms 48.75M/ms 86.65M/ms
web-uk-2002- 1.07M/ms 650.17K/ms 361.25/ms 262.15/ms 81.94M/ms 70.26M/ms
all
web-Stanford 773.22/ms 846.23/ms 90.73/ms 200.80/ms 391.22K/ms 437.36K/ms
web-Google 24.44K/ms 165.17K/ms 86.05/ms 123.29/ms 195.46K/ms 345.36K/ms
cit-Patents 16.68K/ms 25.98K/ms 42.27/ms 257.12/ms 502.03K/ms 406.06K/ms
Type 2** soc- 1.47M/ms 4.27M/ms 320.62/ms 129.52/ms 2.66M/ms 7.70M/ms
liveJournal1l
soc-sinaweibio 438.95K/ms 693.49K/ms 14.46/ms 15.72/ms 6.00M/ms 6.25M/ms
web-uk-2002- 166.05K/ms 126.83K/ms 15.91/ms 19.07/ms 11.25M/ms 11.99M/ms
all
web-Stanford 501.91/ms 72.69/ms 133.10/ms 116.05/ms 245.20K/ms 531.55K/ms
web-Google 6.11K/ms 36.31K/ms 138.32/ms 83.43/ms 135.47K/ms 572.70K/ms
cit-Patents 3.20K/ms 2.02K/ms 209.66/ms 119.86/ms 383.43K/ms 920.56K/ms
Type 3*** soc- 76.36K/ms 103.74K/ms 319.48/ms 128.70/ms 1.57M/ms 2.67M/ms
liveJournall
soc-sinaweibio 146.32K/ms 119.97K/ms 21.68/ms 11.26/ms 4.25M/ms 3.68M/ms
web-uk-2002- 44.85K/ms 16.42K/ms 21.87/ms 14.34/ms 6.03M/ms 2.26M/ms
all
web-Stanford 42.36/ms 16.27/ms 112.43/ms 81.98/ms 1.07M/ms 617.12K/ms
web-Google 5.50K/ms 38.33K/ms 129.59/ms 80.74/ms 1.20M/ms 613.29K/ms
cit-Patents 4.28K/ms 3.47K/ms 251.18/ms 156.64/ms 1.33M/ms 584.33K/ms
Type 4**** soc- 16.41K/ms 115.54K/ms 189.82/ms 82.85/ms 317.46K/ms 150.94K/ms
liveJournall
soc-sinaweibio 158.02K/ms 21.51K/ms 18.11/ms 10.44/ms 166.74K/ms 8.20K/ms
web-uk-2002- 9.35K/ms 4.44K/ms 16.99/ms 12.75/ms 391.58K/ms 45.31K/ms
all

. inst_issued for nvGRAPH or SQ_INSTS_VALU for adGRAPH;
" inst_executed_shared_stores for nvGRAPH or SQ_INSTS_LDS for adGRAPH;

inst_executed_global_loads for nvGRAPH or SQ_INSTS_VMEM_RD for adGRAPH;

inst_executed_global_stores for nvGRAPH or SQ_INSTS_VMEM_WR for adGRAPH;

o Asshown by the metric inst_executed_shared_stores, A100
is far inferior to Z100L in almost all cases, which implies
that the performance of Z100L in memory access opera-
tions on shared memory is much better than that of A100.

From the fine-grained profiling data mentioned above, we
can make two observations. Firstly, the AMD-like architecture
represented by Z100L has better optimization in warp and shared
memory than the NVIDIA architecture represented by A100.
Secondly, in addition to shared memory, the performance of
nvGRAPH and adGRAPH also depends on the complexity of
the algorithm being executed. Generally, nvGRAPH performs

889

better in complex algorithms like ESBV, while adGRAPH is more
competitive in simpler algorithms like BFS.

Figure 7 and 8 displays coarse-grained profiling results for the
two GPUs. We can draw the following conclusions from Figure 7
and 8:

o The utilization efficiency of warp computing resources on
both A100 and Z100L is low. This indicates that although
nvGRAPH and adGRAPH have undergone extensive opti-
mization, the weak locality of the graph algorithms has
not been fully eliminated.

86.32 87.67
90 82.73 815
80 761&56 7 71.85
g CRE 6725 67.92
g 70 60.17
= 58.18
E 50 54.03 5597 56.87 56.37 55.87
2 %0 g 101 39.9 a0. 2.5
s 3.9
=4
30
20
10
) Hl N [kl I Il
web-Stanford web-Google cit-Patents soc-Livelournall soc-sinaweibo web-uk-2002-all

M achieved_occupancy Ml shared_efficiency I 12_tex_hit_rate Bl gld_efficiency

Figure 7: Coarse-grained Profiling Results of nvGRAPH
on A100

120

wo 9564 97.69 96.28 98.46 95.86 93.68
IS
" .68
ERR 37
©
Z 41
g 60 49.68 47.88
£ 454 43204534 45.6 433 :
: : 142 41.88| 42.27
El 38.2 388 63
a0
20
0 1= 1= I I I Il
web-Stanford ~ web-Google cit-Patents soc-Livelournall soc-sinaweibo web-uk-2002-all

H VALUBusy B 1-ALUStalledByLDS [L2CacheHit Bl MenUnitBusy

Figure 8: Coarse-grained Profiling Results of adGRAPH on
Z100L

e Regarding the efficiency of shared memory utilization,
Z100L performs better than A100. This also indirectly
supports the assertion made in the fine-grained profiling
that Z100L has shared memory features that A100 cannot
match.

e When comparing the efficiency of L2 cache hit and global
memory utilization, it is observed that Z100L does not
perform as well as A100. This difference can be attributed
to the use of advanced storage technologies such as the
HBM2e by A100(Z100L use inferior HBM2 and its volume
is smaller than A100). Due to this, Z100L lags behind A100
in terms of L2 cache hit rate and global memory efficiency.

5 DISCUSSION

In this section, we discuss three questions related to the results in
Section 4. (1) Why does an AMD-like GPU outperform a NVIDIA
GPU on certain specific graph algorithms? (2) Why do some al-
gorithms exhibit higher execution efficiency on AMD-like GPUs
than on NVIDIA GPUs, while some others demonstrate the op-
posite? (3) Why does an AMD-like GPU perform better in shared
memory than an NVIDIA GPU for all three benchmark algo-
rithms?

As discussed in Section 2, the architecture design of a GPU is
expected to have various impacts on the graph analytics perfor-
mance, which can be summarized in the following hypothesis.
Hypothesis 1: A larger wavefront size of AMD-like GPUs helps
them outperform NVIDIA GPUs due to their theoretically higher
degree of parallelism. Hypothesis 2: Independent LDS (shared
memory) can help AMD-like GPUs perform better than NVIDIA
in terms of shared memory efficiency. Hypothesis 3: NVIDIA
GPUs using SIMT are more suitable for handling parallel tasks
with complex program branches than AMD-like counterparts.

890

Other Computing Scenario Graph Computing Scenario

Data
Flow

Data
Flow

Data
Flow

Figure 9: Locality of GPU architecture under graph com-
puting and other scenarios.*

Hypothesis 4: The non-independent shared memory in NVIDIA
GPUs reduces the latency of transmission between the L1 cache
and shared memory.

Besides the architecture, the other hardware parameters of
GPUs also have an impact on the performance of graph analytics.
Although the Z100L and A100 have almost the same computing
power, with Z100L having a slight advantage, A100 adopts a
more advanced RAM technology and has a significantly higher
RAM capacity and bandwidth than Z100L. In the comparative
experiment between V100 and Z100, the hardware parameters
of the two GPUs also have a similar impact on the experiment.
Therefore, we have Hypothesis 5: based solely on the hardware
parameters, the overall expected performance of nvGRAPH on
A100 or V100 should be higher than adGRAPH on Z100L or Z100.

However, according to the experimental results, we found that
the effect we observed in Section 4 was not fully consistent with
our expectations mentioned above. In the rest of this section, we
analyze the overall impact and relative significance of each of
these factors based on the empirical evidence.

5.1 Analysis of experimental phenomena

To answer the three questions mentioned at the beginning of
this section, we need to compare the expected impact with the
observed impact found in Section 4 and analyze if they are con-
sistent or not.

5.1.1 Independent Shared Memory. As discussed earlier, the
independent shared memory in AMD-like GPUs is unaffected
by the L1 cache but has longer memory access latency com-
pared to Nvidia GPUs. However, the profiling results, where Z100
outperforms A100 in metrics such as inst_executed_stores and
shared_efficiency, only highlight the positive effects of indepen-
dent shared memory. They do not demonstrate the anticipated
negative impact. This necessitates a more in-depth discussion.

We illustrate the differences between computation with good
locality versus graph computation with poor locality in Fig. 9.
The hierarchical storage architecture of GPUs is designed based
on the assumption of memory locality. However, given the pro-
nounced irregular memory access pattern of graph algorithms,
the spatiotemporal locality of memory access is limited. This

“4The size of the arrow represents the size of the transmitted data, and number of
arrows represents the frequency of data transmission.

has led to high variability of memory access, such as frequent
loading of large amounts of data from the on-device memory to
the on-chip jjmemory because of the low cache hit rate [47]. Due
to the inherent load imbalances and irregular memory access
patterns typical in graph analytics, the L1 cache-often with a
low hit rate-frequently needs to fetch data from the L2 cache or
even global memory. Consequently, this exacerbates the issue of
bandwidth contention between shared memory and L1 cache in
Nvidia. But due to the independent data transfer paths discussed
in Section 2, AMD-like LDS does not suffer from interference
of L1 cache’s data transmission. So, in principle, AMD-like LDS
should have a higher data transfer performance.

The profiling results of the Type 2 metrics in Table 6 show that
the AMD-like GPU outperforms NVIDIA GPUs in most cases
regarding the metric of inst_executed_stores, which measures
the performance of shared memory data transfer. This fully sup-
ports the above inference and also embodies the advantages of
independent shared memory observed by the previous experi-
mental study [24] as mentioned in Section 2. Additionally, the
independent data path of LDS also enhances the operational ef-
ficiency of the AMD-like LDS due to its exemption from any
bandwidth fluctuations caused by the L1 cache. This is reflected
in the significantly lower shared_efficiency of the NVIDIA GPU
shown in Figure 7, compared to the corresponding metric of the
AMD-like GPU in Figure 8. This also supports our discussion
above.

All in all, in graph computing, the positive effects of inde-
pendent shared memory outweigh its negative effects, resulting
in AMD-like GPUs outperforming NVIDIA GPUs in terms of
shared memory efficiency, which supports Hypothesis 2 but not
Hypothesis 4.

5.1.2 Warpsize. We have hypothesized that a larger wave-
front size for AMD-like GPUs would result in higher parallelism
than NVIDIA GPUs. This impact was manifested by the fine-
grained profiling results of inst_issued where Z100L performs
better in BFS and TC tasks, confirming Hypothesis 1. However,
the impact of warp size can be hedged by other factors, which
can be observed through Z100L performing worse than A100 in
inst_issued when executing ESBV, which has a higher algorithm
complexity. We will discuss the impact of Algorithm Complexity
and SIMT in the next subsubsection.

5.1.3 Algorithm Complexity and SIMT. Based on our findings
in Section 4, we observed that in terms of runtime and through-
put during evaluation, as well as various metrics in fine-grained
profiling, simpler algorithms tend to perform better on AMD-
like GPUs, whereas more complex algorithms perform better
on NVIDIA GPUs, with the exception of shared memory. We
believe that this is closely related to NVIDIA GPUs adopting the
SIMT paradigm and AMD-like GPUs adopting the SIMD para-
digm. As we discussed the expected impact of the SIMT paradigm
on NVIDIA GPUs and the SIMD paradigm on AMD-like GPUs,
We found that NVIDIA GPUs are more flexible and better suited
for handling complex parallel tasks. However, in the evaluation
of Section 4, we observed that the impact of SIMT varies de-
pending on the benchmark algorithm. For algorithms like BFS
with relatively few branches, the optimization effect of SIMT
appears redundant. For TC, whose complexity and branch count
are moderate, the role of NVIDIA SIMT and the optimization
points of AMD-like GPU interact, resulting in NVIDIA slightly
outperforming AMD-like GPUs. For algorithms like ESBV, which
have more complex branches, the optimization effect of SIMT is

891

even more prominent than the other advantages of AMD-like
GPU architecture. This evidence supports Hypothesis 3.

5.1.4 Hardware parameters. From Section 4, it can be seen
that in both two groups, NVIDIA devices are superior to AMD-
like ones in terms of RAM technology, bandwidth, and capacity.
The superior performance of A100 regarding inst_executed_global
_stores and gld_efficiency in Table 6 and Fig 7 confirm the advan-
tage of A100 in on-device memory access speed during executing
graph algorithms. It is important to note that as the scale of the
graph increases, the I/O transmission of on-device memory be-
comes a significant bottleneck in performance. In this context,
Nvidia GPUs have a substantial advantage over AMD-like GPUs,
which helps them perform better with very large graphs. This
observation aligns with the performance trends we discussed in
Section 4 regarding the sensitivity to the scale of the graphs. But
from Table 5, we can see that the advantage of A100 (or V100)
in RAM technology did not make them outperform Z100L (or
Z100) in all situations as expected. It is because some of the fac-
tors discussed earlier offset this one. Therefore, we do not have
the evidence to support Hypothesis 5. Nonetheless, NVIDIA’s
advanced RAM technology contributes to the cases when nv-
GRAPH on A100 or V100 surpasses adGRAPH on Z100L or Z100.

5.2 Analysis Summary

Based on the characteristics of the benchmark algorithms and
the two GPU architectures, our analysis can be summarized as
follows. Graph algorithms have varying levels of complexity,
which affects how much they benefit from SIMT. For example,
algorithms with low branching complexity, like BFS, may not see
a significant improvement in execution efficiency when using
NVIDIA GPUs with SIMT. This is where AMD-like GPUs with
larger warp sizes and independent shared memory can have an
advantage. In such cases, the benefits of using NVIDIA’s SIMT
can be negated, making AMD-like GPUs a better choice. However,
this advantage is not seen in the other algorithms, where out
of the three variables — SIMT paradigm, independent shared
memory, and warp size — SIMT paradigm has the most significant
impact on performance.

5.3 Threats to Validity

Our experimental study of the two GPU architectures is subject
to the following threats to validity:

1. The influence of computing platforms. NVIDIA and AMD-
like GPUs use two different computing platforms, namely CUDA
and ROCm, shown in Fig 3. nvGRAPH and adGRAPH rely on
these two underlying platforms, which can impact their perfor-
mance when executing specific graph algorithms. For the sake of
this study, we assume in Section 3 that any differences between
the platforms will not significantly affect the experimental out-
comes. However, because CUDA is not open source, we cannot
guarantee consistency between the two computing platforms by
conducting code analysis. Therefore, the effect demonstrated in
the results may not be completely attributed to the hardware ar-
chitectures. One approach for accurately evaluating the impacts
from different computing platforms is to conduct comparative
experiments using the same hardware for both platforms. This
can be achieved by porting one platform to the other’s hardware.
However, current porting tools demand an excessive amount of
effort to do so. In order to make this approach more feasible, we
need significant advancements in more efficient porting solutions
in the future.

2. The difference in the calculation method of the metrics
provided by the profiling tools. The profiling tools of the two
GPUs could calculate the metrics differently, which makes it
difficult to maintain complete consistency in the metrics we
use for the study. In our results, we have selected metrics with
comparable meanings in ROCm and CUDA for profiling, but
we cannot completely rule out errors caused by the different
calculation methods of metrics.

3. Generalization beyond algorithms and libraries. We used
the mature graph analytics library nvGRAPH (and its ported
version), which primarily employs classical graph algorithms, to
investigate the impact of GPU architectures. However, with more
recently emerging algorithms that incorporate special optimiza-
tion strategies such as kernel fusion or optimized data layout,
the impact of GPU architecture requires further research. There
is a risk that the conclusion drawn in this paper may not apply
to these advanced algorithms. For example, while most existing
graph analysis libraries store graph data in CSR or CSC formats
to reduce memory consumption, being accompanied by frequent
irregular memory access, a hierarchical indicator has been devel-
oped in RealGraphGPU [8] to facilitate graph data storage with a
greatly reduced incidence of irregular memory access. This could
potentially lessen the validity of Hypothesis 2, which assumes
that frequent irregular memory access is present.

6 CONCLUSION

In this paper, we investigate the performance impact of design

choices of two main-stream GPU architectures on high-performance

graph analytics. To enable a fair and pragmatic comparison of
GPUs with two computing platforms(ROCm-like and CUDA), we
implemented adGRAPH by porting nvGRAPH to the ROCm-like
platform. Our experimental results show that the larger warp
size and independent shared memory of AMD-like GPUs can
indeed enhance the parallelism, leading to higher performance
for graph algorithms with lower complexity, such as BFS. On the
other hand, the adoption of SIMT by NVIDIA’s GPU achieves
better performance for algorithms with high complexity, such as
ESBV.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant 62372333, the Funda-
mental Research Funds for the Central Universities under Grant
2042023kf0135, the Key Research and Development Program of
Hubei Province under Grant 2024BAB044 and 2023BAB078, the
Project funded by China Postdoctoral Science Foundation under
Grant 2022M722459, and the Knowledge Innovation Program of
Wuhan - Basic Research under Grant 2023010201010063.

REFERENCES

[1] Elwood Spencer Buffa. 1977. Graph Theory with Applications. Journal of the
Operational Research Society (1977).

[2] John Douglas Owens, David P. Luebke, Naga K. Govindaraju, Mark J. Harris,

Jens H. Kriiger, Aaron E. Lefohn, and Timothy J. Purcell. 2007. A Survey of

General-Purpose Computation on Graphics Hardware. Computer Graphics

Forum 26 (2007).

Jonas Dann, Daniel Ritter, and Holger Froning. 2020. Exploring Memory

Access Patterns for Graph Processing Accelerators. In Datenbanksysteme fiir

Business, Technologie und Web.

Hongru Gao, Xiaofei Liao, Zhiyuan Shao, Kexin Li, Jiajie Chen, and Hai Jin.

2023. A survey on dynamic graph processing on GPUs: concepts, terminologies

and systems. Frontiers of Computer Science 18 (2023), 1-23.

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,

and Saman P. Amarasinghe. 2018. Graphlt: a high-performance graph DSL.

=

&

892

(6

=

[10]

(1]

[12]

[13]

[14]

[15]

(16

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27]

Proceedings of the ACM on Programming Languages 2 (2018), 1 — 30. https:
//api.semanticscholar.org/CorpusID:53088127

Hang Liu and Howie Huang. 2018. SIMD-X: Programming and Processing of
Graph Algorithms on GPUs. In USENIX Annual Technical Conference.
Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye Sherry Li, and Hang Liu.
2020. C-SAW: A Framework for Graph Sampling and Random Walk on GPUs.
SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis (2020), 1-15.

Myung-Hwan Jang, Yunyong Ko, DongKyun Jeong, Jeong-Min Park, and Sang-
Wook Kim. 2022. RealGraphGPU: A High-Performance GPU-Based Graph
Engine toward Large-Scale Real-World Network Analysis. Proceedings of the
31st ACM International Conference on Information & Knowledge Management
(2022).

Xuanhua Shi, Xuan Luo, Junling Liang, Peng Zhao, Sheng D1, Bingsheng He,
and Hai Jin. 2018. Frog: Asynchronous Graph Processing on GPU with Hybrid
Coloring Model. IEEE Transactions on Knowledge and Data Engineering 30
(2018), 29-42.

Yangzihao Wang, Andrew A. Davidson, Yuechao Pan, Yuduo Wu, Andy T.
Riffel, and John Douglas Owens. 2015. Gunrock: a high-performance graph
processing library on the GPU. Proceedings of the 21st ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (2015).

Seung Won Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun Xiong,
Eiman Ebrahimi, and Wen mei W. Hwu. 2020. EMOGI: Efficient Memory-
access for Out-of-memory Graph-traversal In GPUs. Proc. VLDB Endow. 14
(2020), 114-127.

Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu. 2019.
DiGraph: An Efficient Path-based Iterative Directed Graph Processing System
on Multiple GPUs. Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems
(2019).

Himchan Park and Min-Soo Kim. 2018. EvoGraph: An Effective and Efficient
Graph Upscaling Method for Preserving Graph Properties. Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (2018).

Lin Jiang, Ru Feng, Junjie Wang, and Junyong Deng. 2022. DBR: A Depth-
Branch-Resorting Algorithm for Locality Exploration in Graph Processing.
2022 Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC) (2022), 178-184. https://api.semanticscholar.
org/CorpusID:254930494

Nathan Otterness and James H. Anderson. 2021. Exploring AMD GPU sched-
uling details by experimenting with “worst practices”. Real-Time Systems 58
(2021), 105 - 133.

Nathan Otterness and James H. Anderson. 2020. AMD GPUs as an Alternative
to NVIDIA for Supporting Real-Time Workloads. In Euromicro Conference on
Real-Time Systems.

Indrani Paul, Wei Huang, Manish Arora, and Sudhakar Yalamanchili. 2015.
Harmonia: Balancing compute and memory power in high-performance GPUs.
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA) (2015), 54-65.

Muhammed Emin Ozturk, Omid Asudeh, Gerald Sabin, P. Sadayappan, and
Aravind Sukumaran-Rajam. 2023. A Performance Portability Study Using Ten-
sor Contraction Benchmarks. 2023 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (2023), 591-600.

Yuxin Wang, Qiang Wang, Shaohuai Shi, Xin He, Zhenheng Tang, Kaiyong
Zhao, and Xiaowen Chu. 2019. Benchmarking the Performance and Energy
Efficiency of A Accelerators for Al Training. 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID) (2019), 744—
751.

Carlos Reario and Federico Silla. 2016. Performance Evaluation of the NVIDIA
Pascal GPU Architecture: Early Experiences. 2016 IEEE 18th International
Conference on High Performance Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd International Conference on
Data Science and Systems (HPCC/SmartCity/DSS) (2016), 1234-1235.

Mike Mantor. 2012. AMD Radeon™ HD 7970 with graphics core next (GCN)
architecture. In 2012 IEEE Hot Chips 24 Symposium (HCS). 1-35.

AMD. 2020. "Vega" Instruction Set Architecture Reference Guide. Advanced
Micro Devices, Inc. Retrieved 27-January-2020 from https://gpuopen.com/
amd-vega- 7nm-instruction-set-architecture-documentation/

AMD. 2021. OpenCL Programming Guide. Advanced Micro Devices, Inc. Re-
trieved October-2021 from https://cgmb-rocm-docs.readthedocs.io/en/latest/
Programming_Guides/Opencl-programming-guide.html#memory-arch
Xinxin Mei and Xiaowen Chu. 2015. Dissecting GPU Memory Hierarchy
Through Microbenchmarking. IEEE Transactions on Parallel and Distributed
Systems 28 (2015), 72-86.

Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Haici Jin, Ligang He, Bo Liu,
and Qiangsheng Hua. 2018. Graph Processing on GPUs. ACM Computing
Surveys (CSUR) 50 (2018), 1 - 35.

Peter Zhang, Marcin Zalewski, Andrew Lumsdaine, Samantha Misurda, and
Scott McMillan. 2016. GBTL-CUDA: Graph Algorithms and Primitives for
GPUs. 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (2016), 912-920.

NVIDIA. 2018. "nvGRAPH". Retrieved October 30, 2018 from https://developer.
nvidia.com/nvgraph

Carl Yang, Aydin Bulug, and John Douglas Owens. 2019. GraphBLAST: A
High-Performance Linear Algebra-based Graph Framework on the GPU. ACM
Transactions on Mathematical Software (TOMS) 48 (2019), 1 - 51.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:
vertex-centric graph processing on GPUs. In IEEE International Symposium on
High-Performance Parallel Distributed Computing.

Todd Eavis and Ahmad Taleb. 2007. Mapgraph: efficient methods for complex
olap hierarchies. In International Conference on Information and Knowledge
Management.

Yu Zhang, Da Peng, Xiaofei Liao, Hai Jin, Haikun Liu, Lin Gu, and Bing-
sheng He. 2021. LargeGraph. ACM Transactions on Architecture and Code
Optimization (TACO) 18 (2021), 1 — 24.

Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. 2013. From "Think Like a Vertex" to "Think Like a
Graph". Proc. VLDB Endow. 7 (2013), 193-204.

Seunghwa Kang, Chuck Hastings, Joe Eaton, and Brad Rees. 2023. cuGraph
C++ primitives: vertex/edge-centric building blocks for parallel graph com-
puting. 2023 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (2023), 226-229.

Yujiang Bi, Yi Xiao, Weiyi Guo, Ming Gong, Peng Sun, Shun Xu, and Yi-Bo
Yang. 2020. Lattice QCD GPU Inverters on ROCm Platform. EPJ Web of
Conferences (2020).

Yannan Zhang and Hongyan Qian. 2020. Porting and Optimizing G-BLASTN
to the ROCm-based Supercomputer. 2020 International Conference on Computer
Science and Management Technology (ICCSMT) (2020), 73-77.

[36] Jisheng Zhao, Colleen Bertoni, Jeffrey Young, Kevin Harms, Vivek Sarkar, and

Brice Videau. 2023. HIPLZ: Enabling performance portability for exascale
systems. Concurrency and Computation: Practice and Experience 35 (2023).

[37] Jack Choquette and Wishwesh Gandhi. 2020. NVIDIA A100 GPU: Performance

& Innovation for GPU Computing. 2020 IEEE Hot Chips 32 Symposium (HCS)
(2020), 1-43.

[38] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[39] Ryan A. Rossi and Nesreen Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. In AAAI Conference on Artificial
Intelligence. https://networkrepository.com

H. Martin Bucker and Christian Sohr. 2014. Reformulating a Breadth-First
Search Algorithm on an Undirected Graph in the Language of Linear Algebra.
2014 International Conference on Mathematics and Computers in Sciences and
in Industry (2014), 33-35.

En-Ming Huang, Bo Wun Cheng, Meng-Hsien Lin, Chun-Yi Lee, and Tsung-
Tai Yeh. 2024. WER: Maximizing Parallelism of Irregular Graph Applications
Through GPU Warp EqualizeR. 2024 29th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC) (2024), 201-206.

Mauro Bisson and Massimiliano Fatica. 2017. High Performance Exact Triangle
Counting on GPUs. IEEE Transactions on Parallel and Distributed Systems 28
(2017), 3501-3510.

Zhigao Zheng, Guojia Wan, Jiawei Jiang, Chuang Hu, Hao Liu, Shahid Mumtaz,
and Bo Du. 2024. Lock-free Triangle Counting on GPU. IEEE Trans. Comput.
(2024).

Jie Chen and Yousef Saad. 2012. Dense Subgraph Extraction with Applica-
tion to Community Detection. IEEE Transactions on Knowledge and Data
Engineering 24 (2012), 1216-1230.

Zihao Yu, Ningyi Liao, and Sigiang Luo. 2024. GENTI: GPU-powered Walk-
based Subgraph Extraction for Scalable Representation Learning on Dynamic
Graphs. Proc. VLDB Endow. 17 (2024), 2269-2278.

Kai Siong Yow, Ningyi Liao, Sigiang Luo, and Reynold Cheng. 2023. Machine
Learning for Subgraph Extraction: Methods, Applications and Challenges.
Proc. VLDB Endow. 16 (2023), 3864-3867.

Bingchao Li, Jizeng Wei, Ji zhou Sun, Murali Annavaram, and Nam Sung
Kim. 2019. An Efficient GPU Cache Architecture for Applications with Irreg-
ular Memory Access Patterns. ACM Transactions on Architecture and Code
Optimization (TACO) 16 (2019), 1 — 24.

