
Dema: Efficient Decentralized Aggregation for
Non-DecomposableQuantile Functions

Wang Yue
HPI & U Potsdam

Martin Boissier
HPI & U Potsdam

Manisha Luthra
TU Darmstadt & DFKI

Tilmann Rabl
HPI & U Potsdam

ABSTRACT
The growing number of Internet of Things (IoT) devices has
led to the widespread adoption of decentralized networks to
handle unbounded data streams in a variety of applications. Tra-
ditional stream processing engines rely on centralized window
aggregation, resulting in high network overhead and processing
bottlenecks. Current decentralized solutions mitigate these is-
sues by offloading partial aggregations to edge devices, but they
only support decomposable functions like sum and count. Non-
decomposable functions, such as median and quantile, remain a
challenge as partial results cannot be merged without accessing
the complete dataset. To address this, we propose Dema, a decen-
tralized window aggregation technique for non-decomposable
functions. Dema reduces network traffic and computational load
by performing localized sorting and transmitting statistical sum-
maries rather than raw data. Our approach efficiently calculates
median and quantile values, achieving up to a 99% reduction in
network traffic compared to state-of-the-art methods. Our evalu-
ation results show that Dema significantly outperforms existing
approaches in terms of throughput and scalability, while ensuring
accurate results.

1 INTRODUCTION
Internet of Things (IoT) applications are widely used across vari-
ous domains, from industry to research [13, 21], including health-
care [6], Industry 4.0 [27], to smart city environments [16]. These
applications involve a high number of IoT devices that are often
distributed across decentralized networks. By 2025, the number
of IoT devices will surpass 75 billion [9].

Current stream processing engines (SPEs), such as Apache
Flink [4], Apache Spark Streaming [31], and Kafka Streams [17,
23], serve as major platforms to process data streams. SPEs split
data streams using windows and perform aggregations before
emitting outputs. Typically, these windows are distributed across
machines to be processed in a parallel manner such that the SPEs
can process data streams in a timely fashion and handle millions
of events per second [12, 20].

In decentralized networks, data streams are received from
different devices. To process the data streams, a naive way is that
the SPE collects all events from these devices at a central location
such as on a centralized node in a data center. In large-scale
decentralized networks, however, this results in massive amounts
of high-speed data streams being transferred over the network,
leading to high network overhead. Moreover, with a single node
processing all the data, it becomes a bottleneck in the system. For
this, state-of-the-art approaches offload window aggregations to
devices near the data stream, so-called edge devices [3, 29, 30, 32].
These devices perform partial window aggregations, and outputs
partial results that have to be finally aggregated. Thus, they

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

transmit only the partial results to the central node, significantly
reducing network traffic and distributing the computational load
more efficiently.

For windows that calculate decomposable functions, such as
sum, SPEs can perform partial aggregations and aggregate them
later in a central location. For example, different devices first
compute partial sums and later a central node in a data center
can aggregate these partial sums to calculate the final sum. This
approach allows the data center node to produce accurate results
without needing to collect all the raw data from the data stream
nodes. However, for non-decomposable functions like median,
partial aggregation is not sufficient to compute the final aggre-
gate. While devices can compute partial medians, the data center
node cannot use this to calculate the final median. This is because
correct median computation requires access to the full dataset.
To efficiently compute non-decomposable functions, state-of-the-
art solutions parallelize processing across cores [2, 22]. Those
solutions run everything on a single node, slicing the dataset
and assigning data slices to different threads or using a shared
memory buffer. However, they require a lot of communication be-
tween threads, which if applied to decentralized setups becomes
very costly, leading to significant network overhead and latency.
Additionally, several algorithms compute approximate quantiles
in decentralized setups, such as t-digest [10] and q-digest [24].
These algorithms are designed for efficiency and scalability by
compressing data into compact summaries. While they achieve
excellent performance, they prioritize speed and memory opti-
mization over precision, making them unsuitable for applications
requiring exact results.

In contrast to existing approaches, we propose Dema, a decen-
tralized window aggregation technique for non-decomposable
functions such as median and quantile. The main idea of Dema is
to sort event tuples at the local nodes and instead of sending all
event tuples for full aggregation, send synopses of event tuples,
i.e., the first tuple, the last tuple and the number of event tuples in
the local window slice These synopses allow the central node to ef-
ficiently identify candidate slices containing the desired quantile.
This approach reduces network overhead, improves throughput,
and alleviates computational bottlenecks at the central node. By
offloading tasks such as sorting to local nodes, Dema enables the
central node to handle higher data volumes and more concurrent
queries, especially in bandwidth-constrained environments such
as Wi-Fi networks.

Summary of our contributions and paper structure.

(1) We propose Dema, a decentralized window aggregation ap-
proach that offloads calculations with non-decomposable
functions, such asmedian and quantile, close to data sources.

(2) We present a window-cut algorithm that significantly re-
duces network overhead while ensuring correct results.
Dema dynamically adapts to varying event generation
rates and data distributions.

(3) We conduct a series of experiments and present that Dema
outperforms state-of-the-art solutions by orders of magni-
tude with respect to throughput and network overhead.

Short Paper

Series ISSN: 2367-2005 589 10.48786/edbt.2025.47

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.47

The rest of the paper is structured as follows. In Section 2 we
introduce the background of window aggregation. In Section 3,
we present the technical details of Dema. We evaluate Dema and
discuss related work in Section 4 and Section 5 respectively.

2 BACKGROUND
To deal with continuous data streams, SPEs group events into
windows and perform window aggregation to output results.
These windows are processed either with centralized or decen-
tralized aggregation, depending on various window features such
as window types, window measures, and aggregation functions.
This section introduces relevant window features and discusses
aggregation strategies in decentralized setups.

2.1 Window Types
Akidau et al. define three main window types in the Dataflow
Model [1]: tumbling, sliding, and session windows.

(i) Tumbling windows have a fixed length and divide data
streams into non-overlapping segments of equal duration. (ii)
Sliding windows have a fixed length and overlap, defined by a
step size that determines the gap between the start of consecutive
windows. (iii) Session windows dynamically group events based
on activity and close the window after a predefined period of
inactivity. Tumbling windows are a special case of sliding win-
dows where the step size equals the window length. This paper
focuses on time-based tumbling windows, where the start and
end of windows are determined by fixed time intervals.

2.2 Aggregation Functions
Once a window ends, all events in that window are aggregated
with a specified aggregation function. We stick to the classifi-
cation of Jesus et al. [14], which divides aggregation functions
into (i) self-decomposable, e. g., sum, count, and max; (ii) de-
composable, e.g., average, variance, and range; and (iii) non-
decomposable aggregation functions, e.g., median, quantile, mode,
and distinct count. The median is a special case of the quantile.
When processing self-decomposable and decomposable func-
tions, windows can be divided into smaller slices. For example, a
window can be sliced, and partial sums computed for each slice
can then be combined to produce the final result. However, non-
decomposable functions, such as median and quantile, cannot be
pre-sliced in this way, as accurate computation requires access to
the complete dataset. This work focuses on efficiently handling
such non-decomposable functions.

...

Data Stream

Local Node

Root Node

... ...

...

... ...

NodeData Stream
Data Flow

...

Event

Figure 1: Topology of decentralized networks.

2.3 Window Aggregation in Decentralized
Networks

Decentralized networks consist of multiple layers of nodes that
process and aggregate data streams. As shown in Figure 1, the

network topology includes three layers: (i) Data stream nodes,
which are weak sensors responsible for producing raw event data,
an event consists of a value, a timestamp, and an id, which are
assigned by the data stream node [5]. (ii) Local nodes, such as edge
switches or routers [7, 8], which preprocess the data streams and
perform partial aggregations. (iii) Root nodes, which are powerful
machines like cloud servers or workstations that collect results
from local nodes and perform final aggregations. Centralized
window aggregation processes all events at the root node, re-
quiring local nodes to simply forward data. This approach can
result in high network costs and a bottleneck at the root node. In
contrast, decentralized window aggregation [3, 29, 32] leverages
local nodes to perform partial aggregation. The root node aggre-
gates the partial results received from local nodes and outputs
the final result. This approach shifts window aggregations closer
to the data sources.

3 THE DEMA APPROACH
We propose Dema, a decentralized approach that shifts window
aggregation with non-decomposable functions, such as the me-
dian and quantile, from the root node to local nodes. For example,
consider a query that calculates the median every second over
a time-based tumbling window. In a centralized approach, the
root node creates a one-second window and collects all events
within it. When the window ends, it sorts the events to pick the
median value. This approach, while accurate, incurs significant
network overhead as every event must be sent to and processed
by the root node, making it a bottleneck. Existing window slicing
techniques [3, 29, 32], which are effective for reducing network
overhead, cannot be applied to median and quantile functions,
as these are non-decomposable. Dema bridges the gap between
centralized and decentralized approaches by ensuring both high
performance and correct results for non-decomposable functions
like the median and quantile. In this section, we present the
technical details of Dema and discuss optimizations for various
situations.

3.1 Decentralized Window Aggregation
To distinguish between windows created on different nodes, we
refer to the window on the root node as the global window and
the window on the local node as the local window. Each local
node independently creates and ends windows of a fixed time
length (i.e., lifespan), which is the same as the global window. The
local window is a subset of the global window, but the lifespans
of all windows are the same as they are time-based tumbling
windows. As different local nodes have different event rates,
their window contain different numbers of events, i.e., they have
different window sizes. The global window size is the sum of all
local window sizes across distributed nodes. Additionally, Dema
processes events by their event-time, which is the time when the
event is generated. Here, we use the median as an example to
explain our solution. Other quantile functions are also supported
by our approach. The root node uses synopses to identify the
median position with the window-cut algorithm. For every global
window, Dema has two steps: (i) the identification step and (ii)
the calculation step.

Identification step. In Figure 2, local nodes create local win-
dows and collect events from data streams. Let the window size
be denoted as l, representing the number of events in the window.
The sizes of the local windows for nodes a and b are denoted as

590

𝑙𝑎 and 𝑙𝑏 , respectively. The global window size is the sum of the
local window sizes, i.e., 𝑙𝑔 = 𝑙𝑎 + 𝑙𝑏 .

We introduce a factor 𝛾 , which is an approximate measure
of the size of each local window slice, to enable local nodes to
generate synopses that help the root node identify the median
value. The value 𝛾 is either provided by the user or dynamically
calculated by the root node, and every slice must contain at least
two events. This is because every synopsis requires at least two
events. Dema incrementally sorts arriving events into windows.
When the local window ends, the local node divides the local
window into slices. Since all events are already sorted, the slices
are in order as well. The size of each slice is determined by 𝛾 .
For example, if 𝑙𝑎 is 1000 and 𝛾 is 150, local node a produces 7
slices. The first 6 slices contain 150 events each, and the final slice
contains 100 events. Because different data streams have varying
event rates (i.e., howmany events are generated per second), local
windows may differ in size, even though they share the same
window lifespan. Given 𝛾 , different local nodes might generate
different numbers of slices.

To identify the median, the root node collects slice synopses
from each local node. Every slice synopsis contains the first and
last event of the slice, the number of events in the slice, and the
total number of slices. Once all slice synopses are received, the
root node inserts them into the global window. It then sorts these
slices by their first and last events to identify the median value.

Root Node:

Local NodeB:

Local NodeA:

Event:

Slice Statistics:

Data Flow:

timeline Identification Step

1 2 2

2 2 3

Global Window

Slicea,1

...5 5 6

Slicea,2

7 8

Slicea,3

...

Sliceb,1

8 9

Sliceb,2

1 2

Slicea,1

2 3

Sliceb,1

5 6

Slicea,2

8 9

Sliceb,2

7 8

Slicea,3

8

Figure 2: The identification step of Dema

For example, consider five slices as shown in Figure 2: 𝑆𝑙𝑖𝑐𝑒𝑎,1
from slice 1 of local node a, 𝑆𝑙𝑖𝑐𝑒𝑎,2 from slice 2 of local node
a, and so on. Slices like 𝑆𝑙𝑖𝑐𝑒𝑎,1, 𝑆𝑙𝑖𝑐𝑒𝑎,2, and 𝑆𝑙𝑖𝑐𝑒𝑏,1 contain
the same number of events, while 𝑆𝑙𝑖𝑐𝑒𝑎,3 and 𝑆𝑙𝑖𝑐𝑒𝑏,2 may have
fewer events. We assume these slices have different event dis-
tributions and event value ranges. So, there is no overlap be-
tween slices. In this case, the slices are ordered as 𝑆𝑙𝑖𝑐𝑒𝑎,1, 𝑆𝑙𝑖𝑐𝑒𝑏,1,
𝑆𝑙𝑖𝑐𝑒𝑎,2, 𝑆𝑙𝑖𝑐𝑒𝑎,3, and 𝑆𝑙𝑖𝑐𝑒𝑏,2. All events in 𝑆𝑙𝑖𝑐𝑒𝑎,1 are smaller
than those in 𝑆𝑙𝑖𝑐𝑒𝑏,1, and so on.

The root node then identifies the position of the median. We
denote the position of an event as Pos, where Pos is an integer. The
global window size is 𝑙𝐺 , i.e., there are 𝑙𝐺 events in the window,
with the first event located at Pos(1), the last event at Pos(𝑙𝐺), and
the median event at Pos(𝑙𝐺 ∗ 1/2). The median is a special case
of a quantile; for example, the 25% quantile would be located at
Pos(𝑙𝐺 ∗ 1/4). Each slice has two positions: Pos(start) and Pos(end),
representing the range of events within the slice.

The root node calculates the positions of each slice, with every
slice being an open interval. For example:
• 𝑆𝑙𝑖𝑐𝑒𝑎,1 ranges from Pos(1) to Pos(𝛾),
• 𝑆𝑙𝑖𝑐𝑒𝑎,2 ranges from Pos(𝛾 ∗ 2) to Pos(𝛾 ∗ 3),
• 𝑆𝑙𝑖𝑐𝑒𝑎,3 ranges from Pos(𝛾 ∗ 3) to Pos(𝛾 ∗ 3 + 𝑙𝑠𝑙𝑖𝑐𝑒 (𝑎,3)).

The sizes of 𝑆𝑙𝑖𝑐𝑒𝑎,1 and 𝑆𝑙𝑖𝑐𝑒𝑎,2 are equal to𝛾 , while 𝑆𝑙𝑖𝑐𝑒𝑎,3 may
contain fewer events than 𝛾 . To determine which slice contains

the median, two conditions are applied: 𝑃𝑜𝑠 (𝑒𝑛𝑑) > 𝑙𝐺 ∗ 1/2
and 𝑃𝑜𝑠 (𝑠𝑡𝑎𝑟𝑡) < 𝑙𝐺 ∗ 1/2. A slice is considered a candidate
for containing the median if it satisfies both conditions. Once
the candidate slice is identified, the root node proceeds to the
calculation step.

Calculation step.We assume that 𝑆𝑙𝑖𝑐𝑒𝑎,2 is a candidate slice
and all events in this slice are candidate events for the median.
In Figure 3, the root node requests the local node to send all
candidate events. Since 𝑆𝑙𝑖𝑐𝑒𝑎,2 is the second slice from local
node a, all events in this slice are transferred to the root node.
The local nodes then proceed to process the next local windows.
At the root node, Dema incrementally merges arriving candidate
events into the candidate slice. As the events are already sorted
on the local node, the root node does not need to sort them again.
The root node then selects the event at the median position,
Pos(𝑙𝐺 ∗ 1/2), and outputs it as the final result. Afterward, the
root node moves on to the next global window.

Root Node:

Local NodeB:

Local NodeA:

Event:

Final Result:

Data Flow:

timeline Calculation Step

1 2 2

2 2 3

Global Window

Slicea,1

...5 5 6

Slicea,2

7 8

Slicea,3

...

Sliceb,1

8 9

Sliceb,2

1 2

Slicea,1

2 3

Sliceb,1 Slicea,2

8 9

Sliceb,2

7 8

Slicea,3

8

5 5 6

5 5 6

5

Figure 3: The calculation step of Dema

Correctness of Dema approach. Dema guarantees exact
quantile computation by ensuring that the global median or quan-
tile is derived from the complete dataset. This means that every
event from all local nodes is involved in the computation. Each
local node processes incoming events by dividing them into slices,
which are subsets of local windows. Let 𝑙𝑎 and 𝑙𝑏 represent the
sizes of nodes a and b, respectively. The global window size, 𝑙𝐺 , is
the sum of all local window sizes: 𝑙𝐺 = 𝑙𝑎 + 𝑙𝑏 + · · · + 𝑙𝑁 , where
𝑁 is the total number of local nodes. For a quantile 𝑞 ∈ (0, 1], its
position in the global dataset is calculated as: Pos(q) = ⌈𝑞 · 𝑙𝐺 ⌉.
The position Pos(𝑞) represents the rank of the quantile event in
the fully sorted global window. To locate the event at position
Pos(𝑞), the root node collects synopses of slices from all local
nodes. The root node identifies the candidate slices that may con-
tain the quantile. A slice is considered a candidate if Pos(𝑞) falls
within its range: Pos(q) ∈ [Pos(start), Pos(end)], where Pos(start)
and Pos(end) represent the starting and ending positions of the
slice, respectively. Because all events within slices are pre-sorted
locally, the root node only needs to process candidate slices to
determine the quantile. By merging and evaluating these slices,
the root node selects the event at Pos(𝑞) as the final quantile
value.

3.2 Window-Cut Algorithm
Local windows often have different data distributions. For ex-
ample, some local nodes may generate events with scattered
values, while others produce densely grouped events. In such
cases, slices from one node can overlap all slices from another
node, forcing most events to be treated as candidate events and
sent to the root node. In large-scale networks, this can result in
excessive events being transmitted to the root node, reducing
Dema’s effectiveness. To address this, we propose a window-cut

591

Algorithm 1Window-Cut Algorithm
Input: {𝑆𝑖,𝑗 }: slices, 𝑙𝐺 : global window size, Pos𝑞 : quantile position
Output: 𝑆𝑐 : candidate slices
1: Posleft ← Pos𝑞 − 𝛾 , Posright ← Pos𝑞 + 𝛾 ⊲ Initialize quantile range
2: 𝑆𝑐 ← ∅ ⊲ Initialize candidate slices
3: for all 𝑆𝑖,𝑗 in increasing Posstart do
4: if Posend (𝑆𝑖,𝑗) ≥ Posleft then
5: 𝑆𝑐 ← 𝑆𝑐 ∪ {𝑆𝑖,𝑗 } ⊲ Add slices overlapping left range
6: else if Posstart (𝑆𝑖,𝑗) > Pos𝑞 then
7: break ⊲ Stop after crossing quantile position
8: end if
9: end for
10: for all 𝑆𝑖,𝑗 in decreasing Posend do
11: if Posstart (𝑆𝑖,𝑗) ≤ Posright then
12: 𝑆𝑐 ← 𝑆𝑐 ∪ {𝑆𝑖,𝑗 } ⊲ Add slices overlapping right range
13: else if Posend (𝑆𝑖,𝑗) < Pos𝑞 then
14: break ⊲ Stop after crossing quantile position
15: end if
16: end for
17: return 𝑆𝑐 ⊲ Return identified candidate slices

algorithm to minimize the number of candidate events sent to
the root node.

The algorithm begins by scanning slices from the leftmost and
rightmost edges of the global window towards the quantile posi-
tion. It adds slices overlapping the quantile range while excluding
irrelevant ones. By focusing only on slices likely to contain the
quantile, the algorithm reduces the number of candidate events
sent to the root node.

Root Node:

Local NodeB:

Local NodeA:

timeline

...

...

Slicea,1

Slicea,2

Sliceb,1

Slicea,3

Sliceb,4

Sliceb,2 Sliceb,3

Sliceb,5

Slicea,4

Slicea,1 Slicea,2 Slicea,3 Slicea,4

Sliceb,1 Sliceb,4Sliceb,2 Sliceb,3 Sliceb,5

Separate-Slice

Compound-Slice

Cover-Slice

Slice Statistics:

Data Flow:

Figure 4: Different cases in window-cut algorithm

In Figure 4, we show three types of slices that occur during
this process: (i) separate-slices, (ii) compound-slices, and (iii)
cover-slices.

(i) Separate-slice: A separate-slice is a slice whose start and
end Pos are not covered by any other slice. But it may cover other
slices, e.g., both 𝑆𝑙𝑖𝑐𝑒𝑎,1 and 𝑆𝑙𝑖𝑐𝑒𝑏,5 are separate-slices. The root
node calculates the start and end Pos of this slice.

(ii) Compound-slice: A compound-slice occurs when slices
overlap significantly, creating a chain where each slice includes
the start Pos of the next. As shown in Figure 4, two compound-
slices are present: one includes 𝑆𝑙𝑖𝑐𝑒𝑎,2 and 𝑆𝑙𝑖𝑐𝑒𝑏,1, and the other
includes 𝑆𝑙𝑖𝑐𝑒𝑎,3 and 𝑆𝑙𝑖𝑐𝑒𝑏,4. Since a slice represents multiple
events, the overlap extends beyond just the starting or ending
positions of slices. For example, 𝑆𝑙𝑖𝑐𝑒𝑎,2 and 𝑆𝑙𝑖𝑐𝑒𝑏,1 have signif-
icant overlaps. The compound-slice aggregates all slices in the
chain, with its size being the sum of their sizes. The root node
treats these overlapping slices as a single compound-slice. If the
compound-slice qualifies as a candidate, all slices in the chain
are marked as candidates.

(iii) Cover-slice: A cover-slice is entirely enclosed within
another slice, meaning its start and end Pos lie within the range
of a larger slice. In Figure 4, examples of cover-slices include
𝑆𝑙𝑖𝑐𝑒𝑏,2, 𝑆𝑙𝑖𝑐𝑒𝑏,3, and 𝑆𝑙𝑖𝑐𝑒𝑎,4. If a cover-slice is not enclosed by a
candidate slice, the root node drops it. However, if it is enclosed by
a candidate slice, it may contain candidate events. This is because
the exact positions of events within the cover-slice, relative to

the enclosing candidate slice, are unknown to the root node. As
a result, the cover-slice may overlap the median Pos range. To
ensure correctness, the root node checks whether the cover-slice
overlaps this range. If it does, the cover-slice is marked as a
candidate and its events are included for further processing.

3.3 Adaptive Slice Factor
Dema operates in two steps: during the identification step, local
nodes send slice synopses to the root node. In the calculation
step, local nodes send events from the candidate slices to the root
node. Local nodes divide their windows into slices using a factor
𝛾 . A larger 𝛾 results in fewer but larger slices, while a smaller
𝛾 creates more but smaller slices. In extreme cases, if 𝛾 is very
small, almost all events are sent to the root node. These events
must then be processed twice: once at the local node and again
at the root node. Moreover, the root node sorts slices instead of
individual events, which is more time-consuming. Additionally,
if 𝛾 is very large, the candidate slices are larger, leading to more
candidate events being sent and processed during the calculation
step.

To avoid these extremes, 𝛾 is dynamically adjusted. Let 𝑙𝐺 rep-
resent the global window size, which is the total number of events
in the window. The cost of the Dema approach is defined as the
total number of events sent over the network. For the identifica-
tion step, the cost is 2·𝑙𝐺

𝛾 . For the calculation step, let𝑚 represent
the number of candidate slices; the cost is𝑚 · (𝛾 − 2). The total
cost for each global window, denoted as 𝐶𝑜𝑠𝑡 , is calculated as:
𝐶𝑜𝑠𝑡 =

2∗𝑙𝐺
𝛾 +𝑚 ∗ (𝛾 − 2).

Different data streams have varying event generation rates and
data distributions, affecting the global window size (𝑙𝐺) and the
number of candidate slices (𝑚) for each global window. During
each calculation step, the root node computes the minimum value
of 𝐶𝑜𝑠𝑡 using the current 𝑙𝐺 and𝑚, selects the 𝛾 that minimizes
cost, and communicates this value to the local nodes. When event
generation rates and data distributions remain relatively stable
between windows, the current window can reuse the optimal
𝛾 from the previous window. This dynamic adjustment allows
Dema to adapt effectively to changing conditions.

While Dema currently uses a global 𝛾 for simplicity and con-
sistency, there is potential to implement node-specific 𝛾 values to
optimize performance by adapting to local event rates, window
sizes, and network conditions. For example, in networks with
nodes that have varying workloads or bandwidth limitations,
node-specific 𝛾 values could reduce network traffic and enhance
overall system efficiency. However, this approach introduces ad-
ditional complexity in coordination and synchronization across
nodes, which may offset its benefits.

4 EVALUATION
In this section, we evaluate the performance of Dema and com-
pare it against state-of-the-art approaches.

Experimental Design. We conduct our experiments on a
9-node cluster connected via 25Gbit/s Ethernet. Each node has
two 18-core Intel Xeon Gold 5220S CPUs and 187GB of main
memory. Dema runs on Ubuntu 20.04 with OpenJDK 1.8.0.312
(64-bit). We measure several key metrics, including throughput,
latency, and network utilization for Dema and the baseline sys-
tems. Additionally, we calculate sustainable throughput [15] and
network costs. Throughput is defined as the total number of
events processed by the system per second, including all events
handled by local nodes and aggregated at the root node during

592

5.15M
7.33M

9.21M

20.6M

Scotty Desis Dema Tdigest
0

4M

8M

12M

16M

20M

24M

ev
en
ts
/s
ec

(a) End-to-end throughput

22.8

14.1
10.6

Scotty Desis Dema
0

5

10

15

20

25

La
te

nc
y

in
 m

s
(b) End-to-end latency

Figure 5: Throughput and latency of different approaches
in comparison to Dema.

the evaluation period. Latency is the time elapsed between an
event’s arrival at a local node and the computation of the final
aggregation result at the root node. Network transfer time is
excluded as it is dominated by the network setup. For network
cost, we compute the individual cost for each node and aggregate
it across the system.

Baselines.We compareDemawith three approaches: Scotty [26],
Desis [29], and Tdigest [10]. Scotty, implemented onApache Flink,
performs centralized aggregation for non-decomposable func-
tions and uses a window-slicing technique to efficiently process
concurrent windows. Scotty achieves the same performance as
native Flink for single-window processing. Desis is a decentral-
ized system designed for concurrent window processing, but it
performs centralized aggregation for quantile functions. We mod-
ify Desis to enable decentralized sorting: local nodes sort events,
and the root node merges sorted events. The Tdigest baseline
utilizes the t-digest algorithm to efficiently estimate quantiles in
large datasets. It is a fast, centralized aggregation solution but
outputs approximate results.

Generators.We design a data generator and deploy generator
instances on local nodes to simulate externally generated events.
The DEBS 2013 dataset [19] is used for the generators, where
each event contains an id, value, and timestamp. The value repre-
sents sensor data from a soccer monitoring scenario. Local nodes
replay the dataset from different positions so that they produce
different events. The generator includes two user-defined param-
eters: scale rate and event rate. The scale rate modifies the data
distribution by multiplying the event values, enabling variation
across nodes. Nodes with identical scale rates may produce simi-
lar distributions, leading to overlaps in the identification step. In
contrast, significantly different scale rates may eliminate over-
laps, as one local window’s values will all be less than another’s.
The event rate domain the size of local windows: higher event
rates lead to larger windows and more slices, requiring more
synopses to be sent to the root node.

4.1 Throughput
We measure the throughput of Dema, Scotty, Desis, and Tdigest
using the same topology: one root node and two local nodes.
A one-second tumbling window with the median function is
processed. The data generator produces events without accumu-
lating a backlog, ensuring real-time ingestion. As we measure
the maximum sustainable throughput, the window sizes of each
system are similar to their respective throughputs. Dema utilizes
decentralized aggregation, meaning the sum of its local window
sizes closely matches its throughput. For this experiment, we set
the scale rates of all local nodes to 1 and fix 𝛾 at 10,000.

Figure 5a shows the results. Tdigest achieves the highest through-
put due to its compression-based approximation but sacrifices

1.49GB 1.49GB

5.61MB
Scotty Desis Dema

0

0.6GB

1.2GB

1.8GB

B
yt

es
 S

en
t

(a) Single node data transfer

2 4 6 8 10 12 14 16

KB

MB

GB

Scotty Desis Dema

Local Nodes

by
te

s
se

nt

(b) Multi nodes data transfer

Figure 6: Network utilization of different approaches.
Dema reduces network costs by up to 99%.

accuracy. We expect Tdigest to outperform Dema also with a
decentralized setup. Dema outperforms Scotty and Desis as it
performs decentralized aggregation, reducing the data sent to
the root node. While Scotty relies on centralized aggregation,
sending all events to the root node, Desis offloads sorting but
still transmits all events. Dema only sends slice synopses and a
small number of candidate events, achieving higher throughput.

4.2 Latency
We evaluate latency under the same topology and conditions as
the throughput experiment. For each system, the latency includes
the processing time at both the local and root nodes. Figure 5b
shows that Dema achieves the lowest latency due to its decen-
tralized aggregation. Scotty exhibits the highest latency as it
processes all events centrally. Desis improves latency by offload-
ing sorting but still incurs delays from transmitting all events.
By splitting window aggregation across local nodes and sending
minimal data to the root node, Dema achieves superior latency
performance.

4.3 Network Utilization
We measure network utilization using a setup with one-second
tumbling windows and a𝛾 of 10,000. The data generator produces
100 million events for each local node.

Figure 6a shows that Dema significantly reduces network uti-
lization compared to Scotty and Desis. By offloading calculations
to local nodes, Dema sends only slice synopses and candidate
events, reducing network costs by 99%.

In Figure 6b, as we add more local nodes, more events are sent
between the local nodes and the root node, and network cost
also increases. Since 𝛾 is fixed, the event rate is stable and data
distributions are similar. So, the number of events per window
and the number of slices of local nodes are similar. The number of
compound-slices and cover-slices increases as more local nodes
are added as there are more local windows. This results in more
candidate events being sent to the root node, which increases net-
work costs. Additionally, while all systems show linear growth
in network costs as nodes are added, Dema consistently demon-
strates the lowest utilization. This is because its decentralized
approach minimizes data transmission.

4.4 Scalability
We evaluate the scalability of Dema, Scotty, and Desis by measur-
ing throughput. Starting with a three-node cluster, we gradually
add more local nodes to the network topology, processing one-
second tumbling windows with median functions. We set 𝛾 to
10,000, and data generators remain unchanged.

As shown in Figure 7a, Dema’s throughput increases linearly
with more local nodes due to decentralized aggregation. However,

593

2 4 6 8 10 12 14 16
0

10M
20M
30M
40M
50M
60M

Scotty Desis Dema

Local Nodes

Ev
en

ts
/s

ec

(a) Multi nodes throughput

100% 100% 100% 99.1%

Scotty Desis Dema Tdigest
0

20%

40%

60%

80%

100%

A
cc

ur
ac

y
(%

)
(b) Accuracy comparison

Figure 7: Scalability and accuracy of different approaches
in comparison to Dema.

9.17M 9.21M 9.20M

25% 50% 75%
0

2M

4M

6M

8M

10M

ev
en
ts
/s
ec

(a) Quantile functions

2 10 10 2 10 3 10 4 10 5 10 6
0

2M
4M
6M
8M

10M
Dema#1 Dema#2 Dema#10

 ɣ (i.e., slice size)

Ev
en

ts
/s

ec

(b) Throughput / slice size

Figure 8: Throughput of Dema with different quantile
functions and 𝛾 values.

a sublinear increase occurs as additional nodes lead to more
slices, overlaps, and candidate events in the identification step,
affecting throughput. Desis shows a smaller throughput increase
but reaches a bottleneck as more events are sent to the root node.

4.5 Accuracy
We evaluate the accuracy of Dema, Scotty, and Tdigest on a three-
node cluster processing one-second tumbling windows with the
median function. To ensure fairness, all systems receive identical
input within each window, with Scotty serving as the ground
truth. We compute the mean percentage error (MPE) for each
approach relative to Scotty and define accuracy as 1 −MPE. As
shown in Figure 7b, Dema achieves 100% accuracy, while Tdigest
produces approximate results that closely match the ground truth.
This confirms that Dema consistently delivers accurate results.

4.6 Different Quantile Functions
We evaluate Dema’s throughput for 25%, 50% (median), and 75%
quantile functions using a three-node cluster and one-second
tumbling windows. We keep the same experiment setup as be-
fore. With similar data distributions across local windows, Dema
maintains high throughput for all quantile functions, as shown
in Figure 8a.

4.7 Adaptivity Performance
We evaluate the impact of varying 𝛾 and data distributions on
Dema’s throughput using a 3-node cluster with two local nodes
and one root node. We configure three Dema instances: Dema
#1 (scale rates of 1 for both nodes), Dema #2 (scale rate of 1
for one node and 2 for the other), and Dema #10 (scale rates of
1 and 10). The slices in Dema #2 and Dema #10 are denser on
the left, leading to more overlaps in the identification step. All
instances process one-second tumbling windows and compute
the 30% quantile as the result is on the denser side. We evaluate
throughput for different 𝛾 values.

In Figure 8b, we observe that Dema #1, Dema #2, and Dema
#10 exhibit low throughput with small 𝛾 values. For 𝛾 = 2, each
slice contains only two events, resulting in all events being sent
to the root node and processed twice: once locally and once at
the root. The overhead of sorting numerous small slices further
reduces performance. As 𝛾 increases, throughput improves due
to fewer slices being sent. However, very large 𝛾 values also
degrade performance, as larger candidate slices result in more
events being processed during the calculation step.

Moreover, Dema #1 achieves slightly higher throughput com-
pared to Dema #10, though the differences are minor. The left-
skewed distribution of Dema #10 results in more overlaps and
candidate slices. However, the window-cut algorithm effectively
minimizes overlaps, limiting the number of candidate events sent
to the root node.

5 RELATED WORK
Many SPEs, such as Flink [4], Spark [31], Storm [25], and Kafka
Streams [23], have been developed for processing large-scale
and high-speed data streams. These SPEs divide unbounded data
streams into windows, collecting and processing data at central-
ized data centers. However, this centralized architecture incurs
high network costs and computational bottlenecks at the cen-
ter. To address these challenges, tree-structured approaches [3,
11, 18, 28, 30], such as Desis, enable partial aggregation on de-
vices near the data streams. While effective for decomposable
functions, these approaches cannot handle non-decomposable
functions near data sources, requiring all data to be sent to a
central node for final sorting and aggregation. Bader et al. [2]
and Ricardo et al. [22] propose parallel median computation by
slicing datasets and assigning slices to multiple threads or shared
memory buffers. However, these methods introduce significant
communication overhead between threads, making them unsuit-
able for decentralized networks. Algorithms such as t-digest [10]
and q-digest [24] compute approximate quantiles efficiently in de-
centralized environments. While these methods prioritize speed
and scalability, they sacrifice accuracy by producing approximate
results. In contrast, Dema moves partial window aggregation
for non-decomposable functions, such as median and quantile,
to local nodes near data sources while ensuring correct and ac-
curate results. This decentralized approach minimizes network
overhead and alleviates computational bottlenecks at the central
node.

6 CONCLUSION
In this paper, we present Dema, a decentralized aggregation
approach for window aggregation with non-decomposable func-
tions, e.g., median and quantile. Dema shifts the computation
from the root node to local nodes. Instead of centrally processing
all events at the root node, Dema collects synopses from local
nodes and efficiently identifies the position of the target quantile
or median value. We propose a window-cut algorithm to optimize
this process, minimizing network overhead and computational
costs. In our evaluation, we compare Dema and state-of-the-art
approaches. Our approach significantly reduces network utiliza-
tion and improves throughput while ensuring 100% accuracy.

REFERENCES
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael

Fernández-Moctezuma, Reuven Lax, SamMcVeety, Daniel Mills, Frances Perry,

594

Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Ap-
proach to Balancing Correctness, Latency, and Cost in Massive-Scale, Un-
bounded, Out-of-Order Data Processing. Proc. VLDB Endow. 8, 12 (2015),
1792–1803.

[2] David A Bader and Joseph JaJa. 1996. Practical parallel algorithms for dy-
namic data redistribution, median finding, and selection. In Proceedings of
International Conference on Parallel Processing. IEEE, 292–301.

[3] Lawrence Benson, Philipp M Grulich, Steffen Zeuch, Volker Markl, and
Tilmann Rabl. 2020. Disco: Efficient Distributed Window Aggregation.. In
Proceedings of the International Conference on Extending Database Technology
(EDBT), Vol. 20. 423–426.

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, VolkerMarkl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36, 4 (2015).

[5] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2013. Integrating scale out and fault tolerance in stream processing
using operator statemanagement. In Proceedings of the International Conference
on Management of Data (SIGMOD). 725–736.

[6] Luca Catarinucci, Danilo De Donno, Luca Mainetti, Luca Palano, Luigi Pa-
trono, Maria Laura Stefanizzi, and Luciano Tarricone. 2015. An IoT-aware
architecture for smart healthcare systems. IEEE internet of things journal 2, 6
(2015), 515–526.

[7] Cisco. 2021. Cisco Catalyst 2960-X and 2960-XR Series Switches Data Sheet. Cisco.
Retrieved 2024-10-24 from https://www.cisco.com/c/en/us/products/collateral/
switches/catalyst-2960-x-series-switches/datasheet_c78-728232.html

[8] Cisco. 2023. Cisco Catalyst Wireless Gateway CG113 Data Sheet.
Cisco. Retrieved 2024-10-24 from https://www.cisco.com/c/en/us/
products/collateral/routers/catalyst-wireless-gateway-cg110-series/
nb-06-cat-wireless-gateway-cg113-ds-cte-en.html

[9] Louis Columbus. 2016. Internet of Things (IoT) connected de-
vices installed base worldwide from 2015 to 2025. IHS. Re-
trieved 2024-10-09 from https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/

[10] Ted Dunning and Otmar Ertl. 2019. Computing extremely accurate quantiles
using t-digests. arXiv preprint arXiv:1902.04023 (2019).

[11] Wendi B Heinzelman, Anantha P Chandrakasan, and Hari Balakrishnan. 2002.
An application-specific protocol architecture for wireless microsensor net-
works. IEEE Transactions on wireless communications 1, 4 (2002), 660–670.

[12] Ayae Ichinose, Atsuko Takefusa, Hidemoto Nakada, and Masato Oguchi. 2017.
A study of a video analysis framework using Kafka and Spark Streaming. In
2017 IEEE International Conference on Big Data (Big Data). IEEE, 2396–2401.

[13] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla, Farhana Zulk-
ernine, and Shahzad Khan. 2019. A survey of distributed data stream process-
ing frameworks. IEEE Access 7 (2019), 154300–154316.

[14] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. 2014. A survey of
distributed data aggregation algorithms. IEEE Communications Surveys &
Tutorials 17, 1 (2014), 381–404.

[15] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data
processing systems. In Proceedings of the International Conference on Data
Engineering (ICDE). IEEE, 1507–1518.

[16] Sean Dieter Tebje Kelly, Nagender Kumar Suryadevara, and Subhas Chandra
Mukhopadhyay. 2013. Towards the implementation of IoT for environmental
condition monitoring in homes. IEEE sensors journal 13, 10 (2013), 3846–3853.

[17] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, Vol. 11. 1–7.

[18] Guojin Liu, Rui Tan, Ruogu Zhou, Guoliang Xing, Wen-Zhan Song, and
Jonathan M Lees. 2013. Volcanic earthquake timing using wireless sensor net-
works. In 2013 ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN). IEEE, 91–102.

[19] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. 2013. The DEBS
2013 Grand Challenge. In Proceedings of the International Conference on Dis-
tributed Event-Based Systems (DEBS). 289–294.

[20] Snehal Nagmote and Pallavi Phadnis. 2019. Massive scale data processing at
Netflix using Flink. In Flink Forward Conference.

[21] Srinivasa Prasanna and Srinivasa Rao. 2012. An overview of wireless sensor
networks applications and security. International Journal of Soft Computing
and Engineering (IJSCE) 2, 2 (2012), 2231–2307.

[22] Ricardo M Sánchez and Paul A Rodríguez. 2013. Highly parallelable bidimen-
sional median filter for modern parallel programming models. Journal of
Signal Processing Systems 71, 3 (2013), 221–235.

[23] Matthias J Sax, Guozhang Wang, Matthias Weidlich, and Johann-Christoph
Freytag. 2018. Streams and Tables: Two Sides of the Same Coin. In Proceedings
of the International Workshop on Real-Time Business Intelligence and Analytics
(BIRTE). 1–10.

[24] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Sub-
hash Suri. 2004. Medians and beyond: new aggregation techniques for sensor
networks. In Proceedings of the 2nd international conference on Embedded
networked sensor systems. 239–249.

[25] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. 2014. Storm@Twitter. In Proceedings of the International Conference
on Management of Data (SIGMOD). 147–156.

[26] Jonas Traub, Philipp Marian Grulich, Alejandro Rodríguez Cuéllar, Sebastian
Breß, Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2021. Scotty:
General and Efficient Open-source Window Aggregation for Stream Process-
ing Systems. ACM Transactions on Database Systems (TODS) 46, 1 (2021),
1–46.

[27] Ioan Ungurean, Nicoleta-Cristina Gaitan, and Vasile Gheorghita Gaitan. 2014.
An IoT architecture for things from industrial environment. In Proceedings of
the International Conference on Communications (COMM). IEEE, 1–4.

[28] Yong Yao and Johannes Gehrke. 2002. The cougar approach to in-network
query processing in sensor networks. ACM Sigmod Record 31, 3 (2002), 9–18.

[29] Wang Yue, Lawrence Benson, and Tilmann Rabl. 2023. Desis: EfficientWindow
Aggregation in Decentralized Networks. In Proceedings of the International
Conference on Extending Database Technology (EDBT). 618–631.

[30] Wang Yue, Rafael Moczalla, Manisha Luthra, and Tilmann Rabl. 2024. Deco:
Fast and Accurate Decentralized Aggregation of Count-Based Windows in
Large-Scale IoT Applications.. In Proceedings of the International Conference
on Extending Database Technology (EDBT). 412–425.

[31] Matei Zaharia, Tathagata Das, Haoyuan Li, TimothyHunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at
scale. In Proceedings of the Symposium on Operating Systems Principles (SOSP).
ACM, 423–438.

[32] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri-
ilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub,
and Volker Markl. 2020. The NebulaStream Platform for Data and Application
Management in the Internet of Things. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR). www.cidrdb.org.

595

