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ABSTRACT
Conversational AI systems for data analytics aim to enable the
extraction of analytical insights by means of conversational inter-
faces. Such interfaces are powered by a mix of query modalities
and machine learning methods for analytics, and are relying on
Large Language Models (LLMs) for natural language generation.
However, critical challenges hinder their adoption. The question
we discuss is how to devise reliable Conversational Data Analytics
(CDA) systems producing timely, consistent, and verifiable answers.
To reach this goal, we identify five properties that impose a par-
adigm shift in the way systems are built and in the way they
interact with users. To illustrate that shift, we describe a proto-
typical CDA system. Realizing these properties involves either
extending existing components, or redesigning components from
scratch; both solutions require overcoming data management
challenges and conducting a tight integration with advanced data
management and machine learning techniques.

1 INTRODUCTION
Current trends in data analytics encourage users to converse with
data by combining traditional analytical queries with natural
language (NL) interfaces [18, 38, 43, 56]. An analytics pipeline
may start with an NL expression, which is sent to a large language
model (LLM) that in turn produces and executes SQL queries and
in doing so switches back and forth between SQL and NL. While
very appealing for its expressivity and ease of use, this paradigm
raises new challenges that require thinking deeply about how
reliable Conversational Data Analytics (CDA) systems are built.

Reliability is essential for the long-term adoption of a CDA par-
adigm. A conversational interface benefits from a combination
of structured languages such as SQL and SPARQL and gener-
ative models such as LLMs. SQL and SPARQL are expressive,
deterministic, and efficient. LLMs offer an intuitive interface to
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non-technical users to tap into the vast amount of information
on which an LLM is trained using natural language. In prac-
tice, LLMs already offer innovative solutions to traditional data
management problems, such as entity resolution, schema match-
ing, data discovery, and query synthesis [16, 38]. However, they
heavily rely on unsupervised autoregressive pretraining and a
probabilistic generation process that render them notoriously
prone to “hallucinating” responses that are merely “statistically”
related to the training data, as opposed to being factually sup-
ported by it [32]. Despite their impressive abilities in language
understanding, it is still challenging to ensure correct and faithful
domain adaptation. Hence, relying on LLMs alone is not suffi-
cient. A reliable CDA system needs to produce timely, consistent,
and verifiable answers, and provide expert guidance to the user
when in doubt or when missing information. Thus, we isolate
5 important properties that a reliable system needs to possess:
Efficiency, Grounding, Explainability, Soundness, and Guidance.
To develop a successful system, these properties should not be
pursued in isolation but their interplay needs to be considered. In
pursuing these reliability properties, our vision identifies three
layers in a Conversational Data Analytics (CDA) system that
need our attention: the conversational data exploration layer that
works as a gateway to the data sources, the computational in-
frastructure that is indexing, processing and enabling data access
and the NL model layer tasked with translating user commands
and translating the output back to the user. In line with the re-
cent need to build “compound AI systems” [70], we propose
to design a compositional framework to encompass all five re-
liability properties. This will require significant technical and
community-level efforts to develop: (a) components that syn-
ergistically achieve reliability, (b) integration mechanisms that
preserve reliability under composition, and (c) metrics to assess
component and system reliability. When building a reliable CDA
system, we acknowledge that a natural approach to enhance
reliability would be to extend existing components. However,
achieving a high level of reliability may necessitate a complete
redesign of existing solutions. For instance, the debate in explain-
able AI tend to favor inherently interpretable models over post-hoc
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Give me an overview of the working force in Switzerland
I am assuming you are interested in data about employment or the labour market.

Our data sources contain information about the employment type distribution 
for the employees older than 15 years old or a dataset called the Swiss Labour Market 

barometer, that also looks relevant to your question, which info would you prefer?

What is the Swiss workforce barometer?
The Swiss Labour Market Barometer is a monthly leading indicator based on a survey of 

labour market experts from selected employment centers in 22 cantons.
Source: https://www.arbeit.swiss/[...]/schweizer-arbeitsmarktbarometer.html

I am interested in the barometer
Sure, here it is the overview of the data from 

https://www.arbeit.swiss/[...]/schweizer-arbeitsmarktbarometer.html

Can you please give me, the seasonality insights, such as overall trend, etc.
Given the statistics, there is a seasonality in the employment, the best fitted seasonal 

period is 6 (confidence 90%), which corresponds to the 6 months interval.I am only 
reporting data for the last 10 years since there is no sufficient data earlier. Here is the plot 
with the trend, seasonality and residual components with the corresponding python snippet.
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Figure 1: Left: Example use case of CDA system. Right: Architecture proposal

explanations of opaque-box models, particularly in high-stakes
decisions [48]. Inherently interpretable models are designed to
operate in a specific domain, thereby enhancing transparency,
trust, and accountability.

We describe the reliability properties and the data manage-
ment challenges that arise when implementing a reliable CDA
system in Section 2. Then, we discuss a prototypical CDA system
and the path towards tackling those challenges in Section 3.

2 CDA: DESIDERATA AND CHALLENGES
2.1 Desiderata
The task of a CDA system is to produce analytical insights by
engaging in a conversation with the user as illustrated in Figure 1.

Example. The user asks for an overview of the workforce in
Switzerland. The system efficiently locates relevant datasets (P1:
Efficient Retrieval). While the request is ambiguous, given the con-
text, the system understood that the user is most likely interested
in data about employment or the labor market (P2: Grounding
of terminology) and it explains that it is basing the next interac-
tions on this assumption (P3: Explainability). It provides succinct
descriptions of the results and asks the user a follow-up question
to capture their need (P5: Guidance). It also tells the user how
confident it is for its computed answer by providing a confidence
score (P4: Soundness by confidence). Then, the user inquires about
one of the datasets, the barometer. The system provides a con-
cise summary of the dataset coupled with the source where the
answer was found (P4: Soundness by provenance). Finally, the
user focuses on seasonality insights. The system provides a set of
plots along with an acknowledgment that they were computed
only where enough data was present (P4: Soundness) and with
the code that produced them (P3: Explainability). In all these
interactions, the system has deep knowledge of the domain and
generates domain-specific computations and insights that adhere
to the required standards (P2: Grounding). ■

As we see, a Conversational Data Analytics (CDA) system
offers a user-friendly interface for data exploration and analysis.
The system can handle a wide range of data types and analytical

tasks, from simple data retrieval to more complex statistical anal-
yses and visualizations, all driven by conversational prompts. It is
aware of domain-specific vocabulary and is able to disambiguate
or ask for clarification. Users describe the insights they seek, and
the system responds by accessing relevant data sources, clarify-
ing ambiguous requests, and suggesting refinements to improve
query precision. For instance, it may offer proactive suggestions
for additional data sources and analyses based on the user’s initial
query, helping to uncover unexpected patterns or relationships
in the data. Further, it provides evidence for its answers, for
instance, citing specific data sources or computations that pro-
duced the analysis and describing its confidence. Throughout the
interaction, the system maintains context, allowing for follow-
up questions and iterative refinement of analyses. As a result,
users without advanced technical skills can confidently derive
meaningful insights from complex datasets.

Properties of Reliable CDA. In the interactions between
users and the system, as well as in the internals of a CDA system,
we identify five key properties –summarized in Figure 2– that are
interwoven in the system fabric to synergistically achieve reliability:

P1: Efficiency. Both computing an answer and providing an
assessment of reliability should be fast and energy-efficient. The
system should reliably retrieve the relevant data in a reason-
able time, while also providing guarantees on the quality of
approximation. Efficiency is central to any system, underpin-
ning the other reliability properties. Answers should be delivered
promptly and within bounded resource consumption, while main-
taining a balance that minimizes sacrifices to accuracy.

P2: Grounding. Grounding is the process of connecting the sys-
tem to real-world knowledge, contexts, and data, with reference
to the domain of the user. This ensures that answers are relevant
and factually consistent [17]. Grounding is a dynamic process
that solicits user feedback when needed to enhance certainty.

P3: Explainability. To build trust in the system’s responses it
is essential that the system can explain its actions and outputs
in understandable terms. An explanation needs to be concise
while containing all relevant information about the generated
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Figure 2: Properties of Reliable CDA and their interplay.

outputs. Explainability builds on the successful grounding of user
intentions concerning relevant data and vocabulary.

P4: Soundness. The ability of the system to produce and eval-
uate an answer by connecting it to relevant data sources. The
system should be able to judge whether an answer is, with suf-
ficiently high probability, correct or not, and provide evidence
of it to mitigate the model’s hallucinations. At the same time,
the system should be able to refrain from producing answers
when unable to produce any answer with sufficient certainty.
To achieve soundness, the system should be able to verify how
answers are generated via explainability and provenance.

P5: Guidance. The ability to support users in pursuing their
analytical goals by actively guiding them towards correct an-
swers and desired insights more efficiently. The system should
identify the steps to deliver complete, correct, and relevant an-
swers by monitoring the soundness of the current answer and
its alternative formulations to assist the user achieve their goal.

The limits of existing tools. Existing conversational tools
(e.g., ChatGPT and Gemini [54]) can both process and generate
human language, but lack the aforementioned properties.

W.r.t. Efficiency, current systems incur huge training and in-
ference costs. While multiple pre-trained models are available,
fine-tuning becomes necessary when domain knowledge is insuf-
ficient, potentially causing efficiency bottlenecks. Additionally,
many approaches require searching for relevant content first, and
in such cases, when searching in huge repositories, they adopt
approximate methods that do not provide any guarantee on the
quality of the information produced.

W.r.t. Grounding, existingmodels are trained as general-purpose
models by processing vast amounts of data from heterogeneous
data sources, primarily crawled from the Web. Thanks to this,
they acquire essential abilities in language understanding and
generation. To adapt to a new domain, they can leverage in-
context learning [10]. Yet, some domains require precise ground-
ing and alignment, necessitating fine-tuning or other forms of
domain adaptation [8]. In these cases, current models require ad-
ditional heavy training to adapt to evolving domains and datasets.

W.r.t. Explainability, existing approaches act as opaque boxes
that generate answers, but cannot explain the process that pro-
duced them, due to the nature of their internal models that work
as next-token predictors.

W.r.t. Soundness, existing systems are statistical generators
that may hallucinate and cannot explicitly verify their answers.
Current Retrieval Augmented techniques function as “prompt-
enhancements" that try to provide contextual information from
which the model can extract information, but do not change the
fundamental generative nature of these architectures [25].

W.r.t. Guidance, current systems either wait for the user to
provide a prompt, or the system automatically generates prede-
termined prompts without knowledge of the user’s preferences.

2.2 Challenges
Designing a reliable CDA system leads to a wide spectrum of
challenges at the intersection of data management and machine
learning. From the outset, reliability properties need to be en-
forced within each system component but also in the interaction
between the various components. It may not be sufficient to
combine two sound components or two explainable components
to ensure the result of their integration is still sound and ex-
plainable. This needs to be guaranteed formally: all components
should have the formal properties that allow composability, i.e.,
individual properties (e.g., soundness) contribute to system-level
formal guarantees. Finally, new metrics are needed to assess com-
ponent and system reliability, in addition to accuracy, taking into
account how those aspects might trade off [4, 39, 46].

Efficiency. A CDA system that operates at interactive speeds
must navigate the trade-off between query execution time and
answer quality. This is an elusive goal for most techniques used
for information retrieval, also in dense representation spaces,
since they are either fast and do not provide guarantees [3, 51],
or provide quality guarantees and are relatively slow [9, 12, 15,
42, 63, 64]. To obtain methods that provide reliable answers un-
der time constraints, would require adding quality guarantees
to methods that do not support them yet, rendering methods
with quality guarantees significantly faster, and devising a new
generation of methods that meet all these requirements.

Grounding.We need to ensure access to the relevant terms
and definitions specific to a domain. Further, the system needs
access to rules and policies describing, in structured or semi-
structured terms, the allowed processes and outputs. Hence, since
this information is usually encoded in Knowledge Graphs and
similar complex taxonomies and ontologies, the system should be
able to query and perform reasoning over these resources. Impor-
tant descriptive and prescriptive information may also be present
in natural language. This additionally requires information ex-
traction, data integration and alignment between different data
models: structured, semi-structured, and unstructured. Further,
the system should identify when an answer should be based on
the result of specific computations and ensure that such compu-
tations are correctly carried out. This implies also a verification
step for each answer. When the domain information changes, the
system should then be able to refer to the most up-to-date model,
and this cannot be always delegated to continuous retraining
and fine-tuning. Hence, the challenge is how to keep the system
up-to-date in its understanding of the domain and of the shifting
semantics of the requests it serves.

Explainability. The system must address the problem of
provenance computation, i.e., for every answer it should be pos-
sible to explain how the answer was computed. Moreover, new
properties for explanation will need to be defined, in particular,
losslessness and the ability to mitigate errors. Losslessness aims to
make sure that an answer explanation is indeed representative
of the calculations and source data used to generate it. Making
an architecture lossless can rely on extending the data model of
each component with expressive metadata. A stronger property
is invertibility, i.e., to be able to recover individual calculations
from an explanation. Explaining conversations must allow for
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expanding the scale and complexity of patterns recommended
to a human. Furthermore, the system must be able to explain its
actions and outputs in understandable terms, using code, natural
language, graphs, or other means. This raises new challenges,
such as hallucinated explanations when LLMs are used [52], high
computational costs, and choosing the appropriate form of ex-
planation. Error mitigation is the ability to re-calibrate provided
explanations. This can be done for specific tasks such as entity
recognition [50]. Thus, the challenge is how to combine LLM-
based and data-based explanations to achieve those properties.

Soundness.Accurately quantifying the confidence of responses
requires the system to be able to evaluate when it is competent
or has sufficient and relevant data to provide a correct answer.
When relying solely on an LLM, confidence scores may not ac-
curately reflect the true probability of correctness. Additionally,
confidence measures may be biased towards certain types of
questions or topics, leading to inaccurate assessments for specific
domains or tasks. An additional challenge arises when trying to
closely guide the output of the system. This is achieved today by
implementing reinforcement learning techniques. In these cases,
the utmost challenge is the large action space. For instance, when
applied naively, the actions are the number of tokens generated
by an LLM, potentially going into the hundreds of thousands.
Designing effective reward functions that capture the desired be-
havior is difficult, and collecting sufficient high-quality training
data can be time-consuming and expensive. Moreover, balancing
the exploration of new actions with the exploitation of known
good ones is crucial for effective learning but can be difficult to
achieve in practice. Finally, it is unclear how to encode safety
and ethics requirements in these policies and reward functions.

Guidance. The biggest challenge is the ability to carry enough
information to provide users with alternative options as opposed
to the traditional single-answer approach. To do that, a graph
enhanced with metadata in the form of external knowledge, en-
riched input, and human feedback, could be used. This raises
the challenge of representing and composing such metadata in a
seamless fashion as well as to perform the necessary speculative
planning on top of this data structure. When planning is per-
formed by NL models, the system must then mitigate potential
hallucinations. Enabling the system to combine and switch be-
tween multiple guidance modes that also integrate user feedback
is then an additional challenge.
3 BUILDING A CDA SYSTEM
We present the components required for CDA reliability, and dis-
cuss how they could be integrated on top of existing components.

3.1 A CDA Architecture
In pursuing reliability properties, we identify core layers in a CDA
system (Figure 1 right): a the Conversational Data Exploration
layer, b the Computational Infrastructure, and c the NLModel
layer. These components continuously interact with two data
layers: d various data and meta-data sources and e produced
answers with their annotations. Indeed, the system must access
both the data to be analyzed, spanning various modalities, and its
accompanying metadata, such as domain-specific terminology,
data models, and schemas. This data will be captured within
knowledge bases, such as knowledge graphs [40]. The systemwill
access documents and text, whichmay include past conversations
between the user and the system, and query logs. A paradigm
shift in this layer is a data model able to effectively interlink
data and metadata and expose their connections uniformly to

the system. Further, the system needs to be able to manage the
continuous evolution of such data sources. Thus, this layer is not
static: its content (data and metadata) is evolving. Central to that
is an effective mechanism to cope with data rotting [26], i.e., the
ability to identify and discard parts of the data that are outdated
or obsolete. Consequently, the system needs to understand the
intended use of the data and the ultimate user goals. Finally, the
system should allow composability of the properties; this can be
achieved by understanding holistically the requirements and the
roles of each component within the pipeline.

The Conversational Data Exploration layer acts as a me-
diator between the user and the data sources and orchestrates
all parts of a CDA system to implement the data exploration
and analytical functionalities. This layer goes beyond acting as a
proxy by guiding users to specific answers. It enables interactive
dialogue, allowing users to ask follow-up questions to verify or
explore answers. In return, the system connects responses to
data, evaluates certainty, and poses questions to understand user
intentions and preferences. Similar to current conversational rec-
ommender systems [36, 45, 61], it establishes when and how the
system should proactively offer recommendations and ask ques-
tions. For example, a system can propose related data sources or
additional computations and ask for the user’s judgment. This
user interaction not only provides relevant insights but also helps
improve the system in formulating answers with higher confi-
dence.With that, conversations augmented with certainty levels
become the new paradigm of interaction with a CDA system.

The NL Model layer has the role of enabling user-system
interactions in natural language. In this layer, different compo-
nents, e.g., structured queries, exploratory analysis routines, or
natural language prompts, serve different goals. For instance,
this layer requires a component able to generate queries for the
datastores (e.g., Knowledge Bases and Data Lakes) and snippets
of formal code to process the data. These queries and snippets
can be generated both in response to the user request or to the
tasks inferred by the interactive conversational interface, e.g.,
when elaborating suggestions for the next steps. Another compo-
nent, instead, will be responsible for generating natural language
explanations of results or summaries of data sources. Moreover,
the NL Model layer must be aware of domain-specific terminol-
ogy, data models, and schemas. It also needs to be able to access
and reason over multi-modal data, where modalities are not only
images, text and video but also, for example, SQL and natural
language questions. Finally, it should be able to interact with
the computational infrastructure to delegate computations to
appropriate domain-dependent reasoning and computation rou-
tines.With that, multiple modalities will be seamlessly combined
to facilitate expressing user needs.

The Computational Infrastructure implements data pre-
processing and indexing, as well as analytical computations in-
cluding training the NL models and any other ancillary model.
This layer has the primary role of enabling fast retrieval of data
and documents that are needed by any querying modality to
infer its answers. These operations should take place in real time.
Different data may be differently significant for different tasks
and this component must identify the best fit for a task at hand.
Thus, the computational infrastructure should support (among
others) efficient operations in high-dimensional spaces, such as
vector-based operations. It also has the role of handling the entire
data lifecycle, from ingestion to cleaning, de-duplication, disam-
biguation, and indexing.With that, multiple data access modalities
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will be seamlessly combined with novel data structures and algo-
rithms to facilitate achieving user needs providing fast approximate
retrieval with bounded and certain quality guarantees.

3.2 Implementation
The identified principles can address the challenges in Section 2.2
by either extending existing systems or designing new ones from
scratch. While starting anew is likely unavoidable, we initially
describe how to leverage existing components.

Efficiency. Both computing an answer and providing an as-
sessment of its reliability should be fast and energy efficient by
optimizing similarity search operations [41] that are at the core
of many data-retrieval tasks. In this context, we see the need to
design novel high-dimensional vector similarity search indexes
that are able to provide a precise bound to the quality of approxi-
mation of their produced answers, while achieving shorter query
answering times than existing techniques not offering quality
guarantees [62]. These new solutions should also be able to re-
turn an empty set, when no answer exists with a given expected
relevance. In addition, we focus our attention on a new class
of algorithms, the “learning-augmented algorithms” [14, 60], in
which machine learning models help similarity search algorithms
make smart pruning decisions [13, 34] in order to produce accu-
rate answers using the lowest execution time possible. However,
to make conversational interfaces truly interactive and address
efficiency concerns, one needs to redesign the full system architec-
ture to treat interactivity as a first-class citizen. That is, the entire
data-processing pipeline, from the user prompt to the answer
computation, along with all other analytic processes taking place
in parallel, should be accessible by a holistic optimizer, which
identifies optimization opportunities, such as caching, batched
computations, and sharing of computation and intermediate data.

Grounding. A grounded CDA system understands, disam-
biguates, and manipulates the correct vocabularies and factual
knowledge about the domain and the data. Since such knowl-
edge is often best encoded in knowledge graphs, we envision
the computational infrastructure to include property graph and
RDF DBMSes. However, not every piece of knowledge is relevant
to every scenario. The right data can lead to better predictions
and quicker goal achievement, while irrelevant or misplaced
data, even if accurate, can cause hallucinations or erroneous con-
clusions. Although hallucinations cannot be entirely avoided,
grounding the system to trustworthy sources effectively helps
quantifying the model’s uncertainty and provide explanations
to the user. To this end, we propose a module that dynamically
identifies the most relevant knowledge for the task at hand. This
capability is crucial yet challenging in conversational systems, as
data selection often occurs in real-time during user interactions.

Grounding is also achieved by exposing data-access APIs, ac-
companied by rich documentation, which in turn could also be
generated semi-automatically by an LLM. Data access is achieved
also by generating queries in the appropriate structured query
languages or even data manipulation scripts. Thus, the model
should be able to access a description of the schema of the data
sources. Currently, this information is presented in textual form
to the model [57]. Instead, we propose to encode this form of
domain information in appropriate knowledge bases and enable
the system to query and reason on these structures. Finally, entity
extraction and entity linking processes will enrich a KG repre-
sentation of both the schema and the contents of the data, i.e.,
by describing semantically the content of the data sources.

Real-world data often spans multiple modalities, such as text,
tabular data, time series data, images, videos, and graphs. To fully
leverage this diverse information, LLMs should be extended to
access and integrate the complementary information embedded
across these different data types. This can be addressed by creat-
ing effective dense representations of the different modalities in a
unified space, forming a multimodal index. Additionally, develop-
ing a domain-specific multimodal knowledge graph to be utilized
by the conversational system can significantly enhance its ability
to model all the relevant data in the domain. Thus, we envision
the necessity to redesign the KG data management systems, such
that they can store, query, and manipulate directly a dense rep-
resentation of entities and concepts for data representation of
different modalities along the original plain data. Thus, this new
data platform will offer a uniform and effective entry point to
the data for the other modules.

Finally, since conversation logs with real users are part of the
data sources used both during training and inference, the system
needs to counteract the effect of any bias present in these logs, at
processing time. The goal is to avoid that themodel uses connoted
or discriminatory language that perpetuates a distorted view of
marginalized groups. We propose identifying such cases using
approaches such as CADS (Corpus Assisted Discourse Analy-
sis) [2] and sentiment analysis [53]. Human involvement will be
fundamental, as it will be necessary to combine quantitative and
qualitative analysis. Nonetheless, we see the need for new auto-
matic methods for, at least partial, output evaluation to improve
both effectiveness and accuracy in bias identification.

Explainability. Explainations of the various interactions and
their possible alternative outcomes must be provided succinctly.
This can be achieved by adding annotations to the pathways
of question-answer in the natural language model layer. These
kinds of annotation must allow concise summarization of pri-
mary sources, so as not to cognitively overload the user. The
explanations should also be consistent: there should be contra-
dictory explanations for the same outcome, and explanations of
equivalent outcomes should also be equivalent. The annotation
process should consist of adding metadata that is dynamically
generated at conversation time. Those annotations must capture
both where-from explanations, but also allow where-to analysis to
support also the guidance ability of the system. To this end, we en-
vision extending techniques already applied in query provenance
computations [21]. Thus, to ensure explainability, provenance
will be tracked across components, while the NL model needs
to preserve this information received by the computational in-
frastructure when producing answers to the conversational data
exploration system. Thus, in the provenance information, it must
include data sources, query provenance, and code and APIs in-
volved. Thanks to grounding, it should explain why the given
sources are indeed appropriate. Furthermore, using provenance
metadata captured for the sources, it should be possible to provide
either a confidence score for the entire answer or for parts of the
answer with differing scores and provenance information that
can be used to trace back an answer to the pieces of information
in the original sources that together led to it.

When LLMs are adopted, LLM interpretation (both interpret-
ing LLMs and using LLMs for explanation) has the opportunity
to redefine interpretability with a more ambitious scope across
many applications, including in auditing LLMs themselves. Data-
based interpretations will apply sequence summarization algo-
rithms to a set of conversations and return a single summarized
pattern enabling a better understanding of input conversations.
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One viable approach is the fine-tuning of an LLM to take into
account the propagation of annotations, in line with the current
RAG-enabled explainability [47].

Soundness. A key aspect of delivering reliable answers and
ensuring the correctness to a user’s query is making sure that
the response addresses the query as intended. Multi-turn dia-
logues are then a natural means to clarify user intent in the
case of ambiguous queries. Enabling LLMs to conduct multi-
turn dialogues also naturally provides a way of decomposing
complex search queries in sequences of simpler steps, a process
that was recently proposed as a way of replicating reasoning of
data science and domain expertise [24, 55]. We envision “ask-
and-refine” dialogues that, by actively integrating user inputs in
each reasoning stage, go beyond the current LLM step-by-step
reasoning approaches (e.g., Chain-of-Thoughts [65] and Tree-of-
Thoughts [69]), and in addition combine database approaches
of query reformulation with LLMs. At an implementation level,
an active learning or active search component [29] could be in
charge of eliciting feedback from users and actively probe the
next question to ask with the goal of improving the answer cer-
tainty. To achieve soundness, the system should feature effective
control methods for multi-modal generation that can produce
high-quality, domain-aligned responses specifically tailored to
conversational interfaces. The systemwill ensure correctness and
answer quality by including direct control methods, e.g., offline
reinforcement learning (ORL) [33], behavior cloning [31], and
reward-augmented decoding [28]. Structured outputs can also
be obtained through a combination of rejection sampling [27],
constrained decoding and parsing [6]. The combination of these
approaches offer enough flexibility to explore ways of optimizing
the generation and ensure accurate and relevant results. We envi-
sion making the model generate robust and controllable outputs
by re-purposing preference learning techniques borrowed from
the alignment literature such as Reinforcement Learning from
Human Feedback (RLHF) using reward models and policy opti-
mization algorithms like PPO [49], or direct alignment algorithms
such as Direct Preference Optimization (DPO) [44], combined
supervised fine-tuning, and preference learning (ORPO) [22], and
Alignment via Optimal Transport (AOT) [37].

Additional control components should be included in the sys-
tem in tandemwith uncertainty quantificationmethods [7, 30, 35]
to quantitatively assess uncertainty. The user should control how
the model defines correct and incorrect answers. Correct an-
swers should form dense, separable n-dimensional shapes, while
incorrect answers should be sparse, dissimilar to each other, and
distinct from correct ones, with their frequencyminimized during
training. To introduce control during inference, the constrained
decoding techniques should be redesigned to account for different
types of data and depending on the input user-system interaction
data; if the data has sufficient variability but a smaller vocabulary,
imitation learning is preferred, otherwise ORL is more robust.
Based on the results of previous reinforced active learning meth-
ods [66–68], we foresee that by exploring combinations of these
methods the system can attain superior results.

Guidance. Our view of guidance is akin to adding planning
to LLMs [23], but without necessarily knowing the objective be-
forehand. Interactions between the user and the system should
be modeled as a first-class citizen. Systems like LangChain en-
able planning [23] and are designed to manage complex tasks.
LangChain uses LangGraph, a specialized type of map, to connect
and coordinate multiple “LLM agents”. Each LLM agent can be
customized with its own instructions and access to specific tools.

This is illustrated in the AutoDev framework [58] that uses a
combination of agents and tools to facilitate automated software
development tasks. Our proposal is to generalize the previously
proposed frameworks for Agentic AI [1, 11] to capture multi-
modal human-AI and AI-AI interactivity. We propose to develop
a new graph-based data model that captures the intricacies of
relying on a mix of structured queries, LLMs, and human interac-
tions to guide conversations. Nodes in the graph will represent
LLMs or humans enabling to capture, from the ground up, the
logic of recommending the next steps in interactive conversa-
tions. This would require every component of the architecture
to “understand and manipulate” the proposed graph model.

The graph model runs alongside algorithms that guide the
prompting strategy based on either previously successful tasks
(as judged by human annotators), or by self-reasoning LLM agents
via LLM reasoning algorithms [5, 20, 59, 65, 69] and running alter-
native scenarios behind the scenes. There are multiple libraries
that can be adopted for LLM reasoning [19]. Finally, the systems,
through profiling, should determine the level of expertise of the
user and interact differently according to the inferred expertise.

Evaluation. Each system component will be evaluated with
appropriate evaluation metrics. In general, common performance
measures are still relevant, these include Precision, Recall, F1-
score, Area Under the ROC Curve (AOC), Accuracy, Mean Least
Square Error (MLSE) and perplexity for prediction tasks, MRR
and NDCG for ranking tasks, as well as system measures, such
as time, number of operations and memory consumption for
efficiency. In addition, grounding will still require qualitative
and manual assessment in tasks that analyze the language in the
training data. Instead, new metrics may be needed to evaluate
the quality of explainability or the probabilistic interpretation
of any correctness estimation. There is further the need for new,
end-to-end, benchmarks, that includes also user-interface consid-
erations, for CDA system based on real-world multi-modal use
cases that can span different domains, from healthcare, to edu-
cation, e-commerce and business intelligence. Therefore, close
collaboration with domain experts is vital to comprehensively
evaluate all relevant aspects and requirements.

4 CONCLUSIONS
In this vision paper, we raise the question of reliability of CDA
systems. Thus, we propose a first definition based on five corner-
stone properties: efficiency in providing and assessing the quality
of an answer, grounding to the terminology and the data values
describing the domain as well as of the appropriate processes,
explainability of any result of the interactions with the system,
soundness of the answer produced and of the decisional pro-
cesses, and guidance for the user towards the correct answers. To
provide these properties, data management solutions will be cen-
tral. We argue that current systems that rely almost completely
on natural language processing cannot provide these properties.
Thus, we propose a more comprehensive system for achieving
reliable CDA. While entirely revamped architectures, where re-
liability is a first-class citizen, is a promising direction, in this
paper, we proposed as a first step a solution that extends existing
components to enforce reliability properties.
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