
Query Rewriting-Based View Generation for Efficient
Multi-Relation Multi-Query with Differential Privacy
Xinglin Du †1, Peng Tang †2∗, Rui Chen ‡, Ning Wang §, Chengyu Hu †3, Shanqing Guo †4

† School of Cyber Science and Technology, Shandong University, Qingdao, China
†Quan Cheng Laboratory, Jinan, China

†State Key Laboratory of Cryptography and Digital Economy Security, Shandong University, Qingdao, China
†xinglin1@mail.sdu.edu.cn, {tangpeng2, hcy3, guoshanqing4}@sdu.edu.cn

‡College of Computer Science and Technology, Harbin Engineering University, Harbin, China
‡ruichen@hrbeu.edu.cn

§Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
§wangninggzu@gmail.com

ABSTRACT
This research addresses the challenge of conducting multi-query
operations across multiple relations while preserving differen-
tial privacy. In multi-relation multi-query scenarios, a common
strategy is to generate private synopses from multiple views
on the base relations. These synopses are carefully adjusted to
minimize error rates on a representative query workload, thus
reducing any further privacy loss. However, when dealing with
queries involving multiple relations, there is often a significant
number of nested and derived table queries. Directly generat-
ing views for such queries leads to the problem of excessive
view proliferation. Thus, there still remains a significant pri-
vacy cost issue. To overcome this challenge, we propose a view
generation approach based on query rewriting. This approach
involves performing equivalent rewriting on nested and derived
table queries, ensuring that the number of views does not in-
crease with changes in conditions within subqueries. Through-
out the rewriting process, we skillfully address the challenges of
maintaining query equivalence before and after rewriting, elimi-
nating individual query operations, and ensuring compatibility
across various database platforms. We conducted extensive ex-
periments on real datasets to evaluate our proposed solution. The
results demonstrate that our approach provides desirable data
utility. The source code and data have been made available at
https://github.com/xinglindu/ViewRewrite.

1 INTRODUCTION
Database querying is essential in various applications as it enables
efficient data retrieval. However, protecting sensitive individual
records from unauthorized disclosures necessitates the integra-
tion of differential privacy [7–9, 24, 25] into the querying process.
Differential privacy has emerged as the standard for private data
release due to its robust protection of individual information.
Recently, we have observed that several organizations, including
Microsoft [2], Google [1], and the United States Census Bureau
[14], have performed multiple practical deployments.

In differential privacy, the privacy budget 𝜀 is allocated to
restrict privacy loss, and a calibrated amount of noise is added
to query results to guarantee 𝜀-differential privacy. However,
∗Peng Tang is the corresponding author.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

in real-world scenarios, databases are frequently accessed, and
queries often involve multiple relations, posing challenges for
differentially private protection. In particular, for a set of queries,
to guarantee differential privacy, we can divide the 𝜀 into several
partitions, and then allocate them to each query. However, the
injected noise scale is inversely proportional to the privacy bud-
get, and as the number of queries increases, the privacy budget
allocated to each query decreases. This will result in a decrease
in the accuracy of the query results. Therefore, the goal of this
research is to decrease the privacy budget consumption of all
queries across multiple relations. To achieve this goal, a viable
strategy [20] is to generate private synopses from multiple views
over the base relations. However, further research has revealed
that for nested and derived table queries, views often vary with
changes in their subquery’s filter criteria. Directly generating
views for such queries would result in an excessive number of
views, making it impractical to reduce privacy budget consump-
tion.

To address this issue, we propose a novel method for generat-
ing views based on query rewriting. The core of query rewriting is
to decompose, perform algebraic transformations, and merge the
filtering criteria of subqueries, to avoid the increase in the num-
ber of generated views caused by changes in the filtering criteria.
During the query rewriting process, several considerations must
be taken into account: 1) Query Equivalence. Preserving query
equivalence is crucial to avoid scenarios of non-equivalent query
rewriting. 2) Differential privacy constraints. Constraints im-
posed by differential privacy scenarios must be fully considered
to avoid queries targeting individual records, which has been a
challenging problem for publishing views involving non-distinct
values, maximum or minimum values. 3) Database compati-
bility. Ensuring database compatibility requires considering the
specific language features and compatibility of different database
systems. To tackle these challenges, we employ query rewriting
techniques based on algebraic transformations, semantic analy-
sis, splitting, and merging. This ensures query equivalence and
enables the formulation of rules for equivalent query rewriting.
Additionally, we ensure that the rewritten queries can be pub-
lished under differential privacy scenarios, adhering to the con-
straints imposed by differential privacy. Furthermore, we guar-
antee database compatibility by formally expressing all queries
with a unified structure and syntax, avoiding query syntax is-
sues associated with different database types during the query
equivalence rewriting process.

Series ISSN: 2367-2005 576 10.48786/edbt.2025.46

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.46

In terms of the novelty of our query rewriting, we explore
this from two perspectives. Firstly, compared to traditional query
rewriting methods that do not account for differential privacy,
our approach differs in rewriting objectives, query types, and
rewriting requirements. Traditional query rewriting rules focus
on optimizing query execution efficiency, whereas our solution,
within the context of differential privacy protection, aims to
reduce the number of generated views to minimize the consump-
tion of the privacy budget. Traditional methods generally address
correlated nested queries, while our work not only includes cor-
related nested queries but also considers derived table queries
and non-correlated nested queries, thus broadening the range
of applicable query types. Traditional query rewriting primarily
focuses on equivalence and compatibility, whereas our method,
in addition to these basic requirements, emphasizes minimizing
the number of generated views while ensuring differential pri-
vacy, thereby further optimizing the consumption of the privacy
budget. Secondly, compared to existing query methods under
differential privacy, the innovation in our approach lies in gen-
erating fewer views through query rewriting, which effectively
reduces the consumption of the privacy budget and results in
more accurate query outcomes. This method not only improves
the efficiency of privacy budget usage but also enhances the prac-
ticality of the queries and the accuracy of the results. It is worth
mentioning that some existing studies [15, 21, 28, 34] enhance the
precision of query results by optimizing privacy budget allocation
strategies. These techniques have provided valuable insights for
our research. In future work, we plan to explore combining these
techniques with our approach to achieve even better results.

Our key contributions are summarized as follows:

• We present a view generation approach based on query rewrit-
ing for multi-query operations across multiple relations while
preserving differential privacy. This approach ensures that the
number of views does not increase with changes in conditions
within subqueries.

• We systematically classify derived table queries and nested
queries and establish a comprehensive set of rewriting rules
for them, guaranteeing query equivalence, differential privacy
constraints, and database compatibility.

• We conduct an extensive experimental study over several
datasets, demonstrating the practicality and desirable data
utility of our proposed solution.

2 RELATEDWORK
Differential privacy has gained wide application in database pri-
vacy queries, leading to significant achievements. To address the
problem of a single query in single-relational databases, Geng et
al. [12] created an optimal 𝜖-differential privacy mechanism for
single real-value queries. Liu et al. [23] introduced a mechanism
based on generalized Gaussian distributions to optimize tradi-
tional differential privacy methods. Muthukrishnan et al. [26]
proposed a differential privacy mechanism that improves privacy
protection when publishing data by combining the properties of
the Laplace and Gaussian distributions. These studies address the
problem of noise addition in single-relational databases under
differential privacy. However, while global sensitivity can be con-
strained in single-relational databases, it becomes challenging
in multi-relational databases due to the presence of foreign key
constraints.

To address the challenge of handling multi-query in private
single-relational databases, Li et al. [22] introduced the Matrix

Mechanism, an algorithm designed to optimize responses to lin-
ear count queries while maintaining differential privacy. Qiu et
al. [30] proposed a new mechanism based on differential privacy
to solve the problem of balancing the protection of individual
privacy with the preservation of data utility when answering
numerical queries. Pujol et al. [29] proposed a technique to ad-
dress the issue of differential privacy in online query response in
a multi-analyst environment. Kostopoulou et al. [19] developed
the Turbo query engine, which optimizes the selection of noise
parameters by using the improved private multiplication weights.
These studies effectively addressed the problem of generating sta-
tistical results based on single relations under differential privacy,
providing valuable insights for our work. However, the statistical
results generated by a single relation are insufficient to represent
the outcomes of complex queries involving joins, nested queries,
and derived table queries in multi-relational databases.

To address the challenge of handling a single query in private
multi-relational databases, Johnson et al. [17] presented FLEX,
an aggregation query engine based on elastic sensitivity under
differential privacy. Fang et al. [10] designed a universal mecha-
nism, Shifted Inverse, which aims to provide a general differential
privacy protection mechanism for any monotonic function. Dong
et al. [3] proposed R2T, an aggregation query engine under dif-
ferential privacy specifically designed to solve the challenging
task of selecting truncation thresholds. Dong et al. [4] developed
a novel method within the differential privacy framework using
privacy composition techniques specifically designed to handle
skewed and large-scale data. These studies effectively tackled
the challenge of excessive global sensitivity in multi-relation
queries under differential privacy, imparting valuable inspiration
to our work. However, directly applying these methods to solve
multi-query problems would suffer from the low query result
accuracy caused by excessive privacy cost, and the inconsistent
query results due to the impact of noise.

To tackle multi-query problems in private multi-relational
databases, Kotsogiannis et al. [20] introduced PrivateSQL. To
ensure a fixed privacy loss across all queries, PrivateSQL gener-
ates private synopses from multiple views over the base relation.
However, PrivateSQL faces difficulties in effectively managing
nested queries and derived table queries. Within these queries,
subqueries may include filtering criteria. As these filtering crite-
ria change, the views are consequently modified, resulting in an
excessive proliferation of views. This, in turn, undermines the
effectiveness of privacy cost reduction for PrivateSQL.

To achieve a more rational allocation of the privacy budget,
Peng et al. [28] proposed Pioneer, which optimizes the use of the
privacy budget by integrating historical query results with cur-
rent data to create and select the most budget-efficient execution
plans. Zhang et al. [34] developed DProvDB, which enhances
query accuracy and ensures fair management of privacy loss
through fine-grained privacy provenance and budget optimiza-
tion. He et al. [15] proposed a fine-grained privacy provenance
framework that tracks analysts’ privacy loss and optimizes bud-
get allocation to maximize accurate queries, ensuring fair and effi-
cient privacy management in multi-analyst settings. Küchler et al.
[21] introduced Cohere, which uses a unified interface and fine-
grained management to efficiently allocate privacy budgets in
complex systems, optimizing query performance while ensuring
differential privacy. These studies offer multi-dimensional solu-
tions for privacy budget management, advancing the integration
of privacy protection and data analysis. In contrast, we reduce
budget consumption and improve query accuracy by rewriting

577

queries to minimize view generation. Future work will explore
integrating these techniques to further optimize outcomes.

3 PRELIMINARIES
3.1 Database Queries
LetR denote a database schema comprising𝑛 relations𝑅1, 𝑅2, . . . , 𝑅𝑛 ,
and 𝑝𝑖 represent the attribute set in 𝑅𝑖 . The multidimensional
join relation, denoted as 𝐽 , is defined as the join of these relations
with their respective attribute sets:

𝐽 := 𝑅1 (𝑝1) ⊲⊳ · · · ⊲⊳ 𝑅𝑛 (𝑝𝑛) .

Let D be a database instance on schema R, and D denote the
set of all database instances under the schema R. For each rela-
tion 𝑅 in R, D(𝑅) represents the corresponding instance in D,
which is a physical relational instance of 𝑅. Let 𝑡 be a tuple in
D(𝑅). For an aggregate query, the result can be expressed as:
𝑄 (D) =

∑
𝑞∈ 𝐽 (D) 𝜓 (𝑞) , where the function 𝜓 depends on the

query aggregation category. For example, for count queries, the
function𝜓 (·) is equivalent to 1, and for aggregate queries such
as SUM (𝐴 ∗ 𝐵), the function𝜓 equals𝐴 ∗𝐵. This formula accom-
modates aggregate queries with arbitrary predicates by assigning
𝜓 (𝑞) = 0 if 𝑞 does not satisfy the predicate.

3.2 Distributive Law
The distributive law [16] is widely used in logical expressions and
is used to rewrite 𝐴𝑁𝐷 and 𝑂𝑅 operations to simplify or trans-
form expressions. The distributive law can greatly simplify the
form of logical operations, making the evaluation and understand-
ing of expressions more intuitive. Specifically, the distributive
law includes two forms: the distributive law of 𝐴𝑁𝐷 over 𝑂𝑅
and the distributive law of 𝑂𝑅 over 𝐴𝑁𝐷 :

𝐴 𝐴𝑁𝐷 (𝐵 𝑂𝑅 𝐶) = (𝐴 𝐴𝑁𝐷 𝐵) 𝑂𝑅 (𝐴 𝐴𝑁𝐷 𝐶),

𝐴 𝑂𝑅 (𝐵 𝐴𝑁𝐷 𝐶) = (𝐴 𝑂𝑅 𝐵) 𝐴𝑁𝐷 (𝐴 𝑂𝑅 𝐶) .

By using these two forms, complex logical expressions can be
effectively decomposed and simplified. The distributive law, as
a fundamental rule in logical operations, has wide applications
and significant importance.

3.3 Principle of inclusion-exclusion
The principle of inclusion-exclusion [13] is used to compute the
size of the union of several sets, avoiding double counting of over-
lapping parts. For arbitrary finite sets 𝐴1, 𝐴2, . . . , 𝐴𝑛 , the general
form of the inclusion-exclusion principle can be expressed as����� 𝑛⋃

𝑖=1
𝐴𝑖

����� = 𝑛∑︁
𝑖=1

|𝐴𝑖 | −
∑︁

1≤𝑖< 𝑗≤𝑛

��𝐴𝑖 ∩𝐴 𝑗

��
+

∑︁
1≤𝑖< 𝑗<𝑘≤𝑛

��𝐴𝑖 ∩𝐴 𝑗 ∩𝐴𝑘

�� − · · ·

+ (−1)𝑛−1 |𝐴1 ∩ · · · ∩𝐴𝑛 | ,

where |𝐴| denotes the cardinality of the set 𝐴. For example, in
the case of two sets, we can obtain the cardinality of their union
by adding the cardinality of |𝐴| and |𝐵 |, and then subtracting
the cardinality of their intersection. Using this general formula,
we can accurately compute the size of the union of multiple sets
without double-counting the intersecting parts.

3.4 Sensitivity in Differential Privacy
Differential privacy is a method that protects privacy by adding
noise to query results For a function or query, its sensitivity [8] is
defined as the maximum change in the function’s output when an
individual is added to or removed from the dataset. In other words,
sensitivity measures how much the inclusion or exclusion of a
single individual in the dataset affects the query result. A lower
sensitivity indicates a lower risk of privacy loss for individuals
in the dataset. Let 𝐹 be a function that maps a data set to a
real-valued vector of fixed length. For all neighboring data sets
D and D′, the sensitivity of the function 𝐹 can be defined as
𝑆 (𝐹) = maxD,D′ ∥𝐹 (D) − 𝐹 (D′)∥1, where ∥ · ∥1 denotes the 𝐿1
norm.

3.5 Laplace Mechanism in Differential Privacy
The Laplace mechanism [8] is a widely used technique in the field
of differential privacy. The basic idea of the Laplace mechanism is
to obfuscate query results by introducing noise from the Laplace
distribution. Given a query function 𝐹 with an output range of
real numbers R, the Laplace mechanism ensures that the function
satisfies 𝜖-differential privacy by adding noise to 𝐹 (D), resulting
in

𝐹 (D) = 𝐹 (D) + Lap
(
𝑆 (𝐹)
𝜖

)
,

where 𝐹 (D) is the noisy query result, Lap
(
𝑆 (𝐹)
𝜖

)
denotes a

Laplace distribution with a mean of 0 and a scale parameter of
𝑆 (𝐹)
𝜖 , and 𝑆 (𝐹) is the sensitivity of the query function 𝐹 , which

represents the maximum change in the function’s output due to
a single record change in the database.

The Laplace distribution is a double exponential distribution
with a probability density function given by

Lap(𝑥 |𝜇, 𝑏) = 1
2𝑏 exp

(
− |𝑥 − 𝜇 |

𝑏

)
,

where 𝜇 is the location parameter (usually set to 0) and 𝑏 is the
scale parameter. In the Laplace mechanism, the scale parameter
𝑏 of the noise is inversely controlled by the privacy budget 𝜖 .

3.6 Composition Properties in Differential
Privacy

To ensure data privacy in multiple queries and various appli-
cation scenarios, the computation and management of privacy
loss become a key issue in the study of differential privacy. The
sequential composition property and the parallel composition
property [8] of differential privacy are two important theoretical
foundations that describe how to compute the total privacy loss
under different query conditions.

The sequential composition property states that if multiple
differential privacy mechanisms are applied sequentially to the
same dataset, the total privacy loss is the sum of the privacy
losses of each mechanism. Specifically, if there are 𝑘 differential
privacy mechanisms𝑀1, 𝑀2, . . . , 𝑀𝑘 , each of which satisfies 𝜖𝑖 -
differential privacy, then applying these mechanisms sequentially
to the same dataset will result in an overall mechanism𝑀 that
satisfies

∑𝑘
𝑖=1 𝜖𝑖 differential privacy.

The parallel composition property, on the other hand, states
that whenmultiple differential privacymechanisms are applied to
disjoint subsets of a dataset, the total privacy loss is determined by
the maximum privacy loss among these mechanisms. Specifically,
if there are 𝑘 differential privacy mechanisms 𝑀1, 𝑀2, . . . , 𝑀𝑘 ,

578

each applied to disjoint subsets of the data and each satisfying
𝜖𝑖 differential privacy, then the parallel composition of these
mechanisms 𝑀 satisfies𝑚𝑎𝑥 (𝜖1, 𝜖2, . . . , 𝜖𝑘) differential privacy.
This is particularly useful for distributed computing or multi-
party data sharing.

3.7 Differential Privacy in Multi-Relation
Multi-Query

We employ differential privacy to protect personal privacy within
a private multi-relational database, considering the constraint
relations of foreign keys to define neighboring database instances.
We designate the relation 𝑅𝑃 as the primary privacy relation that
requires protection, while any relation that directly or indirectly
references 𝑅𝑃 is considered a secondary privacy relation. Let
D′ be a neighboring database instance of D, and D denote the
set of all possible instances of the database under the 𝑅 mode.
In a private multi-relational database, D and D′ are considered
neighboring if and only if they differ only by a set of tuples that
refer to the same 𝑡𝑃 ∈ D(𝑅𝑃). This relationship is denoted as
D ∼ D′.

For a random algorithm𝑀 , 𝑃𝑚 represents the set of all possible
values that algorithm𝑀 can produce. For any pair of neighboring
datasets D and D′, and any subset 𝑆𝑚 of 𝑃𝑚 , if the algorithm𝑀

satisfies the condition

Pr [𝑀 (D) ∈ 𝑆𝑚] ≤ 𝑒𝜖 Pr
[
𝑀

(
D′) ∈ 𝑆𝑚

]
,

the algorithm 𝑀 is said to satisfy 𝜀-differential privacy, where
𝜀 is the privacy budget. A fundamental concept for achieving
differential privacy is sensitivity. The global sensitivity 𝐺𝑆𝑄 can
be defined as the maximum change of a query considering any
database instance. The global sensitivity 𝐺𝑆𝑄 is then defined as
follows:

𝐺𝑆𝑄 = max
D∈D,D′∈D,D∼D′

��𝑄 (D) −𝑄
(
D′) �� .

The local sensitivity 𝐿𝑆𝑄 defines the maximum change of a query
considering a particular database instance. The local sensitivity
𝐿𝑆𝑄 is then defined as follows:

𝐿𝑆𝑄 = max
D′∈D,D∼D′

��𝑄 (D) −𝑄
(
D′) �� .

The downward local sensitivity defines the maximum change
amount of the query by considering a particular database instance
and requiring that neighboring database instances be contained in
the particular database instance. The downward local sensitivity
𝐷𝐿𝑆𝑄 is then defined as follows:

𝐷𝐿𝑆𝑄 = max
D′⊆D,D∼D′

��𝑄 (D) −𝑄
(
D′) �� .

For a function 𝐹 whose outputs are real, differential privacy
can be achieved by the Laplace mechanism [8]. This mechanism
works by adding Laplace noise to the true outputs. This paper
addresses multi-query scenarios. In the case of a set of queries
represented as Q = {𝑄1, 𝑄2, . . . , 𝑄𝑘 }, ensuring differential pri-
vacy requires dividing the privacy budget 𝜀 into 𝜀1, 𝜀2, . . . , 𝜀𝑘 , and
adding Laplace noise with a scale 𝜆𝑖 = 𝑆 (𝑄𝑖) /𝜀𝑖 to the true result
for each query 𝑄𝑖 . By utilizing the composition properties [8]
of differential privacy, the set of queries collectively maintains
privacy guarantees. However, it should be noted that there is an
inverse relationship between the privacy budget and the noise
scale. As the privacy budget decreases, a larger noise scale may
be necessary to achieve the same level of privacy protection,

which in turn reduces the accuracy of the query results. There-
fore, our primary focus is to effectively mitigate the consequences
of privacy budget division.

4 VIEW GENERATION FOR
MULTI-RELATION MULTI-QUERYWITH
DIFFERENTIAL PRIVACY

To ensure a fixed privacy loss across all queries, a reasonable
approach is to generate private synopses from multiple views
over the base relations [20]. These synopses are tuned to have
low error rates on a representative query workload. The sys-
tem achieves this by answering queries on the private synopses,
thereby minimizing additional privacy loss. However, the exist-
ing view generation-based approach faces difficulties in effec-
tively managing correlated nested queries, non-correlated nested
queries, and derived table queries. Within these queries, sub-
queries may include filter conditions. As these filter conditions
change, the views are consequently modified, resulting in an
excessive proliferation of views. This, in turn, accelerates the con-
sumption of privacy budgets, undermining the effectiveness of
privacy cost reduction. In particular, for correlated nested queries
and non-correlated nested queries, the presence of subqueries
leads to the problem of linear growth in the number of views.
For derived table queries, the same problem of linear growth in
the number of views can occur if there are filter conditions in
the subquery.

5 QUERY REWRITING BASED VIEW
GENERATION

To address the above issue, we propose a view generation ap-
proach based on query rewriting. The main idea of our solution
is to transform the filter conditions of the subqueries into the
filter conditions of the main query through query rewriting. And
then, they can be eliminated without affecting the attributes that
the view must contain. This will avoid a linear increase in the
number of views caused by the changes in the subqueries filter
conditions and decrease the privacy budget consumption. Note
that in previous multi-relation queries, the filter conditions were
placed in the main query. To reduce the number of views, we
have removed the filter conditions. However, the current filter
conditions are in subqueries. If we remove the filter conditions
directly as before, the multi-relation query will degrade to a
single-relation query, which is not desirable. For example, the
following query, originally a multi-relation query, will become
a single-relation query “SELECT Agg FROM customer” after re-
moving the filter conditions of the subqueries. Then, the attribute
o_custkey will no longer be contained in the generated view.

SELECT Agg FROM customer

WHERE 8 >

(SELECT Agg FROM orders WHERE o_custkey=c_custkey);

The concept of equivalent rewriting of correlated nested queries
has been a popular research direction. However, previous work [5,
11, 18, 27, 33] has primarily focused on optimizing query effi-
ciency. In contrast, we have different goals. We need to consider
how to reduce the number of generated views under differential
privacy conditions to improve query result accuracy. Addition-
ally, there is limited research on equivalent query rewriting for
other types of queries, such as non-correlated nested queries
and derived table queries. Thus, we need to design novel query
rewriting methods. Throughout this process, we need to consider

579

the equivalence of queries before and after rewriting, compatibil-
ity across different database platforms, and differential privacy
constraints.

To accomplish this, we first classify the queries into three cat-
egories: correlated nested queries, non-correlated nested queries,
and derived table queries, based on the position and dependen-
cies of the subqueries. We then further categorize these three
types of queries according to predicates and other features, and
we formalize all queries to ensure structural and syntactical con-
sistency. This approach effectively prevents compatibility issues
that might arise due to syntax differences across various database
types during the process of equivalent query rewriting. Next, we
conduct a comprehensive analysis of the logic, semantics, and
potential edge cases of the queries, applying techniques such
as algebraic transformations, semantic analysis, and query split-
ting and merging for query rewriting. Additionally, to facilitate
understanding, we present these rewriting rules in increasing
order of complexity. For instance, rewriting nested queries is
typically more complex and often requires converting them into
derived table form first, followed by moving the query conditions
from the subquery to the main query. Therefore, we begin by
introducing the rewriting rules for derived table queries and then
delve deeper into the rewriting methods for nested queries.

Fig. 1 illustrates the query classification and basic process
of query rewriting. For example, based on predicates, we can
divide the correlated nested query into existence detection cor-
related nested query, set correlated nested query, in predicate
correlated nested query, and comparison correlated nested query.
Furthermore, we can divide set correlated nested queries based
on set operations. Firstly, it is observed that alterations to the
filter conditions of the subqueries incorporated in the main query
cause a linear rise in the number of views. In order to tackle this
concern, we proceed to rephrase the nested queries as derived
table queries and chained queries. Subsequently, it is additionally
discovered that modifications to the filter conditions within the
subqueries similarly lead to a linear increase in the number of
views. Consequently, we further refine the derived table queries,
primarily by pushing down predicates and merging subqueries.
In Fig. 1, the red number indicates the chapter in which we will
introduce the query rewriting rules. For derived tables and nested
queries, we first parse the query using sqlparse to generate an
Abstract Syntax Tree (AST). Then, from the AST, we extract
features and perform matching to accurately identify the query
type. After that, through a series of predefined rewriting rules,
we perform query equivalence rewritings while ensuring equiv-
alence, compatibility, and compliance with differential privacy
requirements.

In our solution, the rewriting process strictly adheres to the
constraints of equivalence, compatibility, and differential privacy
to ensure the validity and reliability of the final results. Firstly,
regarding equivalence, we ensure that every transformation from
the initial query to the final rewritten query is strictly equivalent,
thereby maintaining overall semantic consistency. To this end,
the paper provides detailed explanations for each rewriting rule
to help readers fully understand the process and the rationale
behind maintaining equivalence. Secondly, with respect to com-
patibility, we standardize and transform the rewriting process
into algebraic expressions. By adopting this algebraic approach,
we can maintain consistent transformation logic across different
database systems, ensuring the scalability and portability of the
solution. Finally, tomeet differential privacy constraints, we avoid

Existence Detection 7.4

Set 7.3

IN Predicate 7.2

Comparison 7.1

＜ or ≤

＞ or ≥

＝ or ≠

＜ or ≤

＞ or ≥

＝ or ≠

Existence Detection 8.4

Set 8.3

IN Predicate 8.2

Comparison 8.1

WITH 6.4

FROM 6.1, 6.2, 6.3

＜ or ≤

＞ or ≥

＝ or ≠

＜ or ≤

＞ or ≥

＝ or ≠

Chained Query

Derived Table
Query

Correlated
 Nested Query

Non-Correlated
Nested Query

Query Type

Figure 1: Query classification and basic process of query
rewriting.

generating any standalone queries throughout the rewriting pro-
cess, thereby preventing any potential impact on the differential
privacy mechanism. At the same time, we rigorously validate the
overall privacy guarantees of the approach in accordance with
the formal definition of differential privacy.

6 QUERY REWRITING FOR DERIVED TABLE
QUERIES

A derived table query is a type of SQL query that includes a
SELECT statement within another SELECT statement. The inner
SELECT statement, also referred to as the subquery, is used to
retrieve a set of results that are then used in the outer SELECT
statement. The main goal of rewriting the derived table queries is
to push down predicates, eliminate inner filter conditions contain-
ing OR types, and merge subqueries. In the following sections,
we will explain how to handle various types of derived table
queries. Firstly, we will explain how to rewrite FROM derived ta-
ble queries in general. Next, we will explore methods for handling
cases where multiple subqueries and OR-type filter conditions are
present in FROM derived table queries. Finally, we will discuss
how to rewrite WITH derived table queries.

6.1 FROM Derived Table Query Rewriting
“From” derived table queries involve placing a subquery within
the “from” clause. In these queries, we use the symbol ⊗ for a
generic join operation, 𝐷 to represent a relation in the subquery
of a derived table,𝑊 for a “where” filter condition, and 𝐻 for a
“having” filter condition. Additionally, we have 𝐺𝑔

𝑓
for a group

aggregation with a “group by” clause, where 𝑔 represents the
grouped column and 𝑓 denotes the aggregation function. Sim-
ilarly, 𝐺1

𝑓
represents a group aggregation without a “group by”

clause. The symbol 𝜎𝜙 denotes a filter with 𝜙 as the filter condi-
tion, and 𝜙.𝑎𝑡 denotes the attribute in the comparison condition.
Finally, 𝑇 represents either a combination of multiple relations
or a single relation.

𝑇 ⊗
(
𝜎𝜙𝐺

𝑔

𝑓
𝐷

)
= 𝜎𝜙

(
𝑇 ⊗ 𝐺

𝑔

𝑓
𝐷

)
, if

{
𝐺
𝑔

𝑓
= ∅

}
(1)

𝑇 ⊗
(
𝑊𝜙𝐺

𝑔

𝑓
𝐷

)
=𝑊𝜙

(
𝑇 ⊗𝐺

𝑔

𝑓
𝐷

)
, if

{(
𝐺

𝑔

𝑓
≠ ∅

)
&(𝜙 · 𝑎𝑡 = 𝑔)

}
(2)

𝑇 ⊗ (𝐻𝜙𝐺
𝑔

𝑓
D) = (𝐻 ⇒𝑊)𝜙 (𝑇 ⊗ 𝐺

𝑔

𝑓
𝐷), if {𝐺𝑔

𝑓
≠ ∅} (3)

580

SELECT Agg

FROM customer,

(SELECT o_custkey, Agg AS agg FROM orders

GROUP BY o_custkey HAVING Agg > 100) orders1

WHERE c_custkey = orders1.o_custkey;

SELECT Agg

FROM customer,

(SELECT o_custkey, Agg AS agg FROM orders

GROUP BY o_custkey) orders1

WHERE c_custkey = orders1.o_custkey

AND orders1.agg > 100;

Root

Agg

TableScan
customer

Agg

Group By

TableScan
orders

Join
c_custkey=o_cuskey

o_custkey

Filter
having

1
>

Agg 100

Root

Filter
where

>

table.agg 100

Agg

TableScan
customer

Agg

Group By

TableScan
orders

table

Join
c_custkey=o_cuskey

o_custkey

table

1

2

2
3

3

1: Modify the filter predicate 2: Move the filter condition 3: Adjust the subquery

Original Query Rewriting Query

Figure 2: Example of FROM derived table query rewriting.

Now, let’s go over the rules for handling “from” derived table
queries:
• Rule (1) deals with derived table subqueries that don’t have a
“group by” predicate. The rule states that if there is no grouping
involved in the subquery, we can move the filter conditions
from the subquery to the main query. Since the filter and join
operations are commutative, i.e., the filter 𝜎𝜙 in 𝑇 ⊗ 𝐷 can be
performed either before or after the join, Rule (1) is equivalent.

• Rule (2) explains how to handle derived table queries with both
a “group by” predicate and a “where” filter condition in the
subquery. In this case, we can move the filter conditions to
the main query. Since the filter condition 𝜙 is on the grouping
column 𝑔, applying the filter condition after the grouping is
equivalent to applying it after the join. Thus, Rule (2) is equiv-
alent. If both “where” and “having” filter conditions exist in
the subquery, we apply Rule (1) first, followed by Rule (2).

• Rule (3) addresses derived table queries with a “group by” pred-
icate and a “having” filter condition in the subquery. If the sub-
query involves grouping and the filter condition is of type “hav-
ing,” we can move the “having” filter condition to the “where”
filter condition in the main query. Since the filter condition is
applied to the aggregated results after grouping, applying it to
the entire result set after grouping is equivalent to applying it
after the join. That is, applying the “having” filter condition
after grouping is equivalent to converting the “having” filter
condition to a “where” filter condition and applying it after the
join. Thus, Rule (3) is equivalent. Fig. 2 shows an example of
rewriting a FROM derived table query using Rule (3).

6.2 FROM Derived Table Query Rewriting
with Multiple Subqueries

Handling “from” derived table queries with multiple subqueries
can lead to the generation of numerous temporary derived tables,
resulting in high time and space complexity. To address this, we
merge subqueries to reduce complexity.

The solution involves applying the rewrite rules to multiple
subqueries within the “from” derived table query. There are two
types of “from” derived table queries based on the presence or
absence of a GROUP BY clause in the subquery.

Rule (4) handles “from” derived table querieswith aGROUP BY
clause. If multiple derived table subqueries have the same struc-
ture but different aggregation functions, they can be merged.
According to the properties of grouping and aggregation in re-
lational algebra, if multiple subqueries have the same grouping
columns, we can combine multiple aggregate functions into a
single grouping and aggregation operation. This means that per-
formingmultiple grouping and aggregation operations separately
on the relation 𝐷 is equivalent to performing a single grouping

and aggregation operation with multiple aggregate functions.
Hence, Rule (4) is equivalent.

𝑇 ⊗ 𝐺
𝑔

𝑓1
𝐷 ⊗ 𝐺

𝑔

𝑓2
𝐷 = 𝑇 ⊗ 𝐺

𝑔

𝑠𝑒𝑡 (𝑓1,𝑓2)𝐷,

if
{(
𝐺
𝑔

𝑓1
≠ ∅

)
&
(
𝐺
𝑔

𝑓2
≠ ∅

)} (4)

Rule (5) handles “from” derived table querieswithout a GROUP BY
clause. If multiple derived table subqueries have the same struc-
ture but different projection attributes, they can be merged. Ac-
cording to the properties of projection in relational algebra, if
multiple subqueries have the same projection operation, we can
combine multiple projection attributes into a single projection
operation. This means that performing multiple projections sepa-
rately on the relation 𝐷 is equivalent to performing a single pro-
jection with multiple sets of projection attributes. Thus, Rule (5)
is equivalent.

𝑇 ⊗ 𝐺
𝑔

𝑓
𝜋1𝐷 ⊗ 𝐺

𝑔

𝑓
𝜋2𝐷 = 𝑇 ⊗ 𝐺

𝑔

𝑓
𝑠𝑒𝑡 (𝜋1, 𝜋2)𝐷, if

{
𝐺
𝑔

𝑓
= ∅

}
(5)

For complex “from” derived table queries with both types
of subqueries, we apply Rules (4) and (5) recursively until all
subqueries are merged.

6.3 FROM Derived Table Query Rewriting
Including OR-Type Filter Conditions

After rewriting the “from” derived table query, we may encounter
OR-type filter conditions in the main query. Within the con-
straints of the differential privacy framework, for queries con-
taining only AND-type filter conditions, we can directly compute
statistical results to answer the user’s query. However, when the
filter conditions include OR-type queries, the direct computation
of statistical results presents some difficulties.

Our main idea is to first rewrite the query using the distribu-
tive law so that all inner filter conditions use 𝐴𝑁𝐷 , while the
outer filter conditions use 𝑂𝑅. Specifically, we expand the 𝑂𝑅
conditions in the original query by converting them into multiple
subqueries that contain only 𝐴𝑁𝐷 conditions, and then combine
these subqueries using 𝑂𝑅. According to the distributive law in
logical algebra, these two filter conditions are equivalent, and
therefore the filtering results applied to the relation 𝐷 are also
equivalent. Thus, Rule (6) is equivalent.

𝑊(𝜙1𝑂𝑅𝜙2)𝐴𝑁𝐷𝜙3𝐷 =𝑊(𝜙1𝐴𝑁𝐷𝜙3)𝑂𝑅 (𝜙2𝐴𝑁𝐷𝜙3)𝐷 (6)

In query rewriting, we need to use the principle of inclusion-
exclusion to split a query into multiple queries. The principle
of inclusion-exclusion is a method often used in counting prob-
lems to help us accurately calculate the number of elements that
satisfy certain conditions. According to the principle of inclusion-
exclusion, to calculate the number of elements that satisfy mul-
tiple conditions, we can calculate the number of elements that
satisfy each condition separately, then subtract the number of
elements that satisfy two conditions simultaneously, and so on.
According to the principle of inclusion-exclusion, the filtering
results of the two expressions applied to the relation 𝐷 are equiv-
alent. Thus, Rule (7) is equivalent.

𝑊𝜙1𝑂𝑅𝜙2𝐷 =𝑊𝜙1𝐷 +𝑊𝜙2𝐷 −𝑊𝜙1𝐴𝑁𝐷𝜙2𝐷 (7)
Using this method, we can convert a complex 𝑂𝑅 query into

several simple𝐴𝑁𝐷 queries, and then use the principle of inclusion-
exclusion to combine the statistical results of these queries.

581

6.4 WITH Derived Table Query Rewriting
WITH derived table queries refer to queries where the subquery
exists within the WITH clause. Let𝑊 (𝐷) represent the presence
of a temporarily generated derived table within the WITH clause.
Rule (8) describes the handling method for derived table queries.
The main idea of Rule (8) is that if a derived table subquery
exists in the WITH clause, it can be transferred to the FROM
clause.Whether using theWITH clause or performing a subquery
directly in the FROM clause, the result is to select tuples from the
relationship 𝐷 that satisfy the condition𝑊 and join them with
𝑇 . The derived tables produced by both methods are logically
equivalent, so their join operations should also be equivalent.
Thus, Rule (8) is equivalent.

𝑇 ⊗ W(𝐷) = 𝑇 ⊗ 𝐷 (8)

7 QUERY REWRITING FOR CORRELATED
NESTED QUERIES

Correlated nested queries are a type of SQL query where the
inner subquery references a column from the outer query. The
correlation between the inner and outer queries is established
through the use of a correlation variable or a shared column.
The main goal of rewriting correlated nested queries is to re-
move the correlation and eliminate subqueries in the WHERE
clause. This approach addresses the issue of linear growth in the
number of views, resulting in improved query efficiency. In the
following sections, we will explain how to handle various types
of correlated nested queries.

7.1 Comparison Correlated Nested Query
Rewriting

Comparison correlated nested queries involve filter conditions in
the main query that include correlated subqueries and compari-
son operators. To express correlated nested queries using logical
algebraic expressions, we introduce the A𝑥1

𝑥2 operator. This oper-
ator has two parameters: 𝑥1 represents the join relation between
the subquery and the main query, and 𝑥2 represents the filter
condition involving the subquery in the main query.

Let ⊲⊳ represent a natural join, and⋉ represent a left outer join.
Let 𝑐 denote a comparison filter condition or a comparison join
condition, 𝑐 · 𝑎𝑡 denote the attribute in the comparison condition,
𝑐 · 𝑠𝑞 denote the subquery in the comparison condition, and 𝑐𝑜
denote a comparison condition of type “coalesce”.

Rule (9) outlines the approach for handling comparison corre-
lated nested queries. The rule involves performing an aggregation
operation on the subquery, followed by a join between the ag-
gregated subquery and the main query, and finally adding filter
conditions to the main query.

Since there are no occurrences of null value tuples and the
order of aggregation and join operations remains unchanged,
the comparison condition 𝑐2 is ultimately applied to the same
intermediate result. Thus, Rule (9) is equivalent.

𝑇1A
𝑐1
𝑐2

(
𝐺1
𝑓
𝑇2
)
= 𝜎𝑐2

(
𝑇1 ⊲⊳𝑐1

(
𝐺
𝑐2 ·𝑎𝑡
𝑓

𝑇2
))

(9)

When using Rule (9) to handle comparison correlated nested
queries, we also need to consider the issue of rewrite traps that
may exist. Rewrite trap refers to a situation where the set of
relational join keys involved in the main query is larger than the
subquery, and the filter condition involving the subquery in the

Root

Filter

TableScan
customer

Outer Query

>

10000000 Subquery

Filter

TableScan
orders

Inner Query

ScalarAgg

=

c_custkey o_custkey

SELECT Agg

FROM customer

WHERE 10000000 >

(SELECT Agg FROM orders

WHERE o_custkey = c_custkey);

SELECT Agg

FROM customer LEFT JOIN

(SELECT o_custkey, Agg AS agg

FROM orders GROUP BY o_custkey) table

ON customer.c_custkey = table.o_custkey

WHERE 10000000 > COALESCE(table.agg, 0);

Agg
Root

Filter >

10000000
Coalesce
table.agg, 0

Agg

TableScan
customer

Agg

Group By

TableScan
orders

table

Left Join
c_custkey=o_cuskey

o_custkey

Original Query Rewriting Query

1
1

2

2

3
3

1: Perform group by operation
on correlated subquery

2: Perform an outer join between the
aggregated subquery and the main query

3: Modify the filter
condition of the main query

Figure 3: Example of comparison correlated nested query
rewriting.

main query contains 0. The root cause of the rewrite trap is the
failure to properly handle the occurrence of null value tuples.

Rule (10) describes how to handle correlated nested queries
correctly, accounting for both queries with and without rewrite
traps. The approach involves performing an aggregation oper-
ation on the subquery, followed by an outer join between the
aggregated subquery and the main query, and finally adding the
“coalesce” filter condition to themain query. Since the aggregation
and join operations in the left expression of Rule (10) effectively
handle null value tuples, and the right expression ensures correct
handling even if the tuples are empty through the left outer join
and “coalesce”. Thus, Rule (10) is equivalent regardless of the
presence of rewrite traps.

By applying Rule (10), we can rewrite the comparison corre-
lated nested query as a derived table query. For example, Fig. 3
shows a comparison correlated nested query rewriting process.

𝑇1A
𝑐1
𝑐2

(
𝐺1
𝑓
𝑇2
)
= 𝜎𝑐2⇒𝑐𝑜2

(
𝑇1 ⋉𝑐1

(
𝐺
𝑐2 ·𝑎𝑡
𝑓

𝑇2
))

(10)

7.2 IN Predicate Correlated Nested Query
Rewriting

An “in” predicate correlated nested query refers to filter condi-
tions in the main query that involve correlated subqueries using
“in” and “not in” predicates. Let 𝑖 represent an “in” predicate fil-
ter condition or “in” predicate join condition. Let 𝜋𝑇 denote a
projection operation on relation 𝑇 . Let (𝜋𝑇) · 𝑎𝑡 represent the
set of attributes resulting from the projection operation on re-
lation 𝑇 . Let 𝑇 · 𝑘𝑦 represent the primary key of relation 𝑇 . Let
𝑖 ⇒= represent the conversion of the “in” predicate to the equals
operator.

For rewriting “in” predicate correlated nested queries, one
approach based on distinct rewriting is to join the subquery
with the main query, add the filter condition on the main query,
and perform a distinct operation on the entire query. However,
publishing non-duplicate statistics for a set of queries under
differential privacy is a challenging problem with no current
solution. Thus, the distinct operation should be avoided when
rewriting queries.

Our solution is to address the non-duplicate statistics problem
by performing group by operations on subqueries. Rule (11) de-
scribes how to handle “in” predicate correlated nested queries.
The rule involves performing a group by operation on the sub-
query, joining the grouped subquery with the main query, and
adding the filter condition on the main query. The purpose of
the group by operation is to prevent duplicate values after the
join operation, making the two queries are no longer equivalent.

582

Table 1: Operator conversion rules.

= <> < <= > >=
ANY IN — <MAX <=MAX >MIN >=MIN
ALL — NOT IN <MIN <=MIN >MAX >=MAX

Since the projection and grouping operations select the same spe-
cific columns, 𝑖1 and = are logically equivalent filter conditions
under the grouping operation. Thus, Rule (11) is equivalent.

𝑇1A
𝑐1
𝑖1

(𝜋𝑇2) = 𝜎𝑖1⇒=

(
𝑇1 ⊲⊳𝑐1

(
𝐺
𝑇2 ·𝑘𝑦,(𝜋𝑇2) ·𝑎𝑡
𝑇2 ·𝑘𝑦,(𝜋𝑇2) ·𝑎𝑡𝑇2

))
(11)

7.3 Set Correlated Nested Query Rewriting
A “set” correlated nested query refers to filter conditions in
the main query involving correlated subqueries using “ANY”,
“SOME”, and “ALL” operators. Let 𝑠 represent a set filter condi-
tion or set join condition. Please refer to Table 1 for the specific
conversion correspondence. Rule 12 outlines how to handle set
correlated nested queries. The rule involves adding an aggre-
gate function to the subquery and converting the set operators
in the subquery to comparison operators or “in” predicate op-
erators. The conversion rules for set operators to comparison
operators or “in” predicate operators are provided in Table 1.
In Rule (12), the left expression uses a projection operation to
select certain columns from the relation 𝑇2, creates a join with
the relation𝑇1 based on the comparison condition 𝑐1, and applies
the SET predicate 𝑠1 as a filter condition. The right expression
uses a grouping operation to select certain columns from the
relation 𝑇2, creates a join with the relation 𝑇1 based on the com-
parison condition 𝑐1, and applies (𝑐2 | 𝑖1) as a filter condition.
The condition 𝑠1 ⇒ (𝑐2 | 𝑖1) ensures that only those tuples that
satisfy the SET predicate 𝑠1 are retained. Since the projection
and grouping operations select the same specific columns, 𝑠1 and
(𝑐2 | 𝑖1) are logically equivalent filter conditions. Thus, Rule (12)
is equivalent.

𝑇1A
𝑐1
𝑠1 (𝜋𝑇2) = 𝑇1A

𝑐1
𝑠1⇒(𝑐2 |𝑖1)

(
𝐺1
(𝜋𝑇2) ·𝑎𝑡𝑇2

)
(12)

7.4 Existence Detection Correlated Nested
Query Rewriting

Existence detection correlated nested query means that the filter
conditions that involve correlated subqueries in the main query
are EXISTS and NOT EXISTS. Let 𝑒 represent the existence detec-
tion filter condition or existence detection join condition. Among
them, 𝑒𝑥 refers specifically to the EXISTS filter or join condition,
and 𝑛𝑒𝑥 refers specifically to the NOT EXISTS filter or join con-
dition. Let 𝑐𝑛 represent an aggregate function of type “count”.
Rules (13) and (14) together describe how to handle existence
detection correlated nested queries. The main idea of Rules (13)
and (14) is to first add an aggregation function to the subquery,
and then convert the existence detection filter conditions into
comparison filter conditions according to the semantics of the
query. In Rule (13), the EXISTS semantics of the left expression
checks whether there is at least one tuple that satisfies the condi-
tion. The right expression achieves the same effect by checking
whether the count of grouped tuples is greater than or equal to
1. Thus, the expressions on the left and right sides of Rule (13)
have the same semantics and are equivalent. In Rule (14), the
NOT EXISTS semantics of the left expression checks that no
tuples satisfy the condition. The right expression achieves the

same effect by checking whether the count of grouped tuples is
less than 1. Thus, the expressions on the left and right sides of
Rule (14) have the same semantics and are equivalent.

𝑇1A
𝑐1
𝑒𝑥1𝑇2 = 𝑇1A

𝑐1
𝑒𝑥1⇒𝑐2 ·𝑠𝑞≥1

(
𝐺1
𝑐𝑛𝑇2

)
(13)

𝑇1A
𝑐1
𝑛𝑒𝑥1𝑇2 = 𝑇1A

𝑐1
𝑛𝑒𝑥1⇒𝑐2 ·𝑠𝑞<1

(
𝐺1
𝑐𝑛𝑇2

)
(14)

8 QUERY REWRITING FOR
NON-CORRELATED NESTED QUERIES

A non-correlated nested query is a type of SQL query where
the subquery is not directly dependent on the outer query. In
a non-correlated nested query, the subquery can be executed
independently, generating a result set that is then used by the
outer query. Correlated nested queries and non-correlated nested
queries have distinct differences. In summary, correlated nested
queries have a direct dependency on the outer query and are re-
evaluated for each row, while non-correlated nested queries are
independent of the outer query and are executed once, producing
a result that is then used by the outer query. Thus, they have dif-
ferent rewriting rules. The main goal of rewriting non-correlated
nested queries is to remove the subqueries from the WHERE
clause, effectively addressing the issue of linear growth in the
number of views. Below, we will introduce the rewriting rules for
non-correlated nested queries. On one hand, this aims to demon-
strate the approach for rewriting non-correlated nested queries.
On the other hand, it facilitates understanding the differences
between the rewriting rules for correlated nested queries.

8.1 Comparison Non-Correlated Nested Query
Rewriting

A comparison non-correlated nested query refers to filter con-
ditions in the main query involving non-correlated subqueries
using comparison operators. To express non-correlated nested
queries using logical algebraic expressions, we introduce the
operator B𝑥 , where 𝑥 represents the filter conditions involving
subqueries in the main query. Let → denote the sequential ex-
ecution of chained queries. Rule (15) outlines how to handle
comparison non-correlated nested queries.

The main idea of Rule (15) is to assign the subquery to a vari-
able, replace the subquery in the main query with the assigned
variable, and then execute the subquery and the main query se-
quentially to obtain the query result. The query resulting from
splitting and combining the comparison non-correlated nested
query using Rule (15) is called a chained query. In cases where
multiple nested relationships exist between the subqueries and
the main query, the principle is to build the chained query from
the inside out, with the result of the entire chained query being
the result of the outermost query in the chain. For subsequent
processing of chained queries, each query in the chain can be
treated as an independent query. These independent queries can
be processed in the same way as normal queries.

In the left and right expressions of Rule (15), the subquery
𝐺1
𝑓
𝑇2 represents the aggregation operation on the relation 𝑇2,

resulting in the same execution result. In the left expression,
the relation 𝑇1 uses the comparison condition 𝑐1 to filter the
subquery results. In the right expression, the relationship 𝑇1
uses the comparison condition 𝑐1 to filter the variable 𝑣 . Because
the variable 𝑣 is assigned the result of the subquery, the filter
condition in the left expression is equivalent to the filter condition

583

in the right expression. In addition, the chained execution order
in the right expression ensures the same execution order as in
the left expression. Thus, Rule (15) is equivalent.

𝑇1B𝑐1
(
𝐺1
𝑓
𝑇2
)
=

((
𝑣 := 𝐺1

𝑓
𝑇2
)
→

(
𝜎𝑐1 ·𝑠𝑞:=𝑣𝑇1

))
(15)

8.2 IN Predicate Non-Correlated Nested Query
Rewriting

An “in” predicate non-correlated nested query refers to filter con-
ditions in the main query involving non-correlated subqueries
using “in” and “not in” operators. Let 𝑐𝑛𝑑𝑡 stand for “distinct” non-
repeating count. To maintain the same semantics when rewrit-
ing “in” predicate non-correlated nested queries, we should add
“distinct” parameters in the SELECT clause. However, under dif-
ferential privacy, publishing non-duplicate statistics for a set of
queries is currently unsolved. We discovered that if the ordinary
count and distinct count of the subquery are equal, the ordinary
and distinct aggregate results of the rewritten query are also
equal.

Rule (16) describes how to handle “in” predicate non-correlated
nested queries and the conditions for its application. The rule
converts the non-correlated subquery into a derived table sub-
query, transforms the “in” predicate filter condition into an equal
operator filter condition, and joins the derived table subquery
with the main query. The rule applies when the ordinary count
and distinct count of the subquery are equal. According to the
premise of Rule (16), if the regular count of the subquery 𝐺1

𝑐𝑛𝑇2
and the distinct count 𝐺1

𝑐𝑛𝑑𝑡 (𝜋𝑇2 ·𝑎𝑡)𝑇2 are equal, it means that
there are no duplicate values in 𝑇2. Since there are no duplicate
values in 𝑇2, the equality predicate = and the “in” predicate 𝑖 are
equivalent in this case. Thus, Rule (16) is equivalent.

𝑇1B𝑖𝑇2 = 𝑇1 ⊲⊳𝑖⇒= 𝑇2, if
{(
𝐺1
𝑐𝑛𝑇2

)
=

(
𝐺1
𝑐𝑛𝑑𝑡 (𝜋𝑇2 ·𝑎𝑡)𝑇2

)}
(16)

Rule (17) presents an alternative approach to handling “in”
predicate non-correlated nested queries, along with its limiting
conditions. The rule groups the non-correlated subquery, con-
verts the “in” predicate filter condition into an equal operator
filter condition, and joins the grouped subquery with the main
query. The rule applies when there are no filter conditions in
the non-correlated subquery or when the projection attributes
of the subquery are the same as the filter attributes. According
to the premise of Rule (17), if there are no filter conditions in the
subquery, or if the attributes of the filter conditions are the same
as the projection attributes, this means that the output of the
subquery is determined entirely by its projection attributes. Since
the attributes of the filter conditions and the projection attributes
are consistent, the equality predicate and the “in” predicate are
equivalent in this case. Thus, Rule (17) is equivalent.

𝑇1B𝑖

(
𝜎𝑐1𝑇2

)
= 𝑇1 ⊲⊳𝑖⇒=

(
𝜎𝑐1𝐺

𝜋𝑇2 ·𝑎𝑡
𝜋𝑇2 ·𝑎𝑡

)
𝑇2,

if
{(
𝜎𝑐1 = ∅

)
| (𝑐1 · 𝑎𝑡 = 𝜋𝑇2 · 𝑎𝑡)

} (17)

If there are no filter conditions in the non-correlated subquery
or if the projection attributes of the subquery match the filter
attributes, we use Rule (17) to rewrite the “in” predicate non-
correlated nested query. If the ordinary count and distinct count
of the subquery are equal, we use Rule (16) to rewrite the query.

8.3 Set Non-Correlated Nested Query
Rewriting

Set non-correlated nested query means that the filter conditions
that involve non-correlated subqueries in the main query are
“ANY”, “SOME”, and “ALL”. Rule (18) describes the method for
handling set non-correlated nested queries. The main idea of
Rule (18) is to first add aggregate functions for the non-correlated
subquery, and then convert set operators involving subquery
filter conditions to comparison operators or “in” predicate opera-
tors. For specific conversion correspondence rules, see Table 1.
The main idea of the equivalence proof for Rule (18) is similar to
that of Rule (12).

𝑇1B𝑠1 (𝜋𝑇2) = 𝑇1B𝑠1⇒(𝑐1 |𝑖1)
(
𝐺1
(𝜋𝑇2) ·𝑎𝑡𝑇2

)
(18)

8.4 Existence Detection Non-Correlated
Nested Query Rewriting

Existence detection non-correlated nested query means that the
filter conditions that involve non-correlated subqueries in the
main query are EXISTS and NOT EXISTS. Rules (19) and (20) de-
scribe how to handle existence detection non-correlated nested
queries. The main idea of Rules (19) and (20) is to first add ag-
gregation functions for the non-correlated subquery, and then
convert the existence detection filter conditions involving the
non-correlated subquery into comparison filter conditions ac-
cording to the semantics of the query. The main idea of the
equivalence proof for Rules (19) and (20) is similar to that for
Rules (13) and (14).

𝑇1B𝑒𝑥1𝑇2 = 𝑇1B𝑒𝑥1⇒𝑐2 ·𝑠𝑞≥1
(
𝐺1
𝑐𝑛𝑇2

)
(19)

𝑇1B𝑛𝑒𝑥1𝑇2 = 𝑇1B𝑛𝑒𝑥1⇒𝑐2 ·𝑠𝑞<1
(
𝐺1
𝑐𝑛𝑇2

)
(20)

9 SYSTEM IMPLEMENTATION
As illustrated in Fig. 4, we design a differentially private SQL
query engine, ViewRewrite [6], based on our query rewriting-
based view generation module.

Q , Rp , ɛ

Q2

Q1

Database

Query

Rewriting

Qn

View

Generation

Q1

V1

Vm

View

Publication………

Synopsis

Data

Analyst

Query Rewriting

Compute Query

Query

Result

*

*

*Qn

Q2

Figure 4: System structure.

The engine comprises three modules: query rewriting, view
generation, and view publication. Query rewriting module
rewrites SQL queries according to our specific rules to address
the issue of linear growth in the number of views for correlated
nested queries, non-correlated nested queries, and derived table
queries. View generation module merges similar subqueries

584

to further reduce the number of views generated and improve
solution accuracy, and view publication refers to generating dif-
ferentially private statistical results (i.e., synopsis) for each view.
The process of view generation and view publication is similar
to that described in PrivateSQL [20], with a few modifications.

In particular, in the view publication module, we need to first
determine the truncation threshold of the view to determine
the scale of noise injected into the synopsis. In this work, we
determine the truncation threshold of the view based on the
downward local sensitivity [3] and the sparse vector technique
[8]. Firstly, for a database instance D, calculate the downward
local sensitivity 𝐷𝐿𝑆𝑄 of query 𝑄 . The calculation method for
downward local sensitivity:

𝐷𝐿𝑆𝑄 = max
𝑡𝑝 ∈D(𝑅𝑝)

𝑆𝑄 (D, 𝑡𝑃) ,

𝑆𝑄 (D, 𝑡𝑃) :=
∑︁

𝑞∈ 𝐽 (D)
𝜓 (𝑞)I (𝑞 references 𝑡𝑃) .

Here, 𝑆𝑄 (D, 𝑡𝑃) represents the sensitivity calculation of the tu-
ple 𝑡𝑝 ∈ D

(
𝑅𝑝

)
, I (𝑞 references· 𝑡𝑃) denotes the query 𝑞 ref-

erencing the tuple 𝑡𝑃 , 𝐽 (D) denotes the multidimensional join
relationship,𝜓 (𝑞) represents the type of aggregate query, D rep-
resents the database instance, and 𝑅𝑝 represents the primary
privacy relationship. Then, add Laplace noise [8] with sensi-
tivity 𝐷𝐿𝑆𝑄 and privacy budget 𝜖1 to the original query yields
�̂� (D) = 𝑄 (D) + lap

(
𝐷𝐿𝑆𝑄/𝜖1

)
. Next, for each candidate trun-

cation threshold 𝜏 , calculate 𝑞𝜏 =
𝑄𝜏 (D)−�̂� (D)

𝜏 , where 𝑄𝜏 (D)
denotes the query result with 𝜏 . Finally, use the privacy budget 𝜖2
to find the first 𝑞𝜏 greater than 0 using sparse vector technology
and return the 𝜏 corresponding to 𝑞𝜏 as the truncation threshold.
Privacy guarantee. It is important to highlight that our pro-
posed solution ViewRewrite intelligently allocates the privacy
budget among the generated views and subsequently generates
differentially private synopses based on these views, ensuring
end-to-end differential privacy guarantee. Then, we will provide
a comprehensive proof of the privacy guarantee.

In particular, our solution ViewRewrite comprises four key
stages: query rewriting, view generation, view publication, and
query answering. Notably, only the view publication stage con-
sumes the privacy budget. This stage involves two primary com-
ponents: calculating view truncation thresholds and generating
statistical synopses. By adhering to the principle of sequential
composition, we effectively allocate the privacy budget within
this stage. In the truncation threshold calculation phase, the
sparse vector mechanism is employed to determine appropriate
thresholds, thereby effectively enhancing the solution’s accuracy.
This mechanism incorporates the concept of downward local
sensitivity from R2T [3], making the determination of trunca-
tion thresholds more precise. Since the sparse vector mechanism
must satisfy differential privacy requirements, the computation
process consumes a portion of the privacy budget to ensure
strict adherence to differential privacy constraints throughout
the calculation. In the synopsis generation phase, we apply the
matrix mechanism to process the original statistical results un-
der differential privacy. By introducing Laplace noise, the matrix
mechanism effectively protects the privacy of data subjects while
ensuring the utility of the statistical results. Within the sequential
and parallel combination structures, the matrix mechanism rig-
orously adheres to the constraints of differential privacy, thereby
ensuring that the final published statistical synopsis complies
with differential privacy requirements.

Effectiveness analysis. Throughout the solution, the privacy
budget is consumed when synopses are generated from views.
Our solution transforms the filter conditions of the subqueries
into the filter conditions of the main query through query rewrit-
ing. And then, the filter conditions can be eliminated without
affecting the attributes that the viewmust contain. This will avoid
a linear increase in the number of views caused by the changes
in the subquery filter conditions and decrease the privacy budget
consumption.

10 EXPERIMENTAL EVALUATION
We first evaluate our approach’s performance across various
workloads, and then compare it with PrivateSQL’s performance
on the workloads it supports, to ensure fairness.

10.1 Experimental Setup
Databases.Weevaluate the performance of our approachViewRewrite
using two publicly available datasets, namely TPC-H [32] and
U.S. Census [31]. TPC-H benchmark with a schema consisting of
8 relationships, including Customer, Orders, and Lineitem, etc.
U.S. Census dataset with the following schema: Household and
Person.
Privacy Policy.We allow data owners to choose appropriate pri-
vacy protection policies based on actual situations. For the TPC-
H schema we have chosen Customer, Orders, and Lineitem as
the primary privacy protection relationships for testing. For U.S.
Census schema we have chosen Household as primary privacy
protection relationships for testing.
Privacy Budget. The privacy budget in differential privacy is
a parameter used to quantify the upper limit of privacy loss in
data disclosure. We evaluated the solution with privacy budgets
of 0.5, 1, 2, 4, 8, 16, 32.
Workload. We call a set of queries used for solution testing a
workload. There are 31 workloads available for experimental test-
ing. Among them, 11 are used for overall experimental analysis, 5
for comparative experiments, and 15 for ablation experiments. It
is important to note that these 31 workloads are not derived from
standard benchmark suites (such as TPC-H), as the queries in
existing benchmarks do not meet the specific needs of our experi-
ments. Therefore, we have specially designed these workloads to
better support the objectives of our experiments. The following
will provide a detailed description of these workloads. W1-W30
are used to test the TPC-H database. W1-W5, W6-W10, W11-W15
each contain 750, 1500, 3000, 6000, 12000 queries, respectively.
W16-W20, W20-W25, W25-W30 each contain 200, 400, 800, 1600,
3200 queries, respectively. W1-W10 are used for overall analysis
experiment. W1-W5 are of the count type, while W6-W10 are of
the sum type. Each of W1-W10 includes single-relation queries,
join queries, nested queries, and derived table queries. W11-W15
are used for comparative experiments and belong to the count
type. Each of W11-W15 includes single-relation queries, join
queries without self-join and non-equivalence join, comparison
correlated nested queries without query rewriting traps, non-
correlated nested queries, and derived table queries. W16-W30
are used for the ablation experiment. W16-W20 represent corre-
lated queries, W21-W25 represent non-correlated queries, and
W26-W30 represent derived table queries. W31 is used to test
U.S. Census, containing 3000 queries that include single-relation
queries, join queries, nested queries, and derived table queries.

585

Competitor. We compare our solution with PrivateSQL pro-
posed by Kotsogiannis et al. [20], which is currently the state-
of-the-art solution for answering multi-type aggregate queries
based on differential privacy in multi-relational databases. To
ensure fairness, we chose the W11-W15 workloads supported by
PrivateSQL for the solution comparison. We obtain the source
code of PrivateSQL via email from the authors and test it under
the same workload as ours, rather than through simulation.
Default Settings. By default, with TPC-H as the database, the
privacy budget is 8. For the TPC-H database, we set the size to
10M, and the privacy policy to Orders. The workload for the
overall analysis experiment is W7, and the workload for the
comparison experiment is W12. In the ablation experiment, the
workload used to test the impact of query rewriting on correlated
queries is W17, the workload used to test the impact of query
rewriting on non-correlated queries is W22, and the workload
used to test the impact of query rewriting on derived table queries
is W27. For the U.S. Census database, we set the size to 10M, the
privacy policy to Household, the workload to W31.
Metrics.We use relative error, number of views, synopsis gener-
ation time, and query response time to evaluate the experiments.
For a query 𝑄 , let 𝑦 = 𝑄 (D) be its true answer, and 𝑦 be a
noisy answer, we define the relative error of 𝑦, as Error(𝑦,𝑦) =
|𝑦 − 𝑦 |/max(50, 𝑦).

10.2 Overall Analysis
We conducted evaluations of our solution using various databases,
sizes, privacy policies, and workloads. In Fig. 5a, we observe that
the scheme’s overall relative error decreases as the size of the
database instance increases. This is due to the expanding range
of query results with larger database instances, while the total
amount of noise remains constant. Consequently, the impact of
noise decreases, resulting in a median relative error of less than
0.01 when the database instance is 40M or greater. Fig. 5b illus-
trates the effect of different privacy policies on the overall relative
error of the solution. The Customer privacy policy provides the
highest level of privacy protection, while the Lineitem privacy
strategy has the lowest error. Data publishers should select an
appropriate privacy policy based on their specific circumstances.
In Fig. 5c, we observe that increasing the privacy budget leads
to a decrease in the overall relative error of the solution. When
the privacy budget is 4 or greater, the median relative error of
the solution is less than 0.1. Regarding workloads, Fig. 5d and 5e
show that the relative error of the solution is largely unaffected
by different count types and sum types of workloads. Regardless
of the count or sum types, the solution consistently generates
15 and 14 views, respectively. Under all different workloads, the
median relative error for count and sum types is significantly less
than 0.1. Fig. 5f shows the performance of our approach on the
U.S. Census. It is worth noting that our approach demonstrates
similar performance on both datasets.

10.3 Comparison with PrivateSQL
We compared our solution with PrivateSQL across different data-
base sizes, privacy policies, and workloads. To ensure fairness,
we chose the W11-W15 workloads supported by PrivateSQL for
the solution comparison.

In Fig. 6a, we observe that both our solution and PrivateSQL
exhibit a decreasing overall relative error as the number of data-
base instances increases. However, our solution demonstrates a
faster decrease in relative error compared to PrivateSQL. Across

all different database instances, our solution consistently achieves
significantly lower relative error than PrivateSQL. Fig. 6b demon-
strates that our solution consistently achieves significantly lower
relative error than PrivateSQL under different privacy policies.
Fig. 6c reveals a trend where both our solution and PrivateSQL ex-
perience a decreasing overall relative error as the privacy budget
increases. However, our solution consistently achieves signifi-
cantly lower relative error than PrivateSQL across all different
privacy budgets. Fig. 6d presents the overall relative error distri-
bution of our solution and PrivateSQL under different workloads.
As the number of queries in the workload increases, our solu-
tion maintains a nearly constant overall relative error, while
PrivateSQL exhibits an increasing trend. This behavior arises
because the number of views generated by our solution remains
constant at 14, while PrivateSQL shows a rapid increase, as de-
picted in Fig.6e. Our solution consistently achieves significantly
lower overall relative error than PrivateSQL under all different
workloads. Fig. 6f showcases the synopsis generation time and
total query response time of our solution and PrivateSQL for
different workload sizes. Among them, the synopsis generation
time consists of three parts: query rewriting time, view gener-
ation time, and view publication time. Our solution generates
views with more tuples and attributes compared to PrivateSQL.
Consequently, the query response time of our solution is slightly
higher than that of PrivateSQL. However, the number of views
generated by our solution is always much smaller than that of
PrivateSQL, thereby reducing the synopsis generation time for
our solution. With an increasing number of workload sizes, the
advantage becomes increasingly pronounced. Across all differ-
ent workload sizes, the total time of our solution is always less
than that of PrivateSQL. This is because PrivateSQL typically
generates a separate view for each query, rapidly proliferating
views. In contrast, our solution controls view growth effectively
through query rewriting. Moreover, our query rewriting involves
only equivalence transformations, with negligible computational
overhead compared to query execution.

10.4 Ablation Experiment
We evaluate our solution on nested queries and derived table
queries respectively.We compare the performance of ViewRewrite
and PrivateSQL in terms of relative error, number of views gener-
ated, and time, based on various database sizes, privacy policies,
privacy budgets, and workloads. The performance of the two
solutions on nested queries and derived table queries is broadly
consistent with their performance on all query types. Detailed
experimental data are shown in Table 2.

11 CONCLUSION
This research proposes a query rewriting-based view genera-
tion approach to efficiently handle multi-relation multi-query
while preserving differential privacy. The approach effectively
addresses the challenge of excessive view proliferation by per-
forming equivalent rewriting on nested and derived table queries.
Extensive experiments on real datasets demonstrate the desirable
data utility and minimal computational costs of the proposed so-
lution. The findings highlight the effectiveness of the approach in
achieving privacy preservation while improving result accuracy
and ensuring compatibility across different database platforms.

586

�� ��� ��� ��� 	�� ����

������������

����

����

����

���

��
��
��
��
�
��
��

(a) Database size

	������� ��
��� ������
����������

����

����

����

���

�
��

��
�

��
�

��
��

(b) Relationship

��� � � �
 �	 ��
���

����

����

����

���

�
��
�
��
��
�
��
��

(c) Eps

�
�
�
�
�

�������

����

����

���

	
�
��
��
�
�
��
��

(d) Count-type

�� �� �� �� ���
�������

����

����

���

��
��
��
��
	
��
��

(e) Sum-type

��� � � �
 �	 ��
���

����

����

����

���

�
��
�
��
��
�
��
��

(f) U.S. Census

Figure 5: Relative error of ViewRewrite under different settings.

� �� �� �� 	� ���

������������

����

����

����

���

���

�
��
��
��
��
�
��
��

����������� ����������

(a) Error, database size

�������� ������ ��������

����������

����

����

����

���

���

���

��
�
��
��
�
��
��

����
������ �������	�

(b) Error, relationship

��� � � �
 �	 ��
���

����

����

����

���

���

���
�
��
��
��
��
�
��
��

����������� ���������

(c) Error, eps

��� ��� ��� ��� ���
��������

����

����

���

���

�
��
��
��
��
�
��
��

�����������
�������	

(d) Error, workload

��� ��� ��� ��� ���
��������

�

���

���

���

���

���

���

���

	��

��
��

�
 �

��
��
��
��
��
"
�

�� �� �� �� ��

���

���

���

�
�

�
�

���"��"���� ��!������

(e) View, workload

��� ��� ��� ��� ��	
��������

���

��	

���

��	

���

�
��

��
��

�

��� �
���#��#�� �
��$������������� ���
���#��#�� �
��!��$���������
��"� ����
��$������������� ���
��"� ����
��!��$���������

(f) Time, workload

Figure 6: Results of ViewRewrite and PrivateSQL under different settings.

Table 2: The impact of query rewriting on nested and derived table queries.

Evaluation
metrics

Different
setting

Correlated query Non-correlated query Derived query
ViewRewrite PrivateSQL ViewRewrite PrivateSQL ViewRewrite PrivateSQL

Median
relative
error

Database
size

10M 0.021218 0.986581 0.021009 1.135431 0.029882 3.035412
20M 0.007973 0.696718 0.017655 1.035596 0.019987 2.513428
40M 0.004352 0.448355 0.010665 0.835515 0.009236 2.055838
80M 0.002707 0.248355 0.007910 0.664496 0.005788 1.578090

Relationship
customer 0.181899 26.279078 0.296397 39.851007 0.334546 73.641692
orders 0.021289 0.792546 0.041098 1.235792 0.056836 2.9527641
lineitem 0.005289 0.091567 0.008754 0.124694 0.010296 0.2081002

Eps

1 0.091912 6.111440 0.140001 8.29277 0.189277 15.307424
4 0.039133 1.709608 0.086149 2.087193 0.059709 5.826856
8 0.013172 0.883628 0.025544 1.106706 0.029117 2.913428
16 0.007452 0.442263 0.012992 0.574895 0.016192 0.968714

Workload
size

400 0.021759 0.846582 0.024097 1.278901 0.049293 2.418623
800 0.029236 1.057762 0.028842 2.030648 0.053509 4.450558
1600 0.017365 1.243963 0.025430 2.552517 0.050332 5.759089
3200 0.021732 1.626135 0.026163 3.678376 0.045816 7.771597

Number
of

views

Workload
size

400 4 81 4 87 4 124
800 4 119 4 135 4 185
1600 4 160 4 182 4 273
3200 4 194 4 231 4 357

Synopsis
generation

time
(s)

Workload
size

400 363.79 1378.09 372.07 1406.65 394.67 1479.98
800 462.05 2299.72 472.30 2344.72 497.91 2465.95
1600 696.10 3629.64 711.02 3701.24 747.57 3888.30
3200 1086.67 6549.35 1109.40 6681.34 1168.87 7019.41

Query
response
time
(s)

Workload
size

400 29.50 24.16 30.89 25.63 35.05 28.86
800 58.22 51.30 61.58 53.77 68.89 59.89
1600 113.30 99.68 118.88 103.91 132.06 114.96
3200 233.97 214.25 244.42 223.91 272.48 247.86

Total
time
(s)

Workload
size

400 393.29 1402.25 402.96 1432.29 429.73 1508.85
800 520.28 2351.03 533.88 2398.50 566.80 2525.84
1600 809.40 3729.33 829.90 3805.15 879.64 4003.27
3200 1320.65 6763.61 1353.83 6905.25 1441.36 7267.27

ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments which sig-
nificantly improved this paper. The work was supported by Na-
tional Natural Science Foundation of China under Grant No.
62002203, No. 62072136, No. 62372268, Major Scientific and Tech-
nological Innovation Projects of Shandong Province, China No.

2024CXGC010114, Shandong Provincial Natural Science Founda-
tion, ChinaNo. ZR2020QF045, No. ZR2022LZH013, No. ZR2021LZH007,
Fundamental Research Funds for the Central Universities No.
3072020CFT2402, Young Scholars Program of Shandong Univer-
sity, Department of Science&Technology of Shandong Province
grant No. SYS202201, and Quan Cheng Laboratory grant No.
QCLZD202302.

587

REFERENCES
[1] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bern-
hard Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In
Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017. ACM, 441–459.

[2] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Teleme-
try Data Privately. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA. 3571–3580.

[3] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and AshwinMachanavajjhala. 2023.
R2T: Instance-optimal Truncation for Differentially Private Query Evaluation
with Foreign Keys. SIGMOD Rec. 52, 1 (2023), 115–123.

[4] Wei Dong, Dajun Sun, and Ke Yi. 2023. Better than Composition: How to
Answer Multiple Relational Queries under Differential Privacy. Proc. ACM
Manag. Data 1, 2 (2023), 123:1–123:26.

[5] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (2020), 1206–1220.

[6] Xinglin Du, Peng Tang, Rui Chen, NingWang, ChengyuHu, and Shanqing Guo.
2024. ViewRewrite: A Differentially Private SQL Query Engine for Efficient
Multi-Relation Multi-Query. https://github.com/xinglindu/ViewRewrite

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2006.
Calibrating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptog-
raphy, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings (Lecture Notes in Computer Science), Vol. 3876.
Springer, 265–284.

[8] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of
Differential Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.

[9] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. 2010. Boosting and
Differential Privacy. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE
Computer Society, 51–60.

[10] Juanru Fang,Wei Dong, and Ke Yi. 2022. Shifted Inverse: A General Mechanism
for Monotonic Functions under User Differential Privacy. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, November 7-11, 2022. ACM, 1009–1022.

[11] Philipp Fent, Guido Moerkotte, and Thomas Neumann. 2023. Asymptotically
Better Query Optimization Using Indexed Algebra. Proc. VLDB Endow. 16, 11
(2023), 3018–3030.

[12] Quan Geng and Pramod Viswanath. 2016. The Optimal Noise-Adding Mecha-
nism in Differential Privacy. IEEE Trans. Inf. Theory 62, 2 (2016), 925–951.

[13] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1994. Concrete
Mathematics: A Foundation for Computer Science, 2nd Ed. Addison-Wesley.

[14] Samuel Haney, Ashwin Machanavajjhala, John M. Abowd, Matthew Graham,
Mark Kutzbach, and Lars Vilhuber. 2017. Utility Cost of Formal Privacy for
Releasing National Employer-Employee Statistics. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1339–1354.

[15] Xi He and Shufan Zhang. 2024. Differential Privacy with Fine-Grained Prove-
nance: Opportunities and Challenges. IEEE Data Eng. Bull. 47, 2 (2024), 21–49.

[16] Michael Huth and Mark Dermot Ryan. 2004. Logic in computer science -
modelling and reasoning about systems (2. ed.). Cambridge University Press.

[17] Noah M. Johnson, Joseph P. Near, and Dawn Song. 2018. Towards Practical
Differential Privacy for SQL Queries. Proc. VLDB Endow. 11, 5 (2018), 526–539.

[18] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2023. Correction
to: Data dependencies for query optimization: a survey. VLDB J. 32, 2 (2023),
471.

[19] Kelly Kostopoulou, Pierre Tholoniat, Asaf Cidon, Roxana Geambasu, andMath-
ias Lécuyer. 2023. Turbo: Effective Caching in Differentially-Private Databases.
In Proceedings of the 29th Symposium on Operating Systems Principles, SOSP
2023, Koblenz, Germany, October 23-26, 2023. ACM, 579–594.

[20] Ios Kotsogiannis, Yuchao Tao, Xi He,Maryam Fanaeepour, AshwinMachanava-
jjhala, Michael Hay, and Gerome Miklau. 2019. PrivateSQL: A Differentially
Private SQL Query Engine. Proc. VLDB Endow. 12, 11 (2019), 1371–1384.

[21] Nicolas Küchler, Emanuel Opel, Hidde Lycklama, Alexander Viand, and Anwar
Hithnawi. 2024. Cohere: Managing Differential Privacy in Large Scale Systems.
In IEEE Symposium on Security and Privacy, SP 2024, San Francisco, CA, USA,
May 19-23, 2024. IEEE, 991–1008.

[22] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Ras-
togi. 2015. The matrix mechanism: optimizing linear counting queries under
differential privacy. VLDB J. 24, 6 (2015), 757–781.

[23] Fang Liu. 2019. Generalized Gaussian Mechanism for Differential Privacy.
IEEE Trans. Knowl. Data Eng. 31, 4 (2019), 747–756.

[24] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan. 2009.
Computational Differential Privacy. In Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings, Vol. 5677. Springer, 126–142.

[25] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan. 2009.
Computational Differential Privacy. In Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings (Lecture Notes in Computer Science), Vol. 5677.
Springer, 126–142.

[26] Gokularam Muthukrishnan and Sheetal Kalyani. 2023. Grafting Laplace and
Gaussian Distributions: A New Noise Mechanism for Differential Privacy.
IEEE Trans. Inf. Forensics Secur. 18 (2023), 5359–5374.

[27] Thomas Neumann and Alfons Kemper. 2015. Unnesting Arbitrary Queries.
Datenbanksysteme für Business, Technologie und Web (BTW) P-241 (2015),
383–402.

[28] Shangfu Peng, Yin Yang, Zhenjie Zhang, Marianne Winslett, and Yong Yu.
2013. Query optimization for differentially private data management systems.
In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013. IEEE Computer Society, 1093–1104.

[29] David Pujol, Albert Sun, Brandon Fain, and Ashwin Machanavajjhala. 2022.
Multi-Analyst Differential Privacy for Online Query Answering. Proc. VLDB
Endow. 16, 4 (2022), 816–828.

[30] Yuan Qiu, Wei Dong, Ke Yi, Bin Wu, and Feifei Li. 2022. Releasing Private
Data for Numerical Queries. In KDD ’22: The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 -
18, 2022. ACM, 1410–1419.

[31] William Sexton, John M. Abowd, Ian M. Schmutte, and Lars Vilhuber. 2017.
Synthetic population housing and person records for the United States. https:
//doi.org/10.3886/E100274V1.

[32] Transaction Processing Performance Council. 2024. TPC Benchmark H (TPC-
H). http://www.tpc.org/tpch/.

[33] Junxiong Wang, Immanuel Trummer, Ahmet Kara, and Dan Olteanu. 2023.
ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal
Join Algorithms via Reinforcement Learning. Proc. VLDB Endow. 16, 11 (2023),
2805–2817.

[34] Shufan Zhang and Xi He. 2023. DProvDB: Differentially Private Query Pro-
cessing with Multi-Analyst Provenance. Proc. ACM Manag. Data 1, 4 (2023),
267:1–267:27.

588

