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ABSTRACT
Memory Disaggregation decouples memory from traditional data-
center servers, offering a promising pathway for achieving very
high availability in transactional in-memory disaggregated Key-
Value Stores (DKVSes). Achieving such availability hinges on
transactional protocols that can efficiently handle failures in this
setting where compute and memory are independent.

However, existing transactional protocols overlook the scenario
where compute and memory fail independently. Exacerbating the
problem, memory disaggregation relies on memory nodes with lim-
ited compute capacity, requiring one-sided RDMA-style protocols
instead of traditional RPC-based approaches. This significantly
complicates achieving a correct and recoverable protocol due to
the limited semantics of one-sided RDMA. Moreover, the only
state-of-the-art one-sided transactional protocol has overlooked
recovery, jeopardizing correctness and performance.

We present Pandora, the first one-sided transactional protocol
that is specifically designed to enable fast and correct recovery
on disaggregated KVSes. Pandora’s fast recovery hinges on two
innovations: (a) the PILL (Pandora’s Implicit Lock Logging), a
novel technique for managing locks in the presence of compute
failures; and (b) an RDMA-based recovery algorithm that detects
and quickly recovers from failures. To validate that Pandora re-
covers correctly in the presence of failures, we introduce a new
litmus-testing framework for end-to-end validation of transactional
protocols. Our evaluation (and validation) reveals that Pandora
achieves fast and correct recovery in the range of a few milliseconds
without compromising the performance of failure-free runtime
execution.

1 INTRODUCTION
Disaggregated Memory (DM) decouples application memory
from datacenter servers and aggregates it into a network-attached
memory pool [9, 31, 48, 61]. In this work, we explore the recovery
of transactional in-memory key-value stores over disaggregated
memory (DM) architecture. Transactions play a crucial role in
modern cloud and HPC ecosystems, offering rich programmability
and high performance in contrast to traditional global-checkpoint-
based recovery [17, 29, 38, 53]. We argue that existing work has not
studied how to recover correctly and efficiently under disaggregated
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Figure 1: Independent failures in Disaggregated Memory. Because
memory and compute are independent in DM, distributed applications
could keep running even if a compute server fails.

memory. To address that, we propose a novel approach to tackling
recovery in this new setting. But first, let us provide some context.

Both academia [31, 32, 43, 46, 50, 57, 60, 61, 67, 69] and
industry [5–7, 16, 18, 48] are exploring DM to mitigate the
inefficiency caused by the fixed compute-to-memory ratio in
traditional datacenter servers. This inefficiency arises when an
application needs more compute than memory, or vice versa,
but the server’s fixed ratio doesn’t match its requirements. DM
decouples memory from compute by deploying two types of
servers: 1) memory servers that provide ample memory with
minimal compute and 2) compute servers that offer high compute
capabilities with minimal memory. Memory servers are connected
to compute servers through a high-speed RDMA network (or
possibly through emerging CXL [31, 48]), which allows memory
and compute to be efficiently provisioned according to the needs of
the application. This one-sided communication enables dynamic
scaling and elastic memory management, reducing cost and power
consumption by minimizing reliance on expensive CPUs.

The primary advantage of DM is improved resource utilization,
but there is another crucial benefit. With memory and compute now
operating independently, distributed applications can keep running
even if a compute server fails, since no memory is lost (Figure 1).
Simply, recovery from compute failures can be non-blocking. This
is in contrast to a traditional monolithic server architecture, where
a server failure results in the automatic loss of a portion of memory.

In this work, we leverage this observation in the context of
transactional in-memory key-value stores (dubbed KVSes). Such
KVSes are a crucial cloud infrastructure [22, 23, 37, 41], and their
availability in the face of faults is critical. Typically, when a KVS
server fails, a portion of the objects becomes inaccessible. Although
objects are replicated, the entire KVS must stop briefly to – at least
– reconfigure itself and steer requests for the inaccessible objects
to other replicas. In KVSes the ratio of compute (transactions
per second) and memory (dataset size) can vary arbitrarily across
the numerous use-cases. This makes them a perfect fit for DM.
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In DM-KVSes (dubbed DKVSes), the compute servers are solely
responsible for coordinating transactions, while memory servers
hold the dataset passively. In this architecture, there is no reason
why the failure of a compute server should interrupt the operation
of the DKVS.

Unfortunately, there is no existing DKVS that offers this ca-
pability. Providing this capability will require a new DM-based
recovery protocol. The key challenge in designing this protocol
is that compute servers can only access memory through the lim-
ited one-sided RDMA API (read, write, compare-and-swap, and
fetch-and-add). This is in contrast to traditional, non-disaggregated
architectures where servers can send arbitrary remote procedure
calls (RPCs) to one another.

Over the past decade, researchers have studied this RPC-to-
RDMA transformation in the context of transactional protocols [22,
41, 54, 74]. FaRM [22, 23] showed how to implement the execution
phase of a transactional protocol over one-sided RDMA without
RPCs. However, FaRM’s commit phase relies on RPCs. FORD [74]
took the next step, designing the execution, validation, and the
commit/abort phases through one-sided RDMA. Problematically,
none of the above works have addressed the problem of recovering
from a compute failure without interruption. Exacerbating the issue,
recovery in RPC-based protocols [23] necessitates strong CPUs
on the memory side, undermining the benefits of disaggregation,
and does not guarantee optimal performance for DKVSes [24, 74].
Meanwhile, weak CPUs struggle with RPC overhead due to the
increasing gap between network speeds and CPU power, impacting
latency and throughput.

There are two key challenges in coming up with a one-sided
protocol for efficiently recovering from compute failures. First,
the failing compute node may have grabbed locks and efficiently
identifying and cleaning up these locks during recovery is chal-
lenging. Second, ensuring a correct recovery algorithm without
compromising steady-state performance is inherently challenging.
This difficulty becomes even more pronounced in DKVSes, where
recovery is constrained by the limited capabilities of one-sided
RDMA primitives.

1.1 Pandora: Fast, Seamless and Safe Recovery
We propose Pandora, a fully one-sided transactional protocol that
ensures memory is always in a recoverable state and includes
special handling of compute failures to avoid unnecessary interrup-
tion. Starting with FORD as the steady-state protocol, we design
an RDMA-based recovery protocol that detects and recovers from
a compute failure while eliminating interruption. To ensure cor-
rectness, we introduce an end-to-end litmus testing framework that
revealed a number of bugs on FORD, which prohibited recovery
from being fast, correct, or non-blocking. Finally, we thoroughly
validate and evaluate our proposal in comparison with FORD
[74].
Pandora’s Implicit Lock Logging (PILL). One problem with
recovering after a compute failure is that the failing compute node
may have grabbed locks, and cleaning up these locks during recov-
ery is challenging. Should the locks be reinstated to a consistent
state, transactions require a mechanism to record the owner of
each lock before it is locked, which is typically achieved through
logging. The FORD protocol, however, locks keys before logging.
Thus, post-failure, the entire memory must be scanned to discover
and undo any not-yet-logged locks taken by the failed compute
server. This operation can take multiple seconds: e.g., scanning
100 GiBs through a 100Gbps network link will require at least 8

seconds. During this period, all compute servers accessing these
locked objects get blocked, adversely impacting the overall perfor-
mance. This is because, in the absence of owners, recovery would
otherwise erroneously unlock keys locked by active compute nodes
(Section 3.1.1).

Crucially, to solve this, we cannot simply reorder logging and
locking, because that will either require a heavy redesign of the
protocol or impose overheads by adding extra messages. Instead,
we propose a new RDMA-friendly technique called Pandora’s
Implicit Lock Logging (PILL), where we extend the lock structure
to also include the id of the compute server. When failing to lock,
a compute server inspects the lock to see if the current server
holding the lockis a failed compute server. If so, the lock can be
stolen.
RDMA-based Recovery Protocol. To detect and handle compute
failures, we propose an RDMA-based recovery protocol that works
in four steps. First, it uses heartbeats to detect failures. Second,
it revokes the RDMA rights of a server deemed failed to ensure
safety even under false positives of failure detection. Third, it
reads the logs of the failed compute server (which are stored in
the memory servers) and either rolls forward or rolls back all of
its logged transactions. Finally, it notifies the remaining compute
servers of the failure so that they can acquire any stray locks of
the failed server. Crucially, during this process, the alive compute
servers can seamlessly continue executing transactions. Note that
while we rely solely on non-RPC accesses in the data path, RPCs
are used to a limited extent in the control path (e.g., to setup
and manage network connections) similar to other works over
disaggregated memory [24].
End-to-end Litmus Testing. There are several factors that render
the recovery protocol particularly error-prone. Firstly, recovery is
a complicated distributed algorithm that must be able to detect
failures and roll back and forward uncommitted transactions. The
recovery is only executed once per failure, limiting the ability to
uncover corner cases; contrast this with the rest of the transactional
protocol, which is executed millions of times per second. Secondly,
it does not suffice for only the recovery protocol to be correct;
for recovery to work, the transactional protocol must ensure that
memory is always in a recoverable state. However, this aspect of
the protocol is not tested during failure-free operation, and thus is
especially error-prone.

In this work, we introduce a new litmus-testing framework for
end-to-end validation of transactional protocols in general, and
Pandora in particular. Litmus tests are small transactions that are
designed to expose bugs. To the best of our knowledge, this is the
first work to create litmus tests, and a framework for deploying
these to validate DKVS protocols. Our validation revealed multiple
subtle bugs in the state-of-the-art FORD, which can – in rare cases
– leave the memory in an unrecoverable state, all of which have
been fixed in Pandora.
1.2 Contributions

• We observe that memory disaggregation from compute
presents an opportunity for highly available transactional
KVSes. However, the limited one-sided RDMA semantics
and the absence of remote procedure calls (RPCs) between
compute and memory servers pose a challenge to fast
recovery. (§2)

• We propose Pandora, the first one-sided transactional proto-
col specifically designed to provide correct and fast recov-
erable transactions on DKVSes. Pandora consists of two
innovations: the PILL, an RDMA-friendly technique for
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making locks recoverable after failures without compromis-
ing the performance of the fault-free operation, and a novel
RDMA-based recovery protocol for quickly detecting and
safely recovering from failures in the DKVS setting. (§3)

• To validate correctness, we introduce a new litmus-testing
framework. Our validation reveals multiple subtle bugs in
the FORD protocol, all of which are addressed in Pandora.
(§5)

• Our experiments show that Pandora offers orders of mag-
nitude faster recovery (just a few milliseconds) than the
state-of-the-art DKVS protocol, while also allowing live
compute servers to proceed with their transactions without
blocking. Critically, Pandora’s recovery mechanism comes
at negligible overhead during fault-free operation, unlike
naive recovery approaches, which can degrade performance
by as much as 35%. (§6)

2 PRELIMINARIES
We begin with a brief background on disaggregated key-value-
stores (DKVS). We then briefly discuss FORD– the state-of-the-art
DKVS.

2.1 Disaggregated KVS (DKVS)
Researchers from academia and industry are advocating for the
adoption of disaggregated memory (DM), arguing that it improves
scalability, power utilization and cost efficiency [9, 15, 18, 32, 50,
55, 68, 73]. In a DM architecture, servers are divided into compute
and memory. Compute servers have the compute capabilities of
today’s commodity servers, but limited memory (i.e., a few GiB)
for caching but not in-memory storage. Memory servers have a lot
of memory for storage but near-zero compute [46, 67, 74]. As in
recent DM works [25, 70], we assume that memory servers have a
small set of wimpy cores (1 - 2) to support lightweight connection
management and initialization but do not traverse indexes or apply
transactional logic. Instead, compute servers perform those over
the memory servers through one-sided RDMA.

This paper focuses on Key-Value Stores deployed over DM, or
simply DKVSes. Specifically, we focus on DKVSes that replicate
and distribute their data in-memory across multiple memory servers.
A set of compute servers run the DKVS compute-side library,
which offers a simple transactional API. Applications express their
transactions through requests that include calls to BeginTx, Write,
Read, ReadRange, Insert, Delete, and CommitTx.1 An application
can run on the same servers as the DKVS compute-side library
or on remote servers. In either case, the applications’ requests
are routed to the DKVS compute-side library, which executes a
transactional protocol, accessing and replicating DKVS data as
needed. While in this work we focus on non-persistent compute
and (replicated in-) memory servers; Pandora, like state-of-the-art
DKVSes, is compatible with non-volatile memory (NVM) and
can easily support efficient persistence mechanisms (Section 7).
Architecture. The compute server executing the protocol for
a transaction is called its coordinator. Each object is stored in
multiple memory servers. Every object is assigned a primary
memory server, with the remaining servers designated as backups.
An object can only be accessed through its primary. The backups
are kept consistent with the primary so that they can take over in
the event of a failure.

1Such systems [22, 74] form the foundation for relational databases and distributed
systems. More complex data structures are built on top of this simple, fault-tolerant
API.

RDMA Primitives. RDMA offers the following primitives: Read,
Write, Send/Receive, Compare-And-Swap (CAS) and Fetch-And-
Add (FAA). Send/Receive are used to facilitate RPCs; hence are
not useful for DKVSes. Read, Write, CAS and FAA directly ac-
cess remote memory; for that reason they are called one-sided.
Programming using these primitives is very challenging as op-
posed to RPCs [65]. This is because simple algorithms, such as
accessing a hashtable, require multiple one-sided RDMAs, each of
which includes a non-trivial programming overhead (e.g. polling
completions, asynchronous programming to tolerate network la-
tencies etc.). Most critically, the programmer must reason about
the possibility of the compute node failing before the algorithm is
executed to its completion.
RPCs. As in prior work [24, 74], we do not consider the usage of
RPCs in the data path. We assume that the compute on the memory
nodes is too slow for it. Admittedly, it is conceivable that memory
nodes have more compute than we assume, such that a hybrid
design with both one-sided RDMA and RPCs is viable. This paper
does not investigate this possibility. Instead, we maintain that
memory nodes have slow compute, hence presenting a stronger
motivation for DKVSes while facilitating a fair comparison with
related work.
Consistency and Failure Model. As in prior works in distributed
replicated transactions [22, 37, 71, 74], we focus on transactions
that provide the strongest consistency guarantee (i.e., strict serial-
izability [58]). We consider a non-byzantine partially synchronous
model [27] with crash-stop compute and (up to 𝑓 + 1) memory
server failures, as well as network faults, including message re-
ordering, duplication, and loss. In short, our failure model aligns
with prior work [74]. We address message loss between compute
and memory nodes by leveraging the reliable connection guaran-
tees of one-sided RDMA primitives, which handle retransmissions
transparently at the transport layer. Partial synchrony is neces-
sary to safely manage leases, which are used for failure detection
(Section 3.2.4).

2.2 Recoverable Transaction Protocol
A recoverable transactional protocol is responsible for ensuring
consistency (i.e., strict serializability) and handling failures under
the aforementioned failure model. We find it useful to classify the
actions of the protocol under three categories.
C1. Online-failure-free. This category encompasses all actions
necessary to ensure transaction correctness (i.e., strict serializabil-
ity) when there are no faults.
C2. Online-recovery. This category includes the actions required
by the protocol to maintain the state needed to enable recovery in
the event of a failure. Typically, these actions involve the logging
of both data and metadata to preserve transactional integrity.
C3. Recovery. This category covers all protocol actions related
to the detection and recovery from a compute server failure.
Specifically, it includes mechanisms for detecting failures and
preventing the server deemed as failed from further impacting the
system (i.e., in the case of a false positive). It also ensures that
transactions from the failed server are either fully rolled back or
rolled forward to completion.
Key features of a recoverable transactional protocol. An ideal
recoverable protocol should have four key features.

(1) Correctness. First and foremost, the protocol must ensure
correctness (i.e., strict serializability) both in the absence
and presence of compute failures.
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Figure 2: FORD’s commit path is shown in (a), and the abort path in (b) – which occurs if any lock or read-validation fails before the decision. In
(c), an example transaction reads object X, writes object Y, and then writes object Z. In (d), X has P1 as its primary, while Y and Z have P2. P1 and
P2 are replicated in B1 and B2. In (a), the coordinator first reads X from P1, then locks and reads Y from P2, performing a task locally before
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background. Finally, it updates Y and Z in-place in P2 and B2, before unlocking them in P2. (b) is similar.

(2) Minimal online overhead. The online-recovery compo-
nent of the protocol should ideally add as little overhead
as possible to the online-failure-free component; i.e., the
overhead of logging should be minimal.

(3) Fast recovery. The recovery component should be fast; i.e.,
it must quickly roll back or forward any pending transactions
on the failed compute server, so that these transactions
(and any other transactions from other compute servers
conflicting with those transactions) can make progress as
soon as possible.

(4) Non-blocking. Recovery must not block in-flight non-
conflicting transactions from other compute servers; these
transactions must continue to make forward progress despite
the failure.

The combination of the non-blocking property (for non-conflicting
transactions) and fast recovery (which affects the latency of con-
flicting transactions) is what makes transactions highly available.

2.3 FORD
This section presents FORD [74], the only published transactional
DKVS to date2. FORD executes distributed transactions using a
variant of an optimistic transactional protocol [44], which offers
strict serializability [59]. Specifically, FORD’s protocol consists
of three phases: execution, validation and commit/abort.
1. Execution. During execution, the coordinator reads all objects
in its read-set. It also reads and eagerly locks all objects in its write-
set. The execution phase fails if any accessed object is already
locked. If it succeeds (fails), the protocol moves to the validation
(abort) phase.
2. Validation. For validation, the coordinator checks that all
objects in its read-set are still in the same state, i.e., have the same
version and have not been locked. This ensures that the transaction
is working over a consistent view. When the validation phase
completes, then we have reached a decision: the transaction either
commits or aborts.
3. Commit/Abort. Commit entails two steps: 1) all writes are
applied to both the primary and backups of each object and 2)
locked objects are unlocked. The client is notified after the first
step with either a commit-ack or an abort-ack. Conversely, to abort,
we simply unlock all locked objects and then notify the client.

2While other RDMA-based transactional KVSes (e.g., FaRM) use one-sided opera-
tions for performance, they still rely on a symmetric monolithic architecture where
each server possesses sufficient compute to handle RPCs (e.g., for the commit phase).
In contrast, a DKVS involves memory nodes with limited compute, hence cannot
rely on RPCs.

Undo Logging. During the first two phases, the protocol writes
an undo log in the primary and every backup of each object in its
write-set. The purpose of this is to facilitate recovery under faults.

Figure 2 illustrates FORD. Figure 2(a) and (b) show the commit
and abort path of the transaction in Figure 2(c), which reads object
X and writes Y and Z. Figure 2(d) shows the four memory servers,
Each of which serves as primary or backup for objects X, Y and Z.
FORD summary. Going back to our classification, the execution,
validation, and commit/abort phases of the protocol comprise the
online-failure-free (C1) component of FORD. The Undo logging
comprises the online-recovery (C2).

In the next section, we discuss the limitations of FORD’s
logging component in the face of compute server faults and how
it is addressed in Pandora. We also delve into Pandora’s recovery
algorithm, which addresses the lack of a recovery component in
FORD.

3 PANDORA
This section details Pandora, a highly-available transactional proto-
col that recovers efficiently on independent compute and memory
failures in DKVSes. In Section 2, we split a transactional protocol
into three distinct categories: online-failure-free (C1), online-
recovery (C2), and recovery (C3). Based on this classification,
Pandora adapts C1 from FORD;3 Pandora also adapts C2 from
FORD but significantly reworks it, making it efficiently recov-
erable. One of the other limitations of FORD is that it lacks a
recovery component (C3). In Pandora, we introduce a recovery
algorithm that works over one-sided RDMA.

3.1 Efficient Recoverable Steady-State
In Section 1, we asserted that the FORD protocol prohibits fast
recovery on a compute failure because it first locks objects and
later it writes logs for said locks. We elaborate on this issue and
present Pandora’s Implicit Lock Logging to resolve it.

3.1.1 Problem: Stray locks. On a compute failure, it is
possible that several objects are locked but there is no log that
points to these locks. We call these stray locks. First, we discuss
why stray locks prohibit fast recovery. Then, we delve more into
the problem, arguing that it is more subtle than it looks, with its
roots stemming from adopting disaggregated memory.
Impact on Recovery. Stray locks create two related problems.
First, we cannot simply unlock while other compute servers are
executing transactions, as we cannot differentiate between the stray
locks and the regular locks of the live servers. Second, we need

3Our validation revealed a few bugs in C1 of FORD, which we fixed in Pandora
(§ 5.1).
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to scan the entire memory to find the stray locks, which can take
seconds: e.g., scanning 100 GiBs through a 100Gbps network
requires at least 8 seconds. Hence, we must block the entire system
for several seconds.
What’s the problem?. To modify an object, FORD issues an
RDMA Compare-And-Swap (CAS) to lock it first, and then a
RDMA Read to read it. Because RDMA reliable connection mode
guarantees that the two messages will be delivered in order, we
are certain that we read the object only after locking it. Moreover,
only after the RDMA Read has returned we can perform the undo
logging. This is because undo logs store the previous value (so
that they can “undo” the modification). Note that, had we read the
value without first locking it, we would not be able to log it, as it
would be possible to log a different value than the one we locked.
Thus, we need to lock before reading and read before logging. This
is why there are stray locks.
The role of RDMA. This ordering conundrum does not exist in
the traditional non-disaggregated architecture, because an RPC
can execute all three tasks – locking, reading, and logging – in the
same step. Crucially, this step is atomic with respect to failures. I.e.,
if the server that executes the RPC fails, then neither the log nor the
lock will be visible. In contrast, with one-sided RDMA-access to
a remote memory server, we do not have the luxury of performing
these multi-step functions in a failure atomic manner. We expect
that failure atomicity will become a recurring problem as more
and more applications are ported to disaggregated memory.
Summary. Stray locks is a problem that occurs in a disaggregated
architecture where it is not possible to perform multi-step functions
in a failure atomic manner. Crucially, this prohibits fast recovery.

3.1.2 Solution: Pandora’s Implicit lock logging. To solve
this problem, we assign a unique 16-bit coordinator-id to each
coordinator and mandate that locks include the coordinator-id of
their owner coordinator. The unique coordinator-id is generated by
an independent service, the failure detector (FD), which we detail
in Section 3.2.2. The FD increments the coordinator-id counter
when a new coordinator is spawned and sends the coordinator-id
along with initial configurations to the server before executing
transactions. Each compute server’s spawn is strictly serialized,
ensuring that no two servers are assigned the same coordinator-ids
thereby preserving the uniqueness of the coordinator-id. In the
event of FD failures, these steps can be repeated without violating
correctness (Section 3.2.4).

On a compute server failure, we need not scan the entire
memory in a blocking manner to release its stray locks. Instead,
we enable other transactions to steal these locks. We call this
technique Pandora’s Implicit Lock Logging (PILL) because we
have repurposed the coordinator-id (added to the lock) to signify
whether or not the lock is stale, avoiding the need for explicit
logging.

How does stealing work? Recall that the coordinator issues an
RDMA CAS to lock an object. When the RDMA CAS fails, it
returns the value of the lock, which includes its owner coordinator-
id. We check this coordinator-id against a series of the failed-ids,
i.e., an array that contains the coordinator-ids of all previously
failed compute servers. If we discover that the lock is stray, we
execute one more RDMA CAS to steal it. Notably, stray locks can
also cause Reads to abort during both the execution and validation
phases. To avoid this, we again check the failed-ids, and if the lock
is found to be stray, we proceed as if the object was not locked at
all.

Failed-ids. The FD maintains a list of all failed-ids and includes
it in the initial configuration message sent to the compute server.
After a compute server failure, the FD is responsible for notifying
all alive compute servers, so that they can update their failed-ids.
We discuss this further in a later section (Section 3.2.2).
Overhead. The overhead of this approach is: 1) a check against
the failed-ids, incurred only when accessing a locked object and 2)
an extra RDMA CAS when finding a stray lock. Note that actually
finding a stray lock is extremely rare, because we execute millions
of transactions per second, while we may only get one failure every
a few hours (depending on the number of compute servers [11]).
Recycling coordinator-ids. We must ensure that a failed coordinator-
id cannot be assigned to another compute server, until all of its
stray locks are unlocked. We ensure this as follows. We use 16 bits
to represent coordinator-ids, allowing for 64K compute servers
to join over the lifetime of the system. Although we expect 64K
coordinator-ids to be plenty, they might outlast the utility of a
long-running system. As such, we implemented a background
mechanism that scans the memory and unlocks all stray locks,
allowing to recycle failed coordinator-ids. FD triggers this mech-
anism if more than 95% of available coordinator-ids are used.
Additionally, our recycling mechanism unlocks all stray locks us-
ing CAS operations, which is sufficient to resolve race conditions
with in-flight transactions.

Notably, as more compute servers fail over time, we must ensure
that the overhead of checking the failed-ids stays constant. We
achieve this by implementing failed-ids as a compact bitset with
64K entries.
Summary. We presented PILL, a technique that links each lock
with the unique coordinator-id of its owner compute server. This
allows us to detect which locks are stray and steal them. We use a
large enough number for coordinator-ids to ensure that we will not
need to recycle them but have a contingency plan for that. PILL
enables recovery from a compute fault without interrupting the
rest of the system.

3.1.3 Problem: Logging aborted transactions. In FORD
it is possible for a logged transaction to be aborted. The problem
is that at recovery-time it is impossible to differentiate between
committed and aborted logged transactions. This prevents correct
recovery. For instance, consider a failed compute server 𝐶, which
has logged a write to object 𝑋 in one of its transactions. Also,
assume that during recovery, we see that 𝑋 has been modified. It is
impossible to know whether𝑋 has been modified by𝐶 or not. This
is because it is possible that 𝐶’s transaction aborted, unlocking
𝑋 , and then a different compute server locked and updated 𝑋 .
As we will see when discussing our recovery protocol (§3.2.2),
recovery hinges on knowing whether 𝐶 is the one that modified
𝑋 so that we can undo the modification if needed. Notably, we
realized this issue after our validation revealed three bugs caused
by this problem (Section 5.1).

3.1.4 Solution: Logging phase. First, note that we cannot
solve this problem by relying on the fact that locks include the
coordinator-id of their owner because we do not lock backups.
Therefore, if the memory server that serves as the primary for
object 𝑋 fails, we will still face the same problem.

To resolve this problem, we add an extra logging phase in
between validation and commit/abort. This phase is executed only
if validation succeeds. To minimize the performance overhead
of this extra logging phase, we incorporate it with the main
undo logging scheme used in the transaction protocol. Pandora
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further optimizes this phase by limiting extra logging to aborts
and enforcing lock-to-log order.

FORD writes a log in each replica of each object in its write-set.
For example, assume a transaction that writes 𝑋 and 𝑌 with a
replication degree of 3 (i.e., 𝑓 + 1 = 3 ), where 𝑋 is replicated
in memory servers 0,1,2 and 𝑌 is replicated in memory servers
3,4,5. FORD will log 𝑋 in 0,1,2 and 𝑌 in 3,4,5. We take a different
approach. For each compute server, we specify f+1 memory servers
that hold its logs. Therefore, in the above example, both writes to
𝑋 and 𝑌 will be logged in the same three servers. This is a well-
established technique [66]. This approach significantly reduces
the number of log copies and minimizes logging overhead during
the commit phase.

As we log after validation, at which point we know the entire
write-set, we can log all writes with the same single RDMA Write
amortizing its overheads. Therefore, the total cost of logging in our
technique is always 𝑓 + 1 RDMA Writes as opposed to FORD’s
𝑓 + 1 RDMA Writes per object in the write-set. This technique
also simplifies the recovery protocol, as all the logs of a compute
server are gathered in the same 𝑓 + 1 memory servers.

3.1.5 Protocol Summary. This section summarizes Pan-
dora’s Online-failure-free (C1) and Online-recovery (C2) proto-
cols.
(1) Execution. The coordinator reads all objects in the read-set and
write-set, eagerly locking write-set objects if their exact addresses
are known. If any write-set object is already locked, the coordinator
aborts the transaction. Unlocked write-set objects and reads are
retried later. Pandora logs write-set objects after successful locking,
enforcing a lock-to-log order before validation.
(2) Validation. Pandora validates only after completing execution.
The coordinator checks that all read-set versions match and unlocks
the objects. This phase also ensures the write-set is logged.
(3) Abort. If validation fails, the coordinator aborts the transaction.
First, the coordinator logs the decision by truncating logs. Then it
unlocks every lock using an RDMA write.
(4) Commit.Coordinator applies writes on primary and backups
of each object, sends client acknowledgments, and unlocks the
write-set.

3.2 Recovery Protocol
In the previous section, we ensured that fast and non-blocking
recovery is possible. In this section, we guarantee that it is also
correct. We start by specifying four correctness criteria. Then, we
describe non-blocking recovery from compute failures. Finally,
we provide a brief description of how we handle memory failures.

3.2.1 Correctness criteria. Before we state the correctness
criteria, we first introduce some definitions. A failed compute
server, 𝐶, may have been working on a number of transactions
before failing. We refer to these as stray transactions (Stray-Txs).
There are three side-effects of Stray-Txs that must be addressed:
1) stray locks on objects 2) updates on objects (during commit
phase) and 3) communication with the client to notify it of commit
or abort. We differentiate between two types of Stray-Txs, the
Logged-Stray-Txs for which𝐶 has written a log, and the NotLogged-
Stray-Txs, for which 𝐶 had not yet reached the point of writing a
log. The dichotomy is crucial, as transactions with a written log can
have all three of the side-effects, while the NotLogged-Stray-Txs
can only have stray locks.

Failed
Compute

Crash

Failure
Detector

Memory
Server

Recovery
Coord.

Memory
Server

Acvive
Compute

Failure Detection

Log-Recovery

Active-Link  Termination

1

2

3

4

+ Log Truncation

timeouts

Stray-Lock Notification

Figure 3: Recovery Protocol

We next list four correctness criteria for the recovery algorithm
after the failure of compute server 𝐶.

(Cor1) Before trying to recover the Stray-Txs of𝐶, we must ensure
that 𝐶 cannot access memory anymore. This ensures that
memory will not be compromised by unreliable failure
detection.

(Cor2) We must either roll back or forward all Logged-Stray-Txs,
to ensure that all or none of their updates are applied to
objects.

(Cor3) We must not roll back a Logged-Stray-Tx, if it has notified
its client that it has committed. And vice versa, we cannot
roll forward if the client has been notified of an abort.

(Cor4) We can only steal the stray locks from NotLogged-Stray-Txs.
This is because Logged-Stray-Txs may have also updated
some of the locked objects, and thus, stealing could leave
the memory in an inconsistent state.

3.2.2 Recovering from compute failures. Figure 3 illus-
trates the protocol, which comprises four steps that are overviewed
below.
(1) Failure Detection. The first step of the protocol is initiated by a
fault detector (FD), which detects a crash on a compute server. Our
protocol can work with any off-the-shelf FD. For our evaluation,
we have implemented a heartbeat-based FD, which exchanges
heartbeats with compute servers, and reports failure after a 5ms
time-out.
(2) Active-Link Termination. Notably, any FD can have false
positives, i.e., it can mistakenly deem compute server 𝐶 as failed.
Recall correctness criterion (Cor1): before recovering the Stray-
Txs of 𝐶, we must ensure that 𝐶 can no longer access memory. In
a non-disaggregated system, this is typically achieved by rejecting
RPCs from servers that are not in the stable configuration [40]. To
achieve the same effect, we revoke 𝐶’s RDMA rights, ensuring
that any future requests from 𝐶 will get dropped. We call this
active-link termination. Recall that memory servers have some low-
power, cheap compute for network management. We implement
active-link termination by sending a link-termination RPC to this
compute.
(3) Log Recovery. Again, assume that compute server𝐶 has failed.
For each of failed 𝐶’s Logged-Stray-Txs we will make a decision,
either roll it forward or backward, satisfying criterion (Cor2).
Recall that in its commit phase (Figure 2), the transaction will
update all replicas of an object (i.e., it applies its writes). To also
address criterion (Cor3), we make the following two assertions
on the protocol 1) if all replicas of all objects in the write-set
are updated, then it is possible that the client has received a
commit-ack. 2) If any of the objects in the write-set are updated,
then it is impossible that the client has received an abort-ack.
Based on these, we can assert that we can safely roll-forward all
Logged-Stray-Txs that have updated all objects in their write-set in
all replicas, because the commit-ack is possible, but the abort-ack
is impossible. We roll-back all other Logged-Stray-Txs. This is
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correct, because it is impossible that we have sent a commit-ack
for these transactions.

In practice, we implement log recovery as follows. First, we
spawn a thread which we call Recovery Coordinator (RC). Recall
that for any compute server, we write its transaction logs in 𝑓 + 1
specific memory servers (§ 3.1.4). Thus, the RC can read all logs
by issuing 𝑓 + 1 RDMA Reads. Using the logs, the RC recreates
the write-set of each Logged-Stray-Tx. Then, for each Logged-
Stray-Tx it issues an RDMA Read on every replica of each object
in its write-set to check if it has been updated. Specifically, each
object has a version, so we simply read the version and compare it
with the version in the undo logs. Then, for each transaction that
has updated all replicas of all writes in its write-set, we simply
unlock its locks with an RDMA Write to each replica. For the rest
of the transaction, we also unlock all objects, but also use the undo
log to roll back any updated objects.

Note here the importance of the second fix in FORD’s online-
recovery. Had we not done the logging after validation, it would
be impossible to differentiate between an object that is updated by
a Stray-Tx or by a live transaction from an alive compute server.
This is because in FORD it is possible to log an object, and then
later abort and unlock it. However, the log would remain.
F+1 Log Reads. In most cases, F+1 reads are sufficient to effi-
ciently retrieve the logs. Each coordinator is allocated 32KB for
logs, meaning each RDMA read returns a few MBs of contiguous
memory for failed coordinators. RDMA hardware typically sup-
ports read sizes of up to 1 GB. With the standard 4KB MTU, those
RDMA reads are split into multiple packets, but these packets are
bundled together, minimizing latency compared to multiple round
trips.
(4) Stray lock notification. Finally, we notify all compute servers
of a failure so that they can start stealing the stray locks of the
failed server. Recall the first correctness criterion: we can only
steal stray locks of not-logged stray transactions. For this reason,
it is crucial that we only perform the stray lock notification after
log recovery.

3.2.3 Idempotent Recovery. Pandora ensures idempotent
recovery, enabling any step of the end-to-end recovery algorithm to
be re-executed. This capability is key to tolerating failures during
the recovery phase, given that the recovery coordinator operates
within a standard compute server. For instance, in cases where
compute failures can cause log recovery to stall, necessitating re-
execution, Pandora allows for the re-execution of the log-recovery
step until the final acknowledgment is received from the recovery
coordinator. To guarantee idempotent correctness, Pandora trun-
cates all logs from the failed compute server before sending the
Stray-Lock notifications (refer to Figure 3). Note that RC truncates
logs by simply setting an invalid bit in each coordinator’s log
header using an RDMA write.

3.2.4 Failure Detector Availability. The availability of the
failure detector (FD) is critical to the end-to-end recovery algo-
rithm. Pandora ensures FD availability by replicating its state
across a quorum of replicas, using a flexible approach that can be
implemented in various ways. In our design, we use Zookeeper as
the replication layer, leveraging its proven reliability as a coordi-
nation service [33].

First, we decouple the FD’s program state and migrate it to
Zookeeper. Second, we modify compute servers to send RDMA-
based heartbeat messages to all Zookeeper replicas, hoping to
reach at least a majority of them in the event of failures.

Figure 4: Failure detector reliability

Figure 4 shows our standalone FD (a) and distributed FD (b). The
distributed FD (b) reduces failure detection times by replicating
the failure detector across multiple servers, ensuring that delays
in compute nodes or network issues do not cause false negatives.
When this is combined with the low-latency of RDMA-based
heartbeats, failure detection times can be reduced to the order of
milliseconds [24]. In an RDMA-based setup, a timeout of a few
ms can be practical, as RDMA round-trip times are in the low µs
range [22]. This combination allows transient network hiccups to
be absorbed, minimizing false positives and ensuring that a node
is only considered failed when it is disconnected from the majority
of FD replicas.

3.2.5 Recovering frommemory failures. We have thus far
focused on compute failures because they present the opportunity
for non-blocking recovery. Additionally, Pandora can recover from
𝑓 memory failures using 𝑓 + 1 memory replicas.

Pandora handles memory server failures in three steps. First,
we notify all compute servers of the failure. Then, for each object
whose primary is lost, compute servers deterministically calculate
the new primary using metadata, which includes the location of
each data partition and its replicas. We use consistent hashing [39]
to statically partition data across memory servers, avoiding resizing
when new replicas are added or removed.

In the event of a memory failure, we do not initiate the full
recovery protocol if all compute servers remain operational. This
is because each compute server retains a small amount of local
memory (typically a few GBs) to store transaction states and has
complete knowledge of the state of its transactions. After learning
of the memory failure, each compute server makes a decision for
each of its transactions, using the same criterion as log recovery;
committing transactions that have updated all live replicas and
aborting the rest. Once this process is complete, compute servers
resume initiating new transactions. In the case where memory
and compute servers fail together, we execute both protocols
independently.

Pandora adds new memory servers if there are more than 𝑓

replica failures. For this, we stop the DKVS, re-replicate all the
partitions, and then resume the compute server. In practice, re-
replication overhead can be reduced by selecting a sufficiently
large 𝑓 value.

4 METHODOLOGY
Pandora’s goal is to achieve fast and correct transactional recovery
on DKVSes. We conduct experiments to answer four key questions.
Validation. Recovering transactions correctly on DKVSes involves
subtlety. Is Pandora actually recoverable? We validate Pandora
as well as the state-of-the-art protocol FORD [74] using our
litmus-test-based validation framework.
Recovery latency. Reducing recovery latency is one of the key
goals of our work. What do we mean by recovery latency precisely?
Recall that our proposed techniques do not stop the entire KVS on
a failure, but transactions whose coordinators fail are affected. The
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recovery latency refers to the delay seen by such transactions that
are affected by failures. We show the recovery latency of Pandora.
Fail-over throughput. When a failure does happen, can our
techniques ensure minimal disruption? We show the fail-over
throughout – the throughput of Pandora when it is recovering from
a failure.
Steady-state throughput. How much overhead does Pandora
impose on steady-state failure-free execution compared to the
existing state-of-the-art? We show the steady-state throughput of
Pandora and compare it with the FORD baseline.

Before diving into our experimental evaluation, we first explain
our experimental setup, workloads, and methodology.

4.1 Testbed
Setup. We conducted our experiments on a cluster of 5 servers in
CloudLab [26]. Each server is an r650 node in the Clemson cluster.
A server can play the role of either a compute or a memory server.
The configuration is different in different experiments. We use a
dedicated server for our failure detector and recovery manager.
We will explain the different configurations separately in each
experiment.Each machine in our setup runs Ubuntu 18.04 and is
equipped with two 36-core Intel Xeon Platinum 8360Y at 2.4GHz
with two hardware threads per core. Furthermore, each machine
has 256GB of 3200MHz DDR4 memory and a 100Gbps PCIe4
Mellanox ConnectX-6 NIC.
Protocols: Baseline vs Pandora. For our evaluation, we have
adopted the in-memory version of FORD KVS [74] as the system
for deploying the protocols. Recall that FORD is the only fully
one-sided transactional DKVS in the literature. Because FORD
misses the recovery part of the protocol, we integrated our recovery
algorithm to FORD to make it our Baseline. We compare this
Baseline protocol against Pandora, which adapts the online-failure-
free component from FORD, but significantly improves upon the
online-recovery component to speed up recovery by introducing
PILL and a novel fast RDMA-based recovery component.
Workloads. To validate the Baseline and Pandora, we used our
litmus tests, which we describe in the next section. For performance
evaluation, we use the same three standard OLTP benchmarks that
were used by FORD: TPC-C [3], TATP [1], and SmallBank [2].
These benchmarks have 8B keys. The values are 672B, 48B,
and 16B, respectively. Besides these benchmarks, we used a
microbenchmark with 8B keys and 40B values in which write
ratios are adjusted.

It is worth noting that each workload runs a different number
of transaction coordinators (which we explicitly specify). Unless
mentioned otherwise, each of our workloads runs on 128 coor-
dinators, and we use the same dataset sizes as the ones used by
FORD [74].
Workloads characteristics. TATP, SmallBank, and TPC-C consist
of 4, 2, and 9 tables, respectively. In TATP, 80% of the transactions
are read-only. In contrast, both SmallBank and TPC-C have high
write ratios – 85% and 95%, respectively.

5 END-TO-END LITMUS TESTS FOR
CORRECTNESS VALIDATION

Verifying transactional protocols is notoriously hard. Despite
a rich literature on formally verifying models of transactional
protocols using manual and automated techniques [14, 45], our
focus is on validating the actual implementations of the protocols.
End-to-end testing with randomly injected faults has proven to
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Figure 5: Basic litmus tests with application-observable states.

be very effective in revealing bugs in transactional protocols of
databases [12, 34, 42, 52].
Method. The common technique to test databases is Adya’s
Histories [4, 42]. The idea is to run a number of randomly generated
transactions, collect a rich trace of data and metadata for each run
(the history), and use the history to determine (violations in) the
consistency model of the database. However, existing frameworks –
because they need to collect histories – tend to be heavyweight, hard
to integrate and scale. There is an alternate method to validating
databases – one based on application-observable state [19] rather
than histories. The idea is to carefully construct transactions so
that the values of the objects reveal the consistency model, and
consequently reveal protocol bugs (if it does not match the intended
consistency model). Crooks et al. [19] showed theoretically how the
application-state-based approach can be as effective as the histories-
based approach while being significantly more lightweight and
less costly.4 However, being a conceptual framework, it does not
contain a suite of tests or a tool that can be readily used for testing
protocols.

To the best of our knowledge, this is the first work to create
transactional (litmus) tests for black-box testing of real-world
protocols. Figure 5 lists 3 basic litmus tests that we have developed
in our framework for validating strict serializability. These litmus
tests cover all potential dependency cycles in serializable trans-
actions [4]. For even greater test coverage, we have extended our
tests with additional variables. In addition to the litmus tests, we
also generate their matching application-centric assertions which
we describe next.
Assertions. We use special read-only transactions for realizing
the assertions. For example, the first litmus (Figure 5(a)) assigns a
value of V1 to both variables X and Y in the first transaction, and
assigns a value of V2 to both variables in the second transaction.
Strict serializability mandates that X and Y should be equal at the
end of each transaction. This is what we assert with our read-only
transaction (Figure 5(d)). To test the steady-state and the recovery
protocol together, we randomly inject crashes after any operation.
Compound Tests. Besides our litmus tests, we used extended tests
with corresponding assertions. These new tests were created by
either stretching or combining the basic litmus tests. However, no
new bugs were discovered, and thus, they are not discussed in this
paper.

5.1 Litmus Tests, Bugs, and Fixes
In this section, we detail our litmus tests and the bugs we have found
in both Baseline and Pandora using our litmus testing framework.

4It is also worth noting an analogous approach of litmus testing [8, 21, 51] has
been extremely effective for validating consistency models in shared-memory
multiprocessors.
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Litmus Bugs (Category-Source) Description Fix(es)

Litmus-1
(Direct-Write

Cycles)

Complicit Aborts
(C1 - Baseline/Pandora) Releasing unset locks in the abort path Unlock only the acquired locks during

execution in the abort path
Missing Actions
(C2 - Baseline) Omitting logging of inserts Add inserts into undo logs.

Litmus-2
(Read-Write

Cycles)

Covert Locks
(C1- Baseline/Pandora)

Not checking the lock value in
the validation phase

Read and check locks of read-only data
during the validation phase

Relaxed Locks
(C1 - Baseline/Pandora)

Relaxing the order of locks and
validation in the commit path Grab all locks before validation

Litmus-3
(Indirect-Write

Cycles)

Lost Decision
(C2 - Baseline/Pandora)

Logs for a transactions that aborted
without being able to tell if it hs updated its objects

Add log phase if validation succeeds
(Section 3.1.4)

Logging without locking
(C2 - Baseline/Pandora) Loging a lock that was never grabbed Add log phase if validation succeeds

(Section 3.1.4)

Table 1: Three categories of bugs found in Baseline (FORD) and Pandora: online-failure-free (C1), online-recovery (C2) and recovery (C3).

In order to pinpoint where the bugs are, we classify the actions
of each of these protocols into three distinct categories: online-
failure-free (C1), online-recovery (C2), and recovery (C3). Recall
from Section 2.2 that Baseline inherits C1 and C2 from FORD and
C3 from Pandora. Pandora also inherits C1 from FORD. Table 1
summarizes the bugs that we have found, listing the protocol
where we found the bug (Baseline or Pandora) and the appropriate
category.
Litmus 1. This checks Direct-Write dependency cycles between
two transactions. As we discussed above, there are two transactions
in the litmus test, with the first transaction assigning value V1
to objects X and Y, and the second transaction assigning value
V2 to the same two objects. We then assert that the two objects
have the same value. Different values imply a strict serializability
violation. We also ran variants of this litmus test, replacing writes
with inserts and deletes.

Bug: Complicit Abort In this bug, FORD releases every lock in
its write-set when it decides to abort. Thus, it also releases some
locks that were never actually acquired by the transaction during
execution. Crucially, this can cause a transaction to release a lock
grabbed by a different transaction. This is an online-failure-free
(C1) bug that affects both the Baseline and Pandora as it exists in
FORD.

Fix: We fix this bug by releasing only the locks that have been
actually acquired during execution.

Bug: Missing Actions We have found a bug in FORD because
logging is omitted for inserts. This is an online-recovery (C2) bug
in FORD that affects only the baseline.

Fix: We also add undo logs for inserts (besides writes and
deletes).
Litmus 2. This checks Read-Write dependency cycles (or viola-
tions) (Figure 5(b)). Transaction T1 reads the value of X while
updating the value of Y, and T2 reads Y while updating X. Let us
assume that T1 reads the old value X=0 and writes Y=1. Since T1
does not see the write of T2, it must be that T2 sees the write of
T1. Specifically, if T1 reads X=0 then T2 must read that Y=1. If t2
reads Y=0 and proceeds to commit X=1, the final outcome would
be X=1, Y=1, which violates (strict) serializability [13, 19, 59].

Bug: Covert Locks In its validation phase, FORD does not
check if the read objects are locked. Recall that FORD checks ver-
sions of all the read-only objects in the validation phase. However,
it must also ensure that the objects are not locked. Specifically,
what happens in the litmus test is that transactions T1 and T2
concurrently read X=0 and Y=0 and then lock Y and X. Because
the transaction protocol only checks the version numbers dur-
ing the validation phase, without considering whether they have
been locked, both T1 and T2 can progress, leaving objects in an
inconsistent state (X=1, Y=1).

Fix: We fetch both the lock value and version for each read-only
object in a single round trip. This is possible because the lock

and version for each object in FORD’s KVS are stored together.
Then, in the validation phase, before comparing versions, we check
whether the object is locked; if the object is locked, we abort the
transaction.

Bug: Relaxed Locks Litmus Test 2 revealed another online-
failure-free (C1) bug in FORD, where in rare cases, validation starts
before ensuring all locks have been grabbed. Thus, the execution
overlaps with the validation phase; affecting both Baseline and
Pandora.

Fix: We enforce that validation happens strictly after locking.
Litmus 3. We use litmus 3 to check Indirect-Write dependency
cycles (Figure 5(c)). Transaction T1 reads and increments X and
writes the new X into Y. T2 reads and increments X but writes
the new X into Z. Therefore, at any given time, the values of Y
and Z cannot be larger than the value of X; this is checked by the
assertions.

Bug: Lost Decision As we discussed in Section 3.1.3, FORD
writes logs for transactions that may later abort. Crucially, it may be
impossible for the recovery protocol to tell whether the transaction
has aborted or it has updated all of its objects and thus must be
rolled forward. In the litmus test, T1 logs the writes to X and Y, but
it aborts. The bug occurs when the recovery protocol reads the log
and infers that the write to X has been applied because it sees that
X has been modified. However, the modification was done by T2,
not T1. Because Y has not been modified, the recovery protocol
rolls back the update to X. In doing so, it partially undoes T2 and
leaves memory in an inconsistent state, as Z has been updated by
T2.

Fix: As discussed in Section 3.1.4, we add a logging phase after
validation, which is executed only if validation succeeds.

Bug: Logging without locking This bug is caused by the prob-
lem discussed above (logging and then aborting), in conjunction
with a corner case in FORD where a log is written before the lock
is actually grabbed. Similarly, to the above, the recovery protocol
can either erroneously roll forward or undo the write of another
transaction.

Fix: The logging phase after validation suffices to solve both
issues, as it ensures we log after locking. Pandora, however,
implicitly enforces lock-to-log order, eliminating the additional
round trip. This approach employs unique coordinator IDs for
locking (Section 3.1.2).

6 EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is to compare the Baseline
against Pandora on the following performance metrics: recovery
latency, fail-over throughput, and steady-state throughput.

6.1 Recovery Latency
In this section, we report recovery latency for Baseline and Pan-
dora. Recall that FORD’s design incurs a significant overhead on
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recovery. On a failure, the entire KVS is stopped and searched
to detect stray locks. We observe that these overheads are in the
order of seconds. Specifically, in our measurements, a recovery
process that runs on one thread while searching over the KVS using
one-sided reads takes around 5 seconds for 1 million keys. While
more threads could be used, the latency grows linearly with the
number of keys. This is impractical for today’s KVSes, which store
much more than 1M keys and demand high availability; hence, we
do not explore the Baseline’s recovery latency any further. Instead,
we focus on Pandora’s recovery latency. But before this, we briefly
describe how we emulate failures.
Emulating Failures. In this experiment, we emulate a failure by
stopping a process at a selected point in time, which implicitly
stops all the in-flight transactions running within that process. The
failure detector (FD) identifies these failures using timeouts and
requests the recovery coordinator to perform recovery for each of
the failed coordinators. We use 5ms timeouts in the FD.
Pandora. Recall that Pandora introduced PILL, a fast recovery
technique that moves the recovery for stray locks out of the
critical path of failures. Table 2 shows the recovery latency for
each benchmark with respect to different numbers of in-flight
transactions (i.e., transaction coordinators) per compute node.
Specifically, in TPC-C, SmallBank, and TATP, recovery takes 5ms,
5.3ms, and 2.2ms, respectively (with 512 outstanding transactions).
In addition, our micro-benchmark with 100% writes shows 2ms
latency. The latency represents the time spent in the log recovery
step of the recovery protocol.

The table demonstrates that Pandora achieves recovery latency
within a few milliseconds. As expected, the latency increases with
the number of transaction coordinators, since a larger number
of outstanding transactions must be recovered on each compute
server. Pandora’s recovery latency is three orders of magnitude
lower than that of the Baseline (FORD). Specifically, the Baseline
exhibits recovery times in the range of seconds (e.g., ~5 seconds
per million keys) due to the need for scanning the entire KVS for
lock recovery, which blocks all outstanding transactions during
the process.
Traditional Logging Scheme. In addition to our main techniques,
we also evaluate a more traditional scheme that adds extra logging
to the protocol to allow locks to be recovered in the recovery
phase (without scanning the whole KVS). Recall that the undo
logging scheme used in FORD is not sufficient for recovering
locks. This traditional scheme adds extra logging before the lock
operation is executed by the transaction coordinator. We extend
the Baselines recovery protocol with this extra logging to recover
from locks. With the highest number of outstanding transactions
(512 in this experiment), recovery latency for the TATP, TPC-C,
SmallBank, and MicroBench reaches 10ms, 13ms, 2.7ms, and 2.5
ms, respectively. This recovery is not only approximately up to 2×
slower than that of Pandora, but as we will see in the next section,
it slows down the steady-state performance by as much as 35%.
Summary. Overall, these results show that PILL drastically reduces
recovery latency, substantiating our argument that we can recover
fast from a compute failure on DKVSes. Next, we look into how
much overhead these protocols impose on fault-free stable-state
execution.

6.2 Sensitivity study of PILL
Pandora’s implicit lock logging (PILL) offloads the recovery of
stray locks to the transaction’s execution phase, which raises the
question of how much overhead this introduces to the steady-state

Bench \ Coord. per node 1 8 64 128 256 512
TPC-C 8 us 22 us 158 us 272 us 563 us 4951 us
SmallBank 8 us 139 us 232 us 424 us 876 us 5272 us
TATP 9 us 20 us 131 us 513 us 1039 us 2236 us
MicroBench 10 us 21 us 119 us 474 us 1001 us 2043 us

Table 2: Recovery latency of Pandora (in microseconds) while increas-
ing the number of outstanding coordinators per compute node.
performance. Recall that PILL adds three extra steps to the steady-
state protocol: (1) locking with coordinator-ids, (2) a check against
the failed-ids, and (3) releasing stray locks. Notably, the overhead
of the last operation is only visible when there are actual failures.
First, we evaluate the steady-state overhead of PILL (only (1) and
(2)). Second, we measure the overhead of PILL under failures.
PILL under no failures. For this experiment, we use our micro-
benchmark with 128 transaction coordinators. Figure 6 shows the
(average of 5 runs) throughput over time without PILL (blue) and
with PILL (red). Note that the throughput difference is negligible.
The MTps between 10s-30s is 0.919 and 0.912, respectively. This
is because the failed-id list is empty; hence, Pandora does not
incur any extra round trip overhead for stealing locks. Notably,
each failed-id bitfield lookup (with O(1) complexity) only adds
a few nanoseconds on every failed lock (and reads), which is
insignificant compared to the round trip latencies that are in the
order of microseconds.
PILL under failures. In this experiment, we measure the end-to-
end steady-state overhead of PILL under failures. Recall that after
failures, stealing the lock adds an extra round trip. To measure
the overhead, we ran the same experiment with failures that
stopped (then recovered) half of the coordinators in the setup. We
then reduced the Mean Time To Failure (MTTF) and reran the
experiment. Lower MTTF means that the number of stray locks in
the DKVS is higher, and the time to recover these locks before the
next failure is lower.

Figure 7 shows the (average over 5 runs) transaction throughput
without failures (blue), with MTTF=10s (red), MTTF=2s (yellow),
and MTTF=1s (green). The throughput between 10s-30s is 0.911,
0.912, 0.901, and 0.911 MTps, respectively. It is worth noting that
the typical MTTF in the datacenter is in the range of minutes [11],
and MTTF < 10s is highly unlikely. As we can see, it is clear that
PILL adds insignificant overhead under failures. This is because
only just a few stray locks must actually be recovered and that
overhead is amortized over the entire run.

6.2.1 Traditional Logging Scheme. Besides the proposed tech-
nique, we measured the steady-state overhead of the traditional
scheme that we previously discussed. Recall that for this scheme
to work, we need an additional logging round trip for each lock
in the steady-state execution phase. Hence, unsurprisingly, the
steady-state throughput is lower than that of the baseline FORD’s
throughput. Smallbank, TPC-C, and TATP incur average through-
put overhead of 35%,14%, and 2%, respectively. Similarly, this
approach adds 21% overhead on our microbenchmark with 100%
writes. We observe that logging overhead generally increases with
increasing write ratios (e.g., TATP, which is mostly read-only,
shows lesser overhead than write-intensive workloads like Small-
Bank). On the other hand, some write-intensive workloads like
TPC-C show lesser overhead than anticipated because of one-sided
read overhead that is not proportional to the actual read/write ratio
present in the benchmarks.
Summary. Unlike traditional logging, PILL adds negligible over-
head over FORD’s steady-state while ensuring safety and drasti-
cally reducing the recovery latency. Next, we look at the fail-over
throughput.
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Figure 6: Steady-state of non-recoverable
FORD (blue) vs recoverable Pandora (red).
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Figure 7: Steady-state throughput of Pandora
while varying mean time to failures (MTTF).
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Figure 8: Average Microbenchmark fail-over
throughput of Memory and Compute faults.
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Figure 9: Average Smallbank average fail-over
throughput of Memory and Compute faults.
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Figure 10: Average TATP fail-over throughput
of Memory and Compute faults.
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Figure 11: Average TPC-C fail-over through-
put of Memory and Compute faults.

Figure 12: Smallbank fail-over throughput of
Memory and Compute faults [low contention].
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Figure 13: Microbenchmark with contention
[hot objects=1000]. Baseline throughput recov-
ers but after seconds (not shown in the plot).

Figure 14: Microbenchmark with contention
[hot objects=100000]. Baseline throughput re-
covers but after seconds (not shown in the
plot).

6.3 Fail-over Throughput
The fail-over throughput is the difference between the throughput
while recovering from a failure and the fault-free steady-state
throughput. To measure this for Pandora, we conducted an end-to-
end experiment to show the impact of our fast recovery that does
not stop the operation of the entire KVS.

For this experiment, we set up a cluster of five machines with
two memory nodes and two compute nodes; the fifth server runs
the failure detector (we report experiments with distributed FD
later). We use our standard benchmarks with 128 transaction
coordinators. We emulate a failure by crashing one compute node
while measuring the throughput of the rest of the KVS. Recall
that the failure detector identifies the failure after waiting for the
timeout (i.e., 5ms in our case) and initiates the recovery coordinator.
For this experiment, we use the same failed machine to run the
recovery coordinator.

Unlike blocking (i.e., "stop-the-world") type recoveries as in
the Baseline (or traditional monolithic server deployments [22, 23,
28, 64]), our recovery need not stop the entire KVS for compute
failures. Indeed, our microbenchmark in Figure 8 (blue line) shows
that Pandora’s throughput does not drop to zero, but drops to about
two-thirds of the original throughput after the emulated crash.
Similarly, Figures 9, 10, and 11 respectively show the fail-over
throughput of Smallbank, TATP and TPC-C. Recall that Pandora
handles memory failures as an all-compute failure that requires
stopping the entire KVS to update the new replica configuration.

Thus, in our benchmarks (yellow line), fail-over throughput drops
to zero but rapidly recovers.

6.4 Post-failure throughput
Recovery impacts not only the fail-over transactional throughput
but also the post-failure throughput. If the recovery cannot restore
the lost compute resources, the post-failure throughput may drop
in proportion to the percentage of lost coordinators. In some cases,
the post-failure throughput hinges on the ability to restore the
failed coordinators after the recovery process. In such a scheme,
the KVS can either use the freed-up resources from failed coor-
dinators or standby backup resources. Reusing resources from
failed coordinators is possible for software crashes. Figure 8 shows
two scenarios: the red line denotes the case when there is a fault
followed by recovery, but the failed resource is not reused. The
blue line shows the case in which the failed resources are reused,
and hence, the post-recovery throughput matches the pre-failure
throughput. Notably, the failed coordinators are brought back in
less than 10ms after the fault.

Moreover, post-failure throughput is impacted by oversubscrip-
tion and the system’s bandwidth limitations. For example, in
scenarios with high load where transactions operate significantly
below optimal throughput, due to a multitude of coordinators
competing for network bandwidth, a loss of a compute node
might paradoxically elevate the application’s throughput. This
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phenomenon manifests in certain workloads, resulting in post-
failure throughput exceeding the steady-state throughput observed
pre-failure. However, this elevation is primarily attributed to band-
width constraints and can be mitigated by reducing the number
of coordinators active on the compute nodes. For instance, Fig-
ure 12 depicts the Smallbank benchmark with half the number of
coordinators. In this configuration, Pandora effectively restores
the post-failure throughput to its pre-failure levels.
Distributed FD. Recall that replicating the FD using Zookeeper
quorums impacts recovery (Section 3.2.4). Crucially, even with
three FD replicas (managed via Zookeeper), Pandora recovers in
under 20ms, which is still orders of magnitude faster than the
Baseline.
Sensitivity to stalls. Let us consider the case in which a transaction
T1 locks an object X during execution and then is forced to abort
due to a fault. The failure would trigger a recovery operation
(section 3.2). But before the recovery can be completed, suppose
another transaction T2 accesses the same object X during its
execution. At this point, there are two options: abort transaction T2
or stall T2 until recovery is complete. Thus far, we have assumed
the former, letting other transactions that do not conflict with
object X to execute and commit.

This experiment investigates the stalling path, where a trans-
action accessing an object that needs recovery is delayed un-
til recovery completes. This approach naturally affects fail-over
throughput, with the impact being proportional to the recovery
latency. To demonstrate the sensitivity of fail-over throughput to
varying recovery latencies, we conducted two experiments using
our microbenchmark with 100% writes, on the same setup as the
last experiment. To simulate failures, we randomly crashed half of
the coordinators at different times.

In the first experiment, we used 1,000 hot objects/keys (Fig-
ure 13). As expected, without the fast recovery of Pandora, through-
put rapidly drops to zero. The combination of high recovery latency
and a high conflict rate quickly blocked all coordinators. Conversely,
Pandora’s fast recovery resulted in an initial drop in throughput,
but once recovery completed, throughput quickly stabilized.

We ran a similar experiment with 100,000 hot objects to reduce
the number of conflicting transactions (Figure 14). With fewer
conflicts, even under slow recovery, non-conflicting transactions
could still execute, leading to a gradual decline in throughput
rather than an immediate drop to zero. However, with fast recovery,
throughput remained steady, and the fail-over throughput was
primarily influenced by the number of failed coordinators, which
could be restored later.

7 RELATED WORK
Pandora introduces a new end-to-end transaction protocol for dis-
aggregated-memory key-value stores, where compute and memory
are decoupled. Specifically, we address transactional recovery in
one-sided RDMA-based disaggregated key-value stores, focusing
on ensuring a fast non-blocking recovery that is correct and does
not compromise the steady-state performance.
Disaggregated Memory (DM). The advent of fast networking
technologies, such as RDMA and CXL, has sparked interest in
Disaggregated Memory (DM) [9, 61]. DM decouples memory from
conventional monolithic servers, enabling applications to perform
one-sided operations for direct access to remote memory [31,
48]. However, DM has introduced new challenges in runtime
systems [16, 60], memory management [47, 61, 62], remote data

structures [6, 10, 43, 49, 70], concurrency control [63], and fault
tolerance [63, 74, 75].
Disaggregated Key-Value Store (DKVS). Key-value stores (KVS)
are a critical component of cloud services. Thus far, KVSes adhere
to a monolithic architecture, where computation and memory
are tightly integrated within servers [20, 30, 35, 36, 56, 72].
Conversely, DM has paved the way for the concept of disaggregated-
memory key-value stores (DKVSes) [46, 67]. DKVS stores its
key-value dataset in passively distributed DM servers (memory
nodes), reserving compute servers solely to execute application
logic [32, 46, 49, 63, 67]. Compute servers can directly access the
key-value pairs via one-sided RDMA and issue operations such as
get and put requests [46, 63].
Transactional Recoverable KVS. Transactions offer multiple
gets and puts in a single operation, making them the de facto
programming model for KVSes. Traditional monolithic KVS
architectures fail to fully leverage the advantages of disaggregation
[22, 23, 37]. For instance, FaRM [22], a state-of-the-art recoverable
transactional KVS, does not account for the decoupled nature of
memory and compute. Hence, despite allowing for faster RDMA-
based recovery than prior works, it imposes a stop-the-world
recovery mechanism [23]. Additionally, the reliance on traditional
RPC-based recovery during fault-free and recovery operations
undermines the disaggregation’s benefits, like flexible compute-
memory scaling. Hence, these protocols are neither optimal nor
applicable for DKVSes. FORD [74] is the first transactional DKVS
designed for a full one-sided RDMA-based architecture. However,
FORD overlooks recovery, a crucial challenge in DM systems
where memory and compute fails independently.
Pandora. Pandora is the first transaction protocol specifically
designed to handle recovery in one-sided RDMA-based DKVSes.
It offers an end-to-end solution with fast recovery and minimal
steady-state performance overhead while ensuring correctness.
While Pandora is a non-persistent DKVS, it is compatible with
non-volatile memory (NVM) devices. It supports FORD’s selective
one-sided RDMA flush scheme for efficiently persisting data from
the RNIC cache to NVM when needed. Moreover, with battery-
backed DRAM, no flushing is required on the critical path to
achieve persistence.

8 CONCLUSION
This work reveals that memory disaggregation presents an oppor-
tunity to enhance the availability of transactional key-value stores
(KVSes), but it also introduces challenges due to the limited one-
sided RDMA semantics. To address these challenges, we proposed
Pandora, the first one-sided transactional protocol designed for
correct, seamless, and fast recovery in disaggregated KVSes.

We introduce two key innovations: Pandora’s Implicit Latch
Logging (PILL), which ensures latches remain recoverable without
impacting performance during fault-free operation, and a novel
RDMA-based recovery protocol for fast failure recovery.

Through a litmus-testing framework, we validated Pandora’s
correctness and uncovered bugs in the state-of-the-art (FORD)
protocol, all of which Pandora resolves. Our experimental results
show that Pandora recovers from failures in milliseconds, without
blocking live transactions or degrading performance in normal,
fault-free execution—unlike traditional approaches that can im-
pose significant performance overhead. Our work underscores the
importance of integrating thorough testing and careful engineering
into the design of recovery protocols to ensure both correctness
and high performance.
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