
Step-by-Step Data Cleaning Recommendations
to Improve ML Prediction Accuracy

Sedir Mohammed
Hasso Plattner Institute
University of Potsdam

Germany
Sedir.Mohammed@hpi.de

Felix Naumann
Hasso Plattner Institute
University of Potsdam

Germany
Felix.Naumann@hpi.de

Hazar Harmouch
University of Amsterdam

The Netherlands
h.harmouch@uva.nl

ABSTRACT

Data quality is crucial in machine learning (ML) applications, as
errors in the data can significantly impact the prediction accu-
racy of the underlying ML model. Therefore, data cleaning is an
integral component of any ML pipeline. However, in practical
scenarios, data cleaning incurs significant costs, as it often in-
volves domain experts for configuring and executing the cleaning
process. Thus, efficient resource allocation during data cleaning
can enhance ML prediction accuracy while controlling expenses.

This paper presents Comet, a system designed to optimize
data cleaning efforts for ML tasks. Comet gives step-by-step
recommendations on which feature to clean next, maximizing
the efficiency of data cleaning under resource constraints. We
evaluated Comet across various datasets, ML algorithms, and
data error types, demonstrating its robustness and adaptability.
Our results show that Comet consistently outperforms feature
importance-based, random, and another well-known cleaning
method, achieving up to 52 and on average 5 percentage points
higher ML prediction accuracy than the proposed baselines.

1 DATA CLEANING FOR ML

In an era dominated by data-driven strategies and rapid devel-
opment in machine learning (ML), data quality has become a
significant factor in the success of ML applications. The availabil-
ity of vast and diverse datasets has empowered various domains,
such as healthcare, biology and finance, to leverage the capabili-
ties of ML algorithms, fostering significant improvements [30, 41].
However, the effectiveness of these algorithms depends on the
quality of the input data during training and testing phases [11].
Real-world datasets often contain imperfections, inconsistencies,
and inaccuracies that can significantly impact the prediction accu-
racy of ML models. Thus, data cleaning, which entails identifying
and correcting data errors, is essential for reliable and accurate
ML predictions.

Traditionally, data scientists performed cleaning during data
acquisition, oftenwithout considering the underlyingML task [17].
However, the focus has shifted from isolated data cleaning strate-
gies preceding the ML task (“Cleaning before ML”) to an inte-
grated perspective that views data cleaning and the underlying
ML task as a cohesive entity (“Cleaning for ML”) [27]. This devel-
opment marks a new era in which data quality and ML outcomes
are symbiotic components within the ML pipeline.

The growing paradigm of data-centricArtificial Intelligence (AI)
emphasizes the role of data quality throughout theML pipeline [39,
41]. Initially, developers and researchers focused on models to
improve prediction accuracy. With data-centric AI, the focus

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Current Pollution Level

P
re

d
ic

ti
o
n
 A

cc
u
ra

cy Incremental Pollution

Pollution Level

Cleaning

Real

Predicted

Figure 1: Comet incrementally pollutes features and based

on the observed negative effect of the pollution on the

prediction accuracy, it estimates the positive impact of

data cleaning.

is on the data and its quality instead of the ML model, poten-
tially leading to more robust and generalizable AI applications.
However, this shift also presents challenges, like ensuring data
quality, obtaining reliable annotations, handling missing values,
and fostering data diversity. Especially in real-world scenarios
where data cleaning is often associated with costs as this task is
typically performed by users, respectively domain experts. These
challenges motivate the need for strategic data preparation meth-
ods to ensure effective ML models and an efficient data cleaning
process [30, 41].

Given the common scenario where a user possesses a (dirty)
dataset and aims to deploy anMLmodel within a limited resource
allocation for data cleaning [25], it is beneficial to determine the
order of clean operations, and thus to maximize the improve-
ment of the downstream ML task within a budget. To determine
this order, we introduce the Cleaning Optimization and Model
Enhancement Toolkit (Comet), a progressive approach for clean-
ing recommendations in such scenarios. Our approach provides
the user with a step-by-step recommendation on which feature
to clean next.

By analyzing the relationships between feature-wise data qual-
ity, cleaning costs, and their impact on ML outcomes, Comet
allocates the cleaning budget to maximize improvements in pre-
diction accuracy. To estimate how feature-wise data cleaning
affects prediction accuracy, Comet incrementally injects addi-
tional errors into features (see Figure 1) and measures prediction
accuracy after each pollution. It then interpolates a trend from
these measurements to predict the effect of cleaning the respec-
tive feature. Considering the cleaning costs, Comet recommends
the next feature to clean. The principle of incremental data pollu-
tion has shown promise in other fields [3]: In quantum computing,
researchers amplify noise during calculations to back-calculate
results in a noise-free environment.

 

 

Series ISSN: 2367-2005 542 10.48786/edbt.2025.43

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.43


The cleaning process within Comet can be executed manually
or through automatic error correction algorithms [17]. Recently,
Automated Machine Learning (AutoML) emerged to streamline
and automate various ML stages, from data preprocessing, includ-
ing data cleaning, to feature engineering, algorithm selection,
and hyperparameter tuning [14]. The flexibility of Comet allows
it to fit seamlessly into an AutoML pipeline. In critical domains,
where the data cleaning process might require expert validation
even when it is done automatically, Comet’s step-wise feature
cleaning recommendations provide a controlled and transparent
approach.

In this paper, “prediction accuracy” refers to metrics like ac-
curacy or F1 score, even though Comet can also optimize other
AI-related metrics, such as fairness or bias [39, 41].

To evaluate our approach, we introduce three baselines and a
related approach. The first baseline uses feature importance from
the (dirty) input data to guide feature-wise cleaning recommenda-
tions [24]. The second baseline acts on random feature selection
– a contrastingly non-strategic method. The third baseline breaks
Comet’s step-wise approach, using a ranked feature list from
the first step for all subsequent cleaning operations. The fourth
contender is ActiveClean [20], a well-known method aiming to
optimize the cleaning process like Comet. Our empirical results
show that Comet, on average, outperforms the baselines across
diverse datasets, error types and ML algorithms. The results show
the potential for improved model prediction, emphasizing the
importance of an informed data cleaning strategy in resource-
constrained scenarios.
Contribution. In summary, our research advances the under-
standing of data cleaning as a key facet of data-centric AI. It offers
practitioners a principled approach to optimize data-cleaning
efforts within budget constraints. As ML increasingly perme-
ates various domains, insights from this study promise to enable
more accurate and cost-efficient deployment of ML models on
real-world, imperfect data. We specifically make the following
main contributions:

(1) We present Comet, an innovative approach that incremen-
tally pollutes data to assess the effects of data cleaning
on prediction accuracy and iteratively makes cleaning
recommendations while considering cleaning costs.

(2) We evaluate the performance of Comet by simulating
the cleaning of various datasets and by comparing the
prediction accuracies against two cleaning baselines and
ActiveClean [20].

(3) We further evaluate Comet using the CleanML bench-
mark [5, 22], which provides both dirty and clean versions
of real-life datasets for comprehensive analysis.

Outline. Section 2 presents relevant related work. Section 3
details the functionality and various components of Comet. We
present the data considered in the experiments, ML algorithms,
error types, cleaning cost models, and other implementation
details of Comet in Section 4. Section 5 shows the results of
the experiments in which we compare Comet to the baselines
and related work. Finally, Section 6 summarizes our findings and
outlines future research directions.

2 RELATEDWORK

Traditional error detection and cleaning methods, such as NA-
DEEF [8] and KATARA [4], rely on user-defined rules or domain
expertise, which can be costly and labor-intensive. As the com-
plexity and volume of data increased, and ML methods became

more popular, the need for automated and adaptive data cleaning
methods became more pressing. An example of ML-based error
detection is HoloDetect [15], which learns error patterns in the
data to generate further training data synthetically and trains an
error detection model. Another approach is ED2 [29] which uses
active learning and selects the entries for which the ML model is
currently unsure for labelling by the user. There exist also ded-
icated approaches for automatic data cleaning. HoloClean [32]
processes different cleaning signals in data, using probability
theory to reconcile inconsistencies across various signals and
repair data. Similarly, SCARE [40] uses ML techniques to repair
data by maximizing data likelihood while introducing minimal
changes.

The presented methods and a large amount of similar research
focus solely on data without considering its downstream appli-
cation. However, erroneous data may not be equally disruptive,
as Foroni et al. [11] have explicitly demonstrated for the ML
context as a downstream task. This aligns with our intuition in
this paper. In the following, we discuss existing approaches that
consider data cleaning in the context of ML applications.

ActiveClean treats data cleaning as a stochastic gradient de-
scent problem [20]. It selects iteratively records for cleaning that
are estimated to have the highest gradient of the loss function
after cleaning the respective records. The gradient per record
is estimated from the gradient of the dirty record and previous
cleaning procedures. In contrast, Comet predicts the cleaning
effect in each iteration by introducing additional errors into the
current pollution state, making it adaptive by always estimating
cleaning impacts based on the current state of the data. Unlike
ActiveClean, which starts with a random sample due to a lack
of gradient information, Comet provides well-founded recom-
mendations from the first iteration. Despite these differences,
ActiveClean is similar enough to Comet in its approach to serve
as a baseline in our experiments.

CPClean adopts an incremental cleaning strategy similar to
Comet, using a step-by-step process primary informed by valida-
tion sets and counting queries [18]. This process persists until it
determines that additional cleaning will no longer affect the pre-
diction accuracy. However, CPClean is optimized specifically for
nearest-neighbor models, lacking the model-agnostic flexibility
that Comet offers.

BoostClean approaches data cleaning as a boosting problem,
generating a cleaning program applicable to training or test
records, while actively conducting the cleaning [19]. The pri-
mary criterion for cleaning decisions is the model’s test accuracy.
Although BoostClean estimates the impact of data cleaning simi-
larly to our approach, it requires fully clean labels in the test data
and pre-defined detection and cleaning functions by a domain
expert. In contrast, Comet operates without prerequisites on
the cleaning state of training and test data and autonomously
estimates the impact of cleaning without relying on pre-defined
rules or functions.

AutoSklearn is a complete AutoML system that automates data
cleaning by constructing and evaluating ML pipelines with model
validation accuracy [10]. It focuses on imputation when cleaning
errors based on mean, median or most frequent values. Neutatz
et al. [28] extended the system with additional data cleaning
methods for outlier detection and advanced imputation strate-
gies. Although these AutoML frameworks offer comprehensive

543



solutions, their data cleaning functionalities are tailored to han-
dle specific error types and require pre-defined detection and
cleaning routines.

DiffPrep, similar to Comet aims to optimize data cleaning but
focuses on feature-wise transformations during pre-processing
while considering the impact on the underlying ML model [21].
DiffPrep determines the order of transformation types (e.g., clean-
ing missing values first, then outliers) and selects the appropriate
cleaning method (e.g., mean imputation for missing values, Z-
score for outliers) for each feature, tailored to the ML model.
Unlike Comet, DiffPrep does not clean incrementally; it estab-
lishes a final transformation pipeline for all features without
guiding the user step-by-step, which limits direct comparability
with Comet.

3 CLEANING RECOMMENDATION

Comet provides cost-aware feature-wise cleaning recommenda-
tions in a progressive fashion, i.e., offering step-by-step guidance
on which features should the next cleaning effort be spent on.
These cleaning recommendations are always error type and ML
algorithm-specific. However, Comet can handle arbitrary error
types and ML algorithms, without being restricted to a specific
ML task. In this manuscript, we configured Comet for four spe-
cific error types (see Section 3.4) and focused on classification.
The actual cleaning can be performed by either a data cleaning
algorithm, such as HoloClean [32], SCARE [40], or, more impor-
tantly, a dedicated domain expert. At no point during the process
does Comet require information about the actual pollution level
of the individual features, nor which entries are actually erro-
neous. Figure 2 shows the architecture of Comet, consisting
of three modules: Polluter (Section 3.1), Estimator (Section 3.2)
and Recommender (Section 3.3). Comet initially requires (dirty)
data as input, which serves as the basis for generating cleaning
recommendations for the subsequent cleaning step. In the fol-
lowing subsections, we provide a detailed description of each
module and its functionality.

In the rest of the paper, we refer to the number of data entries
to be cleaned in each iteration as the cleaning step. We also use the
term Cleaner to denote the data cleaning methods, encompassing
both the algorithm-based and the human-based techniques.

In the description of each module, we assume a specific error
type. However, the process can be applied separately to differ-
ent error types to identify the optimal feature and error type
combination.

3.1 Incremental data pollution

The first module of Comet, the Polluter, incrementally pollutes
the input data given a specific error type for which Comet should
make a cleaning recommendation in the current iteration. The
Polluter introduces additional erroneous entries for each feature,
quantified by a pollution step, which is the counterpart to a clean-
ing step. Additionally, we use the notion of the pollution level,
which denotes the percentage of cells that should be addition-
ally polluted. Since selecting the entries to be polluted may also
have a potentially different effect on the prediction accuracy,
the Polluter selects randomly multiple combinations of entries
per feature to be polluted. So, the functionality of the Polluter is
represented mathematically by the function:

Polluter(𝑑, 𝑓 , Err, 𝜌) = 𝑑′
𝑓 ,𝜌,𝑐

(1)

where 𝑑 represents the input data, 𝑓 is the considered feature to
be polluted, Err is the error type, 𝜌 signifies the pollution level
for the feature 𝑓 , and 𝑑′

𝑓 ,𝜌,𝑐
represents a polluted data state for

the pollution level 𝜌 and the combination 𝑐 .

Example. Suppose we have a feature “Income” in a dataset 𝑑 . If
the error type Err is missing values and the pollution level 𝜌
is set to 1%, the Polluter introduces missing values to 1% of the
entries in the “Income” column. This results in a polluted data
state 𝑑′Income,1%,𝑐 , where 𝑐 represents one specific combination of
polluted entries.

By default, Comet assumes all features contain dirty entries
and must be cleaned until the Cleaner marks them as clean. To
produce the next cleaning recommendation, the Polluter performs
two further pollution steps for each feature (see Figure 1). Each
new pollution level corresponds to an additionally polluted input
data state. Pollution is applied separately to the train and the test
data to prevent information leakage between them.

It is worth noting that, given that the Polluter lacks knowledge
about which specific entries in a feature are erroneous, it may
overwrite already dirty entries with artificial errors. Thus, the
targeted pollution level might not be fully achieved after a pol-
lution step. Using the hypergeometric distribution, we estimate
that the probability of selecting clean entries to pollute remains
high when the number of already dirty entries is small relative
to the total.

3.2 Cleaning impact estimation

The Estimator receives from the Polluter feature by feature the
different versions of the data, including 𝑑 and a set 𝐷′

𝑓
of 𝑑′

𝑓 ,𝜌,𝑐
.

The Estimator operates in two steps:

Step 1: Pollution Effect Measurement. We evaluate the influence
of incremental feature-wise pollution on the prediction accuracy
for the considered pollution levels 𝜌 . Since the prediction accu-
racy depends on the used ML algorithm, Comet expects an ML
algorithm as an additional input in the Estimator. This phase is
expressed as

𝐸1 (𝑑, 𝐷′
𝑓
, 𝑓 , 𝑀𝐿𝐴) = 𝐴(𝑓 ) (2)

where𝑀𝐿𝐴 is the chosen ML algorithm, and𝐴(𝑓 ) is a set of mea-
sured prediction accuracies per pollution step for the feature 𝑓 .

Example. Given the data states 𝐷′
𝑓
= {𝑑′Income,1%,𝑐 , 𝑑

′
Income,2%,𝑐 }

and the ML algorithm𝑀𝐿𝐴 (e.g., SVM), the Estimator computes
the prediction accuracy 𝐴(Income) = {0.85, 0.82} for the respec-
tive pollution levels 𝜌 = 1%, 2%.

Step 2: Predictive Model Construction. In the second step, de-
noted as 𝐸2, the Estimator utilizes the prediction accuracies mea-
sured from the incrementally polluted input data per feature.
Based on the measured prediction accuracies, the Estimator trains
a Bayesian regression model to predict the prediction accuracy
for the next cleaning step (see the line denoted as “predicted” in
Figure 1). The regression-based prediction is formulated as

𝐸2 (𝐴(𝑓 )) = (𝑃next (𝑓 ),𝑈 (𝑓 )) (3)

where 𝑃next (𝑓 ) is the predicted accuracy for the feature 𝑓 and
𝑈 (𝑓 ) is the uncertainty of the prediction. The Bayesian regression
model quantifies the prediction uncertainty, which the Recom-
mender uses later for feature ranking and selection.

544



Input Data

Cleaning
(Clean & Test)

Polluter

Estimator

Polluted
DataPolluted
DataPolluted Data

(A) Select
Positives

(E) Fallback
Selection

(C) Select by Score (B) Score &
Rank

(D) Revert Cleaning on
Accuracy Decrease

PolluterPolluter

Incremental Pollution COMET

Feature 1

Feature n
...

F1 (Feature 1)

F1 (Feature n)
...

N
o 

Fe
at

ur
e

Fo
un

d

No Positives Recommender

Fe
at

ur
e 
n

...

Feature i

Fe
at

ur
e 

1

A
cc

ur
ac

y 
In

cr
ea

se
d

af
te

r C
le

an
in

g

Accuracy

Figure 2: Comet workflow for an individual error type: (1) Polluter: Introduce further pollution; (2) Estimator: Evaluate
pollution/cleaning effects on ML model accuracy; (3) Recommender: Propose feature-wise cleaning strategies based on

scoring.

3.3 Optimal feature selection

The last module, the Recommender, selects the next feature for
the Cleaner to clean (see Figure 2). This decision is based on the
predicted accuracy per feature, factoring in the cleaning costs.
Initially, the Recommender considers only features with a positive
predicted accuracy (Figure 2 – (A) Select Positives). These are
features where the Estimator predicts that the prediction accuracy
improves after cleaning by one cleaning step. It then scores and
ranks these features, using a score that balances the potential
accuracy gain against its associated uncertainty and cleaning
cost (Figure 2 – (B) Score & Rank). We define this score for a
feature 𝑓 as

Score(𝑓 ) = 𝑃next (𝑓 ) −𝑈 (𝑓 )
𝐶 (𝑓 ) (4)

where 𝑃next (𝑓 ) is the predicted accuracy gain for a feature 𝑓 ,𝑈 (𝑓 )
is the uncertainty associated with this prediction, and𝐶 (𝑓 ) is the
cleaning cost function for the feature 𝑓 . The uncertainty 𝑈 (𝑓 ) is
calculated as the difference between the upper and lower bounds
of the confidence interval of the Bayesian regression model. This
ranking prioritizes features that provide the most significant pre-
diction accuracy improvement per unit of cleaning cost, while
also considering the confidence level of these predictions. Thus,
Comet recommends themost cost-effective feature 𝑓 for cleaning
in the current iteration (Figure 2 – (C) Select by Score).
Example. For the feature “Income”, the predicted accuracy im-
provement is 𝑃next (Income) = 0.88, the uncertainty is𝑈 (Income)
= 0.02, and the cleaning cost is𝐶 (Income) = 1. The score is com-
puted as: Score(Income) = 0.88−0.02

1 = 0.86.
As part of the cleaning recommendation, Comet provides

the Cleaner with details on which entries of the recommended
feature were temporarily polluted by the Polluter (𝐷′

𝑓
). These

entries, which have led to the recommendation, are potentially
partially dirty in the input data 𝑑𝑓 (feature 𝑓 of the input data) –
the Cleaner should first clean them. If the already dirty entries
in 𝑑𝑓 are fewer than required for a cleaning step, the Cleaner
must clean additional random entries from this feature. After
cleaning, the Recommender evaluates the impact on prediction
accuracy and considers the cleaning step as successful if the
accuracy increases – a new iteration of Comet starts (Figure 2
– Cleaner, Clean & Test). If the prediction accuracy decreases
after cleaning, Comet reverts the data to its pre-cleaning state,
retaining the cleaned data in a cleaning buffer (step (D) in Figure 2).

The Recommender then moves to the next highest-ranked feature
for cleaning (Figure 2 – (C) Select by Score). If the feature to be
cleaned is in the cleaning buffer, the Recommender removes it
and applies the changes to data.

In rare cases where all ranked features result in a decrease
in prediction accuracy after cleaning, or none are predicted to
improve accuracy, the Recommender switches to a fallback strat-
egy (Figure 2 – (E) Fallback Selection). This strategy focuses on
cleaning the feature that previously archived highest F1 score
after cleaning. If a feature is deemed completely cleaned, the Rec-
ommender moves on to the next most important feature in the
ranking.

Once a feature is cleaned by one cleaning step, the Recom-
mender compares the actual increase in prediction accuracy to
the one predicted by Comet, identifying any discrepancies in
the predictive modelling for the considered feature. The Estima-
tor then adjusts the prediction to improve its accuracy, which
involves calculating the mean of the measured discrepancies and
then modifying the prediction by adding or subtracting this mean
value. Even if the Recommender evaluates the cleaning as ineffi-
cient, and Comet restores the pre-cleaning state, or activates the
fallback strategy, the Estimator adjusts the prediction model for
that feature.

The Recommender based decision-making, denoted as 𝑅, is
formalized as

𝑅
(
{𝑃next (𝑓𝑖 ), 𝐶 (𝑓𝑖 ), 𝑈 (𝑓𝑖 )}𝑛𝑖=1

)
= 𝑓rec (5)

where the Recommender 𝑅 expects the predicted accuracy, the
cleaning cost, and the uncertainty for each considered feature
𝑓1 . . . 𝑓𝑛 to recommend a feature 𝑓rec for cleaning the considered
error type by one cleaning step.

3.4 Error types

Comet is conceptually an error type-agnostic approach. However,
we configured Comet for a specific set of error types 𝐸𝑟𝑟 , which
we detail in the following. We consider error types that emulate
common data errors, such as incomplete or incorrectly data, scale
inconsistencies, and random noise. For the data pollution, the
Polluter uses the JENGA framework [35] to randomly sample a
specific number of records𝑥 from a feature, based on the pollution
level, and introduce the respective error type. The following
presents the considered error types, including the respective
pollution process.

545



Missing values.Missing values are a common problem in many
real-world data [9, 34]. These can appear as empty entries or be
represented by placeholders, such as “NaN”. However, hidden
missing values may use unconventional placeholders [31], such
as representing a missing date with 1900-01-01. To pollute the
data, the Polluter replaces the randomly selected records of a
feature with a placeholder.

Gaussian noise. Numerical values can be noisy, e.g., due to
erroneous sensors, external interference, or incorrect user input.
To pollute the data for a given feature, the Polluter randomly
samples 𝑥 records and adds Gaussian noise to each selected data
point, generated with a mean of zero and a randomly chosen
standard deviation within [1-5].

Categorical shift. Categorical shift is the counterpart to Gauss-
ian noise for categorical variables, where incorrect categories
are assigned values. During the pollution, the Polluter samples
𝑥 records from a feature and swap their categories with other
categories in the feature.

Scaling.We assume scaling in numerical values could occur due
to incorrect conversion of units, such as from cm tom. To pollute
the data, the Polluter randomly increases the scaling by 10, 100,
or 1000 in the selected rows of the considered feature.

4 EXPERIMENTAL SETUP

This section details the methods and datasets we use to demon-
strate the performance of Comet in giving valuable recommen-
dations for iterative feature-wise cleaning. In the rest of the paper,
we refer to a unique combination of a dataset, an ML algorithm,
and a specified error type in the data as a configuration. Each
configuration is a distinct experimental scenario, allowing us
to study the effects of various data conditions, algorithms, and
errors on Comet.

4.1 Pollution and cleaning setup

To validate the recommendation-based cleaning, we use datasets
that have both dirty and cleaned versions (ground truth) and other
datasets that we artificially pre-polluted to establish a ground
truth. We introduce the datasets in Section 4.3. Each setting of
pollution levels across features is referred to as a pre-pollution
setting. These settings affect only features, so we do not add any
errors to the labels in our experiments. Since the pre-pollution
setting is at dataset level, we keep the same pre-pollution settings
across different configurations involving the same dataset. Based
on discussions with ML experts, both training and test data are
equally polluted, reflecting common real-world scenarios.

Given the potential variations in data quality per feature
in real-world datasets and the significant influence of the pre-
pollution level distribution on the prediction quality [11], it is
essential to consider diverse pre-pollution settings. Thus, we
sample for each pre-pollution setting the pollution level per fea-
ture using an exponential distribution to ensure a wide-ranging
representation of pollution level distribution. The cleaning and
pollution step is set at 1% of the total data size of the train or
test data to ensure a consistent impact across experiments. We
consider two scenarios for the pre-pollution: In the first scenario,
we pollute the data according to the pre-pollution level, with only
one error type. In the second scenario, we randomly select an er-
ror type for each pollution step of a feature during pre-pollution.
To conduct the pre-pollution, we use the same pollution methods
used by the Polluter.

4.2 Cleaning cost models

For the two scenarios, where we consider either single or multiple
errors, we use different cleaning cost models per feature. In the
first scenario, applied within the single-error context, we assume
a constant cost function for each feature: each cleaning step incurs
a uniform cost of one unit. In this way, wemaintain comparability
and avoid favoring any particular feature. However, in practice,
different error types might have varying cleaning costs, thus in
the multi-error scenario, we go beyond constant cost function by
incorporating linear and one-shot cost functions associated with
different error types. Note that our assignment of cost functions
to error types is an example and can be adapted as needed.
Constant cost. We apply this cost to both categorical shifts and
scaling errors. Categorical shifts can be identified by detecting
frequent correlations through FD discovery algorithms or asso-
ciation rule mining, with deviations corrected via imputation.
Similarly, scaling errors identified by outlier detection are also
corrected using imputation methods. In the experiments, we
assign the cost of one unit per cleaning step.
One-shot cost. A one-shot cost function implies a higher initial
cleaning cost that does not recur in subsequent steps. This model
is used for cleaning missing values, starting with identifying
missing values and then performing data imputation once for the
entire column. In the experiments, we assign costs of two units
for the first cleaning step and zero for all further cleaning steps.
Linear cost. In this model, each cleaning step of a particular
error type costs incrementally more than the previous one. We
assume a linear cost function for the cleaning of Gaussian noise.
Initial detection involves estimating noise distribution and iden-
tifying strong outliers, which becomes gradually harder as subtle
deviations are harder to detect. In the experiments, we assume
an increase of one unit per cleaning step performed, with initial
costs of one unit.

For both scenarios, we limited the cleaning budget to 50 units,
balancing practicality and experimental rigor. We are aware that
the effectiveness of such budgets differs notably across various
pre-pollution settings: it may be adequate for thoroughly cleaning
datasets with fewer dirty features or lower pollution levels, or,
conversely, it may only allow partial cleaning for more dirty
features or overall higher pollution levels. This variation mirrors
real-world data cleaning challenges, where the extent of pollution
significantly impacts the resources needed for effective cleaning.

4.3 Datasets

We use seven different datasets commonly used for classification
tasks. Three of them have both clean and dirty versions available
and include at least one of the error types considered in this
paper. These datasets are part of the benchmark provided by
CleanML [5, 22]. Additionally, we established three distinct pre-
pollution settings for four further datasets from the UCI Machine
Learning Repository and Kaggle. We present the used datasets
in the following; in addition, Table 1 shows an overview of the
characteristics of these datasets.
Datasets used with pre-pollution. The Contraceptive Method
Choice (CMC) dataset contains a subset of the 1987 Indonesian
National Contraceptive Prevalence Survey [23]. The classification
task is to predict the current contraceptive method of the women
surveyed. The EEG Eye State (EEG) dataset contains data from
EEG measurements with the Emotiv EEG neuroheadset [33]. The
classification task is to predict the eye state (closed or open). The

546



“categorical shift” is not applicable to this dataset, since it contains
only numerical variables. The Telco customer churn (Churn) data-
set from IBM consists of fictional customer data from a telecom-
munications company [37]. The classification task is to predict
whether the customer terminated their relationship with the
company as an active customer in the last month. Finally, the
South German Credit (S-Credit) dataset contains bank data from
a southern German bank from 1973 to 1975 [13, 16, 26]. we use in
our experiments the version from [13]. The classification task is
to predict whether a bank customer will comply with the terms
of the contract or not.
Datasets provided by CleanML. The Airbnb dataset contains
hotel information from the top 10 tourist destinations and US
metropolitan areas [1, 5, 22]. The CleanML authors provided the
data by scraping the Airbnb.comwebsite. The classification task is
to predict whether the rating of a hotel is 5 or not. In the context
of this dataset, we consider scaling errors. The Credit dataset
consists of credit data, whereby the classification task is to predict
whether a client will be in financial distress in the next two
years [5, 7, 22]. In the context of this dataset, we consider missing
values and scaling errors. The Titanic dataset contains passenger
records [5, 22, 38]. The classification task is to determine whether
a passenger survives. In the context of this dataset, we consider
missing values.

Name # Rows # Cat. # Num. # Class
Datasets used with Pre-pollution
CMC 1,473 7 2 3
Churn 7,032 16 3 2
EEG 14,980 0 14 2
S-Credit 1,000 17 3 2
Datasets provided by CleanML
Airbnb (scaling errors) 26,288 3 37 2
Credit (scaling errors) 11,985 0 10 2
Titanic (missing values) 891 6 2 2

Table 1: Overview of our used datasets.

4.4 ML algorithms

While Comet is not limited to a specific ML task, here we focus
on classification. To demonstrate the superiority of Comet over
state-of-the-art baselines, we selected four diverseML algorithms:
Support Vector Machine (SVM) [6], a k-nearest neighbors classi-
fier (KNN) [2], a multi-layer perceptron (MLP) [36] and a Gradient
Boosting classifier (GB) [12]. We performed a 10-sampled ran-
dom hyperparameter optimization for each configuration and
pre-pollution setting. With this, we simulate a real-world sce-
nario wherein users working with dirty data aim for the highest
prediction accuracy given the dataset’s current state.

4.5 Evaluation metrics and baselines

As Comet makes recommendations for individual cleaning steps,
we compare the prediction accuracy per step to evaluate the
performance of Comet against four baselines: random recom-
mendations (RR), feature importance-based recommendations (FIR),
light version of Comet (CL) and ActiveClean (AC). As a metric
for the prediction accuracy, we use the well-known F1 score.

RR adopts a randomized approach, randomly selecting a fea-
ture in each cleaning step among those that have been marked

to be cleaned. For our evaluation, this process is repeated five
times for each pre-pollution setting, and we averaged the result-
ing F1 scores per cleaning step. FIR uses Shapley values [24]
to rank features by importance within each configuration and
pre-pollution setting, selecting the highest-ranked yet polluted
feature for cleaning in each step until it is fully cleaned, then
moving to the next. CL is a simplified version of Comet: it ap-
plies the idea of Comet once to generate a ranked list of features
based on the Estimator’s output. Similar to FIR, the Recommender
selects the feature with the highest rank at each cleaning step
and continues until that feature is fully cleaned. Similar to Co-
met, the Recommender in CL uses the same cleaning step and
reverting and fallback strategies. The authors of AC have focused
on ML algorithms with a convex loss function. Specifically, they
used SVM (in the following denoted as AC-SVM), linear regres-
sion (LIR) and logistic regression (LOR) [20]. Thus, we focus on
these ML algorithms when comparing Comet with AC. AC re-
lates the cleaning procedure to the number of records that can
be cleaned. We adapt AC to align with our concept of cleaning
on a feature level, ensuring a comparable experimental setting.

Additionally, we introduce a local optimum (Oracle), which
shows the optimal feature for cleaning in each step based on
the gain in F1 score relative to the associated cleaning costs.
The cleaning order generated by the Oracle does not always
guarantee the highest accuracy at every cleaning step compared
to Comet or the other baselines. A single divergent decision on
feature cleaning by Comet or the baselines can lead to divergent
cleaning orders that can reach, at some point, a higher accuracy
than the Oracle. However, Oracle performs much better than any
other approach on average and thus can be treated as an upper
bound.

5 EXPERIMENTAL RESULTS

This section delves into the findings from our extensive evalua-
tion of Comet, conducted across various datasets, error types,
ML algorithms, and baselines. We designed these experiments to
answer the following research questions (RQ) under two scenar-
ios:
(1) How effective is Comet in multi-error types and diverse cost

functions scenario?
(2) How effective is Comet compared to baselines FIR, RR, and

CL?
(3) How effective is Comet compared to related work AC [20]?
(4) How does Comet performance vary among different error

types and ML algorithms?
(5) How accurate are the predictions produced by the Estimator?
(6) How efficient is Comet in terms of runtime?

For the comparison with the respective baselines (RQ 1-RQ 4),
we calculate the F1 score differences (shown as F1 advantage in
the plots) for each cleaning step and the considered baseline we
average these differences across the pre-pollution setting (for
the datasets used with pre-pollution). A positive F1 advantage
indicates that Comet outperforms the corresponding baseline.

5.1 Comparison to baselines for multiple

error types and diverse cost functions

For the first research question (RQ 1), we compare the perfor-
mance of Comet with FIR, RR, CL (see Figure 3) and AC (see
Figure 4), considering multiple error types present in the data/per
feature and various cost functions , as introduced in Section 4.2,
for cleaning. As the CleanML datasets contain only single error

547



0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

(a) CMC

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

(b) Churn

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

(c) EEG

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge FIR

RR
CL

(d) S-Credit

Figure 3: Comparison of Comet with the baselines for SVM across multiple error types and cost functions.

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(a) CMC

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(b) Churn

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(c) EEG

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(d) S-Credit

Figure 4: Comparison of Comet with AC for LIR across multiple error types and cost functions.

types, we excluded them and focused on the datasets we pre-
polluted (see Table 1). Since our experimental setup consists of
many configurations and pre-pollution settings, we focus on sev-
eral specific configurations: those using SVM as theML algorithm
for FIR, RR, and CL, and those using LIR for the comparison with
AC. Our analysis showed that Comet achieved the best results
with SVM compared to FIR, RR, and CL, and the best results with
LIR in comparison to AC.
Comparison to FIR, RR and CL. In the comparison with FIR,
RR and CL, the results show that Comet outperforms the base-
lines in this scenario. Comet achieves an F1 score difference of up
to 11%pt for CMC. Comet is also consistently superior through-
out the cleaning process for Churn, EEG and S-Credit, although
the differences vary. For example, Comet achieves a difference of
10%pt in the F1 score compared to FIR in Churn with an invested
budget of 35, while for the next cleaning step, the difference drops
to 3%pt. Overall, Comet maintains a positive difference across
all datasets. The difference for S-Credit is smaller. Our analysis
shows that the average difference between the F1 score in dirty
and fully cleaned state is -1.5%pt, limiting the potential for clear
superiority.

Considering different error types within a feature and intro-
ducing various cost functions expands the search space for poten-
tial cleaning steps. FIR and RR more frequently make suboptimal
decisions. The different cost functions reinforce these findings, es-
pecially for linear cleaning costs, where repeated poor decisions
are heavily penalized by consuming more budget. In contrast,
Comet accurately estimates the impact of cleaning combinations
of features and error types, maintaining its superiority.
Comparison to AC. In the comparison to AC, Figure 4 shows
that Comet consistently outperforms AC throughout the entire
cleaning process. In most cases, Comet achieves a difference of
20%pt in the F1 score across all datasets. For Churn (Figure 4(b)),
Comet even achieves a maximum F1 score difference of nearly
50%pt. Overall, the differences are less erratic than in the single-
error and constant cost function comparisons (Figure 8), which is
attributed to the influence of the cost functions. Since AC cleans
on a per-record basis, different error types are corrected across
multiple features during each cleaning step. For comparison, we

propagate for longer periods the F1 scores achieved from previ-
ously utilized budget units until an actual F1 score is measured
for the current unit.

5.2 Comparison to FIR, RR, and CL for a

single error type

In RQ 1, we examined the performance of Comet in a multi-error
setting, considering various cost functions. To assess the impact
of individual error types on Comet’s performance compared to
FIR, RR, and CL, we now focus on single-error scenarios as part
of the second research question (RQ 2). The results are shown in
Figures 5 and 6. Here, we assume constant costs for each cleaning
step, regardless of the error type, to ensure comparability. An
early stop in the cleaning process indicates that the dataset is
fully cleaned. Again, due to the extensive configurations and
pre-pollution settings, we focus on one ML algorithm: MLP. As
Comet performs worse with MLP than other algorithms, this
experiment highlights its worst-case performance. However, the
results for the other algorithms are similar enough that we do
not go into further detail for them.
Categorical shift. Considering categorical shift errors (see
Figure 5a), Comet achieves a higher F1 score throughout the
cleaning process compared to FIR, RR, and CL except for a few
outliers (EEG, being numerical, does not contain categorical shift
errors). Comet shows the most significant advantage compared
to the baselines in the S-Credit dataset. Here, Comet achieves
a F1 score advantage for the baselines of up to 0.08 (which is
equivalent to an advantage of 8 percentage points (%pt)). The
higher the budget invested, the greater the advantage between
Comet and the baselines.

Figure 7 shows an example of the cleaning process of S-Credit
considering one pre-pollution setting. Throughout the cleaning
budget range, Comet maintains up to a 11%pt higher F1 score
over the considered baselines. Notably, between budgets 6 and
32, Comet’s F1 score even surpasses the Oracle, underscoring
the effectiveness of its cleaning recommendations. However, the
baselines and even Comet show a fluctuating behavior. Cleaning
categorical shift errors causes the cleaned feature distributions
to become more aligned with their true categories, which might

548



C
M
C

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.020.00.020.040.060.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.020.00.020.040.060.08

0.15

F1
 A

dv
an

ta
ge

C
h
u
r
n

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

E
E
G EEG contains only

numerical features.

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

S
-
C
r
e
d
i
t

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

(a) Categorical Shift

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

(b) Gaussian Noise

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15
F1

 A
dv

an
ta

ge

(c) Missing Values

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge FIR

RR
CL

(d) Scaling

Figure 5: Comparison of Comet with the baselines FIR, RR and CL for MLP across error types.

0 10 20 30 40 50
Used Budget

-0.02
0.0

0.02
0.04
0.06
0.08

0.15

F1
 A

dv
an

ta
ge

(a) Airbnb - Scaling

0 10 20 30 40 50
Used Budget

-0.020.00.020.040.060.08

0.15

F1
 A

dv
an

ta
ge

(b) Credit - Scaling

0 10 20 30 40 50
Used Budget

-0.020.00.020.040.060.08

0.15

F1
 A

dv
an

ta
ge FIR

RR
CL

(c) Titanic - Missing Values

Figure 6: Comparison of Comet with the baselines FIR, RR and CL for MLP across error types, for datasets from CleanML.

cause the model to adjust how it weighs other features. This
adjustment can result in unpredictable, temporary dips in perfor-
mance.

The horizontal “cleaned” line in the figure represents the sce-
nario where the dataset is completely clean, independent of the
budget, showing that Oracle and Comet achieve higher F1 scores
than complete cleaning for budgets exceeding 6.
Gaussian noise. Comet demonstrates superior performance
compared to the baselines in handling Gaussian noise, albeit
with a slightly less pronounced advantage than observed for
categorical shifts (see Figure 5b). In most cases, Comet’s recom-
mendations lead to F1 scores up to 4%pt higher than FIR, RR
and CL. EEG shows, especially for CL, an increasing trend in
the F1 score difference with a higher budget. For CL, the initial
feature ranking appears beneficial during the first few iterations,
resulting in a smaller advantage for Comet over CL. However,
this ranking becomes outdated in later iterations and no longer
represents an optimized cleaning order – the advantage from
Comet increases. In the Churn dataset, the difference between
Comet and the baselines is minimal, with Comet achieving only

0 10 20 30 40 50
Used Budget

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

F1

COMET
Predicted
FIR
RR
CL
Oracle
Cleaned

Figure 7: Example of Comet’s advantage over FIR and RR,

considering S-Credit with categorical shift errors andMLP.

549



slightly higher F1 scores due to the small difference (max 1.5%pt)
between the dirty and cleaned states. Therefore, no significant
advantage of Comet over the baselines can develop during the
cleaning process. The CMC dataset shows an outlier of Comet.
Here, the baselines FIR and RR briefly achieve an advantage of
up to 5%pt over Comet.

Missing values. Comet outperforms the baselines in most ex-
periments, achieving a F1 score advantage in most cleaning steps,
as shown in Figure 5c and 6c. In S-Credit, the F1 score difference
again increases with a higher budget, with Comet occasionally
leading by over 15%pt. This advantage is also evident in other
datasets. In Churn, the advantage similarly increases, while CMC
shows a bell curve trend: the F1 score advantage increases up
to 6%pt for half the budget, then gradually decreases, meaning
that the baselines compensate previous wrong decisions in later
iterations. The EEG results show a sudden drop in the advantage
between Comet and FIR, respectively between Comet and CL,
from a budget of 12. FIR maintains its advantage until a budget
of 22, after which Comet recovers and surpasses FIR, while CL
continues to maintain its superiority. However, from a budget of
40, the difference between Comet and FIR narrows again, mainly
due to a specific pre-pollution setting in EEG. This pattern can be
explained by the fact that each step of the cleaning process builds
upon the previous one. As a result, there is a risk that Comet
may recommend a suboptimal feature at certain stages, causing
prediction accuracy to stagnate temporarily. This stagnation can
last for several cleaning steps before a noticeable improvement
is observed. This phenomenon also occurs in other experiments,
where the considered baseline or AC is superior, as the incremen-
tal nature of the cleaning process sometimes leads to delayed
improvements in accuracy. The results for Titanic represent an
outlier in terms of Comet’s performance compared to the base-
lines. Comet outperforms the baselines up to a budget of 17, but
the baselines are superior afterward, with an advantage of up to
5%pt.

While the baselines perform better in a few budget-cases, Co-
met remains the superior choice in most cleaning scenarios.

Scaling. The trends of the individual methods for scaling errors
are similar to those of Gaussian noise (see Figure 5d). Overall,
Comet again shows an advantage over the baselines, although
this advantage is smaller than categorical shifts and missing
values (see Figures 6a and 6b). When considering scaling errors,
Comet achieves an F1 score advantage of up to 4%pt compared
to FIR, RR and CL. Similar to the previously considered results, a
trend can be seen for Airbnb: the difference between Comet and
the baselines increases as the invested budget increases. However,
there are also some fluctuations. In CMC, the baselines FIR and
RR generally outperform Comet, and in EEG, FIR outperforms
Comet from a budget of 11, though Comet keeps its superiority
over RR and CL.

5.3 Comparison to AC for a single error type

We compared Comet’s performancewithActiveClean ([20], RQ 3),
focusing on AC-SVM among the many configurations and pre-
pollution settings considered, in a single-error scenario. Similar
to RQ 2, we also assume constant costs for each cleaning step in
RQ 3, regardless of the error type. Figures 8 and 9 show Comet’s
performance per budget, comparing it to AC for individual error
types with AC-SVM. The overall trends are consistent with those
observed for other ML algorithms (LIR, LOR).

Our implementation of AC is based on the code published
by the authors1, which contains only the basic functions of AC;
we extended it by the component of gradient-based selection of
records. AC’s approach also includes an error detection compo-
nent, which we skip in the experiments. Furthermore, AC always
assumes record-wise data cleaning, while Comet assumes feature-
wise cleaning. To integrate AC into our setting, we first pre-train
the respective ML model with the records that are already clean
according to the pre-pollution settings. We then follow AC’s
approach by selecting a sample of records according to the gra-
dients and cleaning the records across all features. The sample
corresponds to the size of a cleaning step. Though the number of
cleaned entries per iteration or budget may differ, the discrepan-
cies are minor due to our assumed equal error distribution.

Categorical shift. Except for a few minor deviations in CMC,
Comet generally outperforms AC for all considered datasets, as
Figure 8a shows. The F1 score advantage reaches up to 40%pt in
certain datasets like Churn. The fluctuating F1 score advantages
highlight that the performance of AC is quite erratic. Our analysis
shows that, for example in S-Credit, the F1 score can drop by up
to 30%pt after a cleaning step, only to recover after a few further
cleaning steps. In contrast, Comet shows a steady increase, with
F1 scores improving by up to 1%pt, and far lower variance.

Gaussian noise. Comet also outperforms AC when dealing
with Gaussian noise, although the advantage per used budget are
smaller (Figure 8b). Apart from CMC, Comet is almost always
preferred over AC. The highest difference can be seen with S-
Credit, where Comet achieves a gap of up to 40%pt, though
this advantage narrows with a higher invested budget. In CMC,
however, AC periodically outperforms Comet, particularly with
a budget between 5 and 13, where AC holds a 10%pt advantage,
mainly again due to sudden F1 score changes.

Missing values. When the data includes missing values, Comet
outperforms the AC in most cleaning steps (see Figures 8c and 9c.
Notably, Comet shows themost consistent performance across all
cleaning steps in the S-Credit dataset, maintaining a performance
gap of 20%pt to 35%pt throughout the cleaning process. For the
Churn dataset, Comet leads AC by up to 40%pt. However, in
the EEG and CMC datasets, Comet’s advantage over AC is less
pronounced, peaking at around 20%pt. In EEG, AC frequently
outperforms Comet due to one pre-pollution setting. For the
Titanic dataset, performance differences vary abruptly (Figure 9c).
Once more, no consistent pattern relative to the cleaning budget
emerges, even when using Comet throughout the cleaning steps.

Scaling. The performance of Comet in addressing scaling errors
mirrors its effectiveness with missing values. In the EEG dataset,
AC slightly outperforms Comet, a trend also occasionally ob-
served in the CMC dataset where AC demonstrates superiority.
In the credit dataset, Comet and AC perform similarly, except
in two cases where Comet excels. However, Comet distinctly
outperforms AC in these outlier scenarios. For other datasets,
Comet consistently maintains its advantage over AC throughout
the cleaning steps. The Airbnb dataset shows a pattern similar
to S-Credit, with Comet steadily leading AC, except for a few
exceptions.

1https://www.dropbox.com/sh/r2vv252m5lnqpmm/AAAMj0WRaZX9EKH_
8dLOHQpIa?e=3&dl=0

550



C
M
C

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

C
h
u
r
n

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

E
E
G EEG only contains

numerical features.

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

S
-
C
r
e
d
i
t

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(a) Categorical Shift

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(b) Gaussian Noise

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(c) Missing Values

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(d) Scaling

Figure 8: Comparison of Comet with AC for AC-SVM across error types.

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(a) Airbnb - Scaling

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(b) Credit - Scaling

0 10 20 30 40 50
Used Budget

-0.1
0.0

0.2

0.4
0.5

F1
 A

dv
an

ta
ge

(c) Titanic - Missing Values

Figure 9: Comparison of Comet with AC for AC-SVM across error types, for datasets from CleanML.

5.4 Overall performance per Baseline

For our fourth research question (RQ 4), we examine the perfor-
mance of Comet across our considered error types respectively
ML algorithms (see Figure 10a and b). The experiments help
to understand the adaptability and robustness of our approach
regardless of a specific error type and invested budget.

Performance grouped by ML algorithm. Figure 10a summa-
rizes the F1 score differences grouped by ML algorithm, respec-
tively aggregated across all error types. Here, we include our
experiment results from the multi-error and single-error sce-
nario. Each bar shows the mean advantage between FIR, RR,
and AC compared to Comet, highlighting its good performance
independent of error type and invested budget.

It should be noted again that we tested only the ML algorithms
LIR, LOR and AC-SVM in connection with AC, while we tested
only GB, KNN, MLP and SVM in connection with FIR, RR, and CL.
The results align with trends from the previous sections, showing
that Comet’s advantage over AC is significantly greater than
over FIR, RR, and CL (see Figure 10a). In particular, LIR achieves

the highest average F1 score advantage of 24%pt. However, the
results for LOR and AC-SVM also emphasize the superiority of
Comet with an average F1 score advantage between 12%pt and
15pt. The differences between Comet compared to FIR, RR, and
CL are smaller, with SVM showing the highest average difference
of 3%pt and the other ML algorithms (MLP, GB, KNN) ranging
between 1%pt and 2%pt.
Performance grouped by error type. For our third research
question (RQ 4), we examine Comet’s performance compared
to the baselines, considering the mean F1 scores differences, but
now grouped by error type, respectively aggregated across the
ML algorithms (Figure 10b). This analysis shows how Comet
performs per error type, regardless of the ML algorithm and
budget. Consequently, this perspective only includes the results
from the single-error scenario.

Comet consistently outperforms the baselines across all error
types, with minor variations. It achieves the highest advantage
of 6%pt in categorical shift errors, followed by 5%pt in missing
value errors. For Gaussian noise and scaling errors, the advantage
is slightly lower, between 3%pt and 4%pt. Again, the results are

551



GB KNN MLP SVM AC
SVM

LIR LOR0.00
0.05
0.10
0.15
0.20
0.25

F1
 A

dv
an

ta
ge

(a) Grouped by ML algorithm

CS GN MV S

(b) Grouped by Error Type

Figure 10: Overall performance of Comet. (CS – Categor-

ical Shift, GN – Gaussian Noise, MV – Missing Values, S –

Scaling).

consistent with the trends from the previous sections, which show
that Comet performs slightly better compared to the baselines
in the presence of categorical shifts or missing values than in the
presence of Gaussian noise or scaling errors.

Conclusion. The experiments conducted to address RQ1-RQ4
demonstrate that, with few exceptions, Comet outperforms the
baselines FIR, RR, and CL in the cleaning process, achieving up
to a 52%pt and, on average, 5%pt advantage. Comet optimizes
the cleaning process compared to these baselines by giving the
Cleaner feature-wise cleaning recommendations.

Comet’s superior performance in enhancing prediction accu-
racy stems from two key factors. First, Comet optimizes directly
for a specific prediction metric, the F1 score, ensuring alignment
to improve model performance. This targeted focus allows for
more precise prediction quality improvements. Second, the pre-
diction model of Comet is adaptive. It assesses the impact of
cleaning per iteration by incrementally polluting the data to de-
rive the effect of cleaning a particular feature. Comet adapts its
predictive model individually to the circumstances per iteration
and feature. This method contrasts with FIR and CL, which rely
on static or outdated information from previous dataset states,
potentially leading to misguided cleaning efforts. Likewise, AC,
although it adapts using gradients of dirty records and prior aver-
age feature changes, also relies on outdated information, leading
to suboptimal cleaning decisions. The same applies trivially to
RR, which randomly selects features for the next cleaning step.

5.5 Prediction accuracy

Comet predicts the feature-wise impact of data cleaning on ML
prediction accuracy. This section focuses on how closely the esti-
mated F1 scores per cleaning step aligns with the actual outcomes
for the features that Comet recommended for cleaning (RQ 5).

We assess the predictive accuracy using the Mean Absolute
Error (MAE) between predicted and the actual F1 scores after
cleaning, focusing on the predictions that the Recommender fi-
nally used for cleaning. Figure 11 presents the MAE of Comet
grouped by error type and ML Algorithm across all datasets.

The MAE ranges from 0.0007 to 0.05, demonstrating Comet’s
robust predictive model and ability to guide informed cleaning
decisions. However, there are variations across ML algorithms
and error types. For instance, the MAE for MLP ranges from
0.007 for scaling errors to 0.015 for categorical shifts. Compared
to the overall minimum MAE of 0.0007 (by GB and categori-
cal shift), Comet ’s predictions are less accurate when MLP is
used. Comet behaves similarly with AC-SVM, where the MAE is
between 0.009 (Gaussian noise) and 0.015 (missing values).

Categorical
Shift

Gaussian
Noise

Missing
Values

Scaling

Error Type

0.00

0.01

0.02

0.03

0.04

0.05

M
AE

GB
KNN

MLP
SVM

AC SVM
LIR

LOR

Figure 11: MAE of Comet’s predictions.

Figure 7 shows that sudden jumps in F1 scores, especially for
categorical shifts, lead to deviations between predicted and actual
F1 scores. In Figure 7, initial predictions match actual F1 scores,
but sudden jumps at budgets 4 and 24 cause significant devia-
tions. The Recommender compensates occasional inaccuracies by
temporarily restoring a feature’s cleaning step, optimizing the
process so that Comet outperforms the baselines.

Figure 11 also shows that KNN achieves the lowest MAE for all
error types except categorical shift, with MAE ranging from 0.002
(missing values) and to 0.003 (scaling): Comet makes particularly
accurate predictions when KNN is used, aligning with its superior
performance over FIR and RR in most cases.

Conversely, LIR exhibits the highest MAE, varying between
0.02 and 0.05. Despite this, Comet still significantly outperforms
AC, with F1 score advantages of up to 50%pt, due to AC’s unpre-
dictable behavior and the restoring strategy of the Recommender.
While Comet shows variable predictive accuracy across differ-
ent algorithms, it consistently guides experts, respectively the
Cleaner, towards more effective cleaning decisions.

5.6 Runtime to produce a recommendation

Comet recommends to the Cleaner the next feature to clean
until they have completely cleaned the dataset or the cleaning
budget is spent. After each recommended cleaning, they wait
for the next suggestion before proceeding. In our sixth research
question (RQ 6), we examine this waiting time, i.e., the runtime of
Comet per iteration.Wemeasured runtimes on a Slurm-managed
compute cluster with two AMD EPYC 7742 processors, 64 cores,
and 512 GB RAM, allocating up to 35 GB RAM and 40 CPU cores
per job. We use Scikit-learn 1.1.3 for ML model training and
testing.

Figure 12 shows average runtimes per ML algorithm and error
type across all datasets and pre-pollution settings, measured
during the first iteration when the full extent of polluted features
are considered, thus leading to the highest runtime. Comet shows
the shortest runtimes for Gaussian noise (GN) and scaling errors
(S) across all ML algorithms, with median runtimes between 230
and 330 seconds (s) and averages between 220 and 500s. The
Airbnb dataset is an outlier (in the context of GN and S) due to its
high number of numerical features and its number of rows (see
Table 1). Since Comet has to analyze the effect of cleaning each
feature, the runtime scales with the number of features.

552



GB KNN MLP SVM AC
SVM

LIR LOR

ML Algorithm

0

2500

5000

7500

10000

Ru
nt

im
e 

(s
)

CS
GN

MV
S

Figure 12: Comet’s runtimes. (CS – Categorical Shift, GN –

Gaussian Noise, MV – Missing Values, S – Scaling).

Categorical shift (CS) and missing values (MV) errors exhibit
significantly higher runtimes across all ML algorithms, particu-
larly in the upper quartiles, with medians between 125 and 3919s.
The churn dataset largely contributes to these high runtimes for
CS and MV. Excluding the churn dataset, CS and MV runtimes
are typically under 400s. These longer runtimes are likely due to
one-hot encoding, which increases the number of features and
extends ML model training time.

6 CONCLUSION

Data errors can significantly impact the prediction accuracy of
machine learning (ML) models. However, data cleaning in real-
world scenarios is often associated with costs and expertise, usu-
ally requiring domain experts to configure and execute the clean-
ing process.

In this work, we introduced Comet, a system that optimizes
data cleaning efforts by aligning them with the underlying ML
tasks. Comet recommends which feature to clean next, balancing
cleaning costs against the potential for enhanced ML prediction
accuracy. We evaluated Comet across seven diverse datasets,
four ML algorithms, and four types of data errors, benchmarking
it against a well-known method and other baselines. Our results
show Comet achieves up to 52 and, on average, 5 percentage
points higher F1 scores, indicating more efficient data cleaning.

Looking ahead, several directions for future research emerge.
One direction involves extending Comet to capture and recom-
mend multiple features to clean within one iteration. Another
direction would be to extend Comet for other ML tasks, such as
regression and clustering. It will also be valuable to add further er-
ror types, such as inconsistent representations or duplicates [26].

Acknowledgements

This research was performed partially in the context of the
KITQAR project, supported by Denkfabrik Digitale Arbeitsge-
meinschaft imBundesministerium für Arbeit und Soziales (BMAS).

REFERENCES

[1] Airbnb 2023. Airbnb dataset (Last accessed: 2023-11-19). https:
//www.dropbox.com/s/nerfrhbrseev928/CleanML-datasets-2020.zip?
dl=0&file_subpath=%2Fdata%2FTitanic%2Fmissing_values

[2] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor
nonparametric regression. The American Statistician 46, 3 (1992), 175–185.

[3] Kenneth Chang. 2023. Quantum Computing Advance Begins New Era, IBM
Says. The New York Times (2023). https://www.nytimes.com/2023/06/14/
science/ibm-quantum-computing.html

[4] Xu Chu, Mourad Ouzzani, John Morcos, Ihab F. Ilyas, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: Reliable Data Cleaning with Knowledge Bases
and Crowdsourcing. PVLDB 8, 12 (2015), 1952–1955. https://doi.org/10.14778/
2824032.2824109

[5] CleanML 2023. CleanML/DatasetDescriptions.pdf at master · chu-data-
lab/CleanML (Last accessed: 2023-11-19). https://github.com/chu-data-lab/
CleanML/blob/master/DatasetDescriptions.pdf

[6] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20 (1995), 273–297.

[7] Credit 2023. Credit dataset (Last accessed: 2023-11-19). https:
//www.dropbox.com/s/nerfrhbrseev928/CleanML-datasets-2020.zip?
dl=0&file_subpath=%2Fdata%2FTitanic%2Fmissing_values

[8] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid,
Ihab F. Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity
data cleaning system. In Proceedings of the International Conference on Man-
agement of Data (SIGMOD). ACM, 541–552. https://doi.org/10.1145/2463676.
2465327

[9] Tlamelo Emmanuel, Thabiso M. Maupong, Dimane Mpoeleng, Thabo Semong,
Banyatsang Mphago, and Oteng Tabona. 2021. A survey on missing data
in machine learning. J. Big Data 8, 1 (2021), 140. https://doi.org/10.1186/
s40537-021-00516-9

[10] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias
Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient
and Robust Automated Machine Learning. In Proceedings of the
International Conference on Neural Information Processing Systems
(NeurIPS). 2962–2970. https://proceedings.neurips.cc/paper/2015/hash/
11d0e6287202fced83f79975ec59a3a6-Abstract.html

[11] Daniele Foroni, Matteo Lissandrini, and Yannis Velegrakis. 2021. Estimating
the extent of the effects of Data Quality through Observations. In Proceedings
of the International Conference on Data Engineering (ICDE). IEEE, 1913–1918.
https://doi.org/10.1109/ICDE51399.2021.00176

[12] Jerome H. Friedman. 2001. Greedy function approximation: A gradient boost-
ing machine. The Annals of Statistics 29, 5 (2001), 1189 – 1232. https:
//doi.org/10.1214/aos/1013203451

[13] Ulrike Groemping. 2019. South German credit data: Correcting a widely used
data set. Rep. Math., Phys. Chem., Berlin, Germany, Tech. Rep 4 (2019), 2019.

[14] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the
state-of-the-art. Knowl. Based Syst. 212 (2021), 106622. https://doi.org/10.
1016/j.knosys.2020.106622

[15] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas.
2019. HoloDetect: Few-Shot Learning for Error Detection. In Proceedings of
the International Conference on Management of Data (SIGMOD). ACM, 829–846.
https://doi.org/10.1145/3299869.3319888

[16] Hans Hofmann. 1994. Statlog (German Credit Data). UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C5NC77.

[17] Ihab F. Ilyas and Theodoros Rekatsinas. 2022. Machine Learning and Data
Cleaning: Which Serves the Other? Journal on Data and Information Quality
(JDIQ) 14, 3 (2022), 13:1–13:11. https://doi.org/10.1145/3506712

[18] Bojan Karlas, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu,
and Ce Zhang. 2020. Nearest Neighbor Classifiers over Incomplete Information:
From Certain Answers to Certain Predictions. PVLDB 14, 3 (2020), 255–267.
https://doi.org/10.5555/3430915.3442426

[19] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017.
BoostClean: Automated Error Detection and Repair for Machine Learning.
CoRR abs/1711.01299 (2017). arXiv:1711.01299 http://arxiv.org/abs/1711.01299

[20] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken
Goldberg. 2016. ActiveClean: Interactive Data Cleaning For Statistical Model-
ing. PVLDB 9, 12 (2016), 948–959. https://doi.org/10.14778/2994509.2994514

[21] Peng Li, Zhiyi Chen, Xu Chu, and Kexin Rong. 2023. DiffPrep: Differentiable
Data Preprocessing Pipeline Search for Learning over Tabular Data. Proceed-
ings of the International Conference on Management of Data (SIGMOD) 1, 2
(2023), 183:1–183:26. https://doi.org/10.1145/3589328

[22] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021.
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classifi-
cation Tasks. In Proceedings of the International Conference on Data Engineering
(ICDE). IEEE, 13–24. https://doi.org/10.1109/ICDE51399.2021.00009

[23] Tjen-Sien Lim. 1997. Contraceptive Method Choice. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C59W2D.

[24] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Proceedings of the International Conference on Neural
Information Processing Systems (NeurIPS). 4765–4774. http://papers.nips.cc/
paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[25] Mark Mazumder, Colby R. Banbury, Xiaozhe Yao, Bojan Karlas,
William Gaviria Rojas, Sudnya Frederick Diamos, Greg Diamos, Lynn
He, Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Douwe
Kiela, David Jurado, David Kanter, Rafael Mosquera, Will Cukierski, Juan Ciro,
Lora Aroyo, Bilge Acun, Lingjiao Chen, Mehul Raje, Max Bartolo, Evan Sabri
Eyuboglu, Amirata Ghorbani, Emmett D. Goodman, Addison Howard, Oana
Inel, Tariq Kane, Christine R. Kirkpatrick, D. Sculley, Tzu-Sheng Kuo, Jonas W.
Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Adina
Williams, Serena Yeung, Newsha Ardalani, Praveen K. Paritosh, Ce Zhang,
James Y. Zou, Carole-Jean Wu, Cody Coleman, Andrew Y. Ng, Peter Mattson,
and Vijay Janapa Reddi. 2023. DataPerf: Benchmarks for Data-Centric
AI Development. In Proceedings of the International Conference on Neural
Information Processing Systems (NeurIPS).

[26] Sedir Mohammed, Lukas Budach, Moritz Feuerpfeil, Nina Ihde, Andrea
Nathansen, Nele Noack, Hendrik Patzlaff, Felix Naumann, and Hazar Har-
mouch. 2024. The Effects of Data Quality on Machine Learning Performance.
https://arxiv.org/abs/2207.14529

[27] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From
Cleaning before ML to Cleaning for ML. IEEE Data Engineering Bulletin 44, 1
(2021), 24–41. http://sites.computer.org/debull/A21mar/p24.pdf

553



[28] Felix Neutatz, Binger Chen, Yazan Alkhatib, Jingwen Ye, and Ziawasch Abed-
jan. 2022. Data Cleaning and AutoML: Would an Optimizer Choose to
Clean? Datenbank-Spektrum 22, 2 (2022), 121–130. https://doi.org/10.1007/
s13222-022-00413-2

[29] Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan. 2019. ED2: A
Case for Active Learning in Error Detection. In Proceedings of the International
Conference on Information and Knowledge Management (CIKM). ACM, 2249–
2252. https://doi.org/10.1145/3357384.3358129

[30] Neoklis Polyzotis and Matei Zaharia. 2021. What can Data-Centric AI Learn
fromData andML Engineering? CoRR abs/2112.06439 (2021). arXiv:2112.06439
https://arxiv.org/abs/2112.06439

[31] Abdulhakim A. Qahtan, Ahmed Elmagarmid, Raul Castro Fernandez, Mourad
Ouzzani, and Nan Tang. 2018. FAHES: A Robust Disguised Missing Values
Detector. In Proceedings of the International Conference on Knowledge discovery
and data mining (SIGKDD). ACM, New York, NY, USA, 2100–2109. https:
//doi.org/10.1145/3219819.3220109

[32] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017),
1190–1201. https://doi.org/10.14778/3137628.3137631

[33] Oliver Roesler. 2013. EEG Eye State. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C57G7J.

[34] Donald B Rubin. 1976. Inference and missing data. Biometrika 63, 3 (1976),
581–592.

[35] S. Schelter, T. Rukat, and F. Biessmann. 2021. JENGA - A Framework to Study
the Impact of Data Errors on the Predictions of Machine Learning Models. In

Proceedings of the International Conference on Extending Database Technology
(EDBT). OpenProceedings.org, 529–534. https://doi.org/10.5441/002/edbt.2021.
63

[36] Donald F Specht. 1991. A general regression neural network. IEEE Transactions
on Neural Networks 2, 6 (1991), 568–576.

[37] Telco 2023. Telco Customer Churn (Last accessed: 2023-11-22). https://www.
kaggle.com/datasets/blastchar/telco-customer-churn

[38] Titanic 2023. Titanic dataset (Last accessed: 2023-11-19). https:
//www.dropbox.com/s/nerfrhbrseev928/CleanML-datasets-2020.zip?dl=0&
file_subpath=%2Fdata%2FTitanic%2Fmissing_values

[39] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. 2023.
Data collection and quality challenges in deep learning: a data-centric AI
perspective. VLDB Journal 32, 4 (2023), 791–813. https://doi.org/10.1007/
s00778-022-00775-9

[40] Mohamed Yakout, Laure Berti-Équille, and Ahmed K. Elmagarmid. 2013. Don’t
be SCAREd: use SCalable Automatic REpairing with maximal likelihood and
bounded changes. In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD). ACM, 553–564. https://doi.org/10.1145/2463676.
2463706

[41] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang,
Shaochen Zhong, and Xia Hu. 2023. Data-centric Artificial Intelligence: A
Survey. CoRR abs/2303.10158 (2023). https://doi.org/10.48550/arXiv.2303.10158
arXiv:2303.10158

554


