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ABSTRACT
Declarative query languages based on logic programming, like
Datalog and its extensions, have recently found successful appli-
cations in modeling complex knowledge-based scenarios, such as
reasoning over Enterprise Knowledge Graphs (EKG), by encoding
business rules to derive new valuable knowledge. Presenting this
derived knowledge with comprehensible natural language expla-
nations is paramount to increasing transparency, accountability,
and fairness in AI-based systems. While Large Language Mod-
els (LLMs) offer promising directions, full industrial adoption
in critical settings requires a trustworthy solution that ensures
both accurate, clear explanations and compliance with strict data
protection standards (i.e., by not sharing data with third parties).

This work introduces a novel approach for the generation
of textual explanations from data-driven inference processes
where data protection is crucial, such as in sensitive financial
applications governed by deductive rules encoded by the Central
Bank of Italy. We propose a static structural analysis method
that identifies a finite set of reasoning patterns from business
rules, which are then used to generate fluent natural language
explanations. By capturing the main interconnections between
rules, our approach generates explanations comparable in quality
to those produced by LLMs, but without requiring data shar-
ing through external APIs or cloud servers, thus ensuring data
protection in high-stakes, sensitive applications. Furthermore,
our method guarantees that explanations are both correct and
complete, unlike LLM-generated ones, which may suffer from
critical omissions.

1 INTRODUCTION
With the growing importance of data in today’s industrial en-
vironment, applications that leverage artificial intelligence (AI)
for decision-making are increasingly focused on adhering to
the FATE principles: Fairness, Accountability, Transparency, and
Ethics [41]. This is especially crucial in high-stakes domains such
as financial supervision, where ensuring the FATE compliance
of these knowledge-driven processes is paramount for building
trust in critical decisions [31, 34, 45].

In the database community, the quest for explainability has
been framed as explaining instances or facts contained in the result
of a query 𝑄 (𝐷). This involves augmenting the query results
with information about the origin of the facts that satisfy𝑄 , both
∗The views and opinions expressed in this paper are those of the authors and do
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from the original tuples in the database 𝐷 and from the tuples
generated by applying a set of logical rules Σ that encode the
business domain. In this context, deductive AI approaches built
on top of declarative Knowledge Representation and Reasoning
(KRR) formalisms are experiencing rising interest, as they enable
FATEness by providing a full explanation of conclusions. This
approach is both intuitively and practically close to the top-down
logical inference methods typically adopted in KRR [21, 22].

In the realm of KRR, Enterprise Knowledge Graphs (EKGs)
serve as powerful models to express business rules, i.e., the in-
tensional component, which expands factual knowledge, i.e., the
extensional component. The extensional component corresponds
to a database of facts, structured as a graphwhere nodes represent
entities and edges denote relationships between these entities.
The intensional component provides a formal specification of
business experience, through the definition of inference rules that
operate on the extensional component. By applying these rules,
i.e., performing a reasoning task, new knowledge emerges as novel
nodes and edges within the EKG. Such rules can be naturally ex-
pressed in database query languages based on logic programming,
such as Datalog [1, 7, 19, 59] and its extensions [3, 15–18, 20, 33],
a yardstick for AI systems based on ontological reasoning thanks
to the good trade-off they offer between expressive power and
computational complexity [7, 24, 47].

Problem Statement. From a practical perspective, there is a
growing need for natural language (NL) explanations of the
knowledge inferred through reasoning tasks. Given an inferred
fact from a reasoning task run over an extensional EKG, the in-
terest of a general user is to understand how such knowledge
was derived [28]. This can be achieved by examining its proof,
i.e., sets of logical steps that allow deriving conclusions from
premises (Figure 1). However, formal proofs are hardly readable
for non-technical users, and there is a need to convert such proofs
into natural language to improve the transparency of automated
reasoning tools. While deterministic proof-to-NL conversion pro-
vides some clarity, it can result in explanations that are verbose,
repetitive, and difficult to interpret. In fact, an optimal textual ex-
planation should be comprehensible, making the reasoning clear
without delving into the technical details of inference; fluent,
capable of explaining even complex reasoning scenarios, e.g.,
of unpredictable length or involving algebraic operations; com-
pact and accurate, recognizing recurring reasoning patterns to be
conveyed in general terms and adhering to the inference rules.

Natural Language Explanations Approaches. Proposals for
natural language provenance models that convert proofs to text
have been made in the past (e.g., [30]). However, with the advent
of Large Language Models (LLMs), this task has opened new
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Figure 1: In EKGs, knowledge can be inferred by applying
reasoning tasks, i.e., rule-based business applications that
derive edges or nodes by performing logical steps. Convert-
ing them in a fluent textual form is essential for improving
transparency in the inference mechanisms

possibilities, as they can be used to generate readable and com-
prehensible text, as we have recently demonstrated [4, 5]. The
general approach to obtain a textual explanation is to generate
a full materialization of the instance and trivially transform the
provenance into natural language, leveraging the data dictionary
or domain glossary containing a description of terms used in
the reasoning task. This results in a deterministic explanation
of inferred facts. However, explanations end up being too long
and verbose, as they include all the inference steps, described
one by one. On top of this one could then take advantage of
LLMs and ask to perform its summary or paraphrasis, generating
high-quality and readable explanations. Still, this approach has
limitations, as both prompts may lead to omissions or, in some
rare cases, even hallucinations.

LLMs and Data Privacy. Exploiting LLMs’ potential in critical
settings comes with the significant challenge of protecting con-
fidential information [42]. Breaching data confidentiality refers
to the inevitable disclosure of information that occurs when us-
ing most modern LLMs, whether for training or inference, as
these require users to call LLMs via APIs or cloud-based server
providers that offer the computational power to host and run such
enormous generative AI models. In this context, anonymization
techniques are a practical solution for preserving data confiden-
tiality [50]. However, much of the data anonymization literature
has focused on structured data, such as tables, while anonymiza-
tion of unstructured data, such as textual explanations, remains
unclear and challenging [62]. Therefore, developing a valid al-
ternative that achieves the same level of textual quality as a
pure LLM-based solution while complying with the highest data
confidentiality standards raises a novel challenge.

Financial Enterprise Knowledge Graph. A relevant indus-
trial case where the need for confidentiality and transparency
is critical is the Enterprise Knowledge Graph developed by the
Central Bank of Italy, which models relationships between finan-
cial intermediaries, empowering analysts to conduct complex
studies about interesting financial patterns. Such applications
are based on well-established business rules, originally laid out
in official regulations, which have been encoded into a power-
ful and expressive logic-based declarative query language, i.e.
Vadalog. Part of the Datalog family of languages, Vadalog has
been successfully used for encoding multiple financial problems,
for which presenting textual explanations, i.e., natural language
business reports, while not disclosing the underlying data and

information to third parties, would greatly increase transparency
and accountability in internal decision-making processes.
Rule-based Knowledge Graph Applications. A KG appli-
cation represents a relevant and recurring reasoning task that
business experts have formalized in a logic language, such as the
Bank of Italy’s EKG. It includes long-standing problems such as
the derivation of control relationships, i.e., who controls whom,
or the modeling of shock propagation systems to conduct stress
test simulations. Such tasks might involve complex and long rea-
soning processes that result from the incremental augmentation
of the initial factual knowledge via the application of the rea-
soning rules, until fixpoint. The complexity of a KG application
becomes particularly significant when aggregation operators and
recursion are involved. Their presence might generate non-trivial
proofs, whose length, due to recursion, is unpredictable.

The key idea of this paper is to exploit the rich expressiveness of
logical inference processes adopted in deductive AI and the power
of modern generative AI tools to build fluent and complete natural
language explanations for Knowledge Graph applications, all while
maintaining a privacy-preserving approach.

Template-based approach. To achieve our goal, we introduce
reasoning paths, i.e., sets of Datalog rules that can capture the
main interconnections between predicates and rules and that,
if transformed into textual explanation templates, can be used
to generate explanations that are comprehensible, fluent, and
compact. We start from a preventive structural analysis of the
dependency graph of a deployed KG application. By splitting it
based on the syntactical features of the rules, we identify the
main reasoning stories, which can then be verbalized to create
explanation templates, also by employing LLMs to fully automa-
tize the process. The explanation templates contain tokens that
can be mapped back to the rules’ literals: given a derived fact
of interest, an explanation can be produced by combining one
or more explanation templates according to the actual reason-
ing path followed during inference and by replacing the tokens
with the materialized literals. The resulting explanations contain
all relevant information required by analysts, with an option to
include a human-in-the-loop step for preventive checks.

By pushing the LLM usage to the reasoning rules instead of the
materialized instance, we propose a system that can be queried
to generate textual explanations for KG applications that are
as fluent and compact as those produced by pure LLM-based
approaches, as confirmed by our expert user study, while still
guaranteeing the highest standards of data confidentiality.
Our contributions can be summarized as follows.
• We present a novel approach based on explanation tem-
plates to create natural language reports for knowledge de-
rived by rule-based Knowledge Graph applications.

• We implement and discuss our approach to financial applica-
tions developed in the EKG of the Bank of Italy.

• We perform an experimental evaluation via user studies
to validate the effectiveness and accuracy of our approach
in producing fluent explanations; we highlight our benefit
compared to LLM-based solutions, and we illustrate the per-
formances of our approach.

Overview. In the remainder of the paper is organized as follows.
In Section 2 we discuss related work and Section 3 provides
fundamental background. In Section 4, we present our approach
to derive reasoning paths and generate fluent natural language
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explanations, while in Section 5, we present some high-stakes
applications. In Section 6, we illustrate the results of two user
studies, which validate the effectiveness of our approach and
the quality of the explanations. Our conclusions are drawn in
Section 7.

2 RELATEDWORK
In this section, we expand on relevant work dedicated to natural
language explanations in logical inference processes, i.e., NL
provenance models.

Developing a suitable and user-comprehensible form of data
provenance has emerged as a critical research area in the database
community, aiming to address the growing concerns regarding
data quality, trustworthiness, and accountability. Numerous stud-
ies have been conducted to investigate different aspects of data
provenance, namely tracking, storing, and presentation of the
provenance [13, 23, 36, 40, 46, 54].

A recent line of research is studying how to present answers
to queries in natural language [32, 48]. Some attempts have cre-
ated natural language explanations by constructing them rule by
rule [14, 39], however, showing no coherent prose and, thus, are
hardly readable for business analysts. PROV [51] and its exten-
sion PROVglish [53] were the first architectures that have tried
to transform provenance graphs into textual explanations. Their
approach collects the necessary linguistic information informally
encoded in the URIs, developing a deterministic solution based
on part-of-speech (POS) tagging. The idea is that it is possible to
build text generation rules using at least the classes of tags. While
this resulted in richer and more fluent explanations compared to
non-POS approaches, such a system is far from what could be
considered a well-written business report, considering also that
PROV is only capable of generating single-sentence explanations
and is limited to short provenance graphs.

With NLProv [28–30], provenance information in natural lan-
guage is built by leveraging users’ NL question’s inherent struc-
ture. They track specific phrases or words in the NL question and
map them to corresponding parts of the formal query, recording
which element of the formal query contributes to a specific part of
the provenance information. By combining these mappings (text-
to-query-parts and query-parts-to-provenance), they establish
links between question phrases and relevant provenance details
and utilize this association in reverse, translating the provenance
information back into readable NL text. While being an elegant
solution, the quality of resulting texts depends on input natural
language questions, thus not applicable to contexts where textual
explanations need to be generated over front-end applications
where analysts directly interact with data as, for instance, in a
graph-based environment, such as the one in place in the Bank
of Italy [10].

More recently, we have demonstrated how to employ a pure
LLM-based solution to obtain explanations of reasoning con-
ducted over KG applications [4]. However, practically deploying
that solution raised the issue of data confidentiality compliance.
While using the most powerful generative AI tool to date, Ope-
nAI’s GPT family of models, meant sharing information with
a third party, adopting an internal solution based on an open-
source LLM, such as LLama, resulted in variable quality in the
results, different in each run.

3 PRELIMINARIES
To guide our discussion, we first lay out the preliminary notions.

Relational Foundations. Let C, V and N be disjoint countably
infinite sets of constants, variables and nulls, respectively. A (rela-
tional) schema S is a finite set of relation symbols (or predicates)
with associated arity. A term is either a constant or a variable.
An atom over S is an expression of the form 𝑅(𝑣), where 𝑅 ∈ S
is of arity 𝑛 > 0 and 𝑣 is an 𝑛-tuple of terms. A database (in-
stance) over S associates to each symbol in S a relation of the
respective arity over the domain of constants. The members
of the relations are called tuples or facts. Given two conjunc-
tions of atoms ς1 and ς2, a homomorphism from ς1 to ς2 is a
mapping ℎ : C ∪ N ∪ V → C ∪ N ∪ V s.t. ℎ(𝑡) = 𝑡 if 𝑡 ∈ C,
ℎ(𝑡) ∈ C ∪ N if 𝑡 ∈ N and for each atom 𝑎(𝑡1, . . . , 𝑡𝑛) ∈ ς1, then
ℎ(𝑎(𝑡1, . . . , 𝑡𝑛)) = 𝑎(ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) ∈ ς2.
Dependencies. A Vadalog program Σ consists of a set of tuples
and tuple-generating dependencies (TGDs), i.e., function-free Horn
clauses of the form∀𝑥∀𝑦 (𝜑 (𝑥,𝑦)→∃𝑧𝜓 (𝑥, 𝑧)), where𝜑 (𝑥,𝑦) (the
body) and𝜓 (𝑥, 𝑧) (the head) are conjunctions of atoms over the
respective predicates, 𝑥,𝑦 are vectors of universally quantified
variables and constants, and 𝑧 is a vector of existentially quan-
tified variables. Quantifiers can be omitted and conjunction is
denoted by comma. A predicate is intensional (IDB) if it occurs
in at least one head, otherwise, it is extensional (EDB) [1, 22, 38].
A fact corresponding to an intensional predicate is intensional,
otherwise it is extensional.
Dependency Graph. The dependency graph of a Vadalog pro-
gram Σ, denoted as D(Σ), is a directed graph where the set of
vertices is the set of predicates appearing in a given set of rules
Σ [37]. For each not necessarily distinct pair of predicates 𝑎 and
𝑎′ in Σ, there is an edge from 𝑎′ to 𝑎 iff Σ contains a rule where
𝑎′ appears in the body and 𝑎 appears in the head. A program Σ
is recursive if the dependency graph D(Σ) is cyclic. A node 𝑎
depends on a node 𝑎′, denoted 𝑎′ ≤ 𝑎, if there is a path from 𝑎′
to 𝑎 in D(Σ).
Vadalog Extensions. Real-world applications may require sup-
port for multiple features that extend the declarative language.
Among them, aggregate functions, namely sum, prod, min, max
and count, as well as SQL-like grouping constructs, are partic-
ularly relevant. In the Vadalog context, support for aggregate
functions is achieved by means of monotonic aggregations [61].
Other essential extensions, integrated in Vadalog to address real-
world scenarios, include negations and negative constraints, of
the form 𝜑 (𝑥,𝑦) →⊥, where 𝜑 (𝑥,𝑦) is a conjunction of atoms
and ⊥ denotes the truth constant false to model disjointness
or non-membership, as well as expressions in rule bodies, mod-
eled with comparison (>, <, ≥, ≤,≠) and algebraic (+,−, ∗, /, etc.)
operators.
Reasoning Task. Given a database 𝐷 and the query 𝑄 =
(Σ, 𝐴𝑛𝑠), where Σ is the set of rules and𝐴𝑛𝑠 an 𝑛-ary predicate, a
reasoning task consists of finding an instance 𝐽 such that a tuple
𝑡 ∈ 𝐽 if and only if 𝑡 ∈ 𝑄 (𝐷) and for every other instance 𝐽 ′ such
that 𝑡 ∈ 𝐽 ′ if and only if 𝑡 ∈ 𝑄 (𝐷), there is a homomorphism ℎ
from 𝐽 to 𝐽 ′.
Chase Procedure and Chase Graph. The semantics of a Vada-
log program can be defined in an operational way with the chase
procedure [44, 49]. It enforces the satisfaction of a set Σ of rules
over a database 𝐷 , incrementally augmenting 𝐷 with facts en-
tailed via the application of the rules over 𝐷 , until fixpoint. A
TGD 𝜎 : 𝜑 (𝑥,𝑦)→𝜓 (𝑥, 𝑧)) is applicable to 𝐷 if there exists a ho-
momorphism 𝜃 such that 𝜃 (𝜑 (𝑥,𝑦)) ⊆ 𝐷 . Then, a chase step adds
the fact 𝜃 (𝜓 (𝑥, 𝑧)) to 𝐷 , if not already in 𝐷 . The chase graph
G(𝐷, Σ) is the directed graph with the facts from chase(𝐷, Σ) as
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Figure 2: Overview of the proposed approach to produce textual explanations of facts. By leveraging rule-based encoding of
knowledge graph applications, we get fluent templates that can be used to explain any fact derived by the chase procedure,
without exposing factual knowledge to a third party.

nodes and an edge from a node 𝑛 to a node𝑚 if𝑚 derives from
𝑛 (and possibly other facts) via a chase step [17]. In this paper,
we only consider Vadalog programs involved in reasoning tasks
whose termination is guaranteed. A comprehensive examination
of reasoning termination in Vadalog has already been examined
in dedicated works [6, 11].

4 TEMPLATE-BASED EXPLANATIONS
In this section, we present our approach to create easy-to-read
template-based textual explanations for Knowledge Graph appli-
cations encoded in set logic-based rules Σ. Our approach is based
on the Vadalog language and on a reasoning engine based on the
chase procedure, as defined in the previous section. Without loss
of generality, it can be generalized to Datalog programs.
Approach overview. Figure 2 summarizes our approach’s steps
towards deriving natural language explanations of facts entailed
by Σ. We first pre-distill all the possible database-independent
“reasoning stories”, i.e., the full-blown theoretical of consequen-
tial chase steps in a compact way. This can be done via a structural
analysis of the dependency graph of a Vadalog rule-based pro-
gram, encoding business rules used to reason over a Knowledge
Graph, to split it into directed subgraphs, according to the topol-
ogy of D(Σ). Then, each of the subgraphs is transformed into
natural language leveraging the syntax and grammar of the logic
rules and the information contained in a domain glossary, produc-
ing explanation templates, which can be enhanced by leveraging
powerful LLMs, such as GPT-based models. Thus, the portion
of the chase graph representing the derivation of a certain fact
can be mapped back to explanation templates via selection and,
possibly, a combination of one or more explanation templates.

4.1 Structural Analysis
For any reasoning task as defined in Section 3, the chase proce-
dure incorporates two forms of non-determinism in the chase
step: the choice of which applicable rule to activate and, for
such rule, which homomorphism 𝜃 to apply. Nevertheless, any
potential chase step depends on the dependency graph, which
contains all the necessary information to track any reasoning
stories that might materialize. To produce coherent and fluent ex-
planations, the challenge is to capture the main interconnections

that characterize a dependency graph, which, if cyclic and dis-
plays aggregations, has an indefinite number of potential paths.
To this end, we introduce reasoning paths, sequences of symbolic
logical steps that generalize any root-to-leaf path in the chase
graph (see Section 3), that can be used to generate templates.
Roots in the dependency graph are nodes that do not depend on
other nodes and appear in rules whose bodies do not contain
intensional predicates. The leaf is a node denoting the intensional
of interest, i.e., the goal of a Vadalog program. Reasoning paths
can be either simple reasoning paths or reasoning cycles.

Definition 4.1. A node 𝑉 of D(Σ) is critical when 𝑉 is not ex-
tensional and either deg+ (𝑉 ) > 1 or 𝑉 is a leaf node.

Definition 4.2. A simple reasoning path Π(D(Σ)) is a subgraph
of D(Σ) that from roots conduct either to the leaf or to a criti-
cal node. A reasoning cycle Γ(D(Σ)) is a subgraph of D(Σ) that
connects a critical node with itself or with another critical node.

Both simple reasoning paths and reasoning cycles are com-
puted by allowing only one visit per edge. Therefore, the rea-
soning paths are, by construction, finite. For a more compact
notation, reasoning paths can also be represented as sequences
of rules 𝜎𝑖 , i.e., Π𝑖 = {𝜎 𝑗 , . . . , 𝜎𝑛}, by extracting labels of edges
involved in the path.

Example 4.3. Let us consider the following set of rules, encod-
ing a simplified version of a stress test simulation, one of the
financial Knowledge Graph applications that allows analysts to
perform so-called shock propagation exercises, simulating the
effect of a shock over the financial market by the derivation of
Default events, i.e., organizations that do not pass the stress test.

Shock (𝑓 , 𝑠 ),HasCapital (𝑓 , 𝑝1 ), 𝑠 > 𝑝1 → Default (𝑓 ) (𝛼 )
Default (𝑑 ),Debts (𝑑, 𝑐, 𝑣), 𝑒 = 𝑠𝑢𝑚 (𝑣) → Risk (𝑐, 𝑒 ) (𝛽)
HasCapital (𝑐, 𝑝2 ), Risk (𝑐, 𝑒 ), 𝑝2 < 𝑒 → Default (𝑐 ) (𝛾 )

A financial institution 𝑓 defaults when an exogenous shock of 𝑠 euro
deteriorated its capital 𝑝1 to the point it becomes negative (rule 𝛼).
Whenever a financial institution defaults, it impacts its creditors
via its exposures. The financial institutions 𝑐 are at risk of failure,
featuring a total 𝑒 of loan exposures (rule 𝛽), measured in euro, to
the defaulted entities. If the total 𝑒 of exposures for the creditor 𝑐 is
higher than its capital 𝑝2, then the creditor 𝑐 defaults (rule 𝛾 ). The
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Figure 3: Dependency Graph of the set of rules from Ex-
ample 4.3. Nodes represent all the atoms appearing in the
set of rules, while rule-labeled edges connect the atoms
in the body of the rule with the respective head. The leaf
node is Default while root nodes are Shock and HasCapital.
The dependency graph contains a critical node, i.e., the leaf
node Default itself.

(a) Simple Reasoning Paths (b) Reasoning Cycle

Figure 4: Reasoning Paths derived by the structural anal-
ysis of Example 4.3. Simple Reasoning Paths, Π1 and Π2,
represent paths that derive, respectively, defaults directly
caused by an initial shock and direct defaults caused by
exposures to a defaulted debtor. The Reasoning Cycle Γ1
captures the case of a cascade default, indirectly caused by
a chain of defaults.

set of rules aims to derive all the defaults, i.e., Default facts that an
initial shock affecting one or more entities might trigger.

The dependency graph of the above set of rules is depicted
in Figure 3. As it includes recursion, it is cyclic. In Figure 4 we
derived the simple reasoning paths and the reasoning cycles from
the dependency graph by applying their definitions.

Every path in the chase graph can be represented as an instan-
tiation of a simple reasoning path and a set of adjacent reasoning
cycles. To understand this, we start by considering a simple rea-
soning path Π, in its compact rule-based notation, from 𝜎𝑠 to
𝜎𝑡 , and a reasoning cycle Γ from 𝜎′𝑠 to 𝜎′𝑡 . They are adjacent if
there is a homomorphism from the head of 𝜎𝑡 to a body atom
of 𝜎′𝑠 . Intuitively, the two reasoning paths can be merged into
a longer path from 𝜎𝑠 to 𝜎′𝑡 . Then, by considering a second rea-
soning cycle, Γ′, from 𝜎′′𝑠 to 𝜎′′𝑡 , it is again adjacent to Γ if there
is a homomorphism from the head of 𝜎′𝑡 to a body atom of 𝜎′′𝑠 ,
and so on. Given a chase graph G(𝐷, Σ), for every materialized
source-to-leaf path 𝜋 of G, there exists a set of adjacent reason-
ing paths Π𝑖 , Γ 𝑗 . . . , Γ𝑛 that instantiates 𝜋 . For any rule-based
knowledge graph application, we call a generic explanation of a
fact a reasoning graph on the chase graph.
Analysis of Aggregations. So far, we generated reasoning paths
by limiting the structural analysis to the topology of the depen-
dency graph. However, aggregations, namely, the sum and prod
operators, play a central role and are widely used in real-world

Figure 5: Additional Simple Reasoning Path and Reasoning
Cycle for Example 4.3, capturing aggregation cases, i.e.,
when multiple Debts contribute to deriving the total Risk
that an organization is exposed to.

KG applications. Textual explanations differ when an aggrega-
tion involves a single contributor to situations where multiple
contributors are involved. Essentially, if there’s only one con-
tributor, it’s similar to having - and can be explained as - a rule
without the aggregation operator. To this aim, we expand the set
of reasoning paths by analyzing edges, i.e., evaluating if rules
contain an aggregation. If so, new reasoning paths, either simple
reasoning paths or reasoning cycles, are added to the set. The
new reasoning paths inherit the same topology as the source
one, but we denote them by connecting contributors to an inten-
sional with a dashed edge. Source reasoning paths will be used
to capture reasoning stories whose aggregation is computed on
one input fact, while additional ones will denote cases when the
aggregator operates on multiple input facts.

Example 4.4. Continuing Example 4.3, two additional simple
reasoning paths and two additional reasoning cycles can be iden-
tified, as depicted in Figure 5.

4.2 Explanation Templates
Reasoning paths can be transformed into explanation templates
by applying a deterministic transformation of the Vadalog syn-
tax into text. This is possible by means of a verbalizer, which
algorithmically translates each rule into a natural language sen-
tence of the form “Since {body}, then {head}”. We already used
this module for producing on-the-fly textual explanations in [4]
of an actual instance. In this paper, we apply the verbalizer di-
rectly to the rules that make up a reasoning path. We recall its
main functioning. Each element of the Vadalog syntax is con-
verted into its natural language counterpart. For example, "and"
tokens are used for conjunctions, and specific keywords like "is
higher than" replace the > built-in operator or aggregators such
as "sum" is replaced by the sentence "<result> is given by the sum
of <contributors>". {Body} and {head} are obtained by verbalizing
each predicate of the rules of the reasoning path. The textual
verbalization contains tokens that can be directly mapped to the
predicates’ literals.

To this end, a domain glossary, a map of the predicates of our
domain schema 𝑆 into their natural language equivalent, is used.
The domain glossary is essentially a data dictionary for Datalog-
based contexts, i.e., a centralized repository of information about
data - namely,metadata - such as meaning, relationships to other
data, origin, usage, and format, an essential tool for any data-
driven organization [52, 57]. Therefore, we suppose that, in any
industrial context, a data dictionary is already stored and avail-
able.
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Figure 6: Explanation templates and their enhanced versions for the reasoning paths presented in Figures 4 and 5. Tokens
are represented inside angle brackets. Explanation templates are obtained by deterministically verbalizing, through the
domain glossary, rules involved in the reasoning path. Enhanced templates are obtained by applying LLMs to explanation
templates.

Atom Description
HasCapital (𝑓 , 𝑝 ) <𝑓 > is a financial institution with capital of <𝑝>.

Shock (𝑓 , 𝑠 ) A shock amounting to <𝑠> euro affects <𝑓 >.
Default (𝑓 ) <𝑓 > is in default.
Debts (𝑑, 𝑐, 𝑣) <𝑑> has an amount <𝑣> of debts with <𝑐>.

Risk (𝑐, 𝑒 ) <𝑐> is at risk of defaulting given its loan of <𝑒>
euros of exposures to a defaulted debtor.

Figure 7: Domain Glossary for Example 4.3, capturing the
meaning of all atoms used in the Knowledge Graph ap-
plication under analysis. Their description is provided by
domain experts in the internal data dictionary.

Example 4.5. In Figure 7 we report the domain glossary for
the stress test case described in Example 4.3.

By leveraging the domain glossary, explanation templates
can be obtained by deterministically verbalizing the rules of
interest, maintaining the predicates’ variables as tokens in the
text. As mentioned in the previous section, special attention
is dedicated to aggregations, i.e., reasoning paths denoted by
dashed edges. Loosely speaking, during the template generation
process, the aggregator’s transformation to natural language is
truncated for reasoning paths not containing dashed edges by
not verbalizing the aggregator. Instead, in the verbalization of
dashed-denoted reasoning paths, the aggregator is converted
to natural language, and corresponding tokens are allowed to
accommodate an undefined number of contributors with a step
of textual conjunction.
Enhancement of templates. The resulting deterministic ex-
planation templates contain many repetitions, making the text
redundant and not fluent. Moreover, they do not consider the
interaction between rules in the same reasoning path. To cope
with this, a human can intervene to generate enhanced versions
of the templates. However, as the number of templates can grow
exponentially with the complexity of the Vadalog program, and
following recent works that demonstrated how powerful LLMs
excel in text manipulation techniques, such as summarizing and
paraphrasing tasks [43, 56], we can instead add a step on enhance-
ment via LLMs, such as via a gpt-3.5-turbo model [12], which
displayed very good results in text simplification tasks, even in

specialized fields such as bio-medicine [55]. We prompt the LLM
with the following request: "Rephrase the following text:" and add
one of the explanation templates. The output of this step is a set
of text-enhanced explanation templates, which are automatically
double-checked in terms of the presence of all original tokens. To
increase the textual richness of final explanations, this step can be
repeated multiple times, generating different but interchangeable
enriched versions of the same explanation template.

Example 4.6. Let us consider Example 4.3. The explanation
templates and their enriched version for the reasoning paths
identified via structural analysis are presented in Figure 6.

4.3 Mapping chase steps to templates
As previously discussed, any materialized path over an instance,
captured in the chase graph, can be mapped to a set of adjacent
reasoning paths and, consequently, to a set of explanation tem-
plates. The composition of explanation templates that should
be used for a materialized chase path of interest is built by (i)
finding the simple reasoning path Π𝑖 that instantiates the high-
est number of the first 𝑗 chase steps and, if the leaf node is not
reached yet, (ii) adding the reasoning cycle Γ𝑗 that instantiates
the highest number of the following 𝑛 chase steps. Step (ii) is
repeated until the leaf node is reached.

Example 4.7. Let us consider again Example 4.3 and the portion
of chase graph on an artificial EDB, from which Default (”𝐶”) can
be derived, depicted in Figure 8.

Following the chase steps, i.e., the ordered set of activated
rules, we have: 𝜋 = {𝛼, 𝛽,𝛾, 𝛽,𝛾}. By progressively considering
the ordered chase steps, we find that Π1 applies to the first step.
However, the simple reasoning path that could be applied to the
highest number of chase steps is Π2, which instantiates the first
three ones, 𝛼, 𝛽,𝛾 . Then, for the remaining ones, a reasoning
cycle must be applied: here both available reasoning cycles Γ1,
and Γ2 cover the pair 𝛽,𝛾 : since there are multiple inputs for the
aggregation in 𝛽 , then Γ2 is selected. Therefore, the materialized
path under analysis can be explained by the reasoning graph
obtained by combining the explanation templates associated with
Π2 and Γ2.
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Figure 8: Portion of the chase graph deriving the default
of entity "C", i.e., Default (𝐶). Nodes denote facts while rule-
labeled edges illustrate the activated rule that has been
activated to derive a new fact.

Finally, given an explanation query from users, i.e., a query
asking for producing the explanation for a specific derived fact in-
terest, the mapping of tokens with constants is trivially achieved
by performing a template-wise substitution, replacing the tokens
with the corresponding constants used in the portion of the chase
graph which is used to derive the fact under analysis.

Example 4.8. The textual explanation for the explanation
query 𝑄𝑒 = {Default (𝐶)} of Example 4.7 becomes: "A" is in de-
fault due to a shock of 6M euros, being over its capital of 5M euros.
With 7M euros debts to "A", "B" is at risk due to having 7M euros of
exposure to a defaulted debtor. "B" has a capital of 2M euros, lower
than 7M, thus also being in default. Defaulted debtor "B" leaves
lender "C" exposed with a total of 11M euros loan (sum of loans
of 2M and 9M euros). This puts "C", a financial institution with a
capital of 10M euros, in default as well due to insufficient reserves.

4.4 An automated pipeline
In the context of the Vadalog system, the chase-based reasoning
engine based on the Vadalog language and adopted in the Bank of
Italy, we implemented the structural analysis and the automatic
template generation and selection by developing a dedicatedmod-
ule that can be activated over any deployed Knowledge Graph
application 1. The verbalizer was already available [4] and can
be adapted to obtain the deterministic explanation templates. By
integrating such components, we get a fully automated pipeline
that implements our approach and enables its practical use over
consolidated and new KG applications. Any explanation query
for a fact can be obtained through this pipeline, avoiding any
data sharing with LLM owners but, as we shall see, maintaining
an overall comparable quality.
Dealing with Templates Hallucinations. As templates are
passed to an LLM, no theoretical framework guarantees that its
results are free of hallucinations. However, since templates for
recurring KG applications can be pre-computed, they can also be
checked by the Vadalog experts who defined the KG applications
to understand whether the templates are fully informative. Such
additional human-in-the-loop steps would support the goal of
having complete explanations and do not undermine automation

1The implementation and an example are available at: https://bit.ly/EDBT25-explain

since it would be a once-for-all activity. A particular case of hal-
lucinations is omissions, i.e., deletion of rule variables from the
templates. To tackle this, an automatic preventive check control-
ling the presence of all variables throughout the template text
has been implemented.

5 FINANCIAL KNOWLEDGE GRAPH
APPLICATIONS

We now present a couple of the most relevant Knowledge Graph
applications that are being used in the financial Enterprise Knowl-
edge Graph of the Bank of Italy [8], running on the Vadalog sys-
tem. For each of these applications, generating natural language
explanations is of great relevance for decision support for non-IT
compliance staff and auditors, with the prospective business im-
pact in terms of increased productivity and systemic stability [39].
However, adopting a generative AI solution in such a context is
subject to the sharing of possibly confidential information that a
central bank is not allowed to share with third parties, such as in
the case of banking supervisory tasks [42].
Company Control. The company control program [9] finds
chains of controls between companies and allows analysts to
understand who has decision power in companies, based on
who controls the majority of votes, in a “one-share one-vote”
assumption. To this end, the task augments the knowledge graph
with “control” edges, as follows:

Own(x, y, s), 𝑠 > 0.5 → Control (x, y) (𝜎1)
Company (x ) → Control (x, x ) (𝜎2)

Control (x, z),Own(z, y, s), ts = sum(𝑠 ), ts > 0.5 → Control (x, y) (𝜎3)

It follows the official definition: "A company (or a person) x con-
trols a company y, if: (i) x directly owns more than 50% of y; or,
(ii) x controls a set of companies that jointly (i.e., summing the
shares), and possibly together with x, own more than 50% of y".
Although the program contains only three rules, complex cor-
porate structures might occur, with companies that do not have
immediate transparency of ownership and/or control. This is the
case of a company with several layers of shareholders, which
makes it difficult to see who the beneficial owners are and raises
the question of their transparency. Discovering and describing
such a long chain of controls is paramount for efficient financial
market supervision.
Stress Tests. The following set of rules encodes a more interest-
ing scenario of stress test simulation, presented in Example 4.3. It
represents the propagation of a default shock over multiple chan-
nels, i.e., the short-term and long-term debt exposures, assessing
how the resulting cascade defaults affect a network representing
the interconnection in the financial system. The distinction be-
tween different channels is essential to understanding how an
entity’s exposures are distributed and what is their contribution
to a cascade default.

Shock (𝑓 , 𝑠 ),HasCapital (𝑓 , 𝑝1 ), 𝑠 > 𝑝1 → Default (𝑓 ) (𝜎4)
Default (𝑑 ), LongTermDebts (𝑑, 𝑐, 𝑣),

𝑒𝑙 = 𝑠𝑢𝑚 (𝑣) → Risk (𝑐, 𝑒𝑙 , “long” ) (𝜎5)
Default (𝑑 ), ShortTermDebts (𝑑, 𝑐, 𝑣),

𝑒𝑠 = 𝑠𝑢𝑚 (𝑣) → Risk (𝑐, 𝑒𝑠 , “short” ) (𝜎6)
Risk (𝑐, 𝑒, 𝑡 ),HasCapital (𝑐, 𝑝2 ),

l = 𝑠𝑢𝑚 (𝑒 ), l > 𝑝2 → Default (𝑐 ) (𝜎7)

A financial institution 𝑓 defaults when an exogenous shock of 𝑠
euro deteriorated its capital 𝑝1 to the point it becomes negative
(rule 𝜎4). Whenever a financial institution defaults, it impacts its
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(a) Company Control

(b) Stress Test

Figure 9: Dependency Graphs of the Financial Knowledge
Graph Applications

KG Application Simple Reasoning Path Reasoning Cycle

Company Control

Π1 = {𝜎1}

Γ∗1 = {𝜎3}
Π∗

2 = {𝜎1, 𝜎3}
Π3 = {𝜎2}
Π∗

4 = {𝜎2, 𝜎3}
Π∗

5 = {𝜎1, 𝜎2, 𝜎3}

Stress Test

Π6 = {𝜎4} Γ∗2 = {𝜎5, 𝜎7}
Γ∗3 = {𝜎6, 𝜎7}
Γ∗4 = {𝜎5, 𝜎6, 𝜎7}

Π∗
7 = {𝜎4, 𝜎5, 𝜎7}

Π∗
8 = {𝜎4, 𝜎6, 𝜎7}

Π∗
9 = {𝜎4, 𝜎5, 𝜎6, 𝜎7}

Figure 10: Simple reasoning paths and reasoning cycles of
the Financial Knowledge Graph applications we analyze.
We use the ∗ superscript to denote reasoning paths whose
aggregation alternative version is also available.

creditors via long-term and short-term exposures. The financial
institutions 𝑐 are at risk of failure, featuring a total 𝑒𝑙 of long-term
loan exposures (rule 𝜎5) and/or 𝑒𝑠 of short-term exposures (rule 𝜎6),
measured in euro, to the defaulted entities. If the total 𝑙 of exposures
for the creditor 𝑐 is higher than its capital 𝑝2, then the creditor 𝑐
defaults (rule 𝜎7). The set of rules aims to derive all the defaults
that an initial shock affecting one or more entities might trigger.

Studying and analyzing how a financial shock propagates in
the financial market, i.e., via which channel, is of critical impor-
tance for authorities [35], which can swiftly adopt countermea-
sures to prevent or, at least, mitigate a cascade effect.
Structural Analysis. The dependency graphs for the EKG ap-
plications are presented in Figure 9. All dependency graphs are
cyclic, thus all potentially producing textual explanations of un-
predictable length. It is important to notice that while, in general,
recursion may lead to infinite chase sequences, this is not the
case in the Vadalog context, where the application of chase steps
that generate facts isomorphic to facts already in the chase is pre-
empted while upholding correctness of the reasoning task [11].
On top of the dependency graphs, we can derive reasoning paths
by applying the definitions. We represent them in Figure 10,
adopting the compact rule-based notation.

Predicate Description
Owns (𝑥, 𝑦, 𝑠 ) <𝑥> owns <𝑠> shares of <𝑦>.
Control (𝑥, 𝑦) <𝑥> exercises control over <𝑦>.
Company (𝑥 ) <𝑥> is a business corporation.

HasCapital (𝑓 , 𝑝 ) <𝑓 > is a company with capital of <𝑝>
euros

Shock (𝑓 , 𝑠 ) A shock amounting to <𝑠> euro hits <𝑓 >
Default (𝑓 ) <𝑓 > is in default.

LongTermDebts (𝑑, 𝑐, 𝑣) <𝑑> has an amount <𝑣> of
long-term debts with <𝑐>.

ShortTermDebts (𝑑, 𝑐, 𝑣) <𝑑> has an amount <𝑣> of
short-debts with <𝑐>.

Risk (𝑐, 𝑒, 𝑙 )
<𝑐> is at risk of defaulting given
its <𝑙>-term loans of <𝑒> euros of
exposures to a defaulted debtor.

Figure 11: Domain Glossary derived from the internal Data
Dictionary for the Financial Knowledge Graph applica-
tions.

For the company control program, we identify two root
nodes, Owns and Company, and a leaf node, Control, which is
also critical. Therefore, we derive the simple reasoning paths
Π1,Π2,Π3,Π4, which are all the potential paths that can be fol-
lowed to connect the root nodes to the leaf node. Additionally, a
simple reasoning path Π5 can also be derived, as it originates in
two distinct root nodes that jointly conduct to the leaf. The only
reasoning cycle is the path connecting the leaf node to itself via
rule 𝜎3.

We already derived reasoning paths for a simplified version
of the stress test application in Section 4. Here, roots and the leaf
node remain unchanged; however, more complexity arises in the
intensional predicates, with the distinction of the two exposure
channels, i.e., long and short-term debts. First, individual simple
reasoning paths for each channel are derived (i.e., Π7,Π8), and,
similarly to the company control case, a joint channel path start-
ing from the root can also be detected, i.e., Π9. The same applies
to reasoning cycles, i.e., Γ2, Γ3, Γ4.

Generation of Explanation Templates. By gathering the pred-
icate description from the internal data dictionary, we present in
Figure 11 the domain glossary for the above Financial Knowledge
Graph applications which can be used to produce the determin-
istic explanation templates. With the domain glossary available,
the generation of explanation templates follows the procedure
presented in Section 4.2.

Representative Scenario. In Figure 12 we represent a portion of
an artificial financial knowledge graph, resembling a real-world
scenario of financial institutions that a business analyst might
face to investigate. To this aim, the above rule-based applica-
tions might be run to (i) discover if and how these companies
are in special control relationships and (ii) run a stress test to
simulate how a shock impacts and propagates over the cluster
of institutions under analysis. By running the company control
application, new knowledge is derived via the chase procedure.
The result is shown in Figure 13. For each derived fact, an expla-
nation query𝑄𝑒 can be run to generate an explanation, activating
the template-based approach. For instance, the business analyst
might be interested in understanding how the control between
"B" and "D" has been derived and thus perform the following
query: 𝑄𝑒 = {Control(𝐵, 𝐷)}. The template-based system would
track the facts in the underlying chase graph followed by the
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Figure 12: Portion of a synthetic extensional knowledge of
a Financial KnowledgeGraph. Rectangular nodes represent
HasCapital facts. Red edges represent bothOwns and IntOwns
facts.

Figure 13: Derived knowledge applying the control and
stress test applications. Auto-control edges, i.e., edges de-
noting the facts that companies control themselves, are
omitted.We simulate a financial shock to entity𝐴 (of 15M$)

reasoning engine, as we did in Figure 8, and identify the cor-
responding reasoning path followed - that in this scenario is
Π2.

We also simulate a financial shock hitting entity𝐴 and we run
the stress test program to understand its effect on the system. The
derived knowledge, i.e., Default values, can be investigated by
generating a natural language explanation of how the shock has
propagated in the network. For instance, for 𝑄𝑒 = {Default (𝐹 )},
we get the following explanation: "A financial shock amounting
to 14 million euros impacts A’s capital (worth 5 million euros),
leading to its default. As a result, company B, which holds 7 million
euros of long-term debts from A, faces risk due to its exposure to
the defaulted company. With 7 million euros in exposures to the
defaulted company, B’s capital of 4 million euros is insufficient to
absorb the loss, leading to B’s default as well. With B defaulting,
its short-term debt to creditor C, amounting to 9 million euros puts
C at risk. Despite C’s capital reserves of 8 million euros, its overall
debt obligations worth 9 million euros led it to default. C and B
both defaulted and they had, respectively, 2 and 8 million euros of
long and short-term exposures with F, putting it at risk with a total
debt of 11 million euros. Despite having 9 million euros in capital,
the scale of its total debt led to F also defaulting on its financial
obligation.". This text has been obtained by utilizing explanation

templates corresponding to reasoning paths {Π7, Γ3, Γ∗4 }, which
instantiates the logical steps that allow the derivation of fact
Default (F).

6 EXPERIMENTAL EVALUATION
We evaluate our approach by demonstrating it can produce high-
quality textual explanations. First, we devised two user-study
experiments based on common approaches in the literature to (i)
evaluate the comprehension of non-expert users when faced with
our textual explanation and (ii) evaluate the effectiveness of our
template-based approach in producing fluent texts for domain
experts by comparing it with plain AI-generated texts [58]. Our
experiments are centered around textual explanations of knowl-
edge inferred from artificial data generated automatically for
the KG applications presented in Section 5. Then, we verify that
employing an LLM-based solution – the alternative approach to
our template-based one – while being overall equivalent in terms
of textual readability to our solution, is subject to omissions, es-
pecially when the proofs of facts become longer, as it is common
in financial scenarios, for instance in case of very long control
chains or contagion resulting from the propagation of shocks.
Finally, we discuss the performances of generating explanations
with our template-based approach.
6.1 Users Comprehension
We first evaluate the comprehension of our explanations with
users that are not expert of the financial domain. We created a
set of five multi-choice questions related to various instances
of the financial applications described in Section 5. Each ques-
tion contained a “business report” that we sampled from the
pool of all textual explanations generated in our artificial KG.
In particular, we selected a case of control through aggregation
over multiple entities (1), a simple stress test scenario (2), control
via recursion (3), a complex stress test involving recursion and
aggregation (4), and a case of control combining recursion and
aggregation (5). For each question, we generated three visualiza-
tions in the form of graphs, similar to Figures 12 and 13, where
one was corresponding to the explanation, while the other two
contained errors. The idea is that if non-expert users can identify
the correct visual graph-based explanation, the proposed textual
explanation is comprehensive, i.e., it helps users to understand
the inference mechanism over the KG.To generate the errors,
we identified four archetypes, similarly to [26]: (I) the presence
of false edges, (II) incorrect value of a property, (III) incorrect
order of aggregation values, and (IV) incorrect chain in case of
recursion. Such error types encapsulate the main problems that
make the task of generating a fluent and accurate explanation
complex, as outlined in Section 4.1.

We recruited 24 participants with no or little financial back-
ground, and all fluent in English. This resulted in the collection
of 120 answers. Figure 14 summarizes the results for each case
study analysed by our tested users. In general, we achieved a
very high accuracy of 96%, meaning that in almost all cases, our
users detected the correct KG based on our explanation. Regard-
ing errors made by users, no clear pattern (i.e., archetype that
systematically leads to user errors) can be identified, meaning
that our explanations were comprehensive and accurate.

6.2 Expert User Study
For each simulated scenario, we presented three possible textual
explanations of the same proof, one produced using our approach
and the other two generated by a pure LLM solution, i.e., by
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Case
Study

Error Archetype Correct
AnswersWrong

Edge
Wrong
Value

Incorrect
Aggregation

Incorrect
Chain

1 8% 0% 0% 0% 92%
2 0% 0% 0% 0% 100%
3 4% 0% 0% 0% 96%
4 0% 0% 0% 0% 100%
5 0% 0% 4% 4% 92%

Figure 14: Results of the comprehension user study, pre-
senting the relative number of users that answered cor-
rectly and the corresponding errors, if any. Users were
presented with five cases and, for each, tested to select the
visual KG that captured the knowledge of each text. Multi-
ple KG visualizations were presented, with only one being
the correct version and the others containing one of the
error archetypes.

prompting the deterministic explanation of the portion of the
chase graph of interest, obtained by applying the verbalizer to the
instance, aswe did in [4].We consider ChatGPT as our benchmark
LLM model and two prompts, one asking for a paraphrase to get
a fluent and complete version of the deterministic explanation
and the other asking for a summary to obtain a not redundant
text. The prompts are:

(1) "Generate a paraphrased version of the following text: . . . "
(2) "Generate a summarized version of the following text: . . . "

We had 14 expert users, i.e., Central Bank employees with a
solid economic background and capable of understanding the
context of applying our business rules. We did not provide details
about how these texts were generated, but we just hinted that
they all resulted from the application of automatic text tool gen-
erators. While other studies asked their participants to evaluate
several quality dimensions, we presented the above-mentioned
dimensions to participants and asked them to assess the textual
quality by assigning an overall mark to facilitate and speed up the
evaluation process, as textual explanations of complex reasoning
inferences quickly become long.

Each participant was asked to analyze four scenarios: two of
them for the company control application (a short control chain
and a long one with multiple layers of intermediate controls),
one from the stress test application and one from the close link
application, another financial application from our domain [2].
For each of these scenarios, three textual explanations were gen-
erated and graded. This resulted in collecting 168 individual data
points, 56 for each methodology, i.e., GPT with paraphrasing
prompt, GPT with summarization prompt, and the template-
based approach. The order of texts was randomly shuffled, and
the methodology used to generate the text was not shown in
the input form. Participants graded each text on a 5-value Likert
scale.

In Figure 15 we show an example output of the explanation
methods we tested. We report the user study results in Figure 16,
in terms of average Likert values and corresponding standard
deviations for the methodologies that have been considered.

We were expecting no significant difference in the overall
quality of the explanations generated with our system compared
with the ones of GPT. Following previous studies on compar-
ing responses on a Likert scale [25, 27], we conducted pairwise
Wilcoxon signed-rank tests considering two explanation meth-
ods at a time. We found no significant differences between any
of the tested pairs. In particular, the p-value for the two-sample

Deterministic Explanation
Since Irish Bank is a company, and Irish Bank owns 83% of Fondo Italiano
shares, and 83% is over 50, then Irish Bank controls Fondo Italiano.
Since Irish Bank is a company, and Irish Bank owns 54% of FrenchPLCs
shares, and 54 is over 50, then Irish Bank controls FrenchPLC. Since
Irish Bank controls FrenchPLC, and FrenchPLC owns 21% of Madrid Credit
shares, and Irish Bank controls Fondo Italiano, and Fondo Italiano owns
36% of Madrid Credit shares, then IrishBank owns a total 57% of Madrid
Credit shares. Since Irish Bank owns a total 57% of Madrid Credit shares,
and 57 is over 50, then IrishBank controls Madrid Credit.

GPT Paraphrasis of Deterministic Explanation
Irish Bank has ownership of 83% of Fondo Italiano, which means it has
control over the company. Additionally, Irish Bank owns 54% of French
PLC, establishing its control over that company as well. Since FrenchPLC
possesses 21% of Madrid Credit, and Fondo Italiano holds 36% of Madrid
Credit, it follows that Irish Bank has ownership of a combined 57% of
Madrid Credit. Hence, Irish Bank exercises control over Madrid Credit.

GPT Summary of Deterministic Explanation
Irish Bank owns a majority stake in Fondo Italiano and French PLC,
enabling it to control both companies. Additionally, French PLC owns
shares in Madrid Credit, and since Irish Bank controls FrenchPLC and
Fondo Italiano, it ultimately controls a significant portion of Madrid
Credit. Thus, Irish Bank has overall control of Madrid Credit as well.

Template-based Approach
Irish Bank owns 83% Fondo Italiano and 54% of French PLC through Fondo
Italiano. Thus, Irish Bank controls Fondo Italiano and FrenchPLC. Irish
Bank, which controls FrenchPLC and Fondo Italiano that own, respectively,
21% and 36% of Madrid Credit, thereby owns 57% of Madrid Credit,
effectively giving Irish Bank control over it.

Figure 15: Example of textual explanations for the same
fact (i.e., Irish Bank exercises control over Madrid Credit).
Users were asked to evaluate the last three versions.

Paraphrasis Summary Templates

Mean 3.78 3.765 3.69
Std. Dev. 1.09 1.25 0.94

Figure 16: Mean Likert value and standard deviation for
each methodology

Wilcoxon test between Likert values of GPT-based paraphra-
sis and our templates is 𝑝1 = 0.5851; similarly, the p-value for
GPT-based summarization and our templates is 𝑝2 = 0.404. Both
values are far from being significant, confirming our expectations.
This user study confirms that our approach produces texts of the
same quality as GPT’s, without sharing the underlying data with
third parties.

6.3 Completeness of textual explanations
As a last experiment, we discuss one of the main technical lim-
itations of relying on an LLM-based solution in our context,
i.e., using it over the deterministic explanations to get human-
readable versions. The automatic generation of business reports
requires that the outcome guarantees high trustworthiness. If a
tool for textual generation omits important information or, in
worst cases, generates hallucinations, it cannot be approved for
use in critical text generation tasks, such as those employed by
the Central Bank. In our experiment, we test ChatGPT, the same
model we employed to generate the templates, to produce textual
explanations of proofs for the KG applications we presented in
Section 5. We show how it is subject to omissions, which un-
dermines the completeness criterion of business reports. Such
behavior does not influence our template-based approach, which,
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(a) Company Control

(b) Stress Test

Figure 17: Relative average proportion of missing infor-
mation in the output text of ChatGPT – our benchmark
for generating explanations – asked to paraphrase and
summarize the deterministic verbalization of proofs of
increasing sizes, i.e., longer explanations. The length of
inference is measured in terms of the number of chase
steps; information loss is measured as the ratio between
the number of constants present in the textual explanation
and the number of facts required by the correct inference.
Boxplots refer to ten distinct sampled proofs with equal
length. Within our system, we can avoid such omissions by
leveraging the template-based technique and a once-for-all
human-in-the-loop step.

by construction, contains all constants used during the inference
process, as they are captured by tokens. To this aim, we applied
the company control and the stress test KG applications over
artificially generated data, as individual shares and loan infor-
mation are confidential. We sampled subsets of distinct edges
of proofs of increasing length, measured in the number of logi-
cal steps required to derive a conclusion. We asked ChatGPT to
generate a paraphrasis and a summarized explanation for each
proof by prompting it with the deterministic explanation we ob-
tained via our verbalizer. We then measured the ratio of omitted
information for each ChatGPT output, i.e. the relative number
of constants displayed in the final textual explanation w.r.t. the
constants used in the proof for deriving a conclusion. For each
considered proof length, we obtained a distribution of 10 ratios
of omitted information, as represented by Figure 17 with the
boxplot. As expected, the average ratio grows with the proof
length, meaning that, as the inference process grows, ChatGPT
tends to lose information that might be relevant for analysts. In
general, we observed the paraphrasing task is less subject to such
behavior, compared to the summarization one, but still, some
information in the textual output is missing. More specifically, for
the company control application, omissions refer, in most cases,
to ownership share amounts that are not reported in the final
text, both in the case of summarization and paraphrases; instead,

(a) Company Control (b) Stress Test

Figure 18: Average running times required for generating
explanations of increasing inference length using our ap-
proach. Boxplots are distributions of 15 distinct proofs
with the same chase step length.

in the case of stress test, no specific patterns in the omissions
could be identified.

6.4 Performances
We finally analyze the running times of our template-based ap-
proach when the proof length increases, i.e., the time required
to select, parse, and combine templates when the explanation
becomes more complex and more inference steps are required.
We ran the experiment on a Windows 11 machine with AMD
Ryzen 5 5500U and 8 GB 3200 MHz DDR4 memory. Results are
in Figure 18 and display the average running times of translating
proofs of different lengths into textual explanations. As expected,
running times increase with the number of inference steps re-
quired. However, the complexity of the KG applications also plays
a role since the stress test application - which is syntactically
more complex, having multiple rules with aggregations - displays
higher running times. However, in both scenarios, running times
remain low and acceptable for a user-friendly experience, with a
maximum of around 3 seconds in the case of most complex stress
test cases, requiring over 20 inference steps.

6.5 Discussion and limitations
For generating the explanation templates and for paraphrasing
and summarizing in our experiments, we used and tested Chat-
GPT, the most widespread generative AI model and the most
natural choice for non-IT business analysts. Another option for
producing explanations would be to have an internal, lighter,
fine-tuned language model for generating explanations. How-
ever, such fine-tuning would (i) require a training set of domain-
specific explanations and (ii) a new fine-tuning whenever a new
KG application is deployed. Instead, our approach is database-
independent and directly applicable to any new application. Also,
our approach focuses on the financial domain, which is the one of
interest for our applications. However, the quality of results does
not depend on any training data but on the rephrasing power of
LLMs. Therefore, we believe our approach can achieve similar
results in any other domain, once equipped with an internal data
dictionary. Other prompts could have been used for both experi-
ments; however, while prompt engineering can greatly influence
results, no prompt guarantees perfect consistency [60], which,
in our case, refers to the absence of omissions.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed a novel approach for generating
high-quality textual explanations for knowledge inferred over
complex financial Enterprise Knowledge Graph applications, i.e.,
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containing recursion and aggregations that generate non-trivial
provenances. Our approach leverages the intrinsic simplicity and
transparency of Datalog-based languages, such as Vadalog, and
their syntax to generate fluent and compact textual templates
that capture the main interconnections between business rules
that express problems of interest for analysts under the form
of Knowledge Graph application and without relying on any
concrete database. This is possible as we exploit commonly avail-
able resources of corporations, such as data dictionaries. To fully
automatize the process, we employed modern Large Language
Models in a self-sustained, low-cost framework to create the
templates, which also avoids the breach of data confidentiality.
We tested our approach over three important KG applications
and we conducted a user study to show how, at least for the
financial domain, our approach creates textual explanations that
are fluent and readable, being competitive with pure LLM-based
methodologies that generate business reports, i.e., reasoning ex-
planations, but require the share of the actual instance. We also
analyzed how directly employing generative AI to produce expla-
nations can lead to omissions, especially when proofs get longer,
harming the completeness of business reports. In contrast, by
being completely controllable and tractable, our template-based
approach contains instead all the necessary information that a
business analyst might require. Although limited to the finan-
cial domain, the approach can be easily replicated over other
Knowledge Graph applications for corporations working in other
domains, as the quality of results depends on internal data dic-
tionaries, and no training or fine-tuning of LLMs is involved. In
future work, we will test our system in other domains and test
whether the advantages over plain LLM systems are still relevant,
such as in the financial one.
Resources. The implementation of our approach, which is based
on the Vadalog system, is available in a GitHub repository (https:
//github.com/andreac0/Template-Based-Inference-EDBT). Syn-
thetic financial data to run our applications are instead available
at: https://bit.ly/edbt25Data.
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