
PEG: Local Differential Privacy for Edge-Labeled Graphs
André L. C. Mendonça
andre.luis@lsbd.ufc.br

Universidade Federal do Ceará
Fortaleza, Ceará, Brazil

Felipe T. Brito
felipe.timbo@lsbd.ufc.br

Universidade Federal do Ceará
Fortaleza, Ceará, Brazil

Javam C. Machado
javam.machado@lsbd.ufc.br
Universidade Federal do Ceará

Fortaleza, Ceará, Brazil

ABSTRACT
Edge-labeled graphs are a particular class of graphs designed to
represent networks in which the edge content indicates a type
of relationship between two nodes. The study of edge-labeled
graphs finds applications in diverse fields, such as anomaly detec-
tion, mobility analysis, and community search. Since edge-labeled
graphs usually contain sensitive information, preserving privacy
when releasing this data type for graph analytics becomes an
important issue. In this context, local differential privacy (LDP)
has emerged as a robust definition for data release under solid
privacy guarantees. However, existing graph LDP techniques
in the literature primarily focus on traditional graph structures
without considering the nuanced labels associated with edges in
labeled graphs. In this paper, we introduce PEG, a novel approach
designed to release edge-labeled graphs with local differential
privacy guarantees. By combining partitioning and clustering
techniques, we enable more effective noise distribution among
similar nodes, which preserves the inherent structure and rela-
tionships within the released graph. Extensive experiments on
real-world datasets show that PEG can effectively release useful
and private edge-labeled graphs, enabling subsequent computa-
tion of various graph analysis metrics with high utility, including
applications in community detection.

1 INTRODUCTION
Graphs are fundamental data structures that represent relation-
ships between entities. Edge-labeled graphs emerge as a special
class of graphs designed to represent networks in which the
edge content indicates a type of relationship between two nodes.
Edge-labeled graphs have been widely adopted in many fields
to explain why and how users make connections to each other.
Examples include communication networks [39], co-authorship
networks [3], protein-protein networks [24], and heterogeneous
information networks [37]. The study of edge-labeled graphs has
become a prosperous research area, finding applications in anom-
aly detection [36], mobility analysis [27], and community search
[29]. Figure 1 shows an example of an edge-labeled graph 𝐺 ,
where the topic of exchanged text messages is considered as the
edge label. For this particular case, AM indicates administrative
matters, that is, emails related to the management and organiza-
tion of business operations, and WR denotes work-related topics,
such as project updates, meeting requests, collaboration requests,
and task assignments.

Due to the sensitive nature of the information found in edge-
labeled graphs, releasing such data for analysis and statistical
purposes to machine learning practitioners and data scientists
without adequate privacy guarantees could put individuals’ pri-
vacy at risk. For instance, in Figure 1, let’s say an adversary knows
that user “g” only sends administrative matters (topic AM) to user

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: An example of an edge-labeled graph 𝐺 where
nodes represent users and edges are emails exchanged
among them. The topic of the emails represents the edge
label. AM denotes administrative matters, and WR depicts
work-related topics.

“a”. The adversary can infer that user “g” likely holds a position of
authority or responsibility within the organization, particularly
concerning administrative tasks or decision-making processes.

Differential privacy (DP) [13] has emerged as a robust privacy
definition that has become the standard for data release under
strong privacy guarantees. The main idea behind DP is that an
analysis is determined by a randomized algorithm, also known
as a mechanism, that computes private information and returns
a randomized answer sampled from a probability distribution.
In the literature, the primary DP setups are the global DP [13]
and the local DP (LDP) [12]. The key difference between them
consists in the nature of the data curator. In the global setting, it
is assumed that a trusted data curator has indiscriminate access
to the complete data and is responsible for releasing it after a
differentially private procedure. Conversely, in the local setting,
the data curator is assumed to be untrustworthy. In this case,
each user is responsible for applying privacy to their own data
before sending it to the data curator. Compared to the global
DP, local DP has a stronger notion of privacy since it keeps the
individuals’ sensitive data private, even from untrustworthy data
curators.

The standard DP models (global and local) have been initially
defined to attend to tabular data. However, studies have been
developed over the years in the field of the differentially private
release of graph data [6]. Within the graph scope and following
the definition of neighboring graphs, there are two main DP
settings: the edge differential privacy (edge-DP) [23] and the
node differential privacy (node-DP) [26]. In the DP model, two
datasets are neighbors if they differ in at most one single record.
In the graph context, the edge-DP model states that two graphs
are neighbors if they differ in at most one single edge. In contrast,
the node-DP model states that two graphs are neighbors if they
differ in exactly one node and all its incident edges. However,
for labeled graphs, neither edge-DP nor node-DP privacy models
are adequate since they ignore the presence of attributes on the
edges.

Many efforts have already been made to protect individuals’
privacy in edge-weighted graphs, i.e., graphs that contain numer-
ical attributes on their edges [5, 8, 17, 33, 35, 40]. However, these

Series ISSN: 2367-2005 490 10.48786/edbt.2025.39

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.39

works often face limitations when dealing with non-numeric
attributes [10, 30]. Some studies [9, 25, 43, 47] have applied DP in
node-attributed graphs, focusing on methods that consider node
attributes (instead of edge attributes) for privacy-preserving data
releases. On the other hand, Liu et al. [31] proposes a method that
specifically addresses local differential privacy for edge-labeled
graphs. However, it only provides privacy for a few statistics
rather than releasing the entire labeled graph for comprehensive
graph analytics.

In this paper, we present PEG (Privacy for Edge-labeled Gra-
phs), an approach for releasing entire edge-labeled graphs under
local differential privacy guarantees. In summary, the main con-
tributions of this paper are as follows:

(1) We first introduce the Randomized Attribute Neighbor List
(RANL), a novel data structure for encoding edge-labeled
graphs in the LDP setting.

(2) We then present a new method that combines partitioning
and clustering techniques to achieve more effective noise
distribution among similar nodes, which improves data
utility when applying the RANL data structure.

(3) We also improve the accuracy of the released graph by de-
veloping a post-processing technique to guarantee graph
consistency.

(4) Finally, we conduct an extensive experimental analysis on
four real-world edge-labeled graphs to evaluate the perfor-
mance of PEG. We show that our approach achieves high
utility for various graph analysis metrics on the released
graph, including applications in community detection.

The rest of the paper is structured as follows: Section 2 pro-
vides the theoretical background overview. In Section 3, we re-
view the existing literature. We then present PEG in Section 4.
Section 5 empirically evaluates PEG. Finally, Section 6 concludes
the paper and provides future research directions.

2 THEORETICAL BACKGROUND
Edge-labeled graphs are a specific type of graph where non-
numeric attributes are assigned to the edges. These graphs can
model various types of relationships between nodes, where each
edge belongs to a category. We denote an undirected edge-labeled
graph as 𝐺 = (𝑉 , 𝐸, 𝑋), where 𝑉 is the set of nodes, 𝐸 is the set
of edges, and 𝑋 is the set of labels associated with each edge
in 𝐸. The set of nodes is defined as 𝑉 = {𝑣1, . . . , 𝑣𝑛}, such as
|𝑉 | = 𝑛. The set of labels is defined as 𝑋 = {𝑥1, . . . , 𝑥𝑡 }, and 𝑡 is
the number of possible edge labels. The set of edges is defined
as 𝐸 ⊆ 𝑉 ×𝑉 × 𝑋 = {𝑒𝑖, 𝑗,𝑘 , . . . , 𝑒𝑜,𝑝,𝑞}, where 𝑒𝑖, 𝑗,𝑘 refers to an
undirected edge between nodes 𝑣𝑖 and 𝑣 𝑗 ∈ 𝑉 associated with
the label 𝑥𝑘 ∈ 𝑋 (𝑒𝑖, 𝑗,𝑘 ≡ 𝑒 𝑗,𝑖,𝑘), and |𝐸 | = 𝑚. Additionally, in
this work, we consider that 𝐺 holds the multigraph property,
meaning that for any nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , there may exist multiple
edges {𝑒𝑖, 𝑗,𝑘 , . . . 𝑒𝑖, 𝑗,𝑙 } with 𝑥𝑘 , 𝑥𝑙 ∈ 𝑋 , such that 𝑥𝑘 ≠ 𝑥𝑙 for any
𝑥𝑘 , 𝑥𝑙 ∈ 𝑋 .

2.1 Differential Privacy
Differential privacy (DP) [13] is a robust privacy definition that
has become the standard for data release under strong privacy
guarantees. In summary, it states that any answer to a query
occurs with similar probability regardless of the presence or
absence of any individual in the dataset, as defined as follows:

Definition 2.1. (𝜀-Differential Privacy [13]). A randomized algo-
rithmA satisfies 𝜀-differential privacy if for any two neighboring
datasets 𝐷, 𝐷′ and for any output 𝑂 ⊆ Range(A),

𝑃𝑟 [A(𝐷) = 𝑂] ≤ 𝑒𝜀𝑃𝑟 [A(𝐷′) = 𝑂] . (1)

Note that 𝐷 and 𝐷′ are neighbors if they differ in at most one
single record. The parameter 𝜀, known as the privacy budget, is
an input parameter that controls the level of privacy protection
in DP. Specifically, it determines the trade-off between the accu-
racy of the data output and the level of privacy protection for
individuals in the dataset. A smaller 𝜀 corresponds to a stronger
privacy-preserving guarantee, while a higher 𝜀 provides better
data utility. The randomized algorithm A is also referred to as
a mechanism, which is a way of achieving DP. For numerical
queries, DP can be achieved by various mechanisms, such as
Laplace [13] (for continuous data) and geometric [21] (for dis-
crete data) mechanisms. Our approach follows the geometric
mechanism based on the global sensitivity of a query.

Definition 2.2. (Global Sensitivity [14]). The global sensitivity
of a query 𝑄 is the maximum 𝑙1 distance between the outputs of
𝑄 on any two neighboring datasets 𝐷 and 𝐷′, given by

Δ𝑄 = max
𝐷,𝐷 ′
| |𝑄 (𝐷) −𝑄 (𝐷′) | |1 . (2)

The geometric mechanism adds integer noise to the true query
answers following the two-sided geometric distribution, as de-
fined below.

Definition 2.3. (Two-sided Geometric Distribution). A random
variable𝑋 distributed as a two-sided geometric distribution, with
mean 0 and 𝛼 ∈ [0, 1], has a probability mass function

𝑃 (𝑋 = 𝑥) = 1 − 𝛼
1 + 𝛼 𝛼 |𝑥 | . (3)

We denote 𝐺𝑒𝑜𝑚(𝜀
Δ𝑄) the two-sided geometric distribution

with mean 0 and 𝛼 = 𝑒
− 𝜀

Δ𝑄 .

Theorem 2.4. (Geometric Mechanism [21]) Given any query
𝑄 : N |D | → Z𝑘 , the geometric mechanism defined as

A𝐺 (𝐷,𝑄, 𝜀) = 𝑄 (𝐷) + (𝑌1, . . . , 𝑌𝑘), (4)

where 𝑌𝑖 are i.i.d. random variables draw from 𝐺𝑒𝑜𝑚(𝜀
Δ𝑄) and

D is the set of all possible datasets, satisfies 𝜀-DP with 𝛼 = 𝑒
− 𝜀

Δ𝑄 .

Various useful properties are present in differentially private
mechanisms. When combined, these properties offer the flexibil-
ity to aggregate multiple differentially private steps into a single
mechanism that satisfies differential privacy. These properties
are:

Theorem 2.5. (Post-processing [15]) Let A be any randomized
algorithm such that A(𝐷) is 𝜀-differentially private, and let 𝑓 be
any function. Then, 𝑓 (A(𝐷)) also satisfies 𝜀-DP.

Theorem 2.6. (Sequential Composition [15]) Let A𝑖 provide 𝜀𝑖 -
differential privacy. A sequence of differentially private algorithms
A𝑖 (𝐷) provides

∑
𝜀𝑖 -DP.

Theorem 2.7. (Parallel Composition [15]) Let each𝐷𝑖 be disjoint
data and A an algorithm that provides 𝜀𝑖 -differential privacy for
data 𝐷𝑖 . A sequence of differentially private algorithm execution
A(𝐷𝑖) provides max(𝜀𝑖)-DP.

491

2.2 Local Differential Privacy
Differential privacy typically involves a trusted curator (third
party) responsible for collecting, perturbing, and publishing data
through a mechanism that satisfies differential privacy (DP). Al-
ternatively, Local Differential Privacy (LDP) offers a private ap-
proach that eliminates the need for a trusted data curator. In
the LDP setting, instead of centralizing the data flow to a single,
supposedly reliable entity, each user locally perturbs their data
with a differentially private mechanism before sending it to the
data curator. In this context, the data curator is commonly called
an aggregator. Compared to global DP, LDP provides a stronger
notion of privacy:

Definition 2.8. (𝜀-Local Differential Privacy [12]). A random-
ized algorithm A satisties 𝜀-local differential privacy if for any
pair of values 𝑣, 𝑣 ′ ∈ 𝐷 and for any possible output𝑂 ⊆ Range(A),

𝑃𝑟 [A(𝑣) = 𝑂] ≤ 𝑒𝜀𝑃𝑟 [A(𝑣 ′) = 𝑂] . (5)

2.2.1 Local Differential Privacy Protocols. In the LDP setting,
mechanisms are commonly called protocols, i.e., techniques de-
signed to modify the user’s data to ensure LDP. The standard
flow of an LDP protocol consists of (i) encoding the user’s data,
(ii) perturbing the user’s data, and (iii) reporting the noisy data to
the data curator. Encoding: The user’s input data 𝑣 is mapped into
a binary bit vector 𝐵 composed of 0’s and 1’s, such that 𝐵 [𝑣] = 1.
Perturbation: The bits of 𝐵 are modified according to probabilities
𝑝 and 𝑞 established by the protocol, as depicted in Equation 6.
Reporting: The user’s noisy data is sent to the data curator for
analysis.

Several protocols have been proposed for different purposes
[2, 4, 11, 16, 41, 44], with Randomized Response (RR) [14] and
Optimized Unary Encoding (OUE) [41] being among the most
commonly used.

Pr[𝐵′ [𝑖] = 1] =
{
𝑝, if 𝐵 [𝑖] = 1
𝑞, if 𝐵 [𝑖] = 0

(6)

Randomized Response Protocol [14]. The RR protocol allows an
input value 𝑣 to be encoded into a bit vector 𝐵 such that 𝐵 [𝑣] may
be represented by more than one bit assigned to 1. It was proved
in [16] that the RR protocol satisfies 𝜀-LDP if the bit vector 𝐵 is
perturbed according to probabilities 𝑝 = 𝑒𝜀

1+𝑒𝜀 and 𝑞 = 1 − 𝑝 .
Optimized Unary Encoding Protocol [41]. The OUE differs from

the RR primarily in how the data is encoded and in the probabil-
ities 𝑝 and 𝑞. In the OUE protocol, an input value 𝑣 is encoded
into a bit vector 𝐵 such that 𝐵 [𝑣] is represented by only one bit
set to 1. The protocol proposes optimized values for 𝑝 and 𝑞 that
reduce the variance of the reported data, thereby improving the
data utility. It was proven in [41] that the OUE protocol satisfies
𝜀-LDP if the bit vector 𝐵 is perturbed according to probabilities
𝑝 = 1

2 and 𝑞 = 1
𝑒𝜀+1 .

2.3 Local Differential Privacy For Graphs
In the context of LDP, the literature focuses on attacks where
an adversary attempts to infer the presence or absence of nodes
or edges in graphs. In this sense, there are two main settings
of LDP for graphs: Edge Local Differential Privacy (edge-LDP)
[23] and Node Local Differential Privacy (node-LDP) [26]. Given
an undirected graph 𝐺 = (𝑉 , 𝐸), for each node 𝑣𝑖 ∈ 𝑉 , let 𝐵𝑖 =
{𝑏1, 𝑏2, . . . , 𝑏𝑛} be the adjacency bit vector of 𝑣𝑖 , where 𝑏 𝑗 = 1 if
and only if 𝑒𝑖, 𝑗 ∈ 𝐸, otherwise 𝑏 𝑗 = 0. Then, both definitions are
stated as:

Definition 2.9. (𝜀-Edge Local Differential Privacy [23]). A ran-
domized algorithm A satisfies 𝜀-edge local differential privacy
if and only if for any two adjacency bit vectors 𝐵, 𝐵′ that differ
only in one bit, and for any output 𝑂 ⊆ Range(A),

𝑃𝑟 [A(𝐵) = 𝑂] ≤ 𝑒𝜀𝑃𝑟 [A(𝐵′) = 𝑂] . (7)

Definition 2.10. (𝜀-Node Local Differential Privacy [26]). A
randomized algorithmA satisfies 𝜀-node local differential privacy
if for any two adjacency bit vectors 𝐵, 𝐵′ and for any output𝑂 ⊆
Range(A),

𝑃𝑟 [A(𝐵) = 𝑂] ≤ 𝑒𝜀𝑃𝑟 [A(𝐵′) = 𝑂] . (8)

Achieving privacy under node-LDP is much harder than it is
in edge-LDP since it requires protecting the privacy of the entire
node’s data, including all its connections. Therefore, designing
algorithms that ensure node-LDP and simultaneously provide
accurate graph analytics may not be feasible. Nonetheless, edge-
LDP can still achieve strong privacy protection regarding the
existence of edges, which is sufficient for most graph applications,
such as community search [29], and anomaly detection [36] while
preserving high data utility. Therefore, this paper focuses on the
edge-LDP setting. In the rest of the paper, we use the terms
edge attribute and edge label interchangeably to refer to the
information on the edges.

3 RELATEDWORK
The concept of DP has been extensively studied and applied
across various domains, including graph data analysis. In this
context, edge-DP [23] focuses on preserving privacy in graph
data by perturbing the edges of the graph. Early works in this
area primarily centered around techniques, such as edge addition
or removal [38, 46], and synthetic graphs generation [20, 34],
to achieve local differential privacy guarantees. On the other
hand, node-DP [26] extends the principles of DP to individual
nodes within a graph. Instead of perturbing entire edges, node-DP
aims to protect the privacy of specific nodes and their associated
edges. However, due to the complexities involved in achieving
satisfactory levels of utility while adhering to LDP, only a few
works consider node-DP in the context of local differential pri-
vacy [18, 19]. In recent years, the differential privacy setting for
edge-weighted graphs was formally introduced [35]. Particularly,
edge-weight-DP techniques introduce noise to the numerical
values associated with edges, representing strengths, distances,
or other quantitative measures [5, 42]. However, while edge-
DP, node-DP, and edge-weight-DP offer valuable techniques for
privacy-preserving graph analysis, none of these methods were
specifically developed to handle attributed graphs.

In the field of attributed graphs, two main types are particu-
larly relevant: node-attributed and edge-attributed graphs. Jor-
gensen et al. [25] proposed the TriCycLe model for releasing
synthetic node-attributed graphs, i.e., graphs with attributes in
the nodes, under DP guarantees. In summary, TriCycLe collects
information about the original graph through differentially pri-
vate analyses and generates a synthetic graph according to them.
It rewrites the graph connections until the graph structure closely
resembles the original. In the same context, Chen et al. [9] pro-
posed the Community-Preserving Attributed Graph Model (C-
AGM), a method that captures the properties of the communities
from a node-attributed graph and releases a synthetic graph with

492

DP guarantees. Additionally, Wei et al. [43] proposes AsgLDP,
a local approach for releasing synthetic node-attributed graphs.
AsgLDP is a two-phase framework based on the local-DP setting.
In the first phase, the users report some properties related to
their local graphs, while in the second phase, the data collector
performs an unbiased estimation of the reported data to sample
a private synthetic graph.

Liu et al. [31] proposed the PrivAG framework under a novel
neighboring definition for the LDP model. The authors define the
attribute-wise LDP, which considers two graphs to be neighbors
if they differ in one attribute and all related edges associated with
that attribute. Although PrivAG addresses LDP for edge-labeled
graphs with non-numerical attributes, the approach can cause
severe data distortion, as in the worst case, it is equivalent to
the node-LDP notion. Additionally, PrivAG has a limited analysis
scope, releasing only specific graph metrics rather than a full DP
graph. On the other hand, our approach aims to release an entire
edge-labeled graph under LDP guarantees, enabling subsequent
computations for various graph analyses.

4 THE PEG APPROACH
PEG is a multiphase approach in which each user is respon-
sible for privatizing their data locally employing LDP. PEG is
divided into four main phases: (i) Partitioning & Clustering; (ii)
Partition-Cluster Mapping; (iii) RANL Reporting; and (iv) Graph
Post-Processing. Before explaining each phase, we introduce the
Randomized Attribute Neighbor List (RANL), a novel data struc-
ture for encoding edge-labeled graphs in the LDP setting. RANL
is a key contribution for understanding PEG.

The Randomized Attribute Neighbor List consists of an encod-
ing structure through which each user can report their neigh-
borhood locally, i.e., all the edges and their labels that form the
user’s local graph. The RANL combines the key features of two
existing encoding methods, the Randomized Neighbor List (RNL)
[34] and the Randomized Attribute List (RAL) [43] to suit our
context of edge-labeled graphs. In summary, the RNL consists
of a 𝑛-length bit vector, where 𝑛 is the number of users in 𝑉 , i.e.
𝑛 = |𝑉 |. The RNL of a user 𝑣𝑖 is given by RNL𝑣𝑖 = [𝑒𝑖,1, . . . , 𝑒𝑖,𝑛],
where 𝑒𝑖, 𝑗 ∈ {0, 1} denotes whether exists the edge 𝑒𝑖, 𝑗 ∈ 𝐸, i.e.,
if exists a connection between users 𝑣𝑖 and 𝑣 𝑗 . Note that only
the connection is considered, disregarding the existence of any
property on the edge. Consequently, the RAL is adequate for
the context of node-attributed graphs. It consists of a𝑤-length
bit vector, where 𝑤 is the number of possible attributes. Then,
the RAL of a user 𝑣𝑖 is given by RAL𝑣𝑖 = [𝑥𝑖,1, . . . , 𝑥𝑖,𝑤], where
𝑥𝑖, 𝑗 ∈ {0, 1} denotes whether exists the 𝑗-th attribute of the user
𝑣𝑖 . It has been proven [34, 43] that given a privacy budget 𝜀,
each user can perturb its RNL or RAL through the RR protocol
and send the perturbed data to the data collector through an
LDP mechanism while satisfying 𝜀-edge-LDP. Thus, the RANL
definition is formally stated as:

Definition 4.1. (Randomized Attribute Neighbor List (RANL)).
Given an edge-labeled graph 𝐺 = (𝑉 , 𝐸, 𝑋) and an user 𝑣𝑖 , the
RANL of an user 𝑣𝑖 is given by a ℎ-length bit vector in the form
of RANL𝑣𝑖 = [𝑒𝑖,1,1, . . . , 𝑒𝑖,1,𝑡 , . . . , 𝑒𝑖,𝑛,1, . . . , 𝑒𝑖,𝑛,𝑡], where 𝑛 = |𝑉 |
is the number of users in𝑉 , 𝑡 = |𝑋 | is the edge label domain size,
ℎ = 𝑛 · 𝑡 , and 𝑒𝑖, 𝑗,𝑘 ∈ {0, 1} denotes whether exists or not the
edge between nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 associated with the label 𝑥𝑘 ∈ 𝑋 .

Given a privacy budget 𝜀 within the RR protocol, the process
of perturbing and reporting the users’ RANLs with probabilities
𝑝 and 𝑞 satisfies 𝜀-edge-LDP since adding or removing a single

labeled edge will make two neighboring RANLs differ in only
one bit. The probabilities are given by 𝑝 = 𝑒𝜀

1+𝑒𝜀 and 𝑞 = 1 − 𝑝 ,
where 𝑝 denotes the probability of not flipping a bit and 𝑞 is the
probability of flipping a bit, respectively.

Another aspect is that the size of the RANL is proportional
to the number of users 𝑛 and the edge label domain size 𝑡 . Also,
graphs usually have a long-tailed degree distribution, meaning
that users have low degrees, i.e., few connections. In this scenario,
the length of the RANL is large, and the list contains significantly
more zero values than ones. Consequently, reporting the RANL
through the RR protocol may significantly increase the number of
ones. To overcome this issue, we have to devise a way to shorten
the length of the RANL. The primary solution involves reducing
the user population to limit the number of connections each user
can have. Then, we propose a partitioning and clustering strategy
where each user within a partition reports their RANL with a
length equal to 𝑛∗ · 𝑡 , where 𝑛∗ is the number of users among
the clusters in their partition, rather than 𝑛 · 𝑡 . This approach
enablesmore effective noise distribution among similar nodes and
consequently preserves the inherent structure and relationships
within the released graph.

4.1 Partitioning & Clustering
In this phase, the untrusted data curator first splits all users
𝑉 = {𝑣1, . . . , 𝑣𝑛} into 𝑝 random disjoint sets P = {𝑃1, . . . , 𝑃𝑝 } of
the same size, such that each user 𝑣𝑖 ∈ 𝑉 belongs to one, and
only one, partition 𝑃 𝑗 ∈ P, and |𝑃 𝑗 | = ⌊𝑛𝑝 ⌋ ∀𝑃 𝑗 ∈P . Let |𝑃 𝑗 | be
the size of the partition 𝑃 𝑗 . It is important to mention that, in
this work, we assume the data curator has information on the
number of users (𝑛) but does not have knowledge about any user,
except that each user is identified by a random identifier. In the
cases where the disjoint sets could not be of the same size (due
to particularities of the values of 𝑛 and 𝑝), consider |𝑃 𝑗 | = ⌊𝑛𝑝 ⌋
∀𝑃 𝑗 ∈P except for one of the partitions that will be chosen to
accommodate the remaining users, given by (𝑛 mod 𝑝).

The next step performed by the data curator is the degree-
based clustering. The main idea behind this step is that users with
high degrees, meaning many connections, tend to connect with
other users who also have high node degrees. In short, consider
a node 𝑣𝑖 , the degree of 𝑣𝑖 consists of the number of connections
involving 𝑣𝑖 . In the context of edge-labeled graphs, it may be
desirable to know not only the degree of 𝑣𝑖 but also the degree
of 𝑣𝑖 considering only the connections with a specific label. We
detail these different notions of degree as follows.

Edge Label Degree. Let 𝑌𝑘
𝑖 = (𝑦𝑘𝑖,1, . . . , 𝑦𝑘𝑖,𝑛) be the relationship

vector of a node 𝑣𝑖 ∈ 𝑉 regarding the label 𝑥𝑘 ∈ 𝑋 in an edge-
labeled graph 𝐺 = (𝑉 , 𝐸, 𝑋). If a node 𝑣𝑖 is connected to a node
𝑣 𝑗 and a label 𝑥𝑘 is associated to this connection, then 𝑦𝑘𝑖,𝑗 = 1,
otherwise 𝑦𝑘𝑖,𝑗 = 0. We define 𝑑𝑥𝑘𝑣𝑖 as the edge label degree of
a node 𝑣𝑖 with label 𝑥𝑘 given by

∑𝑛
𝑗=1 𝑦

𝑘
𝑖,𝑗 . In summary, in an

undirected graph, the edge label degree represents the number of
edges associated with a specific label connected to a given node.
Then, we denote 𝛿𝑣𝑖 = (𝑑𝑥1

𝑣𝑖 , . . . , 𝑑
𝑥𝑡
𝑣𝑖) as the edge label degree

vector of a node 𝑣𝑖 .

Node Degree. Given an edge-labeled graph 𝐺 = (𝑉 , 𝐸, 𝑋), We de-
fine 𝑑𝑣𝑖 as the node degree of a node 𝑣𝑖 ∈ 𝑉 given by

∑
𝑥𝑘 ∈𝑋 𝑑𝑥𝑘𝑣𝑖 .

In summary, in an undirected graph, the node degree represents
the number of edges connected to a given node.

493

Releasing users’ degrees without privacy concerns can com-
promise their privacy. The geometric mechanism [21] is an ef-
fective technique for perturbing discrete function values. Then,
to ensure edge-LDP, each user 𝑣𝑖 ∈ 𝑉 adds to their degree 𝑑𝑣𝑖 a
random noise drawn from the two-sided geometric distribution
𝐺𝑒𝑜𝑚(𝜀1

2), where 𝜀1 is the privacy budget allocated to this phase
and 2 is the sensitivity of the degree function [45]. However,
instead of requesting each user to report only their degrees, our
approach captures their edge label degree vectors. The edge label
degree vectors hold much more relevant information than merely
the node degree. It holds information about the node degree per
edge label while also allowing us to derive the original node
degree by summing up the edge label degrees.

Instead of sharing the degrees with the data curator, each
user 𝑣𝑖 ∈ 𝑉 shares a perturbed version of their edge label de-
gree vectors 𝛿𝑣𝑖 , given by 𝛿𝑣𝑖 = (𝑑𝑥1

𝑣𝑖 + 𝐺𝑒𝑜𝑚(𝜀1
2), . . . , 𝑑𝑥𝑡𝑣𝑖 +

𝐺𝑒𝑜𝑚(𝜀1
2)). Since the edges related to each edge label degree

are non-overlapping, adding or removing one edge from a user
would change one, and only one, edge label degree of 𝛿𝑣𝑖 by 1.
Once the data curator collects all 𝛿𝑣𝑖 , he can derive the node
degree of each user 𝑣𝑖 by calculating 𝑑𝑣𝑖 =

∑
𝑥𝑘 ∈𝑋 𝛿𝑣𝑖 [𝑥𝑘]. How-

ever, once every edge label degree has been queried through
the geometric mechanism, where the noise sample can assume
positive or negative values, the original edge label degree may
be converted to a value lower than zero, which is not plausible in
practical scenarios. In this work, we consider that every user has
at least one connection, which leads to a node degree of at least
one. For this purpose, the data curator has to prior post-process
the collected data before deriving the users’ degrees.

To prevent cases where a user’s node degree could be esti-
mated as a value lower than zero, the data curator adjusts the
perturbed edge label degrees. This process consists of calculating
the expected edge label degrees sum of each edge label and, then,
using this information to adjust the edge label degrees such that
each edge label degree will have a non-negative value and the
sum of the adjusted edge label degrees will be the same as the
expected edge label degrees sum. For instance, consider 𝑠𝑘 as
the expected edge label degrees sum of the edges labeled with
𝑥𝑘 ∈ 𝑋 , given by 𝑠𝑘 =

∑
𝑣𝑖 ∈𝑉 𝛿𝑣𝑖 [𝑥𝑘]. Then, for a user 𝑣𝑖 ∈ 𝑉 ,

the adjusted edge label degree vector is given by 𝛿𝑣𝑖 , such that
𝛿𝑣𝑖 [𝑥𝑘] ≥ 0 ∀𝑥𝑘 ∈𝑋 . Additionally, the adjusted edge label degrees
sum is given by 𝑠𝑘 = 𝑠𝑘 ∀𝑥𝑘 ∈𝑋 . Finally, the data curator can
derive the perturbed degree sequence 𝜙 , where the perturbed
degree of a user 𝑣𝑖 is given by 𝜙𝑣𝑖 = max(1, 𝑑𝑣𝑖).

After collecting and adjusting users’ node degrees, the data
curator sorts them in descending order and groups users into 𝑐
clusters based on their degrees. Instead of equal-sized clusters,
each cluster is formed to have a similar degree mass, i.e., the
sum of the node degrees of its members. Let 𝑠𝜙 =

∑
𝑣𝑖 ∈𝑉 𝜙𝑣𝑖 be

the degree mass of the perturbed degrees, i.e., the sum of the
degrees. We define the maximum degree mass of each cluster
𝑠𝑚𝑎𝑥 =

𝑠𝜙
𝑐 . Finally, we form the clusters by allocating the users

according to the descending degree order until the cluster’s mass
constraint is not violated. When the degree mass of a cluster
reaches 𝑠𝑚𝑎𝑥 , or it is not possible to add the next available user
with the highest degree into the cluster without exceeding the
𝑠𝑚𝑎𝑥 limitation, the current cluster stops receiving new users, and
the next cluster starts being populated. Then, we define the set of
clusters C = {𝐶1, . . . ,𝐶𝑐 }, such that each user 𝑣𝑖 ∈ 𝑉 belongs to
one, and only one, cluster𝐶 𝑗 ∈ C, and 𝑠𝐶 𝑗 ≤ 𝑠𝑚𝑎𝑥 ∀𝐶 𝑗 ∈C , where
𝑠𝐶 𝑗 is the degree mass of the cluster 𝐶 𝑗 . However, some clusters

Figure 2: Partitioning & Clustering phase.

may not reach the exact degree mass of 𝑠𝑚𝑎𝑥 . Consequently, the
last cluster may need to accommodate more users than expected,
causing its degree mass to surpass 𝑠𝑚𝑎𝑥 . Example 1 illustrates
the Partitioning & Clustering phase.

Example 1. Initially, consider the edge-labeled graph𝐺 in Figure
1 with 𝑛 = 10, where 𝑉 = {𝑣𝑎, . . . , 𝑣 𝑗 }. Figure 2 presents how
the partitioning and clustering procedures are performed over the
original graph. Suppose that the data curator desires to partition
the users into 𝑝 = 2 groups. In this example, all partitions have
a size of 𝑛

𝑝 = 5, meaning that all users were allocated into equal-
sized partitions. Since the users of each partition are randomly
selected, a possible partition set P is given by P = {𝑃1, 𝑃2}, where
𝑃1 = {𝑣𝑎, 𝑣𝑏 , 𝑣𝑔, 𝑣ℎ, 𝑣 𝑗 } (blue nodes) and 𝑃2 = {𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒 , 𝑣 𝑓 , 𝑣𝑖 }
(orange nodes). Now, consider that the data curator desires to cluster
the users into 𝑐 = 3 groups. First, each user reports its edge label
degrees through the geometric mechanism. Then, the data curator
estimates the users’ degrees. Note that the users 𝑣 𝑓 and 𝑣 𝑗 have
reported all their edge label degrees as zero. In these cases, the user
degree is assigned to 1 since it is supposed that each user has at
least one connection. Thus, the data curator calculates the 𝑠𝑚𝑎𝑥 =
𝑠𝜙
𝑐 = 24

3 = 8, to get the maximum degree mass that each cluster
may have. Finally, the clusters 𝐶1 = {𝑣𝑎, 𝑣𝑏 },𝐶2 = {𝑣𝑐 , 𝑣𝑑 } and
𝐶3 = {𝑣𝑒 , 𝑣 𝑓 , 𝑣𝑔, 𝑣ℎ, 𝑣𝑖 , 𝑣 𝑗 } are formed according to the descending
order of the noisy degrees and the 𝑠𝑚𝑎𝑥 constraint.

4.2 Partition-Cluster Mapping
In this phase, the untrusted data curator aims to determine the
cluster each partition belongs to. The users within the partitions
and clusters are already known. Each participant within a parti-
tion is asked to indicate the cluster they are most likely to belong
to based on their connections. After collecting responses, a count
is performed to determine the most suitable cluster for the par-
tition based on the majority vote. Instead of assigning clusters
to individual nodes, which would introduce excessive noise and
destroy information, we consider the majority cluster for the
entire partition. This approach enables unbiased estimation of
noisy counts, enabling us to infer the majority clusters with high
fidelity and assign consistent clusters to the partition.

494

Figure 3: Partition-Cluster Mapping phase.

The partitions’ clusters are privately chosen using an LDP
mechanism. The OUE protocol is appropriate in this context, as it
utilizes unary encoding, where each user’s bit vector contains a
single bit set to one. The parameters 𝑝 and𝑞 in OUE are optimized
to preserve information by maximizing the accuracy of zero bits
reported as zero in the original data.

For each partition 𝑃 𝑗 ∈ P, each user 𝑣𝑖 ∈ 𝑃 𝑗 sends a bit vector
𝐵𝑣𝑖 of length 𝑐 (the number of clusters), indicating the cluster
𝐶𝑘 to which they are most likely to belong. The 𝑘-th bit vector
position denotes whether 𝑣𝑖 belongs or not to the cluster𝐶𝑘 . Then,
𝐵𝑣𝑖 [𝑘] = 1 when 𝑣𝑖 states that belongs to 𝐶𝑘 , and 𝐵𝑣𝑖 [𝑘] = 0
otherwise. Finally, the bit vector is perturbed and sent to the data
curator through the OUE protocol, ensuring 𝜀2-edge-LDP.

The data curator then calculates the counts of each cluster
by summing up the bits of each vector cluster-wise. We denote

˜𝑐𝑜𝑢𝑛𝑡𝐶𝑘
𝑃 𝑗

=
∑

𝑣𝑖 ∈𝑝 𝑗
𝐵𝑣𝑖 [𝐶𝑘] the perturbed count of the cluster 𝐶𝑘

in partition 𝑃 𝑗 . However, simply summing these perturbed bits
does not reflect the true counts, as the randomized bit vectors
may contain more than one bit set to one. Then, an unbiased
estimation is applied to reduce bias and produce more accurate

counts. We denote ¯𝑐𝑜𝑢𝑛𝑡𝐶𝑘
𝑃 𝑗

=
˜𝑐𝑜𝑢𝑛𝑡

𝐶𝑘
𝑃𝑗
−(𝑞 · |𝑃 𝑗 |)
𝑝 ·𝑞 the estimated

count of the cluster 𝐶𝑘 in partition 𝑃 𝑗 , where |𝑃 𝑗 | is the number
of users in the partition 𝑃 𝑗 . Similarly to the previous phase, some
of the ¯𝑐𝑜𝑢𝑛𝑡𝐶𝑘

𝑝 𝑗
may present negative values. In those situations,

we adjust the overall counts such the negative values become
≥ 0, but the sum of the estimated counts remains unchanged.

After estimating the counts, the data curator assigns each
partition to a cluster. Selecting the cluster with the highest count
can be problematic for long-tailed degree distributions, as it often
favors less dense, choosing low-degree clusters that misrepresent
dominant relationships in the graph. To address this issue, we
introduce a weighting function to adjust the counts based on

Figure 4: RANL Reporting phase.

cluster density using a percentile-based selection method. In
Equation 9, we present the weighting function, where 𝑤𝐶𝑘

𝑃 𝑗
is

the weighted count of the cluster 𝐶𝑘 in partition 𝑃 𝑗 , 𝑠𝐶𝑘 is the
degree mass of 𝐶𝑘 , and |𝐶𝑘 | is the number of elements in 𝐶𝑘 .
Choosing the square root prevents larger clusters from gaining
additional advantage, ensuring that even a slightly larger cluster
with a much higher estimated count maintains a higher weighted
count.

𝑤𝐶𝑘
𝑃 𝑗

= ¯𝑐𝑜𝑢𝑛𝑡𝐶𝑘
𝑃 𝑗
·
√︂

𝑠𝐶𝑘

|𝐶𝑘 |
(9)

Finally, after weighting the counts, the clusters for the parti-
tion are determined by selecting those where the weighted count
reaches the 𝑦-th percentile. This method allows for the assign-
ment of more than one cluster to a partition, addressing the un-
certainty associated with clusters that have similar counts. This
process ensures a more accurate and representative clustering.
The procedure is repeated until the clusters for all partitions are
properly defined. Example 2 shows how this phase is executed.

Example 2. Consider the edge-labeled graph𝐺 in Figure 1 and
the partitions P and clusters C in Figure 2, respectively. Sup-
pose that the data curator desires to define the clusters of each
partition according to the 50th percentile. Figure 3 presents how
the partition-clustering phase is performed. First, for each parti-
tion, each user reports to which cluster it has more connections
through the OUE protocol. Then, the data curator estimates and
weights the counts according to Equation 9. Finally, the data cu-
rator selects the clusters with a weighted count at least equal to
the 50th percentile of all weighted counts. For partition 𝑃1, we set
𝑃1𝑐𝑙𝑢𝑠 = {𝐶1,𝐶2}, since the 50th percentile of the weighted counts
𝑤𝑃1 = [17.02, 11.34, 0] = 11.34. Similarly, for partition 𝑃2, we set
𝑃2𝑐𝑙𝑢𝑠 = {𝐶1,𝐶2}, since the 50th percentile of the weighted counts
𝑤𝑃2 = [11.34, 11.34, 3.26] = 11.34. Cluster 𝐶3 was not allocated to
represent any partition since its count did not meet the minimum
value stated by the 50th percentile.

4.3 RANL Reporting
In this phase, the untrusted data curator aims to gather each user’s
connections within the graph. Each user reports their neighbor-
hood locally, including all edges and their labels that form the

495

Figure 5: Post-Processing phase.

user’s local graph. The local graph of a user comprises only the
user node and its adjacent nodes and edges. This approach allows
the data curator to use the user reports to reconstruct a graph
that closely resembles the original one.

Once the users are partitioned and clustered, each user is
supposed to encode its RANL according only to the users present
in the clusters of the user’s partition. Now, the new size of a
user’s RANL will be proportional to the size of the clusters of the
user’s partition. This solution avoids the addition of excessive
bits flipped to one. Then, each user encodes its RANL according
to their respective partition’s clusters, randomizes it, and sends it
to the data curator, which gathers all the users’ RANLs to form a
perturbed graph𝐺 ′. The running example 3 illustrates this RANL
reporting phase.

Example 3. Consider the edge-labeled graph 𝐺 in Figure 1, the
partitionsP and clustersC in Figure 2, and their respective partition-
cluster mapping in Figure 3. Figure 4 presents how the users of each
partition build and report their RANLs through the RR protocol
according to the clusters of the partitions where they belong. For
example, consider the user 𝑣𝑎 ∈ 𝑉 that belongs to the partition 𝑃1.
As the clusters of 𝑃1 are 𝐶1 ∪ 𝐶2 = {𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 }, the 𝑅𝐴𝑁𝐿𝑣𝑎
is formed only by regarding the connections between 𝑣𝑎 and the
elements of 𝐶1 ∪𝐶2.

4.4 Graph Post-Processing
In this last phase, the data curator performs post-processing
techniques over the perturbed graph 𝐺 ′ to fix users’ connection
inconsistencies. The post-processing techniques are enumerated
as follows: (i) Edges Consistency Agreement; (ii) Edge Label Degrees
Adjustment; and (iii) Disconnected Nodes Rewiring.

4.4.1 Edges Consistency Agreement. We initiate this stage by
removing the self-edges from 𝐺 ′ that may have arisen in the
users’ perturbed RANLs. In this work, we assume that edge-
labeled graphs do not have edges that connect a node to itself.

The next step consists of validating whether an edge truly exists
or not. For instance, consider two users 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 and an edge
label 𝑥𝑘 ∈ 𝑋 . The edge 𝑒𝑖, 𝑗,𝑘 is only considered to exist if 𝑒𝑖, 𝑗,𝑘
is present in 𝑅𝐴𝑁𝐿𝑣𝑖 [𝑒𝑖, 𝑗,𝑘] = 𝑅𝐴𝑁𝐿𝑣𝑗 [𝑒 𝑗,𝑖,𝑘] = 1. Otherwise,
if the edge is present only in one of these RANLs, the edge is
removed from the released DP graph 𝐺 ′. This double-check is
crucial for ensuring graph consistency and enhancing data utility,
particularly in the context of undirected graphs. Aswe are dealing
with undirected graphs, we must ensure that both related nodes
have reported the existence of the same edge. Also, since the
probability of keeping a truly bit one is higher than flipping a
bit from zero to one, it is much more plausible that an edge only
exists when it appears in the RANLs of both nodes.

4.4.2 Edge Label Degrees Adjustment. In this stage, we use
the noisy edge label degrees obtained in the first phase of PEG
(Section 4.1) to adjust the users’ edge label degrees according to
the noisy information. This adjustment is necessary because the
RR protocol tends to add extra edges to the users’ RANLs and,
consequently, to the perturbed graph 𝐺 ′.

4.4.3 Disconnected Nodes Rewiring. It is important to note
that some users may exhibit all edge label degrees as zero after
reporting their data to the curator. This outcome is particularly
expected in datasets with long-tailed degree distributions, where
many users have degrees approaching zero. Consequently, certain
users may have their degrees estimated as zero after sending it
to the data curator. However, in practical scenarios, there are no
disconnected nodes, i.e., each user is expected to have at least one
connection. Thus, for each user 𝑣𝑖 ∈ 𝑉 with all edge label degrees
equal to zero, a random edge 𝑒𝑖, 𝑗,𝑘 is added to𝐺 ′, ensuring that
𝑣𝑖 ≠ 𝑣 𝑗 and the edge label 𝑥𝑘 ∈ 𝑋 is sampled proportionally to
the edge labels present in 𝐺 ′.

Figure 5 presents how the graph is created through the RANLs
as well as how the post-processing step is applied.

496

4.5 The PEG Algorithm
The PEG algorithm1, detailed in Algorithm 1, expects as input
an edge-labeled graph 𝐺 = (𝑉 , 𝐸, 𝑋), the number of partitions
and clusters, 𝑝 and 𝑐 , the y-th 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒_𝑣𝑎𝑙𝑢𝑒 , and the privacy
budget 𝜀. The output of PEG is a private version of 𝐺 , given by
𝐺 ′ = (𝑉 , 𝐸′, 𝑋).

In line 1, the privacy budget 𝜀 is split into 𝜀1 (clustering), 𝜀2
(partition-cluster mapping) and 𝜀3 (RANL reporting), such that
𝜀1 + 𝜀2 + 𝜀3 = 𝜀. In line 3, the set of partitions P are created,
such that |P | = 𝑝 . Next, each user begins to report its edge
label degrees through the geometric mechanism, with 𝜀1 and
Δ𝑄 = 2. In lines 4-10, the data curator aggregates and estimates
the users’ noisy edge label degrees to build the set of clusters
C, such that |C| = 𝑐 . Afterward, the data curator adopts the
partition and cluster information to perform the partition-cluster
mapping. For each partition, each user reports its preferred cluster
through the OUE protocol with 𝜀2 in lines 11-13. Subsequently,
the data curator aggregates and estimates the cluster counts
using a weighting function and percentile selection, as described
in lines 14-18, to determine the partition’s clusters. Then, in
lines 19-22, each user builds its RANL according to the partition
clusters to which it belongs and reports the RANL through the
RR protocol with 𝜀3. Additionally, in lines 23-26, the data curator
aggregates the users’ RANLs to construct the edges of the DP
graph. Additionally, it performs all the post-processing steps on
these edges. Finally, the DP edge-labeled graph 𝐺 ′ = (𝑉 , 𝐸′, 𝑋)
is released in line 27.

4.6 Computational Cost
The computational cost of our approach is determined by the
composition of the multiple phases of PEG. In the partitioning &
clustering phase (Algorithm 1 – lines 3-10) it primarily involves
partitioning the users 𝑉 in the original graph 𝐺 into a set of
partitions P. This phase also includes reporting and estimating
the users’ degrees, followed by building the set of clusters C
based on their sorted node degrees. The sorting procedure is the
most time-consuming step, which results in an expected time
complexity of 𝑂 (|𝑉 | · log |𝑉 |).

The running time complexity of the partition-cluster mapping
phase (Algorithm 1 – lines 11-18) is 𝑂 (|𝑉 | · |C|) since each user
has to indicate to which cluster it is more connected within the
existing clusters. The RANL reporting phase (Algorithm 1 – lines
19-22) runs in 𝑂 (|𝑉 | · |C∗ | · |𝑋 |) where |C∗ | is the size of the
largest cluster and |𝑋 | is the number of possible labels. Finally,
the post-processing phase (Algorithm 1 – lines 23-26) complexity
is given by 𝑂 (|𝑉 | · |C∗ | · |𝑋 |). Therefore, the overall complexity
of PEG is given by 𝑂 (|𝑉 | · |C∗ | · |𝑋 |).

4.7 Privacy Analysis
The threat model for PEG considers that the adversary may pos-
sess background information about the edges and their labels
and may use that information to infer private details from the
released graph 𝐺 ′. PEG aims to ensure the adversary cannot
determine with high confidence whether a specific edge (with
its label) is present or absent. We accomplish this by employing
local differential privacy and implementing adjustment steps.
The adjustments made by the untrusted curator are considered
post-processing steps, which still maintain the formal guarantees
of LDP (Theorem 2.5) and consequently do not leak information.

1https://github.com/andreluiscm/peg-ldp

Algorithm 1: PEG
Input: Edge-labeled graph𝐺 = (𝑉 , 𝐸,𝑋) , # partitions 𝑝 , #

clusters 𝑐 , 𝑦-th percentile 𝑝_𝑣𝑎𝑙𝑢𝑒 , privacy budget 𝜀
Output: Perturbed edge-labeled graph𝐺 ′ = (𝑉 , 𝐸′, 𝑋)

1 𝜀1, 𝜀2, 𝜀3 ← SplitPrivacyBudget(𝜀) ;
2 𝑛 ← |𝑉 |; 𝑡 ← |𝑋 |;
// Partitioning & Clustering phase

3 P ← BuildPartitions(𝑉 , 𝑝) ;
4 for 𝑣𝑖 ∈ 𝑉 do
5 for 𝑥𝑘 ∈ 𝑋 do
6 𝑑

𝑥𝑘
𝑣𝑖 ← 𝑑

𝑥𝑘
𝑣𝑖 +𝐺𝑒𝑜𝑚 (𝜀1

2) ;

7 for 𝑥𝑘 ∈ 𝑋 do
8 𝑑𝑥𝑘 ← AggregateEdgeLabelDegrees(𝑑𝑥𝑘𝑣𝑖 , . . . , 𝑑

𝑥𝑘
𝑣𝑛) ;

9 𝜙 ← EstimateNodeDegrees(𝑑𝑥1 , . . . , 𝑑𝑥𝑡) ;
10 C ← BuildClusters(𝜙, 𝑐) ;

// Partition-Cluster Mapping phase

11 for 𝑃 𝑗 ∈ P do
12 for 𝑣𝑖 ∈ 𝑃 𝑗 𝑒𝑙𝑒𝑚𝑠 do
13 ˜𝑐𝑙𝑢𝑠

𝑃 𝑗
𝑣𝑖 ← OUE_Protocol(𝑣𝑖 , C, 𝜀2) ;

14 ˜𝑐𝑙𝑢𝑠
𝑃 𝑗 ← AggregateClusters(˜𝑐𝑙𝑢𝑠

𝑃 𝑗
𝑣𝑖 for 𝑣𝑖 ∈ 𝑃 𝑗 𝑒𝑙𝑒𝑚𝑠) ;

15 ¯𝑐𝑙𝑢𝑠
𝑃 𝑗 ← EstimateClusters(˜𝑐𝑙𝑢𝑠

𝑃 𝑗) ;
16 ¯𝑐𝑙𝑢𝑠

𝑃 𝑗 ← WeighClusters(¯𝑐𝑙𝑢𝑠
𝑃 𝑗) ;

17 ¯𝑐𝑙𝑢𝑠
𝑃 𝑗 ← GetTopPercentile(¯𝑐𝑙𝑢𝑠

𝑃 𝑗 , 𝑝_𝑣𝑎𝑙𝑢𝑒) ;
18 𝑃 𝑗 𝑐𝑙𝑢𝑠 ← ¯𝑐𝑙𝑢𝑠

𝑃 𝑗 ;
// RANL Reporting phase

19 for 𝑃 𝑗 ∈ P do
20 for 𝑣𝑖 ∈ 𝑃 𝑗 𝑒𝑙𝑒𝑚𝑠 do
21 𝑅𝐴𝑁𝐿𝑣𝑖 ← BuildRANL(𝑣𝑖 , 𝑃 𝑗 𝑐𝑙𝑢𝑠) ;
22 ˜𝑅𝐴𝑁𝐿𝑣𝑖 ← RR_Protocol(𝑅𝐴𝑁𝐿𝑣𝑖 , 𝜀3) ;

// Post-Processing phase

23 𝐸′ ← AggregateRANLs(˜𝑅𝐴𝑁𝐿𝑣𝑖 , . . . ,
˜𝑅𝐴𝑁𝐿𝑣𝑛) ;

24 𝐸′ ← AdjustEdgesConsistency(𝐸′) ;
25 𝐸′ ← AdjustEdgeLabelDegrees(𝐸′, 𝑑𝑥1 , . . . , 𝑑𝑥𝑡) ;
26 𝐸′ ← AdjustDisconnectedNodes(𝐸′, 𝑑𝑥1 , . . . , 𝑑𝑥𝑡) ;
27 return𝐺 ′ = (𝑉 , 𝐸′, 𝑋) ;

As previouslymentioned, PEG is divided into fourmain phases.
Not all of them (such as partitioning and post-processing steps)
consume a privacy budget. The partitioning step utilizes the
known number of users𝑛, which is considered public information.
On the other hand, the post-processing steps modify the released
graph 𝐺 ′ and do not compromise its privacy.

The remaining steps of PEG require privacy protection, as
users must send their data privately via LDP mechanisms. The
clustering step uses 𝜀1 to report users’ edge label degrees through
the geometric mechanism. Although each user submits multi-
ple reports, one per edge label, these are performed in parallel
since the degrees of different edge labels are independent, sat-
isfying 𝜀1-edge-LDP. In the partition-cluster mapping, users in
each partition report their cluster membership via the OUE pro-
tocol, using a privacy budget 𝜀2. As each user reports only once,
this step consumes 𝜀2 and satisfies 𝜀2-edge-LDP. In the RANL
reporting step, each user sends its RANL through the RR protocol,
which also requires a privacy budget 𝜀3. As each user reports this
information just once, this step consumes only 𝜀3 and satisfies
𝜀3-edge-LDP. Finally, by the sequential composition of DP, we
can state that PEG satisfies 𝜀-edge-LDP, where 𝜀 = 𝜀1 + 𝜀2 + 𝜀3.

497

5 EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the effectiveness of PEG
on four real-world edge-labeled graphs. The experiments were
conducted in Linux 64-bit, Intel(R) Core(TM) i7-7820X CPU and
128GB RAM. We implemented PEG in Python with the graph-
tool [32] and Gurobi [22] packages. We repeated each experiment
10 times for each dataset and reported the average results. The
number of partitions 𝑝 and the number of clusters 𝑐 were defined
according to some known heuristics, as there is no immediate
solution for determining optimal values for these parameters.
We set 𝑝 = max(1, ⌊ 𝑛

1,000 ⌋) since we need a reasonable amount
of users to perform a good estimation of the reported values
[16]. In turn, we used a similar heuristic [25] to set 𝑐 = ⌊ 3√𝑛⌋,
which states that the highest users’ degree within a graph will
not exceed ⌊ 3√𝑛⌋. Then, we assume that in our clustering scenario,
the extreme case consists of a user with connections with users
of every other cluster.

We set the 𝑦-th percentile to the 70th since it is suitable for
gathering the most representative nodes of the graph. We varied
the privacy budget 𝜀 in the experiments from 0.1 to 1.0, aligning
with the range commonly used in other studies in this field, which
assures a significant level of privacy. We argue that choosing the
most adequate 𝜀 for an application is a challenging task that
demands efforts from several experts [7] and is out of the scope
of this work. Furthermore, as PEG is a multiphase algorithm, we
had to split the privacy budget among the phases that use private
mechanisms to ensure that the overall privacy constraint is not
violated. We set the allocation to [20%, 20%, 60%] of the privacy
budget 𝜀 to the clustering (𝜀1), partition-cluster mapping (𝜀2), and
RANL reporting (𝜀3) phases, respectively. The reason for giving
more budget to the RANL reporting phase relies on the fact that
the transmitted information of this phase is more sensitive to
smaller privacy budgets.

5.1 Datasets
We conducted experiments over four real-world undirected edge-
labeled network datasets from different domains and character-
istics. DBLP 2 and Netscience 3 (NS) are co-authorship datasets,
while Yeast Landscape 3 (YL) and Pierre Auger 3 (PA) are genetic
datasets. Table 1 summarizes their characteristics. “ELP” is the
abbreviation for edge label proportions, detailed in Section 5.3.2.

5.2 Baselines
To the best of our knowledge, no prior work exists on the DP
release of entire edge-labeled graphs. Therefore, we compare our
approach with three other methods based on PEG. We propose
the following baselines: (i) RANL-random, (ii) RANL-consensus,
and (iii) PEG-random. We did not compare PEG with PrivAG [31]
as this approach is based on another privacy definition, denoted
attribute-wise LDP, and also does not release the entire graph,
only a few graph statistics.

RANL-random and RANL-consensus are similar approaches,
which build a perturbed graph based only on the reported users’
RANLs. In these approaches, the whole privacy budget is used to
report the ℎ-length RANL of each user, where ℎ = |𝑉 | · |𝑋 |. They
differ only in the edges consistency agreement post-processing
step. The RANL-consensus uses the same idea as PEG, while
RANL-random chooses randomly from which RANL the edge
information is true. For example, consider two users 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉
2https://github.com/supriya-gdptl/HCODA/tree/master/data
3https://manliodedomenico.com/data.php

Table 1: Characteristics of the edge-labeled graph datasets.

DBLP NS YL PA
Nodes 41,427 14,065 4,458 514
Edges 124,214 59,026 8,450,408 7,153
Edge Labels 4 13 4 16
Degree𝑎𝑣𝑔 5.99 8.39 3,791.12 27.83
Degree𝑚𝑎𝑥 358 361 5,044 123
St. Deviation𝐸𝐿𝑃 0.13 0.07 0.24 0.18

and their respective RANLs, given by 𝑅𝐴𝑁𝐿𝑣𝑖 and 𝑅𝐴𝑁𝐿𝑣𝑗 , such
that both users have reported their connections between each
other in their respective RANLs. Then, in the RANL-random
approach, the true connection information between 𝑣𝑖 and 𝑣 𝑗
has come from any of their RANLs. The PEG-random approach
is quite similar to PEG, but it is different because it does not
consider any degree information. Thus, the clustering is made
randomly, the same way as in the partitioning. Finally, since there
are only two private phases in PEG-random, the privacy budget
𝜀 allocation is split into 20% and 80% of 𝜀 for the partition-cluster
mapping and RANL reporting phases, respectively. Also, only the
cluster with the highest count (top 1) is chosen to be the cluster
of the partition. Note that there are no degree adjustments in any
of these baselines.

5.3 Utility Analysis
In this section, we conduct various analyses to evaluate the effec-
tiveness of the graphs released by PEG in terms of utility. For the
following analyses, consider an input graph 𝐺 = (𝑉 , 𝐸, 𝑋) and
its perturbed version 𝐺 ′ = (𝑉 , 𝐸′, 𝑋) produced by PEG.

5.3.1 Degree Distribution. To evaluate how well 𝐺 ′ – the
released graph – captures the degree distribution of the origi-
nal edge-labeled graph 𝐺 , we applied the Kolmogorov-Smirnov
(KS) statistic, which quantifies the maximum distance between
two-degree distributions. Let 𝐶𝑢𝑚𝑆𝐷 and 𝐶𝑢𝑚 ˜𝑆𝐷 denote the cu-
mulative distribution functions estimated from the sorted degrees
of the 𝐺 and 𝐺 ′, respectively. Then, the KS(𝑆𝐷, ˜𝑆𝐷) can be cal-
culated according to Equation 10. The lower the KS statistic, the
higher the data utility.

KS(𝑆𝐷, ˜𝑆𝐷) =𝑚𝑎𝑥𝑑 |𝐶𝑢𝑚𝑆𝐷 (𝑑) −𝐶𝑢𝑚 ˜𝑆𝐷 (𝑑) | (10)
Figure 6 shows the results for the degree distribution. We can

observe that PEG outperforms all baselines in almost all datasets.
This behavior is comprehensive since PEG is the only approach
with an additional degree correction step. The exception occurs
in the Netscience and Pierre Auger datasets, where PEG-random
surpasses PEG when 𝜀 = 0.1. In Netscience, it occurs because this
dataset is a sparse graph composed of 13 possible edge labels,
and it has an average degree smaller than the number of edge
labels. Thus, many edge-label degrees that are originally zero
are estimated to different values after being perturbed, harming
the graph’s degree distribution. Also, many non-zero edge-label
degrees have low values that become zero after being perturbed.
Although the Pierre Auger dataset also has many edge labels
(16 in total), this graph is much denser than Netscience, making
it less sensitive to the estimation of noisy degrees. However, it
still suffers from estimating the degree distribution under small
𝜀 values due to the reduced number of nodes.

5.3.2 Edge Label Proportions. To evaluate how well the edge
label proportions (ELP) of 𝐺 are being maintained in 𝐺 ′, we

498

0.1 0.5 1.0
0.2

0.4

0.6

0.8

1

𝜀

KS
St
at
ist
ic

DBLP

0.1 0.5 1.0

0.4

0.6

0.8

1

𝜀

Netscience

0.1 0.5 1.0

0.2

0.4

0.6

0.8

1

𝜀

Yeast Landscape

0.1 0.5 1.0
0.4

0.6

0.8

1

𝜀

Pierre Auger

PEG PEG-random RANL-random RANL-consensus

Figure 6: Kolmogorov-Smirnov (KS) comparison of PEG and baseline approaches for the degree distribution analysis after
10 runs, where 𝜀 ∈ {0.1, 0.5, 1.0}. The x-axis is the 𝜀, while the y-axis is the KS statistic. The lower the KS statistic, the higher
the data utility.

0.1 0.5 1.0
0.32

0.33

0.34

0.35

0.36

𝜀

M
ea
n
A
bs
ol
ut
e
Er
ro
r(
M
A
E)

DBLP

0.1 0.5 1.0
0.13

0.14

0.14

𝜀

Netscience

0.1 0.5 1.0

0

0.1

0.2

0.3

𝜀

Yeast Landscape

0.1 0.5 1.0

0.09

0.1

0.11

𝜀

Pierre Auger

PEG PEG-random RANL-random RANL-consensus

Figure 7: Mean absolute error (MAE) comparison of PEG and baseline approaches for the edge label proportions analysis
after 10 runs, where 𝜀 ∈ {0.1, 0.5, 1.0}. The x-axis is the 𝜀, while the y-axis is the MAE. The lower the MAE, the higher the
data utility.

measured the Mean Absolute Error (MAE) of the edge label pro-
portions between 𝐺 and 𝐺 ′. Let 𝑝𝑟𝑜𝑝𝐺𝑣𝑖 = (𝑝𝑟𝑜𝑝

𝑥1
𝑣𝑖 , . . . , 𝑝𝑟𝑜𝑝

𝑥𝑘
𝑣𝑖)

be the edge label proportions of the node 𝑣𝑖 ∈ 𝑉 , such that 𝑝𝑟𝑜𝑝𝑥𝑘𝑣𝑖
denotes the proportion of adjacent edges of 𝑣𝑖 associated with
the label 𝑥𝑘 ∈ 𝑋 . The proportion is calculated by dividing the
number of adjacent edges associated with 𝑥𝑘 by the degree of 𝑣𝑖 .
Then, we calculate the ELP𝑀𝐴𝐸 (𝐺,𝐺 ′) according to Equation 11.
The lower the ELP𝑀𝐴𝐸 , the higher the data utility.

ELP𝑀𝐴𝐸 (𝐺,𝐺 ′) =
∑

𝑣𝑖 ∈𝑉
| |𝑝𝑟𝑜𝑝𝐺𝑣𝑖 −𝑝𝑟𝑜𝑝𝐺

′
𝑣𝑖
| |1

|𝑋 |
|𝑉 | (11)

Figure 7 presents the results for edge label proportions, show-
ing that PEG outperforms almost all baselines. Similar to the de-
gree distribution analysis, the exception is the Netscience dataset
due to its low standard deviation in edge label proportions and
its sparsity, which makes it harder to maintain accurate edge
label degrees. For the other datasets, there is more information
available to improve edge label proportions (ELP). Although the
DBLP dataset is sparse, it has only 4 edge labels, a dominant label,
and a large number of nodes, allowing for more accurate results.
The Yeast Landscape and Pierre Auger datasets benefit from a
higher density, a clear dominant edge label, and a significantly
higher average degree relative to the number of edge labels.

5.3.3 Number of Edges. This analysis is extremely useful for
evaluating whether the released graph 𝐺 ′ maintains the mag-
nitude of the edges of the input graph 𝐺 . For this purpose, we
measured the Mean Relative Error (MRE) of the number of edges

(NE) between 𝐺 and 𝐺 ′. We define NE𝑀𝑅𝐸 (𝐺,𝐺 ′) according to
Equation 12, where |𝐸 (𝐺) | and |𝐸 (𝐺 ′) | denote the number of
edges in𝐺 and𝐺 ′, respectively. The lower the NE𝑀𝑅𝐸 , the higher
the data utility.

NE𝑀𝑅𝐸 (𝐺,𝐺 ′) =
| |𝐸 (𝐺) | − |𝐸 (𝐺 ′) | |

|𝐸 (𝐺) | (12)

Figure 8 shows the results for the number of edges. PEG outper-
forms all baselines on datasets with a small number of edge labels
due to its post-processing of perturbed graphs based on users’
noisy edge label degrees. However, for datasets like Netscience
and Pierre Auger with more edge labels, the noise significantly
affects users’ edge label degrees, causing inaccuracies when these
degrees are adjusted during post-processing. In contrast, PEG-
random, despite lacking an edge label degree adjustment step,
performs better on these datasets (when 𝜀 = 0.1) due to its clus-
tering step, which reduces the length of the RANL. This reduc-
tion leads to fewer noisy edges being added, resulting in a per-
turbed graph with a more accurate number of edges. Meanwhile,
RANL-random and RANL-consensus baselines are hindered by
the length of the RANL, where ℎ = |𝑉 | · |𝑋 |, causing excessive
noise.

5.3.4 Graph Similarity. This analysis consists of a general
metric that compares two graphs with different edges and labels.
We applied the Jaccard Similarity (JS), which quantifies how
similar two graphs are regarding their corresponding connections.
We define JS(𝐺,𝐺 ′) according to Equation 13, where 𝐸 (𝐺) and
𝐸 (𝐺 ′) denote the set of edges in 𝐺 and 𝐺 ′, respectively. The

499

0.1 0.5 1.0

0

0.5

1

·104

𝜀

M
ea
n
Re

la
tiv

e
Er
ro
r(
M
RE

)

DBLP

0.1 0.5 1.0

0

0.5

1

·104

𝜀

Netscience

0.1 0.5 1.0

0

0.5

1

𝜀

Yeast Landscape

0.1 0.5 1.0

0

50

100

150

𝜀

Pierre Auger

PEG PEG-random RANL-random RANL-consensus

Figure 8: Mean relative error (MRE) comparison of PEG and baseline approaches for the number of edges analysis after 10
runs, where 𝜀 ∈ {0.1, 0.5, 1.0}. The x-axis is the 𝜀, while the y-axis is the MRE. The lower the MRE, the higher the data utility.

0.1 0.5 1.0
0

2

4

6
·10−4

𝜀

Ja
cc
ar
d
Si
m
ila
rit
y
(J
S)

DBLP

0.1 0.5 1.0
0

0.5

1
·10−3

𝜀

Netscience

0.1 0.5 1.0

0

0.2

0.4

𝜀

Yeast Landscape

0.1 0.5 1.0
0

0.05

0.1

𝜀

Pierre Auger

PEG PEG-random RANL-random RANL-consensus

Figure 9: Jaccard similarity (JS) comparison of PEG and baseline approaches for the graph similarity analysis after 10 runs,
where 𝜀 ∈ {0.1, 0.5, 1.0}. The x-axis is the 𝜀, while the y-axis is the JS. The higher the JS, the higher the data utility.

higher the JS, the higher the similarity and, consequently, the
data utility.

JS(𝐺,𝐺 ′) = |𝐸 (𝐺) ∩ 𝐸 (𝐺
′) |

|𝐸 (𝐺) ∪ 𝐸 (𝐺 ′) | (13)

Figure 9 shows that PEG outperforms all baselines on most
datasets. The exception is the Yeast Landscape graph, where PEG
falls behind RANL-random and RANL-consensus at 𝜀 = 1.0. This
occurs because the Yeast Landscape consists of a dense graphwith
a high average degree, and PEG’s clustering phase may exclude
many inter-cluster edges by only selecting clusters above the
70th percentile. In contrast, RANL-random and RANL-consensus
perform better as 𝜀 increases since the dense graph structure
means that most of the RANLs content consists of true edges,
leaving little room for false edges. For less dense datasets, PEG
excels by reducing the RANL length during clustering, minimiz-
ing false edges, and better preserving original edges compared
to the baselines.

5.3.5 Community Similarity. In graph analytics, communities
are extremely relevant since they help us understand network
complexities. To evaluate the community similarity between 𝐺
and 𝐺 ′, we define an optimization function that maximizes the
number of nodes in 𝐺 and 𝐺 ′ that belong to the same commu-
nities. The motivation for using an optimization function relies
on the fact that (i) 𝐺 and 𝐺 ′ may have a different number of
communities and (ii) let 𝐶𝑀𝐺

𝑣𝑖 and 𝐶𝑀
𝐺 ′
𝑣𝑖 denote the label of the

community assigned to the user 𝑣𝑖 ∈ 𝑉 in𝐺 and𝐺 ′, respectively,
there are no guarantees that 𝑣𝑖 remained in the same community,
even though 𝐶𝑀𝐺

𝑣𝑖 = 𝐶𝑀𝐺 ′
𝑣𝑖 . It may happen since the communi-

ties in 𝐺 and 𝐺 ′ may be labeled differently.

However, community detection algorithms were not origi-
nally designed for edge-labeled multigraphs. These algorithms
expect a graph with node attributes or one attributed edge. We
then redesigned our graphs so that each edge has a weight.
Let 𝑝𝑟𝑜𝑝𝐺 = (𝑝𝑟𝑜𝑝𝑥1 , . . . , 𝑝𝑟𝑜𝑝𝑥𝑘) |𝑋 | be the edge label propor-
tions of 𝐺 , such that 𝑝𝑟𝑜𝑝𝑥𝑘 denotes the proportion of edges
associated with the label 𝑥𝑘 ∈ 𝑋 in 𝐺 . Also, let 𝑐𝑜𝑛𝑛𝐺𝑣𝑖 ,𝑣𝑗 =

(𝑐𝑜𝑛𝑛𝑥1
𝑣𝑖 ,𝑣𝑗 , . . . , 𝑐𝑜𝑛𝑛

𝑥𝑘
𝑣𝑖 ,𝑣𝑗) |𝑋 | be the connection intentions of 𝑣𝑖 ,

𝑣 𝑗 ∈ 𝑉 in 𝐺 , such that 𝑐𝑜𝑛𝑛𝑥𝑘𝑣𝑖 ,𝑣𝑗 = 1 if the edge 𝑒𝑖, 𝑗,𝑘 ∈ 𝐸 in 𝐺 ,
and 0 otherwise. Thus, we can define 𝑤𝑒𝑖𝑔ℎ𝑡𝐺𝑒𝑖,𝑗 =

∑(𝑝𝑟𝑜𝑝𝐺 ⊙
𝑐𝑜𝑛𝑛𝐺𝑣𝑖 ,𝑣𝑗) to assign a weight to each edge 𝑒𝑖, 𝑗 , where 𝑒𝑖, 𝑗 refers
to the connection between nodes 𝑣𝑖 and 𝑣 𝑗 .

Once each pair 𝑒𝑖, 𝑗 has been assigned with their corresponding
weights, we apply the stochastic block model [1] to find graph
communities. This process of weighting and discovering the
communities is repeated for the graphs 𝐺 and its private version
𝐺 ′. However, as mentioned above, there are no guarantees that
the number of communities of 𝐺 and 𝐺 ′ is the same. For this
purpose, we model an optimization function to maximize the
number of nodes that belong to the same community in 𝐺 and
𝐺 ′ simultaneously.

Given the constraints of our problem, we modeled it as a vari-
ant of the assignment problem [28], where the aim is to optimally
match workers to tasks, ensuring each worker is assigned to ex-
actly one task and vice versa while minimizing or maximizing
the objective function. In our context, the communities of 𝐺 rep-
resent the workers, and the communities of 𝐺 ′ represent the
tasks.

500

0.1 0.5 1.0
600

800

1,000

𝜀

Sc
or
e
Fu

nc
tio

n

DBLP

0.1 0.5 1.0
400

500

600

700

𝜀

Netscience

0.1 0.5 1.0

1,000

2,000

3,000

𝜀

Yeast Landscape

0.1 0.5 1.0

70

80

90

100

𝜀

Pierre Auger

PEG PEG-random RANL-random RANL-consensus Brito et al. [5]

Figure 10: Score function comparison of PEG and baseline approaches for the community similarity analysis after 10 runs,
where 𝜀 ∈ {0.1, 0.5, 1.0}. The x-axis is the 𝜀, while the y-axis is the score. The higher the score, the higher the data utility.

maximize 𝑍 =
𝑧∑︁
𝑖=1

𝑧∑︁
𝑗=1

𝑠𝑐𝑜𝑟𝑒𝑖, 𝑗 · 𝑥𝑖, 𝑗

s.t. (1)
𝑧∑︁
𝑖=1

𝑥𝑖, 𝑗 = 1 ∀𝑗≤𝑧

(2)
𝑧∑︁
𝑗=1

𝑥𝑖, 𝑗 = 1 ∀𝑖≤𝑧

(14)

Our goal is to determine which pair of communities of 𝐺 and
𝐺 ′ maximize the objective function 𝑍 in Equation 14. We denote
𝑧 and 𝑧 as the number of communities of 𝐺 and 𝐺 ′, respectively.
In addition, 𝑠𝑐𝑜𝑟𝑒𝑖, 𝑗 refers to the number of nodes that belong
to the i-th and 𝑗-th communities of 𝐺 and 𝐺 ′, simultaneously,
given by 𝐶𝑀𝐺

𝑠𝑖 and 𝐶𝑀𝐺 ′
𝑠 𝑗 , respectively. Since 𝐶𝑀

𝐺
𝑠𝑖 and 𝐶𝑀𝐺 ′

𝑠 𝑗
are subsets of 𝑉 , we applied an adapted Jaccard Similarity (JS)
to calculate the 𝑠𝑐𝑜𝑟𝑒𝑖, 𝑗 = |𝐶𝑀𝐺

𝑠𝑖 ∩𝐶𝑀𝐺 ′
𝑠 𝑗 |. The higher the 𝑍 , the

higher the similarity and, consequently, the data utility.
Since we transform edge-labeled graphs into edge-weighted

graphs for community detection, we also incorporate the local
approach by Brito et al. [5] as a baseline, which is designed to
release edge-weighted graphs with LDP guarantees. To handle
real-number weights, we adapted this baseline approach to uti-
lize the Laplace mechanism instead of the geometric mechanism.
Figure 10 shows the results for the community similarity. We can
observe that PEG does not dominate the baselines in all datasets.
It happens due to the particularities of some datasets. For the
Netscience dataset, PEG slightly loses for the RANL-consensus
since this dataset is very sparse and also has an average degree
smaller than the number of edge labels. This characteristic leads
PEG to query edge label degrees inaccurately, impacting the ad-
justment step and forming unexpected communities. In contrast,
PEG is significantly affected by the dense Yeast Landscape dataset.
Despite accurate querying, the clustering phase may lose many
original connections, which are then randomly rewired based on
degrees.

5.4 Summary
Our results consistently demonstrate that PEG introduces less
noise compared to the baseline approaches in most of the pre-
sented scenarios, resulting in higher data utility and more accu-
rate analyses. This can be evidenced mainly in datasets with a
long-tailed degree distribution. This occurs due to the clustering
step that reduces the dimensionality of the RANLs, which helps

to maintain the true edges while reducing the noise injection
that produces noisy edges.

PEG occasionally underperforms in certain analyses, espe-
cially with dense graphs like the Yeast Landscape. To enhance
the performance in these graphs, one potential solution consists
of adjusting the number of clusters 𝑐 and the 𝑦-th percentile
value used in the analyses. The higher 𝑐 and 𝑦 in a dense graph,
the more clusters tend to be excluded from the partition-cluster
mapping phase. Consequently, the reported RANL of individu-
als in the partition may contain less information, as it will not
report connections with individuals in the non-selected clusters.
Another key point is that datasets with varying characteristics
may require different privacy budget allocations across PEG’s
phases. Specifically, for dense graphs, allocating more privacy
budget to the RANL reporting phase seems more appropriate,
as it is expected to maintain more information across the user’s
RANL and, consequently, in the entire released graph.

6 CONCLUSION AND FUTUREWORK
In this paper, we addressed the problem of releasing edge-labeled
graphs under local differential privacy guarantees. Initially, we
proposed the Randomized Attribute Neighbor List, which com-
plies with edge-LDP to report the users’ local edge-labeled graphs.
Then, we developed PEG, a novel decentralized dynamic degree-
based clustering approach designed for privately releasing edge-
labeled graphs under the notion of edge-LDP. Additionally, we
have improved the accuracy of the proposed approach by adopt-
ing several post-processing techniques to tune the released graph
structure according to heuristics present in real-world applica-
tions. Our experiments demonstrated through an extensive eval-
uation that our approach outperforms the baselines in almost
all presented scenarios. In future work, we plan to extend PEG
to more complex applications such as anomaly detection, mo-
bility analysis, and link prediction in real-world edge-labeled
graphs. Additionally, we would extend the notion of node-LDP to
edge-labeled graphs since it is a stronger notion of privacy in the
graph context. Finally, we aim to explore combining PEG with
other privacy-preserving techniques, such as federated learning
or secure multi-party computation, to enhance both privacy and
performance in distributed environments.

ACKNOWLEDGEMENTS
This work was supported by CAPES/Brazil under grant number
88882.454571/2019-01 and by CNPq/Brazil under grant number
316729/2021-3.

501

REFERENCES
[1] Emmanuel Abbe. 2018. Community detection and stochastic block models:

recent developments. Journal of Machine Learning Research 18, 177 (2018),
1–86.

[2] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. 2019. Hadamard response:
Estimating distributions privately, efficiently, and with little communication.
In The 22nd International Conference on Artificial Intelligence and Statistics.
PMLR, 1120–1129.

[3] Izzat Alsmadi and Ikdam Alhami. 2015. Clustering and classification of email
contents. Journal of King Saud University-Computer and Information Sciences
27, 1 (2015), 46–57.

[4] Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for
succinct histograms. In Proceedings of the forty-seventh annual ACM symposium
on Theory of computing. 127–135.

[5] Felipe T Brito, Victor AE Farias, Cheryl Flynn, Subhabrata Majumdar, Javam C
Machado, and Divesh Srivastava. 2023. Global and Local Differentially Private
Release of Count-Weighted Graphs. Proceedings of the ACM on Management
of Data 1, 2 (2023), 1–25.

[6] Felipe T. Brito, André L. C. Mendonça, and Javam C. Machado. 2024. A Differ-
entially Private Guide for Graph Analytics. In Proceedings 27th International
Conference on Extending Database Technology, EDBT 2024, Paestum, Italy. 850–
853.

[7] United States Census Bureau. 2021. Census Bureau Sets Key Parameters to
Protect Privacy in 2020 Census Results. https://www.census.gov/newsroom/
press-releases/2021/2020-census-key-parameters.html. [Online; accessed 08
May 2024].

[8] Lang Chen, Kai Han, Qing Xiu, and Dazheng Gao. 2022. Graph clustering under
weight-differential privacy. In 2022 IEEE 24th Int Conf on High Performance
Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int
Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data
Systems & Application (HPCC/DSS/SmartCity/DependSys). IEEE, 1457–1464.

[9] Xihui Chen, Sjouke Mauw, and Yunior Ramírez-Cruz. 2019. Publishing
community-preserving attributed social graphs with a differential privacy
guarantee. arXiv preprint arXiv:1909.00280 (2019).

[10] Robin Christensen. 2020. An Analysis of Notions of Differential Privacy for
Edge-Labeled Graphs.

[11] José S Costa Filho and Javam C Machado. 2023. FELIP: A local Differen-
tially Private approach to frequency estimation on multidimensional datasets.
(2023).

[12] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2013. Local pri-
vacy and statistical minimax rates. In 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. IEEE, 429–438.

[13] Cynthia Dwork. 2006. Differential privacy. In International colloquium on
automata, languages, and programming. Springer, 1–12.

[14] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006. Proceedings 3. Springer, 265–284.

[15] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical Computer Science
9, 3–4 (2014), 211–407.

[16] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Ran-
domized aggregatable privacy-preserving ordinal response. In Proceedings of
the 2014 ACM SIGSAC conference on computer and communications security.
1054–1067.

[17] Chenglin Fan and Ping Li. 2022. Distances release with differential privacy
in tree and grid graph. In 2022 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2190–2195.

[18] Nan Fu,Weiwei Ni, LiheHou, Dongyue Zhang, and Ruyu Zhang. 2024. Commu-
nity detection in decentralized social networks with local differential privacy.
Information Sciences 661 (2024), 120164.

[19] Nan Fu, Weiwei Ni, Sen Zhang, Lihe Hou, and Dongyue Zhang. 2023. GC-
NLDP: A graph clustering algorithm with local differential privacy. Computers
& Security 124 (2023), 102967.

[20] Tianchong Gao, Feng Li, Yu Chen, and XuKai Zou. 2018. Local differential
privately anonymizing online social networks under hrg-based model. IEEE
Transactions on Computational Social Systems 5, 4 (2018), 1009–1020.

[21] Arpita Ghosh, Tim Roughgarden, andMukund Sundararajan. 2009. Universally
utility-maximizing privacy mechanisms. In Proceedings of the forty-first annual
ACM symposium on Theory of computing. 351–360.

[22] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

[23] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. 2009. Accurate
estimation of the degree distribution of private networks. In 2009 Ninth IEEE
International Conference on Data Mining. IEEE, 169–178.

[24] Allen L Hu and Keith CC Chan. 2013. Utilizing both topological and attribute
information for protein complex identification in PPI networks. IEEE/ACM

transactions on computational biology and bioinformatics 10, 3 (2013), 780–792.
[25] Zach Jorgensen, Ting Yu, and Graham Cormode. 2016. Publishing attrib-

uted social graphs with formal privacy guarantees. In Proceedings of the 2016
international conference on management of data. 107–122.

[26] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, andAdam
Smith. 2013. Analyzing graphs with node differential privacy. In Theory of
Cryptography: 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan,
March 3-6, 2013. Proceedings. Springer, 457–476.

[27] Mehdi Kaytoue, Marc Plantevit, Albrecht Zimmermann, Anes Bendimerad,
and Céline Robardet. 2017. Exceptional contextual subgraph mining. Machine
Learning 106 (2017), 1171–1211.

[28] Harold W Kuhn. 1955. The Hungarian method for the assignment problem.
Naval research logistics quarterly 2, 1-2 (1955), 83–97.

[29] Ling Li, Yuhai Zhao, Siqiang Luo, Guoren Wang, and Zhengkui Wang. 2023.
Efficient Community Search in Edge-Attributed Graphs. IEEE Transactions on
Knowledge and Data Engineering (2023).

[30] Yang Li, Michael Purcell, Thierry Rakotoarivelo, David Smith, Thilina Ran-
baduge, and Kee Siong Ng. 2023. Private graph data release: A survey. Comput.
Surveys 55, 11 (2023), 1–39.

[31] Zichun Liu, Liusheng Huang, Hongli Xu, Wei Yang, and Shaowei Wang. 2020.
PrivAG: Analyzing attributed graph data with local differential privacy. In
2020 IEEE 26th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 422–429.

[32] Tiago P. Peixoto. 2014. The graph-tool python library. figshare (2014). https:
//doi.org/10.6084/m9.figshare.1164194

[33] Rafael Pinot, Anne Morvan, Florian Yger, Cédric Gouy-Pailler, and Jamal
Atif. 2018. Graph-based clustering under differential privacy. arXiv preprint
arXiv:1803.03831 (2018).

[34] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2017.
Generating synthetic decentralized social graphs with local differential pri-
vacy. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 425–438.

[35] Adam Sealfon. 2016. Shortest paths and distances with differential privacy. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. 29–41.

[36] Neil Shah, Alex Beutel, Bryan Hooi, Leman Akoglu, Stephan Gunnemann,
Disha Makhija, Mohit Kumar, and Christos Faloutsos. 2016. Edgecentric:
Anomaly detection in edge-attributed networks. In 2016 IEEE 16Th interna-
tional conference on data mining workshops (ICDMW). IEEE, 327–334.

[37] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A
survey of heterogeneous information network analysis. IEEE Transactions on
Knowledge and Data Engineering 29, 1 (2016), 17–37.

[38] Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan Qin, Hui Wang, and
Ting Yu. 2019. Analyzing subgraph statistics from extended local views with
decentralized differential privacy. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 703–717.

[39] Chang-Dong Wang, Jian-Huang Lai, and S Yu Philip. 2013. NEIWalk: Com-
munity discovery in dynamic content-based networks. IEEE transactions on
knowledge and data engineering 26, 7 (2013), 1734–1748.

[40] Dan Wang and Shigong Long. 2019. Boosting the accuracy of differentially
private in weighted social networks. Multimedia tools and applications 78
(2019), 34801–34817.

[41] TianhaoWang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally dif-
ferentially private protocols for frequency estimation. In 26th USENIX Security
Symposium (USENIX Security 17). 729–745.

[42] Yuye Wang, Jing Yang, and Jianpei Zhang. 2020. Differential privacy for
weighted network based on probability model. IEEE Access 8 (2020), 80792–
80800.

[43] Chengkun Wei, Shouling Ji, Changchang Liu, Wenzhi Chen, and Ting Wang.
2020. AsgLDP: collecting and generating decentralized attributed graphs
with local differential privacy. IEEE Transactions on Information Forensics and
Security 15 (2020), 3239–3254.

[44] Min Ye and Alexander Barg. 2018. Optimal schemes for discrete distribution
estimation under locally differential privacy. IEEE Transactions on Information
Theory 64, 8 (2018), 5662–5676.

[45] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. 2020.
LF-GDPR: A framework for estimating graph metrics with local differential
privacy. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2020),
4905–4920.

[46] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. 2020.
Towards locally differentially private generic graph metric estimation. In
2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
1922–1925.

[47] Nannan Zhou, Shigong Long, Hai Liu, and Hai Liu. 2022. Structure–Attribute
Social Network Graph Data Publishing Satisfying Differential Privacy. Sym-
metry 14, 12 (2022), 2531.

502

