
Fast Geosocial ReachabilityQueries
Panagiotis Bouros

Johannes Gutenberg University
Mainz

Mainz, Germany
bouros@uni-mainz.de

Theodoros Chondrogiannis
University of Konstanz
Konstanz, Germany

theodoros.chondrogiannis@uni.kn

Daniel Kowalski
Johannes Gutenberg University

Mainz
Mainz, Germany

dkowalsk@students.uni-mainz.de

ABSTRACT

The proliferation of location-based services and social networks
has given rise to geosocial networks, which model not only the
social interactions between users but also their spatial activi-
ties. We study the efficient computation of a recently proposed
query for geosocial networks called Geosocial Reachability query
(RangeReach), which comes as a hybrid of the traditional spatial
selection (range) query and the graph reachability problem. In-
tuitively, given a geosocial network𝐺 , a vertex 𝑣 , and a spatial
region 𝑅, RangeReach(𝐺, 𝑣, 𝑅) determines whether 𝑣 can reach
any vertex in 𝐺 with spatial activity inside 𝑅. We consider an
interval-based labeling scheme proposed in the past for graph
reachability to devise two novel solutions for RangeReach. The
first takes a social-first approach, prioritizing the graph reacha-
bility predicate. The second treats both predicates at the same
time by transforming the problem of answering RangeReach
queries into queries over a three-dimensional space that models
the spatial and interval-based reachability information in the
geosocial network. Our experimental analysis compares our pro-
posed solutions against a baseline spatial-first approach powered
by spatial indexing and a graph reachability technique, as well
as the state-of-the-art method for RangeReach queries.

1 INTRODUCTION

The ubiquity of mobile location-aware devices (smartphones and
watches, tablets, etc.) and the proliferation of social networks
have given rise to geosocial networks, where users not only form
social connections to each other but also perform geo-referenced
actions, e.g., posts and check-ins. Examples of such networks
include traditional social networks extended with geospatial in-
formation, such as X (formally known as Twitter) and Facebook,
and networks natively offering geosocial services, such as Yelp
and Foursquare. Previous research in geosocial networks has
focused on query processing [3, 23, 24, 42, 50, 51, 53] and index-
ing [54, 55], on the collision with recommender systems [37, 46]
and on analysis tasks such as influence maximization [8, 39] and
community search [11, 26, 27].

In this paper, we study the efficient computation of the Geoso-
cial Reachability query or simply RangeReach, proposed by Sar-
wat and Sun in [47]. A RangeReach(𝐺, 𝑣, 𝑅) query comes as a
hybrid of a traditional spatial range or selection, which identifies
all points or spatial vertices 𝑢 inside the query region 𝑅, and a
graph reachability query, which determines whether the directed
graph 𝐺 contains a path from query vertex 𝑣 to any of these
spatial vertices 𝑢. Such a query finds application in multiple sce-
narios. In Points-of-Interest recommendation, users can query
for restaurants in a particular area of the city that their friends

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-98318-097-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

or friends of their friends have visited in the past. In Geoadver-
tising [7], RangeReach can help determine the best location to
open a shop or how to advertise an event [8] based on users
that have direct or indirect (via friendship relationships) previous
activity in particular parts of a city. Another application area is
the study of infectious diseases [29, 31], e.g., COVID-19, where
RangeReach can assist on monitoring and understanding how
they spread in specific areas through human interaction.

A straightforward approach for RangeReach(𝐺, 𝑣, 𝑅) queries
is to first identify every spatial vertex 𝑢 inside query region 𝑅,
i.e., evaluate the spatial range query on 𝑅, and then evaluate
the graph reachability query from 𝑣 to 𝑢. We call this approach
spatial-first or SpaReach. To boost SpaReach, traditional spatial
indexing such as the R-tree [30] can be combined with graph
reachability techniques [52, 67, 69]. SpaReach prioritizes the
spatial predicate of RangeReach, and thus, it is sensitive to the
selectivity of the spatial selection. Especially when the answer
to the RangeReach query is negative, we must test the connec-
tivity of all spatial vertices contained inside 𝑅 to query vertex
𝑣 . To address such weaknesses, Sarwat and Sun [47] proposed
GeoReach, which does not prioritize one of the RangeReach
predicates. The method constructs an auxiliary structure termed
the SPA-Graph to partially materialize the social (graph) and the
spatial reachability information of the input geosocial network
𝐺 . Nevertheless, GeoReach still needs to traverse part of the
geosocial network, as the method does not take advantage of any
graph reachability indexing technique.

Given these shortcomings, we consider interval-based labeling
(specifically the scheme proposed by Agrawal et al. in [1]) as
the basis for two novel RangeReach methods. First, we devise
a social-first approach termed SocReach, which, contrary to
SpaReach, prioritizes the graph reachability predicate of the
query. The labeling scheme is used to compute all reachable
vertices from the query vertex 𝑣 , which are then spatially verified
to check if at least one lies inside region𝑅. Second, we propose the
3DReach method, which, similar to GeoReach, evaluates both
query predicates at the same time. Themain idea of 3DReach is to
model the input geosocial network and its interval-based labeling
inside a three-dimensional space. With this transformation, a
RangeReach query is rewritten as a set of three-dimensional
range queries.

The key contributions of this paper are summarized as follows:

• We investigate the application of the interval-based la-
beling on geosocial networks. To our knowledge, this is
the first time that interval-based labeling is used in such
context. As geosocial networks do not exhibit the char-
acteristics of hierarchies or knowledge bases [1, 18], we
present a specialized construction algorithm in Section 3.
• In Section 4, we propose two novel evaluation methods
for RangeReach queries, which capitalize on the interval-
based labeling. The SocReach method operates under a
social-first principle, an approach never considered before

Series ISSN: 2367-2005 25 10.48786/edbt.2025.03

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.03

while 3DReach builds upon an entirely novel transforma-
tion of both the network and its labeling scheme in a three-
dimensional space. Note that, our methods can be easily
incorporated in existing systems for geosocial networks
as no custom data structures are required; only typical
spatial or multi-dimensional indexing for 3DReach.
• Graph reachability methods assume that the input is a di-
rected acyclic graph (DAG); hence, the strongly connected
components are collapsed into single vertices. In Section 5,
we discuss arbitrary graphs and how to model the spatial
extent of their strongly connected components (SCC).
• Section 6 compares our SocReach and 3DReachmethods
against the state-of-the-artGeoReach and two versions of
SpaReach, using four real-world geosocial networks. To
delve into the performance of the methods, we select the
datasets to represent two different cases of geosocial net-
works either dominated by a large SCC or containing mul-
tiple ones. In the first case, the evaluation of RangeReach
queries is dominated by their spatial range predicate, while
in the second, the overall cost is divided between the graph
reachability and the spatial range. Our analysis shows that
3DReach is the best evaluation method, outperforming
GeoReach and SpaReach in all tests by a wide margin,
for both cases of geosocial networks.

The rest of the paper is organized as follows. Section 2 formally
defines the RangeReach query and revisits the SpaReach and
GeoReach approaches. Section 7 discusses the related work on
graph reachability and spatial selection (range) queries. Last,
Section 8 concludes our paper.

2 PRELIMINARIES

In this section, we introduce necessary notation and background
for the problem of geocial reachability.

2.1 Notation and Problem Definition

We model a social network as a directed graph 𝐺 = (𝑉 , 𝐸) where
every vertex 𝑣 ∈ 𝑉 represents an entity of the network (e.g.,
users or venues). Every edge (𝑢, 𝑣) ∈ 𝐸 ⊆ 𝑉 × 𝑉 indicates a
friend relationship between the users corresponding to vertices
𝑢 and 𝑣 , e.g., the 𝑢 FOLLOWS 𝑣 users relationship on Twitter, or
between user𝑢 and venue 𝑣 , e.g., the𝑢 CHECKS-IN 𝑣 relationship
on Foursquare. A geosocial network is a social network where
a vertex 𝑣 can be associated with the coordinates of a point in
the two-dimensional space, denoted by 𝑣 .𝑝𝑜𝑖𝑛𝑡 ; for simplicity,
we call such 𝑣 , a spatial vertex. For the rest of the text, we denote
a geosocial network as 𝐺 = (𝑉 , 𝐸, 𝑃) where set 𝑃 contains the
points from all spatial vertices in the network.1

Wenext revisit the definition of twowell-established problems/
queries which act as the building blocks for the problem at hand.

Definition 2.1 (Graph Reachability). Given a directed graph
𝐺 = (𝑉 , 𝐸) and two vertices 𝑣,𝑢 ∈ 𝑉 , the graph reachability query
GReach(𝐺, 𝑣,𝑢) determines that 𝑣 can reach 𝑢 iff 𝐺 contains a
path from vertex 𝑣 to 𝑢.

Definition 2.2 (Spatial Range Query). Given a collection of
points 𝑃 and a spatial region 𝑅 in the same two-dimensional
space, the spatial range query SRange(𝑃, 𝑅) returns all points
from 𝑃 located inside region 𝑅.

1In this work, we assume that the spatial vertices are represented as points in the
two-dimensional space. However, our analysis and the proposed solutions can be
easily extended to arbitrary geometries and the three-dimensional space.

e

f

h

g

i

b

d

l

a

j

c

k

R

Figure 1: Running example; spatial vertices in gray.

We now formally define the problem of geosocial reachability,
previously introduced in [47].

Problem 1 (GeoSocial Reachability). Given a geosocial net-
work 𝐺 = (𝑉 , 𝐸, 𝑃), a vertex 𝑣 ∈ 𝑉 and a spatial region 𝑅, the
geosocial reachability query RangeReach(𝐺, 𝑣, 𝑅) determines that
vertex 𝑣 can geosocially reach region 𝑅 iff 𝐺 contains a path from
𝑣 to a vertex 𝑢 with 𝑢.𝑝𝑜𝑖𝑛𝑡 located inside region 𝑅. Formally:

RangeReach(𝐺, 𝑣, 𝑅) =

TRUE, if ∃ 𝑢 ∈ 𝑉 such that

GReach(𝐺, 𝑣,𝑢) = TRUE and
𝑢.𝑝𝑜𝑖𝑛𝑡 ∈ SRange(𝑃, 𝑅)

FALSE, otherwise

Example 2.3. Consider the geosocial network 𝐺 in Figure 1.
The query RangeReach(𝐺, 𝑎, 𝑅) returns TRUE as there exists a
path in𝐺 from the query vertex 𝑎 to either of the spatial vertices
𝑒 and ℎ, located inside the query region 𝑅; on the other hand, the
query RangeReach(𝐺, 𝑐, 𝑅) returns FALSE.

2.2 Existing Solutions

Wenext revisit the two existing solutions forRangeReach queries.

2.2.1 The Spatial-first Approach. Intuitively, the RangeReach
query comes as a hybrid that involves a graph (or social) predicate
and a spatial predicate. Under this premise, a straightforward ap-
proach for processing RangeReach(𝐺 = (𝑉 , 𝐸, 𝑃), 𝑣, 𝑅) queries is
first to evaluate the SRange(𝑃, 𝑅) spatial range query identifying
every 𝑢.𝑝𝑜𝑖𝑛𝑡 ∈ 𝑃 located inside the query region 𝑅, and then
execute a series of graph reachability GReach(𝐺, 𝑣,𝑢) queries,
i.e., one for each vertex 𝑢 ∈ 𝑉 with 𝑢.𝑝𝑜𝑖𝑛𝑡 ∈ SRange(𝑃, 𝑅).
This spatial-first approach is captured by the SpaReach algo-
rithm discussed in [47]. The algorithm terminates either when
a GReach(𝐺, 𝑣,𝑢) query provides a positive answer, in which
case, the SpaReach returns TRUE for the RangeReach query, or
after all graph reachability queries provide a negative answer, in
which case, SpaReach returns FALSE.

Example 2.4. Consider again the network in Figure 1 and query
RangeReach(𝐺, 𝑎, 𝑅). SpaReach issues a spatial range query to
determine the spatial vertices inside 𝑅, i.e., vertices 𝑒 and ℎ.
Then, it returns TRUE as GReach(𝐺, 𝑎, 𝑒) = TRUE. In contrast,
the algorithm returns FALSE for RangeReach(𝐺, 𝑐, 𝑅) as both
GReach(𝐺, 𝑐, 𝑒) = FALSE and GReach(𝐺, 𝑐, ℎ) = FALSE.

To enhance SpaReach, spatial indexing is used for the spatial
range query and a graph labeling scheme for every consecutive
graph reachability query (see Section 7). Sarwat and Sun [47]

26

e

f

h

g

i

b

d

l

a

j

c

k

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18

19 20

21

R L0

L1

L2

<latexit sha1_base64="TVOtzIBK93LeRfJVAAzECJWrwN8=">AAADLXicbZJbb9MwFMedcNvCrYPHvVg0SEOCKpkqLnsanQY8gDTKuk2qq8pxTlqvjhPFDqKK8oV44atMSDwMIV75GjhtmOjlyJaOf+d/fOxjB6ngSnvepWVfu37j5q2NTef2nbv37je2HpyoJM8Y9FgikuwsoAoEl9DTXAs4SzOgcSDgNJgcVPHTz5ApnshjPU1hENOR5BFnVBs03LIOSAAjLgtNg1zQrCxE6RANX3QQFZ1nJlVzBqokxHGpu4cJxOm4OO72DmcovEJvXr//NGfRGjZewyarrBp17e5C7fM97HY/dLo750/cRd3bxTMGZlOXFLtPsf+KlJXWZXPkV6xdM6jZv/VojYYvaUS9tVk6BGR41TJn2Gh6LW9meNXxa6eJajsaNr6TMGF5DFIzQZXq+16qBwWtLiLAPECuIKVsQkfQN66kMahBMXvtEj82JMRRkpkpNZ7R/zMKGis1jQOjjKkeq+VYBdfF+rmOXg4KLtNcg2TzQlEusE5w9XVwyDNgWkyNQ1nGzVkxG9OMMm0+WNUEf/nKq87Jbst/3mp/bDf3O3U7NtA2eoR2kI9eoH30Dh2hHmLWV+vCurR+2t/sH/Yv+/dcalt1zkO0YPafv0ZC9Ag=</latexit>

B-vertices
a: TRUE
d: FALSE
f : FALSE
h: FALSE
k: FALSE

R-vertices
j: RMBR(j)

G-vertices
b: {2, 19}
c: {12, 14}
e: {14}
g: {12, 14}
i: {14}
l: {2}

Figure 2: SPA-Graph for the geosocial network in Figure 1;

𝑅𝑀𝐵𝑅(𝑗) highlighted in red.

considered two versions of the spatial-first approach, which both
rely on an R-tree [30] to index the points in 𝑃 and then use either
the PLL reachability index [64] (Method SpaReach-PLL), or the
Feline reachability index [59] (Method SpaReach-Feline).

2.2.2 TheGeoReachMethod [47]. The key idea ofGeoReach
is to augment the vertices of the geosocial network𝐺 = (𝑉 , 𝐸, 𝑃)
with precomputed spatial and graph reachability information.
This new, augmented network is called the SPA-Graph. To con-
struct SPA-Graph, the authors first partition the two-dimensional
space using a hierarchical grid. Every spatial vertex in 𝐺 is con-
tained inside one cell of this grid. Then, each vertex 𝑣 ∈ 𝑉 is
classified into one of the following three classes:

(1) B-vertices: the vertex carries the Spatial Reachability Bit
or𝐺𝑒𝑜𝐵(𝑣), which is set to TRUE if 𝑣 can reach any spatial
vertex in the network;

(2) R-vertices: the vertex stores the Reachability Minimum
Bounding Rectangle or 𝑅𝑀𝐵𝑅(𝑣), which represents the
minimumbounding rectangle in the two-dimensional space
that encloses all spatial vertices, reachable from 𝑣 ;

(3) G-vertices: the vertex stores the Reachability Grid set or
𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑣), which contains the grid cells (potentially
from different levels) wherein all spatial vertices reachable
from 𝑣 are located.

The SPA-Graph of a geosocial network is constructed offline
based on three system parameters. MAX_RMBR captures the max-
imum allowed extent of 𝑅𝑀𝐵𝑅(𝑣); if the extent of the 𝑀𝐵𝑅

exceeds this limit then vertex 𝑣 is downgraded to a B-vertex.
MAX_REACH_GRIDS specifies the maximum allowed cardinality
of 𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑣); if the size of the set exceeds this limit, then
𝑣 is downgraded to an R-vertex, and its 𝑅𝑀𝐵𝑅(𝑣) is stored in-
stead of the 𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑣) set. Finally, MERGE_COUNT determines
whether adjacent quad-cells inside the 𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑣) of a G-
vertex 𝑣 should be merged; If the number of adjacent cells exceeds
this limit, then the cells are merged and represented by a cell

in the next level; the merge process starts from level 𝐿0, i.e., the
most detailed partitioning of the space.

Example 2.5. Figure 2 illustrates the SPA-Graph for the geoso-
cial network 𝐺 in Figure 1, with the construction parameters
set as follows: MAX_RMBR = 0.8 · SPACE, MAX_REACH_GRIDS = 3
and MERGE_COUNT = 1, where SPACE is the extent of the entire
two-dimensional space covered by𝐺 . Vertex 𝑎 is classified as a
B-vertex because its 𝑅𝑀𝐵𝑅 covers an area larger than MAX_RMBR.
In contrast, 𝑗 is an R-vertex and 𝑅𝑀𝐵𝑅(𝑗) is drawn in red. The
𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑏) for G-vertex 𝑏 would initially contain cells 2, 9 and
14 but because of MERGE_COUNT = 1, adjacent quad-cells 9 and 14
are merged and replaced by cell 19 in 𝐿1.

Given a RangeReach(𝐺, 𝑣, 𝑅) query, the GeoReach method
traverses the SPA-Graph of the geosocial network 𝐺 starting
from the query vertex 𝑣 (e.g., in a breadth-first fashion) and
leverages the above auxiliary information to prune the search
space. Specifically, let𝑢 be the current vertex.GeoReach stops its
expansion if𝑢 is a B-vertex and𝐺𝑒𝑜𝐵(𝑢) = FALSE as 𝑣 will not be
able to reach a spatial vertex via 𝑢. Similarly, the method prunes
an R-vertex 𝑢 if 𝑅𝑀𝐵𝑅(𝑢) has no overlap to the query region
𝑅, as no reachable spatial vertex of 𝑢 is contained inside 𝑅. In
contrast, if 𝑅𝑀𝐵𝑅(𝑢) intersects 𝑅, GeoReach must consider the
outgoing edges of 𝑢, while if 𝑅𝑀𝐵𝑅(𝑢) is in fact fully contained
inside 𝑅, GeoReach can safely terminate the search and return
TRUE as the final answer to the RangeReach query. Last, if 𝑣 is
a G-vertex, GeoReach uses 𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑢) in a similar fashion.
Specifically, the method prunes vertex 𝑢 if query region 𝑅 does
not intersect a cell in 𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑢), expands 𝑢 if 𝑅 intersects a
grid cell, and terminates the search returning TRUE when a cell
is fully contained inside 𝑅.

Example 2.6. Consider again SPA-Graph in Figure 2 and query
RangeReach(𝐺, 𝑎, 𝑅). GeoReach starts off with the query vertex
𝑎, which is a B-vertex. As𝐺𝑒𝑜𝐵(𝑎) = TRUE, the method expands
the search using the (𝑎, 𝑏), (𝑎, 𝑑), (𝑎, 𝑗) edges. Vertex 𝑏 is a G-
vertex with 𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑏) = {2, 19}. With cell 2 fully contained
inside the query region 𝑅, GeoReach terminates the search and
returns TRUE. Now, consider RangeReach(𝐺, 𝑐, 𝑅). After exam-
ining the query G-vertex 𝑐 , GeoReach returns FALSE, as neither
cell 12 or 14 in 𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (𝑐) overlap with the query region 𝑅.

2.2.3 Discussion. The solutions discussed above suffer from
the following shortcomings. First, both methods may perform
poorly for RangeReach queries with a negative answer. In this
case, SpaReach needs to evaluate all possible graph reachability
queries based on the spatial vertices located inside the query re-
gion 𝑅, while GeoReach may need to traverse a large part of the
SPA-Graph. In addition, SpaReach is sensitive to the selectivity
of the RangeReach spatial predicate. A region 𝑅 that contains
a large number of spatial vertices results in a potentially large
number of reachability queries to be evaluated, especially in the
case of RangeReach queries with a negative answer. On the other
hand, GeoReach does not prioritize either of the RangeReach
predicates but, at the same time, does not take advantage of any
graph labeling or indexing scheme proposed for the graph reach-
ability problem. To tackle these shortcomings and accelerate the
evaluation ofRangeReach queries, we present two novel methods
that capitalize on interval-based labeling for graph reachability
queries in the following sections.

27

3 INTERVAL-BASED LABELING

To better understand the proposed methods, Section 3.1 briefly
presents the necessary background on interval-based labeling.
Then, Section 3.2 describes how to construct the scheme for a
geosocial network. Similar to graph reachability literature (see
Section 7.1), we assume that the input network is a directed-
acyclic graph (DAG); in Section 5 we discuss how to handle
arbitrary graphs. Lastly, Section 3.3 elaborates on the complexity
and space requirements of interval labeling.

3.1 Background

The original interval-based labeling scheme [21, 22] focuses
only on tree inputs; the scheme assigns to every vertex 𝑣 a
[𝑝𝑟𝑒 (𝑣), 𝑝𝑜𝑠𝑡 (𝑣)] label, where 𝑝𝑟𝑒 (𝑣) is the pre-order traversal
number of 𝑣 and 𝑝𝑜𝑠𝑡 (𝑣), its post-order. As an ancestor vertex 𝑣
appears before (after) a descendant vertex𝑢 in the pre(post)-order
traversal of the tree, a vertex 𝑢 is reachable from 𝑣 iff the follow-
ing test is successful, 𝑝𝑟𝑒 (𝑣) < 𝑝𝑟𝑒 (𝑢) and 𝑝𝑜𝑠𝑡 (𝑣) < 𝑝𝑜𝑠𝑡 (𝑢).

In this work, we consider a variant of interval-based labeling,
which operates on graphs, originally proposed by Agrawal et al.
in [1]. The key idea behind this scheme is the introduction of
a spanning tree (termed the tree-cover) to distinguish between
tree and non-tree edges in the input graph 𝐺 . Specifically, ev-
ery vertex in the spanning tree 𝑇 of the graph is assigned an
[𝑖𝑛𝑑𝑒𝑥 (𝑣), 𝑝𝑜𝑠𝑡 (𝑣)] label, where 𝑝𝑜𝑠𝑡 (𝑣) is again the post-order
traversal number of 𝑣 and 𝑖𝑛𝑑𝑒𝑥 (𝑣) is the lowest post-order num-
ber of 𝑣 ’s descendants; note that 𝑖𝑛𝑑𝑒𝑥 (𝑣) ≤ 𝑝𝑜𝑠𝑡 (𝑣) holds for
every non-leaf vertex and 𝑖𝑛𝑑𝑒𝑥 (𝑣) = 𝑝𝑜𝑠𝑡 (𝑣), for each leaf ver-
tex. Furthermore, every vertex 𝑣 may receive additional labels
based on 𝐺 ’s edges excluded from the spanning tree 𝑇 . Consider
such a non-spanning tree edge (𝑣,𝑢). To capture the reachability
information stemming from the existence of such an edge, the
scheme propagates the labels of vertex 𝑢 to 𝑣 and to all 𝑣 ’s ances-
tors. After examining all non-spanning tree edges in the graph,
every vertex is associated with a set of interval-based labels de-
noted by L(𝑣). The size of such an interval-based scheme, i.e.,
the number of generated labels, clearly depends on the size of
the spanning tree 𝑇 . Agrawal et al. [1] studied how to construct
the optimal spanning tree based on the number of ancestors per
vertex. Besides, it is also possible to use compression to reduce
|L(𝑣) | of a vertex 𝑣 , either by absorbing subsumed intervals, e.g.,
label [3,5] absorbs [4,5], or by merging adjacent intervals, e.g.,
labels [1,4] and [4,5] are merged and replaced by [1, 5].

Given the interval-based labeling scheme for a graph 𝐺 , we
can determine whether a vertex 𝑣 can reach another vertex 𝑢, i.e.,
answer the GReach(𝑣,𝑢) graph reachability query, by checking
the inclusion of 𝑝𝑜𝑠𝑡 (𝑢) in the labels of 𝑣 . More specifically:

Lemma 3.1. Let 𝑣,𝑢 be two vertices in a graph 𝐺 . Vertex 𝑢 is
reachable from 𝑣 in 𝐺 iff there exists a label in L(𝑣) that contains
the post-order number of 𝑢. Formally:

GReach(𝐺, 𝑣,𝑢) =

TRUE, if ∃ [ℓ, ℎ] ∈ L(𝑣) such that

ℓ ≤ 𝑝𝑜𝑠𝑡 (𝑢) ≤ ℎ

𝐹𝐴𝐿𝑆𝐸, otherwise

3.2 Labeling (Geo)Social Networks

The labeling scheme described in the previous section was pro-
posed for input graphs in the shape of hierarchies, mainly to de-
termine transitive relationships in knowledge bases [18]. These
graphs typically contain a particular vertex with only outgoing

ALGORITHM 1: Constructing interval-based labeling
Inputs :geosocial network 𝐺 = (𝑉 , 𝐸, 𝑃)
Variables : spanning forest 𝐹 = (𝑉 , 𝐸𝐹), set of

non-spanning edges 𝐸𝑁𝐹 = 𝐸 \ 𝐸𝐹 , priority
queue 𝑄 , post-order number 𝑝𝑜𝑠𝑡 (𝑣), ∀𝑣 ∈ 𝑉

Output : interval labels L(𝑣), ∀𝑣 ∈ 𝑉
1 compute spanning forest 𝐹 of 𝐺 ;
2 while all vertices in 𝐹 not visited do

3 select a spanning tree 𝑇 in 𝐹 ;
4 traverse 𝑇 in post-order ; ⊲ Compute 𝑝𝑜𝑠𝑡 (·)’s

5 foreach vertex 𝑣 ∈ 𝐹 do

6 L(𝑣) = {[𝑝𝑜𝑠𝑡 (𝑣), 𝑝𝑜𝑠𝑡 (𝑣)]}; ⊲ Initialize L(𝑣)
7 foreach root vertex 𝑣 ∈ 𝐹 do ⊲ Initialize 𝑄 with

roots
8 determine priority of 𝑣 ; ⊲ Based on 𝐺

9 𝑄.push(𝑣);
10 while 𝑄 is not empty do

11 𝑣 ← 𝑄.pop(); ⊲ Get current vertex

12 foreach outgoing edge (𝑣,𝑢) ∈ 𝐸𝐹 do

13 L(𝑣)⋃ = L(𝑢);
14 foreach each ancestor𝑤 of 𝑣 do ⊲ Using labels
15 L(𝑤)⋃ = L(𝑢);
16 calculate priority of 𝑢; ⊲ Based on 𝐺

17 if 𝑢 ∉ 𝑄 then

18 𝑄.push(𝑢);

19 𝐸𝑁𝐹 ← 𝐸 \ 𝐸𝐹 ; ⊲ Determine non-spanning edges

20 sort 𝐸𝑁𝐹 by post-order number of their source vertex;
21 foreach edge (𝑣,𝑢) ∈ 𝐸𝑁𝐹 do

22 L(𝑢)⋃ = L(𝑣);
23 foreach each ancestor𝑤 of 𝑣 do ⊲ Using labels
24 L(𝑤)⋃ = L(𝑢);

25 foreach vertex 𝑣 ∈ 𝑇 do

26 compress L(𝑣); ⊲ absorb and merge labels

27 return L(𝑣), ∀𝑣 ∈ 𝑉 ;

edges, which becomes the root of their spanning tree. However, a
geosocial network𝐺 may contain multiple vertices with only out-
going edges, each acting as the root for a separate spanning tree.
Under this premise, we define a spanning forest, i.e., a collection
of spanning trees, for a geosocial network.

To construct the interval-based labeling for a geosocial net-
work 𝐺 , we present Algorithm 1. Similar to [1], the construction
can be divided into three key steps:

(1) Compute the spanning forest 𝐹 of the input 𝐺 and assign
post-order numbers to its vertices (Lines 1–4),

(2) Use each spanning tree𝑇 in forest 𝐹 to construct the initial
set of L(𝑣) labels for every vertex 𝑣 (Lines 5–18), and

(3) Examine all non-spanning edges to extend and construct
the final L(𝑣) label sets (Lines 19–24)

The differences to [1] are in the first two steps. Specifically
for the first step, after computing the spanning forest 𝐹 in Line 1,
we assign the post-order number 𝑝𝑜𝑠𝑡 (𝑣) to all network vertices
𝐺 . For this purpose, in Lines 3-4, Algorithm 1 iteratively selects
and traverses a spanning tree 𝑇 from 𝐹 in post-order fashion.

28

This process repeats until all vertices are visited. In the second
step, after initializing L(𝑣) = {[𝑝𝑜𝑠𝑡 (𝑣), 𝑝𝑜𝑠𝑡 (𝑣)]} (Lines 5–6),
we use the priority queue 𝑄 to examine the graph vertices and
determine their labels based on the spanning forest 𝐹 . The queue
is initialized in Lines 7–9 with every possible root vertex in 𝐹 , i.e.,
the vertices with only outgoing edges. The priority of a vertex is
determined based on its number of incoming edges (in increasing
order); ties are solved by the post-order number.With this priority
policy in place, the vertices of zero incoming edges (i.e., the
roots) are guaranteed to be examined first by the construction
procedure. In each iteration of Lines 10–18, we remove the top
element of 𝑄 as the current vertex 𝑣 (Line 11). Next, we use its
outgoing edges in the spanning forest 𝐹 to assign labels, similar
to how Agrawal et al. examines the non-spanning edges in [1].
Specifically, consider such an edge (𝑣,𝑢); we propagate the labels
of 𝑢 to L(𝑣) (Line 13) and to each ancestor vertex 𝑤 of 𝑣 in
𝐹 (Line 14–15). As vertex 𝑣 is visited before 𝑢, we can identify
its ancestors using the current version of the labeling scheme.
This is reminiscent of a stabbing query on 𝑝𝑜𝑠𝑡 (𝑣), which can be
accelerated by traditional interval indexing such as the interval
tree [25] or recent highly efficient in-memory structures [16, 17].

Note that we push vertex 𝑢 to the queue to expand the con-
struction process (Lines 16–18). Finally, the algorithm examines
the non-spanning edges (𝑣,𝑢) in Lines 19–24, similarly to [1]
copying the labels L(𝑢) of each target vertex 𝑢 to L(𝑣) and 𝑣 ’s
ancestors. Algorithm 1 completes the construction process by
compressing the generated labels in Lines 25–26.

Example 3.2. Consider again the geosocial network in Figure 1;
Table 1 details the construction of its interval-based labeling. As
the first step, Algorithm 1 computes the spanning forest 𝐹 shown
in Figure 3. The algorithm traverses the spanning trees in 𝐹 , i.e.,
the one rooted by vertex 𝑎 and the second, by 𝑐 , in post-order
fashion. After initializing label sets L(·) with [𝑝𝑜𝑠𝑡 (·), 𝑝𝑜𝑠𝑡 (·)],
each vertex with zero incoming edges is added to the priority
queue, i.e., 𝑄 = {𝑎, 𝑐}. Next, the algorithm uses 𝑄 to traverse the
spanning forest 𝐹 , to determine the labels in the second column
of Table 1. Algorithm 1 first visits vertex 𝑎 and examines its
outgoing edges (𝑎, 𝑏), (𝑎, 𝑑) and (𝑎, 𝑗). This results in copying
the contents of L(𝑏), L(𝑑) and L(𝑗) to L(𝑎), i.e., L(𝑎) = {[9,9]
[4,4] [5,5] [8,8]}. Last, vertices𝑏,𝑑 , and 𝑗 are added to𝑄 to expand
the search, i.e., 𝑄 = {𝑐, 𝑏, 𝑗, 𝑑}; note that 𝑐 exhibits the highest
priority as it has zero incoming edges, followed by 𝑏 and 𝑗 with
one incoming edge and 𝑑 with two. The algorithm then processes
𝑐 similarly to 𝑎, resulting in L(𝑐) = {[5,5] [10,10] [11,11]} and
𝑄 = {𝑏, 𝑖, 𝑗, 𝑘, 𝑑}. The next vertex to visit is 𝑏. Using its outgoing
edges (𝑏, 𝑒) and (𝑏, 𝑙), the labels of vertex 𝑒 and 𝑙 are copied to
L(𝑏) and to L(𝑎) of its ancestor 𝑎. As a result, we have L(𝑏) =
{[4,4] [2,2] [3,3]} and L(𝑎) = {[9,9] [4,4] [5,5] [8,8] [2,2] [3,3]}.
Last, the priority queue is also updated to 𝑄 = {𝑒, 𝑖, 𝑗, 𝑘, 𝑙, 𝑑}.
Algorithm 1 proceeds in a similar manner until 𝑄 is depleted.

The next step is to examine the non-spanning edges of the
network sorted by the post-order number of their source, i.e.,
(𝑙, ℎ), (𝑏, 𝑑), (𝑔, 𝑖), (𝑖, 𝑓) and (𝑐, 𝑑) Using (𝑙, ℎ), the labels of ℎ
are copied to L(𝑙) and its ancestors 𝑏 and 𝑎. Hence, we have
L(𝑙)⋃ = {[7,7]}, L(𝑏)⋃ = {[7,7]} and L(𝑎)⋃ = {[7,7]}. The
algorithm proceeds similarly to construct the labels in the third
column of Table 1. Finally, Algorithm 1 compresses the labels
for each vertex 𝑣 to produce the final version of L(𝑣), which
corresponds to the last column in Table 1.

e

f

h

g

i

b

d

l

a

j

c

k

Figure 3: Spanning forest for the geosocial network in Fig-

ure 1; non-spanning edges are drawn with dashed lines.

The forest contains two spanning trees; rooted by vertex 𝑎

and 𝑐.

3.3 Analysis

We start with the time complexity of constructing the interval-
based labeling. The cost of Algorithm 1 is linear to the sum of the
number of vertices and edges in the input network𝐺 , i.e.,𝑂 (|𝑉 | +
|𝐸 |). Essentially, the algorithm visits every vertex and edge in 𝐺
three times in total. The first two times are when the spanning
forest 𝐹 is constructed and then traversed to determine the post-
order number for each vertex, in Lines 1–4. Then, in Lines 10–18,
Algorithm 1 visits each network vertex and every spanning edge
for the third time. To determine the ancestors of current vertex
𝑣 when propagating labels in Lines 14-15, we do not traverse
the spanning forest backwards; instead, we utilize the current
(incomplete) labeling scheme. Finally, the non-spanning edges
are visited for the last time in Lines 19–24; note that the label
propagation in Lines 23-24 is again handled using the existing
scheme.

Finally, the space complexity of the interval-based labeling is
𝑂 (|𝑉 |2), similar to all labeling schemes for graph reachability,
which essentially compress the transitive closure of the graph
(see Section 7.1). However in practice, the scheme occupies signif-
icantly less space as previous studies have shown. Additionally,
note that the label compression in Lines 25–26 further reduces
the space requirements. In Section 6, Table 6 highlights the merit
of compression, reporting the number of labels contained in both
the uncompressed and compressed schemes for our test datasets.

4 EVALUATING RangeReach QUERIES

To answer RangeReach queries, we could straightforwardly em-
ploy the interval-based labeling from Section 3 under the spatial-
first approach in Section 2.2.1. Essentially, we use the interval
labels for the reachability queries defined on the spatial vertices
in the query region. Despite its simplicity, we do not expect this
idea to accelerate SpaReach as themost recent graph reachability
methods (see Section 7.1), outperform interval-based labeling.2
Instead, we design two novel methods that use interval-based
labeling in different fashions.

2In Section 6, we confirm this intuition experimentally.

29

Table 1: Interval-based labeling for the geosocial network in Figure 1.

vertex 𝑣 (𝑝𝑜𝑠𝑡 (𝑣)) L(𝑣)
spanning forest non-spanning edges final

𝑎 (9) [9,9] [4,4] [5,5] [8,8] [2,2] [3,3] [1,1] [7,7] [6,6] [7,7] [5,5] [1,1] [10,10] [1,10]
𝑏 (4) [4,4] [2,2] [3,3] [1,1] [7,7] [5,5] [1,5] [7,7]
𝑐 (12) [12,12] [10,10] [11,11] [1,1] [5,5] [1,1] [5,5] [10,12]
𝑑 (5) [5,5] [5,5]
𝑒 (2) [2,2] [1,1] [1,2]
𝑓 (1) [1,1] [1,1]
𝑔 (6) [6,6] [1,1] [10,10] [1,1] [6,6] [10,10]
ℎ (7) [7,7] [7,7]
𝑖 (10) [10,10] [1,1] [1,1] [10,10]
𝑗 (8) [8,8] [7,7] [6,6] [1,1] [10,10] [1,1] [6,8] [10,10]
𝑘 (11) [11,11] [11,11]
𝑙 (3) [3,3] [7,7] [3,3] [7,7]

4.1 A Social-first Approach

We begin with a social-first approach termed SocReach, which
prioritizes the graph (social) predicate of a RangeReach query.
Intuitively, queries are evaluated in two steps, similar to the
spatial-first approach. We first determine the descendants D(𝑣)
of the query vertex 𝑣 in the geosocial network, and then we test
if there exists a vertex 𝑢 ∈ D(𝑣), with 𝑢.𝑝𝑜𝑖𝑛𝑡 located inside
𝑅. If such a vertex exists, SocReach returns TRUE as the final
answer to the RangeReach(𝐺, 𝑣, 𝑅) query. Otherwise, if all spatial
containment tests fail, the method returns FALSE.

As the set of descendant verticesD(𝑣) is computed on-the-fly,
the spatial containment tests cannot be truly accelerated by any
spatial indexing. Moreover, on average, not all spatial tests will be
conducted in practice for queries with a positive answer. There-
fore, we focus on the first step of SocReach, to investigate how
we can compute the D(𝑣) set fast. The majority of the solutions
discussed in Section 7.1 exclusively target the graph reachability
problem (Definition 2.1), i.e., answering GReach(𝑣,𝑢) queries.
Under this premise, the proposed schemes cannot be employed
to determine the descendants of the query vertex 𝑣 . However,
as discussed in [18], interval-based labeling can be used for this
purpose; the idea is captured by the formula below, which follows
from Lemma 3.1:

D(𝑣) = {𝑢 ∈ 𝐺 : ∃ [ℓ, ℎ] ∈ L(𝑣), ℓ ≤ 𝑝𝑜𝑠𝑡 (𝑢) ≤ ℎ} (1)

Essentially, every [ℓ, ℎ] interval inside the L(𝑣) set of the query
vertex 𝑣 defines a typical (relational) range query over the post-
order numbers of the network vertices. Depending on the size of
the geosocial network and whether gaps in the post-order num-
bers are used to accommodate updates (vertex insertions), these
range queries can be evaluated using, for instance, a traditional
B+-tree which indexes 𝑝𝑜𝑠𝑡 (·) or even as simple for loops on the
array storing the network vertices in main memory.

Example 4.1. Consider again the network 𝐺 in Figure 1, its
interval-based labeling scheme in Table 1. For RangeReach(𝐺, 𝑎,
𝑅) query, setD(𝑎) contains vertices {𝑓 , 𝑒, 𝑙, 𝑏, 𝑑, 𝑔, ℎ, 𝑗, 𝑎, 𝑖}whose
𝑝𝑜𝑠𝑡 (·) ∈ [1,10]. For vertex 𝑒 , 𝑒.𝑝𝑜𝑖𝑛𝑡 is contained inside region
𝑅 and so, SocReach returns TRUE. For RangeReach(𝐺, 𝑐, 𝑅), set
D(𝑐) contains vertices with post-order numbers inside ranges
[1,1], [5,5] and [10,12], i.e., D(𝑐) = {𝑓 , 𝑑, 𝑖, 𝑘, 𝑐}. SocReach re-
turns FALSE for this query as vertices 𝑑 , 𝑐 and 𝑘 are not spatial
and 𝑓 .𝑝𝑜𝑖𝑛𝑡 and 𝑖 .𝑝𝑜𝑖𝑛𝑡 are not contained in 𝑅.

4.2 The 3DReachMethod

Despite offering an alternative to SpaReach, the SocReach ap-
proach exhibits a similar weakness. As the social (or graph) pred-
icate of RangeReach is prioritised (instead of the spatial), a larger
number of spatial containment tests may need to be evaluated,
especially for query vertices with a high out-degree and/or for
queries with a negative answer. In view of this, we devise a novel
solution termed 3DReach, which not only capitalizes on interval-
based labeling but also considers both RangeReach predicates at
the same time.

The key idea of 3DReach is to model the spatial vertices of
the input geosocial network𝐺 = (𝑉 , 𝐸, 𝑃) and its interval-based
labeling L inside a three-dimensional space. The first two di-
mensions model the original two-dimensional space wherein
every 𝑣 .𝑝𝑜𝑖𝑛𝑡 ∈ 𝑃 is located, while the third dimension models
the domain of the post-order numbers in L. Under this trans-
formation, every spatial vertex 𝑣 in the network is modelled
as a three-dimensional point (𝑣 .𝑝𝑜𝑖𝑛𝑡, 𝑝𝑜𝑠𝑡 (𝑣)). Consequently, a
RangeReach(𝐺, 𝑣, 𝑅) query is rewritten as a set of three-dimensional
range queries or rectangular cuboids, one for each label [ℓ, ℎ] ∈
L(𝑣). The base of every cuboid corresponds to the query re-
gion 𝑅, thus capturing the original spatial range predicate of the
query. Also, the cuboid is positioned in-between values ℓ and
ℎ in the third dimension, capturing the computation of D(𝑣)
and, therefore, the graph predicate of the query. As such, to an-
swer a RangeReach(𝐺, 𝑣, 𝑅) query, it suffices to check whether
the 3D point of a spatial vertex 𝑢 is located inside one of these
cuboids, since the following would hold: (1) 𝑢.𝑝𝑜𝑖𝑛𝑡 ∈ 𝑅 and (2)
ℓ ≤ 𝑝𝑜𝑠𝑡 (𝑢) ≤ ℎ, i.e., GReach(𝑣,𝑢) = TRUE.

Example 4.2. Figures 4(a) and (c) illustrate the transformation
employed by 3DReach, and how queries RangeReach(𝐺, 𝑎, 𝑅)
and RangeReach(𝐺, 𝑐, 𝑅) are evaluated, respectively. As L(𝑎)
contains one label, i.e., [1,10], RangeReach(𝐺, 𝑎, 𝑅) is captured
by a single 3D range query or simply the light blue cuboid in
Figure 4(a). The cuboid contains the 3D point that models spatial
vertex 𝑒 and so, 3DReach returns TRUE. On the other hand,
RangeReach(𝐺, 𝑐, 𝑅) is represented by the three cuboids (more
precisely, one cuboid and two planes) in Figure 4(c) corresponding
to theL(𝑐) = {[1,1] [5,5] [10,12]} labels. Since no cuboid contains
a spatial vertex, 3DReach returns FALSE as the answer to the
query.

3DReach computes both the social and the spatial predicate in
one step but, executing multiple three-dimensional range queries

30

RangeReach(𝐺, 𝑎, 𝑅)

 1
 2

 10

e

f

g

h

i 9

e

f

g

h

i

(a) (b)

RangeReach(𝐺, 𝑐, 𝑅)

 1
 2

 5

 10

 12

e

f

g

h

i

 12

e

f

g

h

i

(c) (d)

Figure 4: 3DReach variants on Figure’s 1 geosocial network; query areas highlighted in light blue.

might slow down the evaluation of RangeReach, especially in
case of a negative answer, when all the three-dimensional range
queries must be evaluated. In view of this, we devise a 3DReach
variant under which a RangeReach query is rewritten as a sin-
gle three-dimensional range query. In Section 6, we extensively
compare the two variants. The key idea is to construct the re-
versed interval-based labeling scheme for the geosocial network
𝐺 . Every label [ℓ, ℎ] ∈ L(𝑣) of this scheme captures a range of
post-order numbers for the ancestors of vertex 𝑣 . We can con-
struct the reversed interval-based labeling for a network by first
reversing its edges and then employing again Algorithm 1. Table 2
illustrates the reversed interval-based labeling for the network in
Figure 1. With the reversed labeling scheme, every spatial vertex
𝑣 is now modelled as a set of vertical line segments, one for each
[ℓ, ℎ] label in L(𝑣). Finally, under this new three-dimensional
transformation, a RangeReach(𝐺, 𝑣, 𝑅) query is represented by
a single plane, parallel to the first two dimensions of the space
which captures the coordinates of the query range 𝑅, but posi-
tioned at 𝑝𝑜𝑠𝑡 (𝑣) in the third dimension. This line-based variant
of 3DReach returns TRUE if the query plane ‘cuts’ at least one
vertical line segment, which means that there exists at least one
spatial vertex in the geosocial network whose 𝑝𝑜𝑖𝑛𝑡 is inside 𝑅,
with 𝑣 being its ancestor vertex.

Example 4.3. Consider again our running example. Figures 4(b)
and (d) illustrate the line-based variant of 3DReach. Observe how
every spatial vertex is now modelled as a set of vertical lines com-
pared to (a) and (c), and the point-based 3DReach. For query
RangeReach(𝐺, 𝑎, 𝑅), the 3D point for spatial vertex 𝑒 is on the
query plane which results to a positive answer. On the other hand,
the RangeReach(𝐺, 𝑐, 𝑅) query is now represented by only one
plane compared to a cuboid and two planes in Figure 4(c), allow-
ing the method to issue a single, unsuccessful three-dimensional
range query and immediately return FALSE.

5 DEALINGWITH ARBITRARY GRAPHS

Typically, the vast majority of the graph reachability methods
(see Section 7.1) assume that the input graph 𝐺 is a DAG. Other-
wise, a simple solution is to first identify all strongly connected
components in 𝐺 using, e.g., Tarjan’s algorithm [57], and then
replace each component with a (super-)vertex. By definition,
every pair of vertices inside a strongly connected component
can reach each other. We adopt the same approach to construct
our interval-based labeling scheme with a necessary extension.
Due to spatial vertices, we need to define the spatial information
of every strongly connected component in the input geosocial
network that contains spatial vertices. Let 𝑣𝑐 be a super-vertex
that represents a component 𝐶 , we consider the following two
alternatives:

(1) Replace 𝑣𝑐 by the spatial vertices contained inside𝐶 , repli-
cating its reachability information. More specifically, every
such vertex 𝑢 inherits its labels from super-vertex 𝑣𝑐 , i.e.,
L(𝑢) = L(𝑣𝑐).

(2) Define as spatial information for 𝑣𝑐 the minimum bound-
ing rectangle (MBR) that includes the points of all spatial
vertices contained in the component𝐶 ; under this premise,
𝑣𝑐 .𝑝𝑜𝑖𝑛𝑡 is no longer a single point but the above MBR.

Section 6 includes extra tests to compare these two approaches.
In addition, we consider two distinct cases of arbitrary graphs
with respect to the number of their SCCs

6 EXPERIMENTAL ANALYSIS

We finally present our experimental analysis on RangeReach
queries. The tests ran on a machine with 32 Intel Core i9 CPUs
clocked at 5.8GHz with 64 GBs of RAM, running Ubuntu Linux.
All data (i.e., networks and index structures) resided in main
memory.

31

Table 2: Reversed interval-based labeling for the geosocial network in Figure 1.

vertex 𝑣 (𝑝𝑜𝑠𝑡 (𝑣)) L(𝑣)
spanning forest non-spanning edges final

𝑎 (9) [9,9] [9,9]
𝑏 (4) [4,4] [9,9] [4,4] [9,9]
𝑐 (12) [12,12] [12,12]
𝑑 (5) [5,5] [9,9] [4,4] [9,9] [12,12] [4,5] [9,9] [12,12]
𝑒 (2) [2,2] [4,4] [9,9] [2,2] [4,4] [9,9]
𝑓 (1) [1,1] [2,2] [4,4] [9,9] [6,6] [8,8] [10,10] [12,12] [1,2] [4,4] [6,6] [8,10] [12,12]
𝑔 (6) [6,6] [8,8] [9,9] [6,6] [8,9]
ℎ (7) [7,7] [8,8] [9,9] [3,3] [4,4] [9,9] [3,4] [7,9]
𝑖 (10) [10,10] [12,12] [6,6] [8,8] [9,9] [6,6] [8,10] [12,12]
𝑗 (8) [8,8] [9,9] [8,9]
𝑘 (11) [11,11] [12,12] [11,12]
𝑙 (3) [3,3] [4,4] [9,9] [3,4] [9,9]

Table 3: Dataset characteristics

dataset # users # venues # checkins/ratings |𝑉 | |𝐸 | |𝑃 | # SCCs # vertices in
largest SCC

Foursquare 2,119,987 1,132,617 4,801,576 3,252,604 19,685,786 1,132,617 1,400,154 1,852,251
Gowalla 407,533 2,723,102 35,676,249 3,130,635 23,778,362 2,723,102 2,723,103 407,533
WeePlaces 16,022 971,309 7,658,368 987,331 2,758,946 971,309 971,311 16,021

Yelp 1,987,693 150,310 6,990,247 2,138,003 21,357,271 150,310 1,238,535 892,152

6.1 Setup

We experimented with four real geosocial networks; Foursquare3
[38, 46], Gowalla4 [41], WeePlaces4 and Yelp5, which contain
users as social (non-spatial) vertices and venues as spatial. Table 3
summarizes their characteristics. Each venue is associated with a
pair of geo-coordinates. The edges of the networks model friend
relationships between users and check-ins or ratings from users
to venues. The inputs represent two distinct cases of geosocial
networks. The social vertices of Gowalla and WeePlaces are fully
connected to each other, forming a large SCC; notice how the
number of users equals the number of vertices in the largest SCC.
In this case, the cost of RangeReach queries is dominated by the
cost of its spatial range predicate. In contrast, the social vertices
of Foursquare and Yelp form several SCCs distributing the cost
between graph reachability and spatial range.

For our analysis, the following RangeReach evaluation meth-
ods were implemented in C++, compiled using gcc (v11.4.0) with
the -O3 flag activated.6 For the methods employing an R-tree, we
used the implementation included in the Boost library.7

• SpaReach-BFL adopts the spatial-first approach in Sec-
tion 2.2.1. An R-tree indexes the spatial vertices in the
network and the BFL reachability scheme [52] answers
GReach queries.
• SpaReach-INT also adopts the spatial-first approach, but
employs the interval-based labeling [1] for the GReach
queries.
• GeoReach is the state-of-the-art evaluation method from
[47]; We used the source code provided by the authors8.

3https://academictorrents.com/details/b24c73949308b3f6bdd8fea1a485534392eef338
4https://www.yongliu.org/datasets.html
5https://www.yelp.com/dataset
6Source code and test datasets are available in https://github.com/pbour/rangereach
7https://www.boost.org
8https://github.com/DataSystemsLab/GeoGraphDB–Neo4j

We set the construction parameters as suggested by the
authors.
• SocReach is our social-first method presented in Sec-
tion 4.1.
• 3DReach from the first part of Section 4.2, uses the interval-
based labeling to represent every spatial vertex as a three-
dimensional point. The three-dimensional space is indexed
by a 3D R-tree.
• 3DReach-Rev, the line-based variant of 3DReach from
Section 4.2, utilizes the reversed interval-based labeling to
index spatial vertices as sets of vertical line segments. The
three-dimensional space is again indexed by a 3D R-tree.

To assess the performance of the methods, we measured their
average runtime over 1000 queries, while varying the extent of
the query region 𝑅 inside the {1%, 2%, 5%, 10%, 20%} range, as a
percentage of the entire space covered by the network, and the de-
gree of the query vertex 𝑣 inside the {[1−49], [50−99], [100-149],
[150 − 199], [200 − . . .]} intervals, based on the number of out-
going edges.9 In each test, we vary the value of one of the above
parameters while setting the other to its default value, high-
lighted in bold. To better understand how the spatial predicate
of a RangeReach query affects the performance, we also vary
its spatial selectivity inside the {0.001%, 0.01%, 0.1%, 1%} value
range, as the percentage of the spatial vertices found inside the
query range 𝑅 over the total number of network vertices. This
test was also conducted in [47].

6.2 Handling Arbitrary Graphs

All four tested geosocial networks are not acyclic; following the
typical practice, we converted them into DAGs, replacing every
strongly connected component by a super-vertex. In this context,

9We ignore the incoming edges in the degree computation, as we are only interested
in the spatial vertices reachable from the query vertex 𝑣 but not vice versa.

32

Table 4: Index size [MBs]: space occupied by the SPA-graph forGeoReach, the BFL scheme and the 2D R-tree for SpaReach-

BFL, the interval-based labeling scheme and the 2D R-tree for SpaReach-INT, the interval-based labeling scheme and the

3D R-tree for 3DReach, the 3D R-tree for 3DReach-Rev; in parenthesis, the MBR-based variant (if exists)

dataset SpaReach-BFL SpaReach-INT GeoReach SocReach 3DReach 3DReach-Rev
Foursquare 78.8 (87.4) 28.6 (37.2) 17.1 13.9 33.5 (46.4) 69.4 (69.4)
Gowalla 160 (181) 56.1 (76.9) 8.56 20.8 67.9 (99.0) 157 (157)
Weeplaces 57.1 (64.5) 20.0 (27.4) 1.30 7.41 24.2 (35.3) 55.8 (55.8)

Yelp 58.6 (59.8) 29.3 (30.4) 240 27.3 29.9 (31.7) 44.8 (44.8)

Table 5: Indexing time [secs]: building the SPA-graph for GeoReach, the BFL scheme and the 2D R-tree for SpaReach-BFL,

the interval-based labeling scheme and the 2D R-tree for SpaReach-INT, the interval-based labeling scheme and the 3D

R-tree for 3DReach and 3DReach-Rev; in parenthesis, the MBR-based variant (if exists)

dataset SpaReach-BFL SpaReach-INT GeoReach SocReach 3DReach 3DReach-Rev
Foursquare 7.80 (7.81) 9.49 (9.50) 1636 9.35 9.50 (9.51) 10.6 (10.8)
Gowalla 9.19 (9.22) 12.1 (12.1) 294 11.76 12.1 (12.2) 13.6 (13.7)
Weeplaces 1.37 (1.38) 2.09 (2.09) 1.20 12.47 2.14 (2.25) 2.73 (2.77)

Yelp 6.74 (6.74) 9.15 (9.15) 3745 9.13 9.15 (9.17) 9.94 (9.96)

Table 6: Interval-based labeling stats

dataset

reversed

uncompressed compressed uncompressed compressed

Foursquare 2,954,273 1,820,038 2,954,273 2,681,946
Gowalla 5,446,205 2,723,103 5,446,205 5,446,204

Weeplaces 1,942,621 971,311 1,942,621 1,942,620
Yelp 3,737,986 3,584,013 3,737,986 2,645,720

Foursquare Gowalla WeePlaces Yelp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0

 0.5

 1

 1.5

 2

 2.5

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

1 2 5 10 20

MBR
non-MBR

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

 0

 0.005

 0.01

 0.015

 0.02

 0.025

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

non-MBR
MBR

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

Figure 5: Handling spatial strongly connected components

our first set of experiments studies the best practice to deal with
strongly connected components that contain spatial vertices.

We implemented two variants for the spatial-first, SpaReach-
BFL and SpaReach-INT, and the 3DReach methods, following
the discussion in Section 5. The first variant replicates the reach-
ability information of each super-vertex (strongly connected
component) to all contained vertices and completely discards the
super-vertices when answering RangeReach queries. The sec-
ond variant (termed MBR-based) defines the spatial information
of a super-vertex as the MBR which encloses the points of all

its spatial vertices. Note that we exclude from this discussion
our SocReach which does not involve any spatial indexing, and
GeoReach which always operates under a non-MBR principle,
by design.

Table 4 and 5 report on the indexing costs of each variant;
the numbers for the MBR-based are given in parentheses. For all
networks, we observe that the MBR-based variant insignificantly
affects the indexing time, but does notably increase the space
requirements by 10% for SpaReach-BFL, 26% for SpaReach-INT
and 33% for 3DReach, on average; for 3DReach-Rev, we observe

33

no increase in the space requirements because Boost’s implemen-
tation of the R-tree stores segments and boxes in a similar manner.
The main reason for the increase space is that spatial indexing be-
comes more expensive; the 2D R-tree for the MBR-based variant
of the spatial-first methods no longer indexes points but rectan-
gles, and the 3D R-tree for 3DReach and 3DReach-Rev indexes
boxes, instead of points and lines, respectively.

With regards to the querying performance, Figure 5 compares
the two SpaReach-INT variants while varying the extent of the
query range and the degree of the query vertex. For simplicity,
we omit the results for the variants of the other methods, where
similar observations were made. The plots clearly show that the
non-MBR based variant always outperforms the MBR one. As
already explained in the previous paragraph, the key reason is
the higher cost of the spatial range query on the 2D R-tree and
the 3D R-trees, which no longer index points or segments but
rectangles or boxes. Under this premise, we only consider the
non-MBR variant of the evaluation methods, for the rest of our
analysis.

6.3 Determining the Best SpaReach

In the second set of experiments, we seek the best spatial-first
method, comparing SpaReach-BFL to SpaReach-INT. Tables 4
and 5 (first and second column) report on their indexing cost
while Figure 6 reports their average query time. The results con-
firm our intuition from the first paragraph in Section 4. In almost
all cases, SpaReach-BFL outperforms SpaReach-INT in answer-
ing RangeReach queries. Since both methods utilize a 2D R-tree
to determine the spatial vertices inside the query region 𝑅, the
advantage of SpaReach-BFL stems from the advantage of the
BFL labeling scheme over the inteval-based labeling schemes
in answering graph reachability queries (i.e., GReach). Under
this, the results fully align with the previous studies on graph
reachability (see Section 7.1). The performance gap is more pro-
nounced on the larger geosocial networks of Foursquare and
Gowalla, compared to Weeplaces and Yelp; those networks con-
tain more spatial vertices which increases the average number of
reachability queries employed when answering a RangeReach
query.

Considering also the indexing cost of each spatial-first method,
we essentially observe a typical space-time tradeoff. SpaReach-
BFL has higher space requirements (2-3 times) in the expense of
faster reachability queries, compared to SpaReach-INT. Never-
theless, our main focus is on fast query processing and therefore,
we only consider SpaReach-BFL for the rest of our analysis.

6.4 Comparing Evaluation Methods

Finally, we compare our proposed SocReach and the two 3DReach
methods against the GeoReach state-of-the-art and the best
spatial-first method, SpaReach-BFL. Again, Tables 4 and 5 re-
port on the indexing cost, while Figure 7 reports on the query
performance.

There are two key takeways from our tests. On the one hand,
SocReach is not competitive to the rest of the methods, with the
exception to GeoReach for the smaller networks of WeePlaces
and Yelp. This result was expected as SocReach prioritizes the
social predicate of RangeReach and does not employ any spa-
tial indexing to accelerate the necessary spatial containment
tests. On the other hand (second takeaway), we also observe
that the 3DReach methods are overall the fastest evaluation
methods; they typically outperform state-of-the-art GeoReach,

SpaReach-BFL and SocReach by multiple orders of magnitude,
when varying both the query region extent and the degree of
the query vertex. There are two reasons for this advantage. First,
neither 3DReach or 3DReach-Rev need to traverse the geoso-
cial network as GeoReach does, which naturally slows down the
computation. Second, with the 3DReach methods, query evalua-
tion is a single step process where the social (graph reachability)
and spatial (range query) predicate of a RangeReach query are
handled at the same time, while SpaReach-BFL prioritizes the
spatial range predicate and SocReach, the social one. Between
the two 3DReach methods, their times are very similar, but the
original 3DReach which indexes 3D points instead of line seg-
ments is usually faster. 3DReach-Rev does evaluate a single 3D
range query every time but this query takes longer in the 3D
R-tree due to more complex data being indexed.

Regarding the tested parameters, the performance of SpaReach-
BFL is negatively affected by the increase of both the query region
extent and the number of contained spatial vertices; for the for-
mer, the cost of the spatial range query increases, while for the
latter, the average number of the necessary graph reachability
queries goes up. SocReach and GeoReach are affected in a sim-
ilar fashion by all three parameters, albeit for different reasons.
The performance of SocReach improves when increasing the
query region extent and the contained spatial vertices as the
method has to perform fewer spatial containment tests in aver-
age, but when increasing the query vertex degree, the number
of descendants to be considered also rises, slowing down the
queries. For GeoReach, the pruning with𝐺𝑒𝑜𝐵(·), 𝑅𝑀𝐵𝑅(·) and
𝑅𝑒𝑎𝑐ℎ𝐺𝑟𝑖𝑑 (·) becomes more effective as we increase the query re-
gion extent and the number of contained points accelerating the
query computation, but when we increase its out-degree, more
paths need to be traversed from the query vertex, slowing down
the queries. Last, the 3DReach methods are positively affected
by the increase in the out-degree of the query vertex; this effect
is more obvious for Foursquare and Yelp because these networks
have the largest social cores, i.e., contain the highest number of
users. In contrast, the spatial parameters have mixed effect on
the 3DReach methods. The extent of the query region tends to
affect very little the performance; although the 3D range queries
have a larger extent as well, their computing cost is balanced
by the fact that a contained point or an intersecting segment
is easily found. Increasing the number of spatial vertices in the
query range typically slows down the methods as it takes more
time to compute the 3D range queries.

Last, regarding the indexing, the 3DReachmethods offer com-
petitive times and space requirements, especially the original
3DReach, whose 3D R-tree stores points instead of line seg-
ments. Observe how close are the index size numbers in Table 4
for 3DReach to GeoReach and SocReach, which usually ex-
hibit the lower space requirements, and its indexing times in
Table 5 to SpaReach-BFL, whose index is the faster to build. To
elaborate on space requirements and highlight the merit of label
compression, Table 6 reports the number of labels for interval-
based labeling, both compressed and uncompressed. We observe
that compression reduces the number of labels by 36% on average,
for the original interval scheme used by 3DReach, while there
is no significant benefit for the reverse scheme of 3DReach-Rev,
which also explains why 3DReach-Rev exhibits higher indexing
cost compared to 3DReach- in Tables 4 and 5.

34

Foursquare Gowalla WeePlaces Yelp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

1 2 5 10 20

with INT
with BFL

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

with INT
with BFL

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

Figure 6: Determining the best spatial-first method

SpaReach-BFL

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 5 10 20

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

vertex degree

GeoReach

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 5 10 20

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

vertex degree

SocReach

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 5 10 20

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev
A

v
er

ag
e

q
u

er
y

 t
im

e
[m

se
cs

]

vertex degree

3DReach

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 5 10 20

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

vertex degree

3DReach-Rev

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 5 10 20

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

SpaReach-BFL
GeoReach
SocReach
3DReach

3DReach-Rev

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

vertex degree

Foursquare Gowalla WeePlaces Yelp

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

1 2 5 10 20

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

1 2 5 10 20
A

v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

Region extent ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

10
-4

10
-3

10
-2

10
-1

10
0

10
1

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

10
-4

10
-3

10
-2

10
-1

10
0

[1
-4

9]

[5
0-9

9]

[1
00-1

49]

[1
50-1

99]

[2
00-]

A
v
er

ag
e

q
u
er

y
 t

im
e

[m
se

cs
]

vertex degree

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.001 0.01 0.1 1

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

Spatial selectivity ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.001 0.01 0.1 1

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

Spatial selectivity ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.001 0.01 0.1 1

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

Spatial selectivity ratio [%]

10
-4

10
-3

10
-2

10
-1

10
0

0.001 0.01 0.1 1

A
v

er
ag

e
q

u
er

y
 t

im
e

[m
se

cs
]

Spatial selectivity ratio [%]

Figure 7: Comparing evaluation methods

7 RELATEDWORK

We discuss additional related work besides the existing evalua-
tion methods in Section 2.2 and the interval-based labeling in
Section 3.

7.1 Graph Reachability

A straightforward solution to the reachability problem is to use
the transitive closure (TC) of the graph. Then, GReach queries
are answered in constant𝑂 (1) time, but the𝑂 (𝑛2) offline cost of
maintaining TC is prohibitively high. In contrast, aGReach query

can be answered with no offline cost by traversing the graph
in 𝑂 (|𝑉 | + |𝐸 |) time. However, both solutions are impractical,
especially for large graphs.

In view of the above, a plethora of indexing or labeling schemes
have been proposed, trying to balance the online query cost,
the offline construction cost, and the storage requirements for
the index. Typically, these solutions adopt one of the following
approaches. The goal of the methods adopting the Label-Only
approach is to compress the graph TC for fast online querying;
only the labels constructed offline are used during query evalua-
tion. The interval-based labeling by Agrawal et al. [1] (Section 3)

35

adopts this idea. Other works compress TC by a minimal num-
ber of pair-wise disjoint vertex chains [12, 32, 33]. Similar to
[1], a spanning tree is used as the basis for indexing TC in dual-
labeling [61], but the scheme is suitable only for sparse graphs.
The 2-hop scheme [14, 15, 19, 48] constructs for each vertex 𝑣 a
list with part of the vertices that can reach 𝑣 (𝐿𝑖𝑛 [𝑣]) and part
of those reachable from 𝑣 (𝐿𝑜𝑢𝑡 [𝑣]). Then, a GReach(𝑣,𝑢) is an-
swered by checking whether 𝐿𝑜𝑢𝑡 [𝑣] and 𝐿𝑖𝑛 [𝑢] share a vertex or
not. The 3-HOP scheme [35] improves 2-hop labeling by capital-
izing on the Chain-Cover idea [32], while Path-hop [9] improves
3-HOP by replacing the chain decomposition with a tree struc-
ture. Some works also targeted how to reduce the construction
cost of 2-hop, e.g., TF-Label [13], TL and DL [34], BLL [64], and
TOL [70]. Last, Tang et al. [56] employ graph partitioning to accel-
erate GReach; the original graph is divided into two subgraphs,
one topologically labeled and one labeled using 2-hop.

On the other hand, the methods that follow the Label+G ap-
proach use both the computed labels and potentially graph traver-
sal to answer GReach; essentially, the focus here is on reducing
the offline construction cost incurred by compressing the graph
TC. Tree+SSPI [10] and GRIPP [58] employ interval-based label-
ing on the spanning tree of the input graph but also traverse this
graph in a depth-first fashion, if needed. GRAIL [65, 66] uses a
number of spanning trees to generate vertex labels, but, if this
ensemble of labels is not enough to decide on the reachability,
GRAIL uses depth-first search. FERRARI [49] also uses multi-
ple labels per vertex. Feline [59] uses two topological orders to
cover as many unreachable vertices as possible. IP [62, 63] is
based on 𝑘-min-wise independent permutation to define multiple
types of vertex labels. BFL [52] incorporates bloom filtering in
its labeling scheme. Last, the multi-dimensional labeling scheme
MG-Tag [69] relies on graph partitioning. Different to previous
Label+G methods, when a GReach query cannot be answered
using the labels, MG-Tag traverses the smaller in size, partitioned
graph instead of the original one. Recently, directed acyclic graph
reduction [67, 68] was further considered to accelerate reachabil-
ity queries. The idea is to reduce the size of the input graph by
computing its transitive reduction followed by the equivalence
reduction.

SpaReach can use any of the above schemes to evaluate the
involvedGReach queries. For our tests, we consider BFL [52] due
to its promising results. In contrast, as discussed in Section 4.1,
SocReach cannot benefit from the majority of the works above,
as their focus is on accelerating GReach and not on other graph
problems such as computing the descendants of a vertex. Finally,
our 3DReach explicitly builds upon the interval-based labeling.

7.2 Spatial Range Queries

Spatial range queries are typically evaluated with spatial index-
ing. In principle, these structures employ partitioning to prune
the search space. A wide range of indices are proposed in the
literature for both point and non-point data; our focus is on the
former.

Depending on the nature of the partitioning, spatial indices
can be classified into two classes. On the one hand, indices based
on space-oriented partitioning (SOP) divide the space into dis-
joint partitions. A grid [6], which divides the space into cells
(partitions) using axis-parallel lines, is the simplest SOP index.
Hierarchical indices that fall in this category are the kd-tree [5]
and the quad-tree [28]. On the other hand, indices based on data-
oriented partitioning (DOP) allow the extent of the partitions

to overlap but ensure that their contents are disjoint (i.e., each
object is assigned to precisely one partition). The R-tree [30] and
its variants (e.g., the R∗-tree [4]) are the most popular methods in
this class. The R-tree is a height-balanced tree, which generalizes
the B+-tree in the multi-dimensional space and hierarchically
groups object MBRs to blocks. BLOCK [44] is a recently proposed
main-memory DOP index, which uses a hierarchy of grids.

Lately, following the trend for relational data, learned indices
have been proposed also for spatial data, where the main idea is
to learn the spatial distribution of the objects and then define a
lightweight index. Intuitively, the query evaluation is guided by
models instead of a sparse index. Wang et al. [60] first map the
data to a one-dimensional space, using their Z-order, and then
construct a multi-staged learned index for one-dimensional data,
similar to [36]. ML-Index [20] also uses a transformation to the
one-dimensional space, but relative to the distance to the closest
reference point. In LISA [40], the data are organized using a grid;
the one-dimensional order of the cells and the data distribution
determines the grouping of cells and the corresponding learned
models. RSMI [45] suggests a rank space-based ordering, which
becomes scalable by a recursive partitioning and learning strategy.
Flood index [43] automatically adapts itself to a particular dataset
and query workload by jointly optimizing the index structure
and data storage layout. Al-Mamun et al. summarize learning
indices for spatial (and multi-dimensional) data in [2].

Without loss of generality, our implementation of SpaReach
uses an R-tree to index the spatial vertices similar to [47], as it
is the most dominant structure for spatial data. Last, the R-tree
employed by our 3DReach can be replaced by another structure
as long as it is able to index the three-dimensional space defined
for the spatial vertices of the geosocial network.

8 CONCLUSIONS AND FUTUREWORK

We studied the computation of RangeReach(𝐺, 𝑣, 𝑅) queries in
geosocial networks [47]. We proposed two novel methods which
build on the interval-based labeling from [1]. SocReach employs
the labeling to determine the descendants of the query vertex
𝑣 and then compares their location to the query region 𝑅. The
3DReach approach first maps the network vertices into a three-
dimensional space, which expands the original 2D space with
an extra dimension from the interval-based labeling. Under this
transformation, RangeReach is rewritten as a set of 3D range
queries. Our experimental analysis on real geosocial networks
showed that 3DReach is the fastest method for RangeReach
queries, outperforming both the GeoReach [47] state-of-the-
art method and the methods that prioritize either the spatial
(SpaReach) or the social predicate of the query, such as our
SocReach.

In the future, we plan to investigate how our approach can
efficiently handle updates in the network and the role of opti-
mal (e.g., shallow) spanning forests in the construction of the
interval-based labeling, similar to [1]. Furthermore, we plan to
examine the incorporation of our methods in existing systems
for geosocial networks and consider the computation of other
types of geosocial queries.

ACKNOWLEDGMENTS

The work builds upon Daniel Kowalski’s Bachelor thesis at JGU
Mainz. Theodoros Chondrogiannis was supported by Grant No.
CH 2464/1-1 of the Deutsche Forschungsgemeinschaft (DFG).

36

REFERENCES

[1] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. 1989. Efficient Man-
agement of Transitive Relationships in Large Data and Knowledge Bases. In
Proceedings of the 1989 ACM SIGMOD International Conference on Management
of Data, Portland, Oregon, USA, May 31 - June 2, 1989. ACM Press, 253–262.
https://doi.org/10.1145/67544.66950

[2] Abdullah Al-Mamun, HaoWu, andWalid G. Aref. 2020. A Tutorial on Learned
Multi-dimensional Indexes. In SIGSPATIAL ’20: 28th International Conference
on Advances in Geographic Information Systems, Seattle, WA, USA, November
3-6, 2020. ACM, 1–4. https://doi.org/10.1145/3397536.3426358

[3] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. 2013. A
General Framework for Geo-Social Query Processing. Proc. VLDB Endow. 6,
10 (2013), 913–924. https://doi.org/10.14778/2536206.2536218

[4] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference
on Management of Data, Atlantic City, NJ, USA, May 23-25, 1990. ACM Press,
322–331. https://doi.org/10.1145/93597.98741

[5] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM 18, 9 (1975), 509–517. https://doi.org/
10.1145/361002.361007

[6] Jon Louis Bentley and Jerome H. Friedman. 1979. Data Structures for Range
Searching. ACM Comput. Surv. 11, 4 (1979), 397–409. https://doi.org/10.1145/
356789.356797

[7] Panagiotis Bouros, Tamraparni Dasu, Yaron Kanza, Matthias Renz, and Dim-
itris Sacharidis (Eds.). 2021. LocalRec ’21: Proceedings of the 5th ACM SIGSPA-
TIAL International Workshop on Location-based Recommendations, Geosocial
Networks and Geoadvertising, Virtual Event / Beijing, China, 2 November 2021.
ACM. https://doi.org/10.1145/3486183

[8] Panagiotis Bouros, Dimitris Sacharidis, and Nikos Bikakis. 2014. Regionally
influential users in location-aware social networks. In Proceedings of the 22nd
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, Dallas/Fort Worth, TX, USA, November 4-7, 2014. ACM, 501–504.
https://doi.org/10.1145/2666310.2666489

[9] Jing Cai and Chung Keung Poon. 2010. Path-hop: efficiently indexing large
graphs for reachability queries. In Proceedings of the 19th ACM Conference on
Information and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada,
October 26-30, 2010. ACM, 119–128. https://doi.org/10.1145/1871437.1871457

[10] Li Chen, Amarnath Gupta, and M. Erdem Kurul. 2005. Stack-based Algorithms
for Pattern Matching on DAGs. In Proceedings of the 31st International Confer-
ence on Very Large Data Bases, Trondheim, Norway, August 30 - September 2,
2005. ACM, 493–504. http://www.vldb.org/archives/website/2005/program/
paper/wed/p493-chen.pdf

[11] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and Bin Wang.
2018. MaximumCo-located Community Search in Large Scale Social Networks.
Proc. VLDB Endow. 11, 10 (2018), 1233–1246. https://doi.org/10.14778/3231751.
3231755

[12] Yangjun Chen and Yibin Chen. 2008. An Efficient Algorithm for Answering
Graph Reachability Queries. In Proceedings of the 24th International Confer-
ence on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico. IEEE
Computer Society, 893–902. https://doi.org/10.1109/ICDE.2008.4497498

[13] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-
Label: a topological-folding labeling scheme for reachability querying in a
large graph. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. ACM,
193–204. https://doi.org/10.1145/2463676.2465286

[14] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, HaixunWang, and Philip S. Yu. 2006.
Fast Computation of Reachability Labeling for Large Graphs. In Advances in
Database Technology - EDBT 2006, 10th International Conference on Extending
Database Technology, Munich, Germany, March 26-31, 2006, Proceedings (Lecture
Notes in Computer Science, Vol. 3896). Springer, 961–979. https://doi.org/10.
1007/11687238_56

[15] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, HaixunWang, and Philip S. Yu. 2008.
Fast computing reachability labelings for large graphs with high compres-
sion rate. In EDBT 2008, 11th International Conference on Extending Data-
base Technology, Nantes, France, March 25-29, 2008, Proceedings (ACM In-
ternational Conference Proceeding Series, Vol. 261). ACM, 193–204. https:
//doi.org/10.1145/1353343.1353370

[16] George Christodoulou, Panagiotis Bouros, and NikosMamoulis. 2022. HINT: A
Hierarchical Index for Intervals in Main Memory. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022.
ACM, 1257–1270. https://doi.org/10.1145/3514221.3517873

[17] George Christodoulou, Panagiotis Bouros, and Nikos Mamoulis. 2024. HINT:
a hierarchical interval index for Allen relationships. VLDB J. 33, 1 (2024),
73–100. https://doi.org/10.1007/S00778-023-00798-W

[18] Vassilis Christophides, Dimitris Plexousakis, Michel Scholl, and Sotirios Tour-
tounis. 2003. On labeling schemes for the semantic web. In Proceedings of the
Twelfth International World Wide Web Conference, WWW 2003, Budapest, Hun-
gary, May 20-24, 2003. ACM, 544–555. https://doi.org/10.1145/775152.775230

[19] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability
and distance queries via 2-hop labels. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco,
CA, USA. ACM/SIAM, 937–946. http://dl.acm.org/citation.cfm?id=545381.
545503

[20] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-
Index: A Multidimensional, Learned Index for Point, Range, and Nearest-
Neighbor Queries. In Proceedings of the 23rd International Conference on Ex-
tending Database Technology, EDBT 2020, Copenhagen, Denmark, March 30 -
April 02, 2020. OpenProceedings.org, 407–410. https://doi.org/10.5441/002/
EDBT.2020.44

[21] Paul F. Dietz. 1982. Maintaining Order in a Linked List. In Proceedings of the
14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San
Francisco, California, USA. ACM, 122–127. https://doi.org/10.1145/800070.
802184

[22] Paul F. Dietz and Daniel Dominic Sleator. 1987. Two Algorithms for Main-
taining Order in a List. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, New York, New York, USA. ACM, 365–372.
https://doi.org/10.1145/28395.28434

[23] Yerach Doytsher, Ben Galon, and Yaron Kanza. 2010. Querying geo-social
data by bridging spatial networks and social networks. In Proceedings of
the 2010 International Workshop on Location Based Social Networks, LBSN
2010, November 2, 2010, San Jose, CA, USA, Proceedings. ACM, 39–46. https:
//doi.org/10.1145/1867699.1867707

[24] Yerach Doytsher, Ben Galon, and Yaron Kanza. 2012. Querying socio-spatial
networks on the world-wide web. In Proceedings of the 21st World Wide Web
Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume).
ACM, 329–332. https://doi.org/10.1145/2187980.2188041

[25] Herbert Edelsbrunner. 1980. Dynamic Rectangle Intersection Searching. Tech-
nical Report 47. Institute for Information Processing, Technical University of
Graz, Austria.

[26] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.
Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow.
10, 6 (2017), 709–720. https://doi.org/10.14778/3055330.3055337

[27] Yixiang Fang, Zheng Wang, Reynold Cheng, Xiaodong Li, Siqiang Luo, Jiafeng
Hu, and Xiaojun Chen. 2019. On Spatial-Aware Community Search. IEEE
Trans. Knowl. Data Eng. 31, 4 (2019), 783–798. https://doi.org/10.1109/TKDE.
2018.2845414

[28] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure
for Retrieval on Composite Keys. Acta Informatica 4 (1974), 1–9. https:
//doi.org/10.1007/BF00288933

[29] Samuel R. Friedman and Sevgi Aral. 2001. Social networks, risk-potential
networks, health, and disease. Journal of urban health: bulletin of the New York
Academy of Medicine 78, 3 (2001), 411—-418. https://doi.org/10.1093/jurban/
78.3.411

[30] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD’84, Proceedings of AnnualMeeting, Boston,Massachusetts,
USA, June 18-21, 1984. ACM Press, 47–57. https://doi.org/10.1145/602259.
602266

[31] Alison L. Hill, David G. Rand, Martin A. Nowak, and Nicholas A. Christakis.
2010. Infectious Disease Modeling of Social Contagion in Networks. PLoS
Comput. Biol. 6, 11 (2010). https://doi.org/10.1371/JOURNAL.PCBI.1000968

[32] H. V. Jagadish. 1990. A Compression Technique to Materialize Transitive
Closure. ACM Trans. Database Syst. 15, 4 (1990), 558–598. https://doi.org/10.
1145/99935.99944

[33] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. 2011. Path-tree: An
efficient reachability indexing scheme for large directed graphs. ACM Trans.
Database Syst. 36, 1 (2011), 7:1–7:44. https://doi.org/10.1145/1929934.1929941

[34] Ruoming Jin and Guan Wang. 2013. Simple, Fast, and Scalable Reachability
Oracle. Proc. VLDB Endow. 6, 14 (2013), 1978–1989. https://doi.org/10.14778/
2556549.2556578

[35] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: a
high-compression indexing scheme for reachability query. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009. ACM, 813–826.
https://doi.org/10.1145/1559845.1559930

[36] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018. ACM, 489–504. https://doi.org/10.1145/3183713.3196909

[37] Justin J. Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F.
Mokbel. 2012. LARS: A Location-Aware Recommender System. In IEEE 28th
International Conference on Data Engineering (ICDE 2012), Washington, DC,
USA (Arlington, Virginia), 1-5 April, 2012. IEEE Computer Society, 450–461.
https://doi.org/10.1109/ICDE.2012.54

[38] Justin J Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F Mok-
bel. 2012. Lars: A location-aware recommender system. In 2012 IEEE 28th
international conference on data engineering. IEEE, 450–461.

[39] Guoliang Li, Shuo Chen, Jianhua Feng, Kian-Lee Tan, and Wen-Syan Li. 2014.
Efficient location-aware influence maximization. In International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014.
ACM, 87–98. https://doi.org/10.1145/2588555.2588561

[40] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA:
A Learned Index Structure for Spatial Data. In Proceedings of the 2020 In-
ternational Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020. ACM, 2119–2133.
https://doi.org/10.1145/3318464.3389703

[41] Yong Liu, Wei Wei, Aixin Sun, and Chunyan Miao. 2014. Exploiting Geo-
graphical Neighborhood Characteristics for Location Recommendation. In

37

Proceedings of the 23rd ACM International Conference on Conference on Infor-
mation and Knowledge Management, CIKM 2014, Shanghai, China, November
3-7, 2014. ACM, 739–748. https://doi.org/10.1145/2661829.2662002

[42] Kyriakos Mouratidis, Jing Li, Yu Tang, and Nikos Mamoulis. 2015. Joint Search
by Social and Spatial Proximity. IEEE Trans. Knowl. Data Eng. 27, 3 (2015),
781–793. https://doi.org/10.1109/TKDE.2014.2339838

[43] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.
Learning Multi-Dimensional Indexes. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. ACM, 985–1000. https://doi.org/10.1145/
3318464.3380579

[44] Matthaios Olma, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki.
2017. BLOCK: Efficient Execution of Spatial Range Queries in Main-Memory.
In Proceedings of the 29th International Conference on Scientific and Statistical
Database Management, Chicago, IL, USA, June 27-29, 2017. ACM, 15:1–15:12.
https://doi.org/10.1145/3085504.3085519

[45] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively
Learning Spatial Indices. Proc. VLDB Endow. 13, 11 (2020), 2341–2354. http:
//www.vldb.org/pvldb/vol13/p2341-qi.pdf

[46] Mohamed Sarwat, Justin J. Levandoski, Ahmed Eldawy, and Mohamed F.
Mokbel. 2014. LARS*: An Efficient and Scalable Location-Aware Recommender
System. IEEE Trans. Knowl. Data Eng. 26, 6 (2014), 1384–1399. https://doi.org/
10.1109/TKDE.2013.29

[47] Mohamed Sarwat and Yuhan Sun. 2017. Answering Location-Aware Graph
Reachability Queries on GeoSocial Data. In 33rd IEEE International Conference
on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017. IEEE
Computer Society, 207–210. https://doi.org/10.1109/ICDE.2017.76

[48] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. 2004. HOPI: An Efficient
Connection Index for Complex XML Document Collections. In Advances in
Database Technology - EDBT 2004, 9th International Conference on Extending
Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Proceedings
(Lecture Notes in Computer Science, Vol. 2992). Springer, 237–255. https://doi.
org/10.1007/978-3-540-24741-8_15

[49] Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum.
2013. FERRARI: Flexible and efficient reachability range assignment for graph
indexing. In 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, April 8-12, 2013. IEEE Computer Society, 1009–1020.
https://doi.org/10.1109/ICDE.2013.6544893

[50] Jieming Shi, Nikos Mamoulis, Dingming Wu, and David W. Cheung. 2014.
Density-based place clustering in geo-social networks. In International Con-
ference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014. ACM, 99–110. https://doi.org/10.1145/2588555.2610497

[51] Ammar Sohail, Arif Hidayat, Muhammad Aamir Cheema, and David Taniar.
2018. Location-Aware Group Preference Queries in Social-Networks. In
Databases Theory and Applications - 29th Australasian Database Conference,
ADC 2018, Gold Coast, QLD, Australia, May 24-27, 2018, Proceedings (Lecture
Notes in Computer Science, Vol. 10837). Springer, 53–67. https://doi.org/10.
1007/978-3-319-92013-9_5

[52] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. 2017. Reachability Querying:
Can It Be Even Faster? IEEE Trans. Knowl. Data Eng. 29, 3 (2017), 683–697.
https://doi.org/10.1109/TKDE.2016.2631160

[53] Yuhan Sun, Nitin Pasumarthy, and Mohamed Sarwat. 2017. On Evaluating
Social Proximity-Aware Spatial Range Queries. In 18th IEEE International
Conference on Mobile Data Management, MDM 2017, Daejeon, South Korea,
May 29 - June 1, 2017. IEEE Computer Society, 72–81. https://doi.org/10.1109/
MDM.2017.20

[54] Yuhan Sun and Mohamed Sarwat. 2018. A generic database indexing frame-
work for large-scale geographic knowledge graphs. In Proceedings of the 26th
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, SIGSPATIAL 2018, Seattle, WA, USA, November 06-09, 2018. ACM,

289–298. https://doi.org/10.1145/3274895.3274966
[55] Yuhan Sun and Mohamed Sarwat. 2021. Riso-Tree: An Efficient and Scalable

Index for Spatial Entities in Graph DatabaseManagement Systems. ACMTrans.
Spatial Algorithms Syst. 7, 3 (2021), 12:1–12:39. https://doi.org/10.1145/3450945

[56] X. Tang, Z. Chen, H. Zhang, X. Liu, Y. Shi, and A. Shahzadi. 2018. An optimized
labeling scheme for reachability queries. Computers, Materials & Continua 55,
2 (January 2018), 267–283. http://www.techscience.com/cmc/v55n2/22897

[57] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (1972), 146–160. https://doi.org/10.1137/0201010

[58] Silke Trißl and Ulf Leser. 2007. Fast and practical indexing and querying of
very large graphs. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Beijing, China, June 12-14, 2007. ACM, 845–856. https:
//doi.org/10.1145/1247480.1247573

[59] Renê Rodrigues Veloso, Loïc Cerf, Wagner Meira Jr., and Mohammed J. Zaki.
2014. Reachability Queries in Very Large Graphs: A Fast Refined Online
Search Approach. In Proceedings of the 17th International Conference on Ex-
tending Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014.
OpenProceedings.org, 511–522. https://doi.org/10.5441/002/EDBT.2014.46

[60] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index
for Spatial Queries. In 20th IEEE International Conference on Mobile Data
Management, MDM 2019, Hong Kong, SAR, China, June 10-13, 2019. IEEE, 569–
574. https://doi.org/10.1109/MDM.2019.00121

[61] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. 2006.
Dual Labeling: Answering Graph Reachability Queries in Constant Time.
In Proceedings of the 22nd International Conference on Data Engineering,
ICDE 2006, 3-8 April 2006, Atlanta, GA, USA. IEEE Computer Society, 75.
https://doi.org/10.1109/ICDE.2006.53

[62] HaoWei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2014. Reachability Querying:
An Independent Permutation Labeling Approach. Proc. VLDB Endow. 7, 12
(2014), 1191–1202. https://doi.org/10.14778/2732977.2732992

[63] HaoWei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2018. Reachability querying:
an independent permutation labeling approach. VLDB J. 27, 1 (2018), 1–26.
https://doi.org/10.1007/S00778-017-0468-3

[64] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast and
scalable reachability queries on graphs by pruned labeling with landmarks and
paths. In 22nd ACM International Conference on Information and Knowledge
Management, CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013.
ACM, 1601–1606. https://doi.org/10.1145/2505515.2505724

[65] Hilmi Yildirim, Vineet Chaoji, and Mohammed Javeed Zaki. 2010. GRAIL:
Scalable Reachability Index for Large Graphs. Proc. VLDB Endow. 3, 1 (2010),
276–284. https://doi.org/10.14778/1920841.1920879

[66] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2012. GRAIL: a scalable
index for reachability queries in very large graphs. VLDB J. 21, 4 (2012),
509–534. https://doi.org/10.1007/S00778-011-0256-4

[67] Junfeng Zhou, Jeffrey Xu Yu, Na Li, Hao Wei, Ziyang Chen, and Xian Tang.
2018. Accelerating reachability query processing based on DAG reduction.
VLDB J. 27, 2 (2018), 271–296. https://doi.org/10.1007/S00778-018-0495-8

[68] Junfeng Zhou, Shijie Zhou, Jeffrey Xu Yu, Hao Wei, Ziyang Chen, and Xian
Tang. 2017. DAG Reduction: Fast Answering Reachability Queries. In Pro-
ceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 375–390.
https://doi.org/10.1145/3035918.3035927

[69] Shuang Zhou, Pingpeng Yuan, Ling Liu, and Hai Jin. 2018. MGTag: a Multi-
Dimensional Graph Labeling Scheme for Fast Reachability Queries. In 34th
IEEE International Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018. IEEE Computer Society, 1372–1375. https://doi.org/10.1109/
ICDE.2018.00153

[70] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reacha-
bility queries on large dynamic graphs: a total order approach. In International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014. ACM, 1323–1334. https://doi.org/10.1145/2588555.2612181

38

