
Stable Tree Labelling for Accelerating DistanceQueries
on Dynamic Road Networks

Henning Koehler
Massey University

Palmerston North, New Zealand
H.Koehler@massey.ac.nz

Muhammad Farhan
Australian National University

Canberra, Australia
muhammad.farhan@anu.edu.au

Qing Wang
Australian National University

Canberra, Australia
qing.wang@anu.edu.au

ABSTRACT
Finding the shortest-path distance between two arbitrary vertices
is an important problem in road networks. Due to real-time traf-
fic conditions, road networks undergo dynamic changes all the
time. Current state-of-the-art methods incrementally maintain a
distance labelling based on a hierarchy among vertices to support
efficient distance computation. However, their labelling sizes are
often large and cannot be efficiently maintained. To combat these
issues, we present a simple yet efficient labelling method, namely
Stable Tree Labelling (STL), for answering distance queries on
dynamic road networks. We observe that the properties of an
underlying hierarchy play an important role in improving and
balancing query and update performance. Thus, we introduce
the notion of stable tree hierarchy which lays the ground for
developing efficient maintenance algorithms on dynamic road
networks. Based on stable tree hierarchy, STL can be efficiently
constructed as a 2-hop labelling. A crucial ingredient of STL is
to only store distances within subgraphs in labels, rather than
distances in the entire graph, which restricts the labels affected
by dynamic changes. We further develop two efficient mainte-
nance algorithms upon STL: Label Search algorithm and Pareto
Search algorithm. Label Search algorithm identifies affected an-
cestors in a stable tree hierarchy and performs efficient searches
to update labels from those ancestors. Pareto Search algorithm
explores the interaction between search spaces of different an-
cestors, and combines searches from multiple ancestors into only
two searches for each update, eliminating duplicate graph tra-
versals. The experiments show that our algorithms significantly
outperform state-of-the-art dynamic methods in maintaining
the labelling and query processing, while requiring an order of
magnitude less space.

1 INTRODUCTION
Road networks are dynamic, typically modelled as a weighted
dynamic graph 𝐺 = (𝑉 , 𝐸, 𝜙), where vertices 𝑉 represent inter-
sections, edges 𝐸 represent roads between intersections, and edge
weights 𝜙 represent information that may evolve over time due
to changing traffic conditions, e.g., travel time. Given two arbi-
trary vertices 𝑢, 𝑣 ∈ 𝑉 , computing their shortest-path distance,
i.e., distance query, is arguably one of the most widely performed
tasks in real-world applications, such as helping drivers’ or au-
tonomous cars to find a shortest-path, matching taxi drivers with
passengers, optimizing delivery routes with multiple pick-up and
drop-off points that change dynamically, or providing recommen-
dation on 𝑘-nearest POIs to their customers [7, 11, 15, 20, 28].
For example, ride-hailing companies like Uber and Lyft need to
compute millions of shortest-path distances to optimize routes

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

for drivers under dynamic traffic conditions. This helps minimize
wait times and ensure efficient pick-up and drop-off services,
especially when traffic patterns change due to congestion or road
closures. By frequently updating shortest-path distances, these
companies ensure that drivers follow the most efficient routes to
reach passengers quickly and provide optimal service [17, 29].

In static road networks, a plethora of approaches have been
developed for answering distance queries, A classical approach
is to run the uni- or bi-directional Dijkstra’s algorithms [23, 26].
However, these methods can take several seconds to answer a
single query on large road networks, which is impractical for
real-world, time-sensitive applications where speed is crucial. To
accelerate query response times, numerous methods have been
developed [1, 2, 4, 6, 8, 9, 12, 13, 15, 16, 18, 19, 21, 24, 25, 33],
which can be broadly classified into two categories: 1) search-
based methods [6, 8, 13, 15, 19, 24, 25, 33], and 2) labelling-based
methods [1, 2, 4, 9, 12, 18, 21]. Among search-based methods,
Contraction Hierarchy (CH) [13] has demonstrated outstanding
performance in practice. The key idea behind CH is to contract
vertices in a total order, from low to high, by introducing short-
cuts among their neighbors to maintain distance information.
These shortcuts drastically reduce the search space during query
time by allowing the algorithm to skip over intermediate nodes
and directly access relevant paths, leading to faster query re-
sponses. Despite its efficiency in pruning the search space, CH
may still require exploring many paths at query time, which can
result in less than optimal performance. To address the limita-
tions of search-based methods, labelling-based methods have
been developed with great success [1, 2, 4, 5, 9, 18, 21, 32]. These
methods precompute distance labels that capture the shortest-
path distances between pairs of vertices. At query time, rather
than performing a search over the graph, the algorithm sim-
ply examines the precomputed labels to retrieve the distances.
Labelling-based methods can answer distance queries signifi-
cantly faster than search-based methods, at the cost of requiring
additional space for storing labels.

Despite the progress made in static road network algorithms,
adapting these methods for dynamic road networks remains a
significant challenge. A common approach is to incrementally
update precomputed structures, such as shortcuts and distance
labels, rather than recomputing them entirely from scratch. How-
ever, in dynamic settings, queries and updates naturally exhibit
a trade-off when relying on pre-computed data structures to
speed up performance. Search-based methods [14, 22, 27] focus
on maintaining shortcuts, leading to faster updates but can result
in significantly slower query times. Conversely, labeling-based
methods provide fast query times by precomputing distance la-
bels [9, 30, 32]. However, they face challenges with slow updates,
as updating these labels in response to network changes is com-
putationally demanding. The complexity of keeping the distance
labels accurate makes labeling-based approaches less efficient for

Series ISSN: 2367-2005 477 10.48786/edbt.2025.38

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.38

r1

bv

a

r2 rk

𝜙(𝑎, 𝑏)

(b)

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

r

bv
𝑑! ",$

𝑑 !
%,
$

𝑑
!
%,&
+
𝜙(𝑎, 𝑏)

𝑑!(𝑟", 𝑎)

𝑑
! (𝑟" ,𝑣)

𝑑!(𝑏, 𝑣)

r1

bv

a
𝜙(𝑎, 𝑏)

𝑑!(𝑏, 𝑣)

(a)

rk

bv

a

𝜙(𝑎, 𝑏)

𝑑!(𝑏, 𝑣)

𝑑!(𝑟", 𝑎) 𝑑!(𝑟#, 𝑎)

𝑑
! (𝑟# ,𝑣)

𝑑
! (𝑟" ,𝑣)

Figure 1: An illustration of searches performed by our dy-
namic algorithms based on triangle inequality (𝑑𝐺 (𝑟𝑖 , 𝑎) +
𝜙 (𝑎, 𝑏)) +𝑑𝐺 (𝑏, 𝑣) ≤ 𝑑𝐺 (𝑟𝑖 , 𝑣), where 𝑖 ∈ [1, 𝑘], 𝜙 (𝑎, 𝑏) is an up-
date, 𝑣 is an affected vertex, and {𝑟1, . . . , 𝑟𝑘 } is a set of ances-
tors: (a) Label searches, one from each ancestor; (b) Pareto
searches combining multiple searches from ancestors.

frequent updates. The inherent trade-off between query perfor-
mance and update efficiency is a key challenge in dynamic road
network algorithms.

Our Ideas. In this work, we aim to develop an efficient solution
for answering distance queries on dynamic road networks by
addressing two key questions: (1) How to choose auxiliary data
structures that balance query and update efficiency? (2) How to
design algorithms that efficiently maintain these auxiliary data
structures to reflect changes on dynamic road networks? We be-
gin by analyzing Hierarchical Cut 2-hop Labelling (HC2L) [12], a
recent method that achieves state-of-the-art results on static road
networks. Despite its impressive performance, we observe that,
due to the presence of shortcuts within partitions, its data struc-
ture introduces inefficiencies in maintaining distance queries in
dynamic road networks. These shortcuts complicate the design
of update mechanisms, making it difficult to efficiently modify
the structure in response to real-time changes. To circumvent
this inefficiency barrier, we do the following:

– We define stable tree hierarchy that exhibits several nice prop-
erties: (1) structural stability: a stable tree hierarchy is struc-
turally independent of edge weights – an important condi-
tion for efficient maintenance [22, 27, 32]; (2) balancedness: a
stable tree hierarchy is still balanced – inheriting from the
balanced tree hierarchy of HC2L [12]; (3) 2-hop common an-
cestors: Given any two vertices, every path between them
contains at least one of their common ancestors. We pro-
pose the Stable Tree Labelling (STL), a labeling method built
on a stable tree hierarchy. One novel and crucial design is
that labels only store distances within subgraphs, not across
the entire graph. This significantly reduces the number of
labels affected by dynamic updates, thereby enhancing the
efficiency of update operations.

– We propose algorithms to efficiently maintain STL from two
different perspectives: one is ancestor-centric, namely Label
Search algorithms, while the other is update-centric, namely
Pareto Search algorithms. Label Search algorithms identify a
set of ancestors that are sufficient to maintain STL and then
perform an efficient search to update affected labels from each
ancestor, as depicted in Figure 1(a). Nonetheless, searches
from different ancestors may share common paths, e.g., paths
between an affected vertex 𝑣 and the vertex 𝑏 incident to an
update (𝑎, 𝑏, 𝜙) depicted in Figure 1(b). Based on this obser-
vation, Pareto Search algorithms improve Label Search algo-
rithms by exploring the interaction between search spaces

of different ancestors, and then combine searches from mul-
tiple ancestors into only two searches, eliminating duplicate
search traversals.

Theoretically, we establish key properties to show the correctness
of our Label Search and Pareto Search algorithms. We also derive
complexity bounds for these two types of algorithms. Empirically,
we evaluate our algorithms on 10 real-world large road networks,
including the whole road network of USA and western Europe
road network. The results show that our algorithms considerably
outperform the state-of-the-art methods. For example, compared
with IncH2H [32], our algorithms perform about three times faster
in query time on all datatsets, and five to seven times faster in
update time on large road networks, while consuming an order
of magnitude less space. Our algorithms are also several orders
of magnitude faster than DTDHL [30] in terms of update time,
while being significantly faster in terms of query processing and
requiring only 25%-30% of space for labelling.

Outline. The rest of the paper is organized as follows. In Sec-
tion 2, we discuss other works that are related to our work. In
Section 3, we present basic notations and discuss state-of-the-art
methods. In Section 4 we present our solution STL. We introduce
two dynamic algorithms for edge weight decrease and increase,
respectively, in Section 5 and analyze their time complexity in
Section 6. Section 7 presents experimental results. Section 8 dis-
cusses the extensions to edge/node insertions/deletions and to
directed road networks. Section 9 concludes the paper.

2 RELATEDWORK
We review existing works for answering distance queries on dy-
namic road networks, which broadly fall into two categories: (1)
shortcut maintenance – maintaining shortcuts used in search-
based methods [14, 22, 27], and (2) labelling maintenance – main-
taining distance labelling used in labelling-based methods [9, 30–
32]. Below, we discuss each category in detail.

Shortcut maintenance. Geisberger et al.[14] proposed a vertex-
centric algorithm that maintains contraction hierarchy (CH) [13]
with minimal shortcuts. Their algorithm first finds vertices af-
fected by dynamic changes and then recontracts these vertices to
update affected shortcuts. This is highly inefficient because recon-
traction has to ensure the minimality of shortcuts - keeping only
shortcuts that satisfy a shortest distance constraint [13]. Later
on, some works [22, 27] followed similar ideas to maintain CH-W
index [21] but without requiring the minimality requirement of
shortcuts. By allowing redundant shortcuts, these methods can
avoid insertion or deletion of shortcuts during maintenance and
only update the weights of affected shortcuts. Accordingly, up-
date time is improved at the cost of slower query time. However,
since CH-W index may potentially create extremely dense struc-
tures on graphs with large treewidth, these approaches limits
their applicability in practice.

Labelling maintenance. Following a different line of work, a
dynamic algorithm, denoted as DynH2H, has been proposed [9],
which maintains H2H [21] to answer distance queries efficiently
under dynamic changes on road networks. Later, Zhang et al. [30]
proposed an algorithm, called dynamic tree decomposition based
hub labelling (DTDHL), which is an optimized version of DynH2H.
As H2H-index constructs labels using CH-W index, DTDHL first
updates shortcuts similar to DCH [22] and then updates labels
via tree decomposition in the top-down manner. Recently, Zhang
et al. [32] studied the theoretical boundedness of dynamic CH

478

Label Distance	Entries
L(1) [5,8,9,6],	[2,12],	[3],	[0]
L(2) [0]
L(3) [3,18,15,16],	[8,9],	[7],	[0]
L(4) [13,0]
L(5) [9,8,0]
L(6) [15,4,8,6],	[0]
L(7) [2,11,8,9],	[1,2],	[0]
L(8) [7,11,13,9],	[6,3],	[6],	[0]
L(9) [3,10,7,8],	[0]
L(10) [11,2,14,0]
L(11) [16,3,9,5],	[1],	[0]
L(12) [8,5,12,3],	[5,9],	[0]
L(13) [14,3,5,11],	[5],	[3],	[0]
L(14) [4,13,10,11],	[3,0]
L(15) [13,6,6,8],	[2],	[0]
L(16) [6,11,3,15],	[9],	[7],	[0]

2, 4, 5, 10

6

12 7 15 11

1 8 1316

9, 14

3

0 1

00 01 10 11

000 001 100 101010

(b) (c)

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

3

2

4

3

4

6

2

3

3

3

9

6

4
4

6

3

2 7

3

3
5

8

2

22

(a)

3

Figure 2: An example road network 𝐺 .

index [22, 27] and proposed IncH2H to maintain H2H index
[9, 30] under edge weight increase and decrease. IncH2H has
achieved the state-of-the-art performance for answering distance
queries on dynamic road networks. However, it suffers from
maintaining a huge index constructed based on CH-W index. As
a result, IncH2H may contain a large number of distance entries
for graphs with large treewidths. Together with auxiliary data
used to speed up index updates, this can lead to huge memory
requirements. For example, the index it maintains for the whole
USA road network is over 300 GB in size.

3 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸, 𝜙) be a road network where 𝑉 is a set of vertices,
and 𝐸 is a set of edges. Each edge (𝑢, 𝑣) ∈ 𝐸 is associated with
a non-negative weight 𝜙 (𝑢, 𝑣) ∈ R≥0. A path is a sequence of
vertices 𝑝 = (𝑣1, 𝑣2, . . . , 𝑣𝑘) where (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for each 1 ≤ 𝑖 <

𝑘 . The weight of a path 𝑝 is defined as 𝜙 (𝑝) = ∑𝑘−1
𝑖=1 𝜙 (𝑣𝑖 , 𝑣𝑖+1).

For two arbitrary vertices 𝑠 and 𝑡 , a shortest path 𝑝 between
𝑠 and 𝑡 is a path starting at 𝑠 and ending at 𝑡 such that 𝜙 (𝑝)
is minimised. The distance between 𝑠 and 𝑡 in 𝐺 , denoted as
𝑑𝐺 (𝑠, 𝑡), is the weight of any shortest path between 𝑠 and 𝑡 . We
use 𝑁𝐺 (𝑣) to denote the set of direct neighbors of a vertex 𝑣 ∈ 𝑉 ,
i.e. 𝑁𝐺 (𝑣) = {(𝑢, 𝜙 (𝑢, 𝑣)) | 𝑢 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸}, and 𝑉 (𝐺) and
𝐸 (𝐺) to refer to the set of vertices and edges in 𝐺 , respectively.
We consider two types of edge weight updates: increases and
decreases. Table 1 summarizes the notations.

Table 1: Summary of Notations

Notation Description

𝐺 = (𝑉 , 𝐸, 𝜙) an undirected and weighted graph
𝐺 ⊕ Δ𝐺 applying a set of edge weight updates Δ𝐺 on 𝐺
𝑁𝐺 (𝑣) the set of neighbors of vertex 𝑣 in 𝐺
T a tree decomposition
𝐻 a balanced tree hierarchy
𝑇 = (N , E, ℓ) a stable tree hierarchy
⪯ vertex partial order induced by 𝑇
Anc(𝑣), Desc(𝑣) set of ancestors or descendants of vertex 𝑣 w.r. t. ⪯
𝐺 [Desc(𝑣)] the subgraph of 𝐺 induced by Desc(𝑣)
𝑑𝐺 (𝑣,𝑢), 𝑑𝑤𝐺 (𝑣,𝑢) distance between 𝑣 and 𝑢 in 𝐺 or 𝐺 [Desc(𝑤)]
𝜏 (𝑣) the label index of a vertex 𝑣 (i.e., |Anc(𝑣) |)
𝐿(𝑣) the label of a vertex 𝑣
𝐿𝑣 [𝑟] the distance from vertex 𝑣 to vertex 𝑟 in 𝐿(𝑣)
Lca(𝑣,𝑢), Ca(𝑣,𝑢) the (lowest) common ancestors of 𝑣 and 𝑢 in 𝑇
𝑃𝐺 (𝑣,𝑢), 𝑃𝑤𝐺 (𝑣,𝑢) shortest paths between 𝑣 and 𝑢 in 𝐺 or 𝐺 [Desc(𝑤)]

In the following, we first analyze Incremental Hierarchical
2-Hop (IncH2H) [32], the state-of-the-art method on dynamic
road networks. Then, we present a recent method that achieves
the state-of-the-art performance on static road networks, called

Hierarchical Cut 2-hop Labelling (HC2L) [12], and discuss the
limitations of extending it on dynamic road networks.

3.1 Incremental Hierarchical 2-Hop
Incremental Hierarchical 2-Hop (IncH2H) [32] maintains H2H-
Index to answer distance queries on dynamic road networks.

Construction. H2H-Index is a 2-hop labelling constructed upon a
vertex hierarchy, which is obtained via tree decomposition based
on CH-W index [21]. Let 𝜋 be a total order on𝑉 (𝐺) and𝐺𝑆 be the
graph of CH-W index over 𝐺 . H2H-Index first constructs a tree
decompositionT by forming a tree node𝑋 (𝑣) for each contracted
vertex 𝑣 ∈ 𝑉 (𝐺𝑆), which contains 𝑣 and all its neighbours𝑁𝐺𝑆 (𝑣)
with shortcuts {(𝑣,𝑢) |𝑢 ∈ 𝑁𝐺𝑆 (𝑣)}. Then the tree node 𝑋 (𝑢) of
the vertex 𝑢 ∈ 𝑋 (𝑣) \ {𝑣}, where 𝑢 is the lowest ranked vertex in
𝑋 (𝑣), is assigned as the parent of𝑋 (𝑣). This construction ensures
that for each 𝑣 ∈ 𝑉 (𝐺), all vertices in 𝑋 (𝑣) are its ancestors in
T . Another important property of T is that every shortest path
between any two vertices 𝑠 and 𝑡 must pass through the lowest
common ancestor of 𝑠 and 𝑡 in T . Then, a 2-hop labelling is
constructed using T such that the label 𝐿(𝑣) of each vertex 𝑣 ∈
𝑉 (𝐺) consists of three arrays: (i) an ancestor array [𝑤1, . . . ,𝑤𝑘]
representing the path from the root to 𝑣 in T , (ii) a distance array
[𝛿𝑣𝑤1 , . . . , 𝛿𝑣𝑤𝑘] where 𝛿𝑣𝑤𝑖 = 𝑑𝐺 (𝑣,𝑤𝑖) and {𝑤1, . . . ,𝑤𝑘 } is the
set of vertices that are ancestors of 𝑣 in T , and (iii) a position array
[𝑖1, . . . , 𝑖𝑘] that stores positions of [𝑤1, . . . ,𝑤𝑘] in T , where the
position of𝑤𝑖 is defined as its depth in T .
Maintenance. H2H index is dynamicallymaintained in two phases:
1) shortcut maintenance, and 2) labelling maintenance. The short-
cut maintenance phase identifies and updates the weights of
affected shortcuts in 𝐺𝑆 . The labelling maintenance phase up-
dates affected labels in 𝐿 with the help of shortcut graph 𝐺𝑆 .
Affected shortcuts in 𝐺𝑆 are used to update the labels of affected
vertices w.r.t. a set of ancestors. That is, for an affected short-
cut ⟨𝑢, 𝑣⟩ ∈ 𝐺𝑆 , it finds all ancestors 𝑎 whose distances to 𝑢
have been affected. Afterwards H2H-Index iteratively processes
descendants of 𝑢 which are further affected by the changes in
distances between 𝑎 and 𝑢.

Querying. Given any two vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) and their lowest
common ancestor Lca(𝑠, 𝑡) = 𝑎 in T , 𝑑𝐺 (𝑠, 𝑡) is computed as

𝑑𝐺 (𝑠, 𝑡) =min{𝛿𝑠𝑤𝑖 + 𝛿𝑡𝑤𝑖 | 𝛿𝑠𝑤𝑖 = 𝐿(𝑠).𝑑𝑖𝑠𝑡 (𝑖), (1)
𝛿𝑡𝑤𝑖 = 𝐿(𝑡) .𝑑𝑖𝑠𝑡 (𝑖), 𝑖 ∈ 𝐿(𝑎) .𝑝𝑜𝑠, 𝑎 = Lca(𝑠, 𝑡)}.

Example 3.1. Figure 3 shows a tree decomposition T of 𝐺
depicted in Figure 2 and the labels of vertices {12, 11, 3} in H2H-
Index. 𝐿(11) stores an ancestor array [16, 15, 12, 5, 13, 11] contain-
ing all ancestors of 11, a distance array [12, 8, 5, 14, 6, 0] storing
the distances from vertex 11 to its ancestors, and a position array
[2, 3, 5, 6] which represents the positions of nodes {11, 13, 12, 15}
inside the tree node of vertex 11 in T . Under edge weight up-
dates, ancestor and position arrays remain intact while distance
arrays are maintained. Suppose the weight of an edge (1, 9) has
increased, IncH2H first updates the weights of all affected short-
cuts {(1, 9), (9, 12)} in 𝐺𝑆 starting from the tree node of 1 in T .
Then, it iteratively identifies and updates affected labels of ver-
tices {1, 2, 3, 5, 7, 8, 9, 10} w.r.t. affected shortcuts {(1, 9), (9, 12)}.
For a distance query between vertices 3 and 11, Lca(3, 11) = 5 is
first obtained, and then using the distances in 𝐿(3) and 𝐿(11) at
the positions [1, 2, 3] in 𝐿(5),𝑑𝐺 (3, 11) = 18 is obtained according
to eq. (1).

479

12 15 16

5 12 15 16
3

610

9 5 12 16
9

73 13 5 12 15
2

58

11 13 12 15
8

5614 9 12 16
13

115

6 11 13 15
2

764 11 13 12
2

337 14 9 16
7

26

10 4 11 12
3

34

7 13

1 9 124 3

2 7 162 3

3 2 73 4

8 14 129 2

4 16

anc(11) 16,	15,	12,	5,	13,	11
dis(11) 12,	8,	5,	14,	6,	0
pos(11) 2,	3,	5,	6

anc(12) 16,	15,	12
dis(12) 13,	7,	0
pos(12) 1,	2,	3

anc(3) 16,	15,	12,	5,	9,	14,	7,	2,	3
dis(3) 6,	10,	13,	9,	6,	10,	4,	3,	0
pos(3) 7,	8,	9

16

15

Figure 3: An illustration of H2H-Index.

3.2 Hierarchical Cut 2-Hop Labelling
Very recently, Hierarchical Cut 2-hop Labelling (HC2L) [12] was
proposed, which exploits a vertex hierarchy by leveraging recur-
sive balanced cuts on a road network and has shown to signifi-
cantly outperform H2H-Index on static road networks.

Construction. Unlike H2H-Index, HC2L [12] develops a recursive
algorithm to find balanced cuts that partition a road network into
smaller components. The resultant cuts are arranged to form a
balanced tree hierarchy which defines a vertex-quasi order ⪯ on
𝑉 (𝐺). A balanced tree hierarchy 𝐻 over𝐺 has the nice property
that each internal node of 𝐻 is a separator between its left and
right subtrees. This allows to leverage the least common ancestor
of two vertices 𝑠 and 𝑡 in 𝐻 to find vertices that separates them.
A 2-hop labelling 𝐿 is constructed upon 𝐻 by computing 𝐿(𝑣) =
[𝛿𝑣𝑤1 , . . . , 𝛿𝑣𝑤𝑘] for each 𝑣 ∈ 𝑉 (𝐺), where each 𝛿𝑣𝑤𝑖 = 𝑑𝐺 (𝑣,𝑤𝑖)
denote the distance to 𝑣 from its ancestors {𝑤1, . . . ,𝑤𝑘 }.
Querying. Given any two vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) and Lca(𝑠, 𝑡) in 𝐻 ,
the distance between 𝑠 and 𝑡 is computed as the minimum value
of distances stored in 𝐿(𝑠) and 𝐿(𝑡) to vertices in Lca(𝑠, 𝑡) as

𝑑𝐺 (𝑠, 𝑡) =𝑚𝑖𝑛{𝛿𝑠𝑟 + 𝛿𝑡𝑟 | (2)
𝛿𝑠𝑟 ∈ 𝐿(𝑠), 𝛿𝑡𝑟 ∈ 𝐿(𝑡), 𝑟 ∈ Lca(𝑠, 𝑡)}.

Example 3.2. Figure 4 illustrates a balanced tree hierarchy
along with the labels of vertices {9, 14, 11, 16} in HC2L for 𝐺
shown in Figure 2. The distance between two vertices 11 and
16 can be obtained via the Lca(11, 16) = {15}. The level 1 of
Lca(11, 16) is first computed using bitstrings 1000 of 11 and 11
for 16. Then using the cut distances stored at level 1 in 𝐿(11) and
𝐿(16), 𝑑𝐺 (11, 16) = 12.

Discussion. Despite achieving the state-of-the-art performance
on dynamic road networks, IncH2H has drawbacks. It constructs
a tree decomposition based on CH-W index [22], which often
leads to a large height and width. Consequently, the index size
of IncH2H can be huge which may hinder IncH2H to efficiently
perform maintenance. IncH2H also requires a complex mecha-
nism for computing the least common ancestor of two vertices,
which degrades query performance. In contrast, HC2L exploits

balanced tree structures, significantly outperforming IncH2H for
answering distance queries on static road networks. However,
on dynamic road networks H2CL has a major drawback. Since
HC2L adds shortcut edges to ensure the preservation of distances
when constructing a balanced tree hierarchy, maintaining such a
balanced tree hierarchy incrementally requires shortcut edges
to be added (or removed). This would make cuts at the lower
levels of a balanced tree hierarchy no longer vertex separators,
and large portions of the balanced tree hierarchy and the labels
have to be reconstructed. As a result, maintaining a balanced tree
hierarchy to reflect dynamic changes on 𝐺 is expensive.

2 4 5 10

9 14 15

12 7 6 16

1 8 3 13

11

0 1

00 01 10 11

000 001 010 100

1000

dis(11) [15,3,14,3],	[8],	[6],	[6],	[0]

dis(9) [4,9,3,10],	[0]
dis(14) [8,13,8,14],	[5,0]

dis(16) [3,9,3,15],	[4],	[0]

Figure 4: An illustration of HC2L framework.

4 STABLE TREE LABELLING
In this section, we present a simple yet efficient labelling method
which alleviates limitations of IncH2H to support fast query
processing and maintenance on dynamic road networks.

Stable Tree Hierarchy. Below, we define a tree hierarchy over
𝑉 (𝐺) without any shortcuts. This eliminates expensive mainte-
nance of shortcuts for dynamic changes and significantly reduces
construction time. Compared with [12], the omission of shortcuts
in our work leads to smaller cuts at lower levels as the subgraphs
remain sparse, accordingly reducing both the number of common
ancestors and overall labelling size.

Definition 4.1 (Stable Tree Hierarchy). A stable tree hierarchy is
a binary tree𝑇 = (N , E, ℓ), whereN is a set of tree nodes, E is a
set of tree edges, and ℓ : 𝑉 (𝐺) → N is a total surjective function,
satisfying the following conditions:

(1) Each 𝑁 ∈ N satisfies

|𝑇↓ (𝑁𝑙) |, |𝑇↓ (𝑁𝑟) | ≤ (1 − 𝛽) · |𝑇↓ (𝑁) |
where 0 < 𝛽 ≤ 0.5, 𝑇↓ (𝑁) denotes a subtree rooted at
𝑁 , and 𝑁𝑙 and 𝑁𝑟 are the left and right children of 𝑁 ,
respectively.

(2) For any two vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), the following is satisfied:
𝑝 ∈ 𝑃𝐺 (𝑠, 𝑡) =⇒ 𝑉 (𝑝) ∩ Ca(𝑠, 𝑡) ≠ ∅

where 𝑃𝐺 (𝑠, 𝑡) is the set of all shortest paths between 𝑠
and 𝑡 in𝐺 , and Ca(𝑠, 𝑡) is the set of vertices in all common
ancestors of ℓ (𝑠) and ℓ (𝑡) in 𝑇 .

Example 4.2. Consider two vertices 11 and 13 in 𝐺 shown in
Figure 2 and the corresponding stable tree hierarchy 𝑇 shown in
Figure 5(a). We have Ca(11, 13) = {2, 4, 5, 10, 6} and ⟨11, 4, 13⟩ ∈
𝑃𝐺 (𝑠, 𝑡) contains a vertex 4 ∈ Ca(11, 13).

480

Labelling Construction. A stable tree hierarchy defines a par-
tial order between tree nodes, which can be expanded to vertices
by imposing an arbitrary total order between vertices associated
with the same tree node.

Definition 4.3 (Vertex Partial-Order). Let 𝑇 be a stable tree
hierarchy, and ⪯𝑡 an arbitrary total order on 𝑉 . Then𝑤 ⪯ 𝑣 iff
ℓ (𝑤) is a strict ancestor of ℓ (𝑣), or ℓ (𝑤) = ℓ (𝑣) and𝑤 ⪯𝑡 𝑣 .

Given any vertex 𝑣 ∈ 𝑉 (𝐺), the ancestors of 𝑣 w.r.t. ⪯ is the
set of all preceding vertices, i.e., Anc(𝑣) = {𝑤 ∈ 𝑉 (𝐺) | 𝑤 ⪯ 𝑣}.

Definition 4.4 (Label Index). Let 𝑣 ∈ 𝑉 (𝐺). The label index 𝜏 (𝑣)
of vertex 𝑣 is the position of 𝑣 w.r.t. ⪯, i.e., 𝜏 (𝑣) = |Anc(𝑣) |.

Example 4.5. Consider Figure 5(a) again, the label index 𝜏 (5)
of vertex 5 is 2 because there are 2 vertices {2, 4} preceding vertex
5. Similarly, the label index of vertex 12 is 6 because there are 6
vertices {2, 4, 5, 10, 9, 14} preceding vertex 12.

Let 𝑑𝑤𝐺 (𝑣,𝑢) denote the distance between 𝑣 and 𝑢 in the sub-
graph of 𝐺 induced by Desc(𝑤) = {𝑥 ∈ 𝑉 (𝐺) | 𝑤 ⪯ 𝑥}.

Definition 4.6 (Stable Tree Labelling). Let 𝑇 be a stable tree
hierarchy over𝐺 . A stable tree labelling (STL) over𝑇 is a distance
labelling 𝐿 = {𝐿(𝑣) | 𝑣 ∈ 𝑉 (𝐺)} where the label 𝐿(𝑣) of each ver-
tex 𝑣 is defined as a distance array 𝐿(𝑣) = [𝛿𝑣𝑤1 , . . . , 𝛿𝑣𝑤𝑘], with
Anc(𝑣) = {𝑤1, . . . ,𝑤𝑘 },𝑤1 ⪯ . . . ⪯ 𝑤𝑘 , and 𝛿𝑣𝑤𝑖 = 𝑑𝑤𝑖

𝐺 (𝑣,𝑤𝑖).
Unlike prior work, distances stored in our labels are not dis-

tances in 𝐺 , but distances within subgraphs. This restriction
simplifies not only label construction but also label updates. In
particular, a label can only be affected by an edge weight update
if that edge lies in the relevant subgraph, and thus fewer labels
need to be updated. Despite this, stable tree labellings satisfy the
2-hop cover property.

Lemma 4.7. For any vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), there exists at least
one vertex 𝑟 ∈ Anc(𝑠) ∩ Anc(𝑡) and distance entries 𝛿𝑠𝑟 ∈ 𝐿(𝑠)
and 𝛿𝑡𝑟 ∈ 𝐿(𝑡) such that 𝛿𝑠𝑟 + 𝛿𝑡𝑟 = 𝑑𝐺 (𝑠, 𝑡).

Proof. Let 𝑝 ∈ 𝑃𝐺 (𝑠, 𝑡) and 𝑟 be the vertex in 𝑝 with the
minimal label index 𝜏 (𝑟). Then 𝑟 ⪯ 𝑣 for all 𝑣 ∈ 𝑉 (𝑝) by Defini-
tion 4.4. Thus 𝑝 lies in Desc(𝑟). It follows that 𝛿𝑠𝑟 +𝛿𝑡𝑟 = 𝜙 (𝑝) =
𝑑𝐺 (𝑠, 𝑡). □

Distance Queries. A distance query 𝑄 (𝑠, 𝑡) is answered as:

𝑑𝐺 (𝑠, 𝑡) = min{𝛿𝑠𝑟 + 𝛿𝑡𝑟 | 𝛿𝑠𝑟 ∈ 𝐿(𝑠), 𝛿𝑡𝑟 ∈ 𝐿(𝑡),
𝑟 ∈ Anc(𝑠) ∩ Anc(𝑡)}. (3)

Using all common ancestors as hubs can make query answer-
ing more expensive, especially for local queries. However, as label
entries of common ancestors are stored consecutively in memory,
this leads to highly efficient caching and avoids extra work as-
sociated with looking up which label entries to compare. We can
quickly find Ca(𝑠, 𝑡) using the level of Lca(𝑠, 𝑡) in the stable tree
hierarchy. As in [12], we compute the level of Lca(𝑠, 𝑡) via bit-
strings in𝑂 (1) time, specifically as the length of the common pre-
fix of the bitstrings of 𝑠 and 𝑡 . The distance pairs used in eq. (3) can
then be found at levels less than or equal to the level of Lca(𝑠, 𝑡).

Example 4.8. Consider a distance query𝑄 (11, 16) on𝐺 shown
in Figure 2. The bitstrings of vertices 11 and 16 are 11 and 100, re-
spectively, shown in Figure 5(a). The level 𝑙 of Lca(11, 16) is 1 and
Ca(11, 16) = {2, 4, 5, 10, 6} at levels 0 ≤ 𝑙 ≤ 1, 𝑑𝐺 (11, 16) = 12 is
obtained using 𝐿(11) and 𝐿(16) w.r.t. Ca(11, 16) in Equation 3.

4 5 10

9 14 6

12 7 15 11

1 8 3 16 13

0 1

00 01 10 11

000 001 010 100 101

Label Distance	Entries
L(1) [8,5,7,6],	[4,14],	[3],	[0]
L(2) [0]
L(3) [3,15,9,16],	[6,10],	[4],	[0]
L(4) [12,0]
L(5) [6,11,0]
L(6) [9,7,8,9],	[0]
L(7) [2,11,5,12],	[2,6],	[0]
L(8) [13,4,12,5],	[9,9],	[2],	[0]
L(9) [4,9,3,10],	[0]
L(10) [14,4,13,0]
L(11) [15,3,14,3],	[6],	[0]
L(12) [11,2,10,3],	[7,11],	[0]
L(13) [9,3,8,13],	[4],	[2],	[0]
L(14) [8,13,8,14],	[5,0]
L(15) [7,5,6,11],	[2],	[0]
L(16) [3,9,3,15],	[6],	[4],	[0]

2

(b)(a)

Figure 5: Stable Tree Hierarchy 𝑇 and Labelling 𝐿.

Remark 1. To construct stable tree hierarchies, we modify the
recursive bi-partitioning algorithm presented in [12] to avoid
the addition of shortcuts for distance preservation. We compute
a partition bitstring for each cut 𝑁 and compute label index
𝜏 (𝑟) and distance 𝑑𝑟𝐺 (𝑣, 𝑟) within the subgraph 𝐺 [Desc(𝑟)] for
each 𝑟 ∈ 𝑁 and 𝑣 ∈ Desc(𝑟). Thus, by omitting shortcuts, our
labels store only distances within subgraphs, which suffices by
Lemma 4.7. Furthermore, omitting shortcuts results in smaller
cuts, reducing both number of common ancestor vertices and
overall labeling size.

5 DYNAMIC ALGORITHMS
In this section, we present two efficient algorithms to maintain
stable tree labelling: one is called Label Search algorithm and the
other is called Pareto Search algorithm. The key idea of these
algorithms is to identify affected labels to update by performing
pruned searches w.r.t. ancestors starting from an updated edge
using triangle inequality illustrated in Figure 1.

Definition 5.1 (Affected Vertex). A vertex 𝑣 is affected w.r.t. an
ancestor 𝑟 by an update on edge weight iff the set of shortest
paths between 𝑣 and 𝑟 or their length changes.

Lemma 5.2. Let (𝑎, 𝑏, 𝜙𝑜𝑙𝑑) and (𝑎, 𝑏, 𝜙𝑛𝑒𝑤) be an edge before
and after the update. If 𝜙𝑜𝑙𝑑 < 𝜙𝑛𝑒𝑤 then 𝑣 is affected w.r.t. 𝑟 iff
𝑑𝐺 (𝑟, 𝑣) = 𝑑𝐺 (𝑟, 𝑎) + 𝜙𝑜𝑙𝑑 + 𝑑𝐺 (𝑏, 𝑣). If 𝜙𝑜𝑙𝑑 > 𝜙𝑛𝑒𝑤 then 𝑣 is
affected w.r.t. 𝑟 iff 𝑑𝐺 (𝑟, 𝑣) ≥ 𝑑𝐺 (𝑟, 𝑎) + 𝜙𝑛𝑒𝑤 + 𝑑𝐺 (𝑏, 𝑣).

LetΔ𝐺 be a set of edgeweight updates on𝐺 . For clarity, we also
use 𝐿𝑣 [𝑟] to refer to the distance from 𝑣 to an ancestor 𝑟 ∈ Anc(𝑣)
stored in the label 𝐿(𝑣), i.e., 𝐿𝑣 [𝑟] = 𝛿𝑣𝑟 where 𝛿𝑣𝑟 ∈ 𝐿(𝑣).

5.1 Label Search Algorithm
The idea of Label Search algorithm is to perform a single search
for updates w.r.t. each ancestor of affected vertices. Algorithms
1 and 2 describe the steps for weight decrease and increase, re-
spectively.

The lemma below states that, for two vertices incident to any
edge, one must precede the other in a stable tree hierarchy.

Lemma 5.3. Let 𝑇 be a stable tree hierarchy on 𝐺 . If (𝑢, 𝑣) ∈
𝐸 (𝐺), then either 𝑢 ⪯ 𝑣 or 𝑣 ⪯ 𝑢 hold on 𝑇 .

5.1.1 EdgeWeight Decrease. For the decrease case, by Lemma 5.3,
Algorithm 1 first partitions updates (𝑎, 𝑏, 𝜙𝑛𝑒𝑤) ∈ Δ𝐺 w.r.t. each
ancestor 𝑟 ∈ Anc(𝑎) and push them to their corresponding pri-
ority queue 𝑄𝑟 (Lines 2-7). Then a search w.r.t. 𝑄𝑟 progresses as

481

Algorithm 1: Label Search (Decrease)
1 Function Search-and-Repair(𝐿, 𝑇 , Δ𝐺)
2 foreach (𝑎, 𝑏, 𝜙𝑛𝑒𝑤) ∈ Δ𝐺 with 𝜏 (𝑏) > 𝜏 (𝑎) do
3 foreach 𝑟 ∈ [0, 𝜏 (𝑎)] do
4 if 𝐿𝑎 [𝑟] + 𝜙𝑛𝑒𝑤 < 𝐿𝑏 [𝑟] then
5 add

(
𝐿𝑎 [𝑟] + 𝜙𝑛𝑒𝑤 , 𝑏

)
into 𝑄𝑟

6 else if 𝐿𝑏 [𝑟] + 𝜙𝑛𝑒𝑤 < 𝐿𝑎 [𝑟] then
7 add

(
𝐿𝑏 [𝑟] + 𝜙𝑛𝑒𝑤 , 𝑎

)
into 𝑄𝑟

8 foreach 𝑄𝑟 do
9 foreach (𝑑, 𝑣) ∈ 𝑄𝑟 in increasing order of 𝑑 do
10 if 𝑑 < 𝐿𝑣 [𝑟] then
11 𝐿𝑣 [𝑟] ← 𝑑

// visit neighbors
12 foreach (𝑛, 𝜙𝑛) ∈ 𝑁 (𝑣) with 𝜏 (𝑛) > 𝜏 (𝑟) do
13 if 𝑑 + 𝜙𝑛 < 𝐿𝑛 [𝑟] then
14 add (𝑑 + 𝜙𝑛, 𝑛) to 𝑄𝑟

Algorithm 2: Label Search (Increase)
1 Function Search(𝐿, 𝑇 , Δ𝐺)
2 foreach (𝑎, 𝑏, 𝜙𝑜𝑙𝑑) ∈ Δ𝐺 with 𝜏 (𝑏) > 𝜏 (𝑎) do
3 foreach 𝑟 ∈ [0, 𝜏 (𝑎)] do
4 if 𝐿𝑎 [𝑟] + 𝜙𝑜𝑙𝑑 = 𝐿𝑏 [𝑟] then
5 add

(
𝐿𝑎 [𝑟] + 𝜙𝑜𝑙𝑑 , 𝑏

)
into 𝑄𝑟

6 else if 𝐿𝑏 [𝑟] + 𝜙𝑜𝑙𝑑 = 𝐿𝑎 [𝑟] then
7 add

(
𝐿𝑏 [𝑟] + 𝜙𝑜𝑙𝑑 , 𝑎

)
into 𝑄𝑟

8 foreach 𝑄𝑟 do
9 foreach (𝑑, 𝑣) ∈ 𝑄𝑟 in increasing order of 𝑑 do
10 if 𝑣 ∉ 𝑉aff then
11 add 𝑣 into 𝑉aff

// visit neighbors
12 foreach (𝑛, 𝜙𝑛) ∈ 𝑁 (𝑣) with 𝜏 (𝑛) > 𝜏 (𝑟) do
13 if 𝑑 + 𝜙𝑛 = 𝐿𝑛 [𝑟] then
14 add (𝑑 + 𝜙𝑛, 𝑛) to 𝑄𝑟

15 Repair(𝑟,𝑉aff)

16 Function Repair(𝑟,𝑉aff)
17 foreach 𝑣 ∈ 𝑉aff do
18 𝐿𝑣 [𝑟] ← ∞
19 𝐿𝑣 [𝑟] ← min

{
𝐿𝑛 [𝑟] + 𝜙

���� (𝑛, 𝜙) ∈ 𝑁 (𝑣) \𝑉affwith 𝜏 (𝑛) > 𝜏 (𝑟)
}

20 if 𝐿𝑣 [𝑟] ≠ ∞ then
21 add (𝐿𝑣 [𝑟], 𝑣) into 𝑄𝑟

22 foreach (𝑑, 𝑣) ∈ 𝑄𝑟 in increasing order of 𝑑 do
23 if 𝑑 < 𝐿𝑣 [𝑟] then
24 𝐿𝑣 [𝑟] ← 𝑑

25 foreach (𝑛, 𝜙𝑛) ∈ 𝑁 (𝑣) with 𝜏 (𝑛) > 𝜏 (𝑟) do
26 if 𝑑 + 𝜙𝑛 < 𝐿𝑛 [𝑟] then
27 add (𝑑 + 𝜙𝑛, 𝑛) to 𝑄𝑟

follows. Starting from affected vertices in 𝑄𝑟 that are incident to
updated edges, we repeatedly explore their neighbors that have a

larger label index than 𝑟 in order to find affected vertices whose
distances to 𝑟 are changed using Lemma 5.2 (Lines 10-12). As
edge weight decrease only shrinks lengths of the shortest-paths,
the new distance 𝑑 from an affected node 𝑣 to 𝑟 becomes known
when it is processed at Line 7, which allows us to immediately
update its label if the length of a newly found path is shorter
than the existing one at Line 9.

Two important aspects contribute to the efficiency of the above
process: (1) 𝑄𝑟 processes vertices in increasing order of their
distances to 𝑟 , ensuring that each vertex is processed at most once.
(2) Only the label index 𝜏 (𝑟) is required when looking up 𝐿𝑣 [𝑟].

5.1.2 EdgeWeight Increase. For the increase case, Algorithm 2
also groups updates Δ𝐺 into the priority queues 𝑄𝑟 w.r.t. each
ancestor 𝑟 ∈ Anc(𝑎) (Lines 2-7). Then starting from 𝑄𝑟 , we iter-
atively visit neighbors with label index larger than 𝑟 to identify
a set of affected vertices 𝑉𝐴𝐹𝐹 (Lines 6-12). However, different
from the decrease case, we cannot repair the label of an affected
vertex immediately, as its new distance value to 𝑟 is unknown
at Line 7. Instead, we employ an efficient repairing mechanism
(i.e., Function Repair) which repairs the labels for all affected
vertices once in only one go. Specifically, we first compute dis-
tance bounds of vertices in 𝑉𝐴𝐹𝐹 w.r.t. 𝑟 using their unaffected
neighbors that have a label index larger than 𝑟 (Line 17).

Definition 5.4 (Distance Bound). Let 𝑉𝐴𝐹𝐹 ⊆ {𝑢 ∈ 𝑉 (𝐺) | 𝑢 ≺
𝑟 } and 𝑣 ∈ 𝑉𝐴𝐹𝐹 . The distance bound of (𝑣, 𝑟) w.r.t. 𝑉𝐴𝐹𝐹 is:

𝑑 (𝑣, 𝑟,𝑉𝐴𝐹𝐹) := min
{
𝐿𝑢 [𝑟] + 𝜙

���� (𝑢, 𝜙) ∈ 𝑁 (𝑣) \𝑉𝐴𝐹𝐹and 𝜏 (𝑢) > 𝜏 (𝑟)
}

The following lemma allows us to compute the distance of
vertices in 𝑉𝐴𝐹𝐹 from ancestor 𝑟 using their distance bounds.

Lemma 5.5. Let 𝑉𝐴𝐹𝐹 ⊆ {𝑢 ∈ 𝑉 | 𝑢 ≺ 𝑟 } and 𝑣 ∈ 𝑉𝐴𝐹𝐹 with
minimal distance bound. Then 𝐿𝑣 [𝑟] = 𝑑 (𝑣, 𝑟,𝑉𝐴𝐹𝐹).

We enqueue the affected vertices with finite distance bounds
into 𝑄𝑟 (Lines 18-19). Then we start processing vertices in 𝑄𝑟 in
increasing order of their distance bounds and repeatedly enqueue
their affected neighbors (Lines 23-25) into the queue.

Example 5.6. Suppose that the weight of an edge (1, 9) in Fig-
ure 2 is decreased from 4 to 1. The set of ancestors to which
distances need an update are {2, 4, 5, 10, 9} as 𝜏 (9) < 𝜏 (1). Ac-
cordingly, the priority queues w.r.t. these ancestors are 𝑄2 =
{(5, 1)}, 𝑄4 = {(6, 9)}, 𝑄5 = {(4, 1)}, 𝑄10 = {(7, 9)} and 𝑄9 =
{(1, 1)}. Figure 6(a) illustrate searches from 𝑄2 and 𝑄5, which
start at the first affected vertex 1 highlighted in blue, and itera-
tively find and repair the labels of 6 affected vertices {1, 4, 8, 10, 11,
12}. The old and new distances w.r.t. ancestors {2, 5} are shown
next to each affected vertex in the form “𝑜𝑙𝑑 → 𝑛𝑒𝑤”. Note that
the label of vertex 4 does not store distance to 5, as 5 is not an
ancestor of 4, and the distance to 5 at vertex 11 is updated to 13
as our search is restricted to 𝐺 [Desc(5)].

Now consider the weight of (1, 9) is increased from 4 to 7,
the set of ancestors remains the same, with the priority queues
changed to 𝑄2 = {(8, 1)}, 𝑄4 = {(9, 9)}, 𝑄5 = {(7, 1)}, 𝑄10 =
{(10, 9)} and 𝑄9 = {(4, 1)}. The searches from 𝑄2 and 𝑄5, il-
lustrated in Figure 6(b)-(c), first mark vertices {1, 8, 10, 12} as
affected in Figure 6(b), and then repair their distances w.r.t. {2, 5}
in Figure 6(c). In Figure 6(c), the distance from 2 to vertex 10 is set
to 16, as the previous shortest-path passing through the updated
edge (1, 9) is no longer the shortest one. Note again that we do
not update the distance between 5 and 10 to 15, the distance in

482

2: 8 → 11
5: 	7 → 10

2: 11 → 14
5: 10 → 13

2: 13 → 16
5: 12 → 15

2: 14 → 17
5: 13 → 16

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

3

2

4

3

4

6

2

3

3 3

9

6

1 4

6

3

2 7

3

3
5

8

2

2
2

3

2: 11 → 8
5: 10 → 7

2: 8 → 5
5: 	7 → 4

2: 13 → 10
5: 12 → 9

2: 15 → 13
5: 14 → 13

2: 14 → 11
5: 15 → 10

2: 12 → 10

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

3

2

4

3

4

6

2

3

3 3

9

6

7 4

6

3

2 7

3

3
5

8

2

2
2

3

2: 8 → 11
5: 	7 → 10

2: 11 → 14
5: 10 → 13

2: 13 → 16
5: 12 → 15

2: 14 → 16
5: 13 → 16

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

3

2

4

3

4

6

2

3

3 3

9

6

7 4

6

3

2 7

3

3
5

8

2

2
2

3

(a)

(b) (c)

2: 8 → 11
5: 	7 → 10

2: 11 → 14
5: 10 → 13

2: 13 → 16
5: 12 → 15

2: 14 → 17
5: 13 → 16

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

3

2

4

3

4

6

2

3

3 3

9

6

1 4

6

3

2 7

3

3
5

8

2

2
2

3

2: 11 → 8
5: 10 → 7

2: 8 → 5
5: 	7 → 4

2: 13 → 10
5: 12 → 9

2: 15 → 13
5: 14 → 12

2: 14 → 11
5: 15 → 10

2: 12 → 10

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

3

2

4

3

4

6

2

3

3 3

9

6

7 4

6

3

2 7

3

3
5

8

2

2
2

3

2: 8 → 11
5: 	7 → 10

2: 11 → 14
5: 10 → 13

2: 13 → 16
5: 12 → 15

2: 14 → 16
5: 13 → 16

3

2

7

16

5

6

10
1

9

14

8

15

13

4
12

11

3

2

4

3

4

6

2

3

3 3

9

6

7 4

6

3

2 7

3

3
5

8

2

2
2

3

(a)

(b) (c)

Figure 6: Searches w.r.t. ancestors {2, 5} performed by our algorithms: (a) searches for an edge weight decrease, and (b)
& (c) searches for an edge weight increase, where yellow vertices denote ancestors, green vertices denote those being
affected/repaired, and blue vertices denote the starting point of the searches.

𝐺 , as our index stores distances in subgraphs, and ancestor 4 lies
outside of 𝐺 [Desc(5)].

5.2 Pareto Search Algorithm
Observation.The Label Search algorithm performsmultiple searches
from different ancestors. This may lead to common sub-paths
being traversed multiple times. The Pareto Search algorithm aims
to eliminate duplicate searches by combining searches from all
ancestors into only two searches, starting from the two endpoints
of an updated edge. Specifically, for an update (𝑎, 𝑏, 𝜙𝑛𝑒𝑤), the
distance between an ancestor 𝑟 and vertex 𝑣 changes if we have
𝑑 (𝑟, 𝑣) = 𝑑 (𝑟, 𝑎) + 𝑑 (𝑎, 𝑣) or 𝑑 (𝑟, 𝑣) = 𝑑 (𝑟, 𝑏) + 𝑑 (𝑏, 𝑣), depending
on whether 𝑟 is closer to 𝑎 or 𝑏. Suppose that 𝑎 is closer to 𝑟 .
Since the distance from 𝑟 to 𝑎 is already stored in the label 𝐿𝑎 [𝑟]
and does not change, we only need to compute the new distance
from 𝑎 to 𝑣 once for all ancestors and repair 𝐿𝑣 [𝑟] accordingly.

Example 5.7. Consider a weight decrease of edge (1, 9) in Fig-
ure 2 by one. As the edge (1, 9) lies on the shortest paths from
ancestors 2 and 5 to nodes {1, 8, 10, 12}, the update will affect
the distances stored between them. It also lies on the shortest
paths from ancestors 4 and 10 to nodes {3, 7, 9, 14}. Consider
now the shortest path trees rooted at 2 and 5 to affected nodes
{1, 8, 10, 12}, shown in Figure 7 – their subtrees rooted at 9 are
identical. The same holds for the shortest path trees rooted at 4
and 10 to nodes {3, 7, 9, 14} and their subtrees rooted at 1. Next,
we compute the new distances between 9 and nodes {1, 8, 10, 12}
starting from vertex 9. Distances from ancestors 2 and 5 to those
nodes are then computed by adding their distances from 9 to the
distances from 2 or 5 to 9, respectively. The latter are stored in
the label of vertex 9.

Unfortunately, things are not quite as simple as the last two
examples suggest. Recall that our labels do not store distances in
the entire graph𝐺 , but distances in subgraphs of𝐺 – specifically,
𝛿𝑣𝑤 ∈ 𝐿(𝑣) is the distance between 𝑣 and𝑤 in𝐺 [Desc(𝑤)]. This
restriction simplifies distance computation during index construc-
tion. However, it also means that ancestors of lower partial vertex
order may follow paths that ancestors of higher partial vertex
order may not, which makes it difficult to combine searches.

Example 5.8. Consider again Example 5.7, except that this
time the weight of edge (1,9) is decreased all the way down to
1, as shown in Figure 6(a). Thus, the distances from ancestors
{2, 5} to vertices {4, 11} change as well. As 2 ⪯ 4 ⪯ 5, the
search from 2 must consider paths passing through 4, while the

2

7

9

1

12

8 10

5

9

1

12

8 10

4

12

1

9

14 7

3

10

12

1

9

14 7

3

Figure 7: Search trees from Example 5.7

search from 5 must not. The shortest paths (starting from root 9)
w.r.t. to ancestors 2 and 5 are ⟨9, 1, 12, 4, 11⟩ and ⟨9, 1, 12, 10, 11⟩,
respectively. In this case, we cannot simply combine the searches
from 2 and 5 into a single search rooted at vertex 9.

Pareto Search. To address this, we first observe that the subgraphs
associatedwith different ancestors form an inclusion chain, mean-
ing we have 𝑆𝑎 ⊆ 𝑆𝑏 iff 𝑏 ⪯ 𝑎, where 𝑆𝑎 refers to the subgraph
𝐺 [Desc(𝑎)]. We will also use the notation 𝑆𝜏 (𝑎) where this does
not cause confusion. Hence the sequence of 𝑑𝑆𝑖 (𝑢, 𝑣) values for
distances between 𝑢 and 𝑣 w.r.t. 𝑆𝑖 is monotonically increasing.
However, this increase is not strictly monotonic, i.e., there can
be intervals of 𝑖 values with the same distance.

Lemma 5.9. For vertices 𝑢, 𝑣, 𝑠, 𝑡 ∈ 𝑉 (𝐺) with 𝑢 ⪯ 𝑣 ⪯ 𝑠 and
𝑢 ⪯ 𝑣 ⪯ 𝑡 , we have 𝑑𝑆𝑢 (𝑠, 𝑡) ≤ 𝑑𝑆𝑣 (𝑠, 𝑡).

Example 5.10. Consider again Example 5.8. We have 2 ⪯ 4 ⪯
5 ⪯ 10 with 𝜏 (2) = 0, 𝜏 (4) = 1, 𝜏 (5) = 2 and 𝜏 (10) = 3. As 𝑆3 ⊂
𝑆2 ⊂ 𝑆1 ⊂ 𝑆0 we must have 𝑑𝑆0 (9, 𝑣) ≤ 𝑑𝑆1 (9, 𝑣) ≤ 𝑑𝑆2 (9, 𝑣) ≤
𝑑𝑆3 (9, 𝑣) for all 𝑣 ∈ 𝑆3, and in principle those values could all be
different. However, 𝑑𝑆0 (9, 11) = 𝑑𝑆1 (9, 11) = 9 as the shortest
path from 9 to 11 in 𝑆0 = 𝐺 does not pass through vertex 2
excluded from 𝑆1, and 𝑑𝑆2 (9, 11) = 𝑑𝑆3 (9, 11) = 10 as the shortest
path from 9 to 11 in 𝑆2 = 𝐺 \ {2, 4} does not pass through 5.

Let 𝑢 and 𝑣 be two vertices with 𝑢 ⪯ 𝑣 . We use (𝑑, 𝑖) to denote
the distance of 𝑢 and 𝑣 in the subgraph 𝑆𝑖 , i.e., 𝑑 = 𝑑𝑆𝑖 (𝑢, 𝑣)
and 𝑖 = 𝜏 (𝑢). Running separate searches for each subgraph 𝑆𝑖
means tracking (𝑑, 𝑖) values for all 𝑖 ∈ [0, 𝜏 (𝑣)], unless pruned.
We improve on this by tracking only the Pareto-optimal pairs
(𝑑, 𝑖) as defined below.

483

Algorithm 3: Pareto Search (Decrease)
1 Function ParetoDec(𝑎, 𝑏, 𝜙𝑛𝑒𝑤)
2 Search-and-Repair (𝑎, 𝑏, 𝜙𝑛𝑒𝑤)
3 Search-and-Repair (𝑏, 𝑎, 𝜙𝑛𝑒𝑤)
4 Function Search-and-Repair(𝑟, 𝑟 ′, 𝜙)
5 foreach 𝑣 ∈ 𝑉 do
6 𝑙𝑒𝑣𝑒𝑙 (𝑣) ← 0 // next level to process

// init queue to start search from 𝑟 at 𝑟 ′
7 𝑟min ← min(𝜏 (𝑟), 𝜏 (𝑟 ′))
8 add (𝜙, 𝑟 ′, [0, 𝑟min]) to 𝑄

// Dijkstra with intervals
9 foreach (𝑑, 𝑣, 𝐼active) ∈ 𝑄 in order do
10 𝐼active .𝑚𝑎𝑥 ← min(𝐼active .𝑚𝑎𝑥, 𝜏 (𝑣))
11 𝐼active .𝑚𝑖𝑛 ← max(𝐼active .𝑚𝑖𝑛, 𝑙𝑒𝑣𝑒𝑙 (𝑣))
12 if 𝐼active .𝑚𝑖𝑛 > 𝐼active .𝑚𝑎𝑥 then
13 continue
14 𝑙𝑒𝑣𝑒𝑙 (𝑣) ← 𝐼active .𝑚𝑎𝑥 + 1

// update distance labels & find new active interval
15 foreach 𝑖 ∈ 𝐼active do
16 if 𝑑 + 𝐿𝑟 [𝑖] < 𝐿𝑣 [𝑖] then
17 𝐿𝑣 [𝑖] ← 𝑑 + 𝐿𝑟 [𝑖]
18 if 𝑚𝑖𝑛 = undefined then
19 𝑚𝑖𝑛 ← 𝑖

20 𝑚𝑎𝑥 ← 𝑖

// visit neighbors
21 if 𝑚𝑖𝑛 ≠ undefined then
22 foreach (𝑛, 𝜙𝑛) ∈ 𝑁 (𝑣) do
23 add (𝑑 + 𝜙𝑛, 𝑛, [𝑚𝑖𝑛,𝑚𝑎𝑥]) to 𝑄

Definition 5.11 (Pareto-Optimal Pairs). A pair (𝑑, 𝑖) is said to
be Pareto-optimal iff there does not exist any other pair (𝑑′, 𝑖′)
satisfying 𝑑′ ≤ 𝑑 and 𝑖 ≥ 𝑖′ and (𝑑, 𝑖) ≠ (𝑑′, 𝑖′).

Example 5.12. Consider again Example 5.10, where edge (9,1)
in Figure 2 is updated to weight one. The (𝑑, 𝑖) pairs with minimal
distance values 𝑑 for 𝑆0, . . . , 𝑆3 at 𝑣 = 11 are (9, 0), (9, 1), (10, 2)
and (10, 3). Amongst these, (9, 1) and (10, 3) are Pareto-optimal.

Computing Pareto-optimal pairs essentially means to combine
searches for ancestors with different 𝑖 but the same 𝑑 . Ancestors
are thus combined form intervals, which depend on the visited
node 𝑣 . E.g. for 𝑣 = 12 in Example 5.8, distances in 𝑆0 and 𝑆2 are
identical, but for 𝑣 = 11 they differ.

Proposed Algorithm. During Pareto searches, we use a priority
queue of (𝑑, 𝑖, 𝑣) tuples instead of using a priority queue of (𝑑, 𝑣)
pairs. Here 𝑖 denotes the minimal value 𝜏 (𝑤) of any node𝑤 that
the path being tracked passed through, so that 𝑑 describes the
length of a path in 𝑆𝑖 . Processing (𝑑, 𝑖, 𝑣) tuples with minimal
𝑑 value first ensures that paths found are minimal, as for stan-
dard Dijkstra, while breaking ties to process (𝑑, 𝑖, 𝑣) tuples with
maximum 𝑖 value first ensures that Pareto-optimal tuples are en-
countered before others with the same 𝑑 (and 𝑣) value. By storing
the smallest 𝑖 value that is not yet processed for each vertex, we
can easily identify and discard tuples that are not Pareto-optimal.

Let 𝑙𝑒𝑣𝑒𝑙 (𝑣) be the maximum 𝑖 value processed for a vertex 𝑣
in order to prune tuples that are not Pareto-optimal. Tracking
𝑙𝑒𝑣𝑒𝑙 (𝑣) allows us to identify the interval of subgraphs for which

Algorithm 4: Pareto Search (Increase)
1 Function ParetoInc(𝑎, 𝑏, 𝜙𝑜𝑙𝑑 , 𝜙𝑛𝑒𝑤)
2 Δ = 𝜙𝑛𝑒𝑤 − 𝜙𝑜𝑙𝑑
3 Search (𝑎, 𝑏, 𝜙𝑜𝑙𝑑)
4 Search (𝑏, 𝑎, 𝜙𝑜𝑙𝑑)
5 Function Search(𝑟, 𝑟 ′, 𝜙)
6 foreach 𝑣 ∈ 𝑉 do
7 𝑙𝑒𝑣𝑒𝑙 (𝑣) ← 0 // next level to process

// init queue to start search from 𝑟 at 𝑟 ′
8 𝑟min ← min(𝜏 (𝑟), 𝜏 (𝑟 ′))
9 add (𝜙, 𝑟 ′, [0, 𝑟min]) to 𝑄

// Dijkstra with intervals
10 foreach (𝑑, 𝑣, 𝐼active) ∈ 𝑄 in order do
11 𝐼active .𝑚𝑎𝑥 ← min(𝐼active .𝑚𝑎𝑥, 𝜏 (𝑣))
12 𝐼active .𝑚𝑖𝑛 ← max(𝐼active .𝑚𝑖𝑛, 𝑙𝑒𝑣𝑒𝑙 (𝑣))
13 if 𝐼active .𝑚𝑖𝑛 > 𝐼active .𝑚𝑎𝑥 then
14 continue
15 𝑙𝑒𝑣𝑒𝑙 (𝑣) ← 𝐼active .𝑚𝑎𝑥 + 1

// update distance labels & find new active interval
16 foreach 𝑖 ∈ 𝐼active do
17 if 𝑑 + 𝐿𝑟 [𝑖] = 𝐿𝑣 [𝑖] then
18 𝐿𝑣 [𝑖] ← 𝐿𝑣 [𝑖] + Δ
19 if 𝑚𝑖𝑛 = undefined then
20 𝑚𝑖𝑛 ← 𝑖

21 𝑚𝑎𝑥 ← 𝑖

// visit neighbors
22 if 𝑚𝑖𝑛 ≠ undefined then
23 foreach (𝑛, 𝜙𝑛) ∈ 𝑁 (𝑣) do
24 add (𝑑 + 𝜙𝑛, 𝑛, [𝑚𝑖𝑛,𝑚𝑎𝑥]) to 𝑄

// update range of affected ancestors
25 if affected (𝑣).𝑚𝑖𝑛 = undefined then
26 affected (𝑣).𝑚𝑖𝑛 =𝑚𝑖𝑛

27 affected (𝑣) .𝑚𝑎𝑥 =𝑚𝑎𝑥

28 Repair(affected)

the distance value 𝑑 of (𝑑, 𝑖, 𝑣) being processed is minimal as
[𝑙𝑒𝑣𝑒𝑙 (𝑣), 𝑖], referred to as Pareto-active interval of 𝑣 .

Example 5.13. Consider Example 5.10. We start our Pareto
Search from vertex 9 by adding (0, 𝜏 (9) = 4, 9) into the queue.
When visiting vertex 4, we update 𝑖 to 𝜏 (4) = 1 and enqueue
(9, 1, 11). Since the tuple passing through vertex 10 has 𝑖 updated
to 𝜏 (10) = 3, (10, 3, 11) is enqueued. Of those two, (9, 1, 11) is
processed first. After (9, 1, 11) is processed, we set 𝑙𝑒𝑣𝑒𝑙 (11) to
1 + 1 = 2 as the highest 𝑖 value processed at vertex 11 so far is 1.
Any tuple (𝑑′, 𝑖′, 11) with 𝑖′ < 𝑙𝑒𝑣𝑒𝑙 (11) popped from the queue
afterwards can simply be discarded, knowing that any tuple
(𝑑, 𝑖, 11) with 𝑖 ≥ 𝑖′ and 𝑑 ≤ 𝑑′ has been processed earlier. Thus,
the discarded tuple is either not Pareto-optimal or a duplicate.
When the second tuple (10, 3, 11) is processed, 𝑙𝑒𝑣𝑒𝑙 (11) is set to
3 + 1 = 4. The Pareto-active interval of vertex 11 was [0, 1] first
and then [2, 3].

To prune vertices whose distances remain unaffected from
our search, we check each level in the Pareto-active interval
[𝑚𝑖𝑛,𝑚𝑎𝑥] of a vertex 𝑣 being visited, following Lemma 5.2.
Specifically, for each level 𝑖 ∈ [𝑚𝑖𝑛,𝑚𝑎𝑥], we compare distance

484

Algorithm 5: Pareto Repair (Increase)
1 Function Repair(affected)

// initialize queue
2 foreach 𝑣 with affected (𝑣) ≠ undefined do
3 foreach (𝑛, 𝜙𝑛) ∈ 𝑁 (𝑣) do
4 foreach 𝑖 ∈ affected (𝑣) with 𝑖 ≤ 𝜏 (𝑛) do
5 if 𝐿𝑛 [𝑖] + 𝜙𝑛 < 𝐿𝑣 [𝑖] then
6 add (𝐿𝑛 [𝑖] + 𝜙𝑛, 𝑣, 𝑖) to 𝑄

// repair
7 foreach (𝑑, 𝑣, 𝑖) ∈ 𝑄 in increasing order of 𝑑 do
8 if 𝑑 < 𝐿𝑣 [𝑖] then
9 𝐿𝑣 [𝑖] ← 𝑑

10 foreach (𝑛, 𝜙𝑛) ∈ 𝑁 (𝑣) with 𝑖 ∈ affected (𝑛) do
11 if 𝐿𝑣 [𝑖] + 𝜙𝑛 < 𝐿𝑛 [𝑖] then
12 add (𝐿𝑣 [𝑖] + 𝜙𝑛, 𝑛, 𝑖) to 𝑄

value 𝑑 + 𝐿𝑏 [𝑖] with 𝐿𝑣 [𝑖] where 𝑑 is the length of the search
path from vertex 𝑏 (root) to vertex 𝑣 , while 𝐿𝑏 [𝑖] = 𝑑𝑆𝑖 (𝑟, 𝑏) and
𝐿𝑣 [𝑖] = 𝑑𝑆𝑖 (𝑟, 𝑣) represent distances from 𝑏 and 𝑣 to the ancestor
𝑟 at level 𝑖 , respectively, stored in the labels. For weight decrease,
we prune if 𝑑 + 𝐿𝑏 [𝑖] ≥ 𝐿𝑣 [𝑖], while for weight increase, we
prune if 𝑑 + 𝐿𝑏 [𝑖] < 𝐿𝑣 [𝑖]. As we may only be able to prune a
vertex w.r.t. some levels in its Pareto-active interval, we store the
minimal interval containing all active levels of 𝑣 , which we refer
to as the active interval 𝐼active in Algorithms 3-4.

Our Pareto Search algorithm for edge weight decrease is pre-
sented in Algorithm 3. We perform two Pareto Searches starting
from the two endpoints of the updated edge (𝑎, 𝑏, 𝜙𝑛𝑒𝑤) as de-
scribed earlier (Lines 2-3), and update labels whenever we identify
an active ancestors (Lines 15-20). Our Pareto Search algorithm
for edge weight increase is presented in Algorithms 4-5. Since
shortest-path distances increase in the case of weight increase,
we make the following changes: (1) replacing checks for shorter
paths in the updated graph with checks for equal length paths
passing through (𝑎, 𝑏) in the old graph (Line 17), and (2) marking
labels as affected instead of updating them immediately (Lines 25-
27), similar to Algorithm 2. However, this may lead to the repair
phase becoming a bottleneck. This is because here paths of inter-
est no longer need to pass through (𝑎, 𝑏), and thus repairs w.r.t.
different ancestors can no longer be combined as we did during
the search phase. To mitigate this, we take the following steps:

(1) We use 𝐿𝑣 [𝑖]+Δ as an upper bound for the value of 𝐿𝑣 [𝑖] in
the updated graph, and use it to repair 𝐿𝑣 [𝑖] immediately
(Line 18). Here Δ describes the weight increase of (𝑎, 𝑏).

(2) Instead of collecting individual affected pairs (𝑣, 𝑖) that
need to be repaired, we group them and collect pairs
(𝑣, [𝑚𝑖𝑛,𝑚𝑎𝑥]) containing affected intervals (Lines 25-27).

The first step can reduce the number of repair operations when
the upper bound used for immediate repairs is tight. This is most
likely when the increase is small. While the second step will
actually increase the number of distance comparisons during the
initialization phase of the repair, it improves locality of reference
for these checks and reduces edge traversals.

Example 5.14. Consider the weight of an edge (1, 9) in Figure 2
decreases from 4 to 1. We perform two searches from the two
endpoints 1 and 9 w.r.t. ancestors {2, 4, 5, 10, 9}. In Figure 6(a),

we show the search from the endpoint vertex 1 and tracking
distances to 9, with updated distance label values for ancestors
2 and 5. For vertices {1, 8, 10, 12}, the Pareto-active and active
intervals are both [0, 4], covering the label indices {0, 2, 4} of
active ancestors {2, 5, 9} as well as label indices {1, 3} of ancestors
{4, 10} which are inactive for this search. At vertex 4 the Pareto-
active interval is reduced to [0, 1], which is then pruned to the
active interval [0, 0]. This interval is processed first at vertex 11
(due to shorter distance) before processing the active interval
[0, 4] originating from vertex 10. Here we first reduce [0, 4] to
[1, 4] as label index 0 has already been processed. Now if the
weight of an edge (1, 9) increases from 4 to 7, we again run
two searches but track distances in the original graph instead.
In Figure 6(b), we show the search starting from vertex 1 and
tracking distances to the root 9, with updates of distance labels for
ancestors 2 and 5. As new distance values are not immediately
available, we compute upper bounds first in Figure 6(b), and
update them once we have found all affected vertices, as shown
in Figure 6(c). Pareto-active and active intervals are both [0, 4]
for vertices {1, 8, 10, 12}, while vertices 4 and 11 are not affected.

6 THEORETICAL ANALYSIS
In the following we shall denote by 𝑃𝑤𝐺 (𝑣,𝑢) the set of shortest
paths between 𝑣 and 𝑢 in 𝐺 [Desc(𝑤)]. In our notation 𝐺 ′ =
𝐺 ⊕ Δ𝐺 describing the updated graph after applying Δ𝐺 on 𝐺 .
We use 𝑑max for the maximum degree of vertices in 𝐺 , and ℎ for
the maximum number of ancestor vertices 𝜏 (𝑣) in 𝐺 w.r.t. our
tree hierarchy.

Label Search Algorithm. We briefly provide the following
lemmas for showing correctness of label search algorithm.

Lemma 6.1. Denote by 𝐿−Δ the set of vertex pairs (𝑣, 𝑟) for which
a pair (𝑑, 𝑣) enters𝑄𝑟 in Algorithm 1. Then (𝑣, 𝑟) ∈ 𝐿−Δ iff 𝑃𝑟𝐺 ′ (𝑣, 𝑟)
contains strictly shorter paths than 𝑃𝑟𝐺 (𝑣, 𝑟).

Lemma 6.2. Denote by 𝐿+Δ the set of vertex pairs (𝑣, 𝑟) for which
a pair (𝑑, 𝑣) enters𝑄𝑟 in Algorithm 2. Then (𝑣, 𝑟) ∈ 𝐿+Δ iff 𝑃𝑟𝐺 ′ (𝑣, 𝑟)
differs from 𝑃𝑟𝐺 (𝑣, 𝑟).

Following these lemmas, one can show the following.

Theorem 6.3. Algorithms 1 and 2 operate in 𝑂 (|𝐿−Δ | · 𝑑max ·
log |𝑉 |) and 𝑂 (|𝐿+Δ | · 𝑑max · log |𝑉 |), respectively.

Pareto SearchAlgorithm. The preceding lemmas can be adapted
to show correctness of Pareto search algorithm.

Lemma 6.4. Denote by𝑉 −Δ the set of vertices 𝑣 for which line 22 is
reached in Algorithm 3. Then 𝑣 ∈ 𝑉 −Δ iff 𝑃𝑟𝐺 ′ (𝑣, 𝑟) contains strictly
shorter paths than 𝑃𝑟𝐺 (𝑣, 𝑟) for some ancestor 𝑟 .

Lemma 6.5. Denote by 𝑉 +Δ the set of vertices 𝑣 for which line 23
is reached in Algorithm 4. Then 𝑣 ∈ 𝑉 +Δ iff 𝑃𝑟𝐺 ′ (𝑣, 𝑟) differs from
𝑃𝑟𝐺 (𝑣, 𝑟) for some ancestor 𝑟 .

As before, these lemmas can be used to analyze complexity.

Theorem 6.6. Algorithms 3 and 4 operate in𝑂 (|𝑉 −Δ | ·ℎ + |𝐿−Δ | ·
𝑑max · log |𝑉 |) and𝑂 (|𝑉 +Δ | ·ℎ + |𝐿+Δ | ·𝑑max · log |𝑉 |), respectively..

Despite the theoretical upper bounds being worse for Pareto
search algorithm, it performs faster in practice as the factors ℎ
and 𝐿Δ tend to be over-estimates in Theorem 6.6.

485

Table 2: Summary of datasets.

Network Region |𝑉 | |𝐸 | Memory

NY New York City 264,346 733,846 17 MB
BAY San Francisco 321,270 800,172 18 MB
COL Colorado 435,666 1,057,066 24 MB
FLA Florida 1,070,376 2,712,798 62 MB
CAL California 1,890,815 4,657,742 107 MB
E Eastern USA 3,598,623 8,778,114 201 MB
W Western USA 6,262,104 15,248,146 349 MB
CTR Central USA 14,081,816 34,292,496 785 MB
USA United States 23,947,347 58,333,344 1.30 GB
EUR Western Europe 18,010,173 42,560,279 974 MB

7 EXPERIMENTS
We use STL-L− and STL-L+ to denote our label search algorithms
for edge weight decrease and increase, respectively. Similarly,
STL-P− and STL-P+ denote our Pareto search algorithms for edge
weight decrease and increase, respectively.
Hardware and code. All the experiments are performed on a
Linux server Intel XeonW-2175 with 2.50GHz CPU, 28 cores, and
512GB of main memory. All the algorithms were implemented
in C++20 and compiled using g++ 9.4.0 with the -O3 option.
Our implementation is available at https://github.com/mufarhan/
stable_tree_labelling.

Datasets. We use 10 undirected real road networks, nine of them
are from the US and publicly available at the webpage of the 9th
DIMACS Implementation Challenge [10] and one is from West-
ern Europe managed by PTV AG [3]. Table 2 summarises these
datasets where the largest dataset is the whole road network in
the USA.

State-of-the-art methods. We compare our algorithms with
the following state-of-the-art methods: 1) A dynamic algorithm
called Incremental Hierarchical 2-Hop Labelling (IncH2H) [32], 2)
A dynamic algorithm called Dynamic Tree Decomposition-based
Hub Labelling (DTDHL) [30], and 3) A static algorithm called
Hierarchical Cut 2-Hop Labelling (HC2L) [12]. For IncH2H and
DTDHL, we use IncH2H− , IncH2H+ and DTDHL− , DTDHL+ to
denote their algorithms for edge weight decrease and increase, re-
spectively. We do not consider search-based methods [14, 22, 27].
Although search-based method may have smaller maintenance
cost, their query performance is usually orders of magnitude
slower than the labelling-sed methods considered in this paper.

The code for IncH2H, DTDHL and HC2L was kindly provided
by their authors and implemented in C++. We use the same
parameter settings as suggested by the authors of these methods,
unless otherwise stated. We select the balance partition threshold
𝛽 = 0.2 to construct stable tree hierarchies. When a method fails
to produce results due to memory error, we denote it as “–”.

Test input generation. To evaluate update time, for each net-
work, we randomly sampled 10 batches, each containing 1,000
updates. For each update (𝑎, 𝑏, 𝜙) of batch 𝑡 , we first increase
its weight to 2.0 × 𝜙 to test the performance of weight increase
case and then decrease (restored) its weight to the original (i.e.,
to 𝜙) to test the performance of weight decrease case. We also
evaluate the update time with varying weights, specifically, using
9 randomly sampled batches, we first increase weights of updates
(𝑎, 𝑏, 𝜙) of batch 𝑡 to (𝑡 + 1) ∗ 𝜙 and then restore their weights to
the original i.e., 𝜙 to test the performance of weight increase and
decrease case, respectively.

To evaluate query time, we randomly sampled 1,000,000 pairs
of vertices in each road network. Following [21, 23], we also
sampled sets of pairs containing short, medium and long range
query pairs. Specifically, for each road network, we generate 10
sets of pairs 𝑄1, 𝑄2, . . . , 𝑄10 as follows: we set 𝑙𝑚𝑖𝑛 to be 1000
meters, and set 𝑙𝑚𝑎𝑥 to be the maximum distance of any pair of
vertices in the network. Let 𝑥 = (𝑙𝑚𝑎𝑥

𝑙𝑚𝑖𝑛
)1/10. For each 1 ≤ 𝑖 ≤ 10,

we sample 10,000 query pairs to form each set 𝑄𝑖 , in which the
distance of the source and target vertices for each query falls in
the range (𝑙𝑚𝑖𝑛 · 𝑥𝑖−1, 𝑙𝑚𝑖𝑛 · 𝑥𝑖]. For each algorithm, we report
the average query processing time. Note that we shall refer sets
of pairs𝑄1−𝑄4,𝑄5−𝑄7 and𝑄8−𝑄10 as short, medium and long
range query sets, respectively. Finally, we compare the memory
size of labelling produced by the state-of-the-art methods with
our method STL.

7.1 Performance Comparison
We compare the performance of STL against the state-of-the-art
methods in terms of update time, query time, and labelling size.

7.1.1 Update Time. We report the average update time over
10 batches in Table 3.

Weight decrease. Table 3 shows that our algorithm STL-P− is
considerably faster than IncH2H− on all datasets, by up to an
order of magnitude, and orders of magnitude faster compared
with DTDHL− . Particularly, STL-P− significantly outperforms
IncH2H− on large datasets. Our method STL-L− is comparable
with IncH2H− , and an order of magnitude faster than DTDHL− .

Weight increase. For the case of weight increase, Table 3
shows essentially the same trends between our algorithm STL-
P+, IncH2H+ and DTDHL+ as for the respective weight decrease
algorithms, though STL-L+ is slower than IncH2H+. Note that
all algorithms are slower than their counterparts for the weight
decrease case. This is because the weight decrease case shortens
paths, and thus new distance values are known that allows to im-
mediately update labels. In the weight decrease case, computing
new distance values requires additional computations.

7.1.2 Query Time. In Table 5, we first report the average
query time over 1 million random distance queries for all datasets.
We confirm that STL is the fastest on all datasets amongst the
dynamic approaches, and only marginally slower than HC2L.
Specifically, STL is 1.5-3 times faster compared with IncH2H and
DTDHL. The main reason for this is that STL labels are signifi-
cantly smaller, and fewer distance entries need to be processed
to answer queries, at least for distant vertex pairs where only
high level cuts are utilized. Additionally, identifying which label
entries to compare is simpler, and label entries used are always
consecutive in memory.

Querying with varying distance. In Figure 9, we report re-
sults for short, medium and long range query pairs on three
large datasets CTR, USA and EUR to test the performance of
STL against IncH2H and HC2L. The results for other datasets
are similar. STL significantly outperforms IncH2H for long range
query sets. Long range queries encounter significantly a small
number of common ancestors because their lowest common an-
cestors generally lie at higher levels of hierarchy. For short range
query sets, STL is slower or comparable to IncH2H. This is be-
cause the lowest common ancestors for short range queries are
more likely to be at lower levels of the hierarchy causing a larger
number of common ancestors to be explored in the labels. STL

486

Table 3: Comparison of update times between our methods and state-of-the-art methods.

Network Update Time - Decrease [ms] Update Time - Increase [ms]
STL-P− STL-L− IncH2H− DTDHL− STL-P+ STL-L+ IncH2H+ DTDHL+

NY 0.845 1.978 2.006 11.40 1.712 3.561 2.900 13.87
BAY 0.917 1.788 1.769 8.899 1.695 3.233 2.498 14.53
COL 1.898 3.882 3.306 12.74 3.456 6.977 4.613 34.35
FLA 2.303 5.209 3.585 32.45 4.109 9.554 4.981 34.22
CAL 4.975 16.67 13.89 99.24 10.11 31.04 20.20 106.4
E 7.996 39.21 29.33 261.5 17.48 73.76 43.57 273.1
W 12.26 52.71 47.76 604.9 25.14 100.2 68.99 1,292
CTR 27.23 164.4 213.1 2,329 54.03 314.5 309.7 5,347
USA 32.67 216.4 239.8 – 82.78 412.9 356.3 –
EUR 13.68 68.25 66.97 – 61.57 131.4 96.63 –

Table 4: Comparison of labelling sizes and construction times between our method and state-of-the-art methods.

Network Labelling Size Construction Time [s] # Label Entries Tree Height

STL HC2L IncH2H DTDHL STL HC2L IncH2H DTDHL STL IncH2H STL IncH2H
NY 129 MB 172 MB 850 MB 391 MB 2 3 4 9 30 M 99 M 283 717
BAY 104 MB 134 MB 814 MB 377 MB 2 3 3 5 23 M 93 M 245 411
COL 175 MB 238 MB 1.37 GB 587 MB 4 6 5 7 40 M 166 M 386 556
FLA 423 MB 561 MB 2.43 GB 1.30 GB 11 16 11 17 97 M 282 M 276 496
CAL 1.03 GB 1.48 GB 8.21 GB 3.91 GB 28 44 30 48 251 M 1.0 B 481 722
E 2.92 GB 4.22 GB 20.7 GB 9.68 GB 75 129 74 111 735 M 2.6 B 560 1300
W 4.82 GB 7.01 GB 36.3 GB 20.6 GB 120 249 126 194 1.2 B 4.5 B 645 1115
CTR 19.7 GB 30.2 GB 178 GB 80.3 GB 540 1,140 858 766 5.0 B 23 B 1066 2522
USA 35.6 GB 53.6 GB 308 GB – 852 1,721 1,081 – 9.2 B 40 B 1181 2541
EUR 36.4 GB 51.2 GB 322 GB – 1,236 2,354 1,254 – 9.5 B 42 B 1429 3845

Table 5: Comparison of query times between our methods
and state-of-the-art methods.

Network Query Time [𝜇s]
STL HC2L IncH2H DTDHL

NY 0.287 0.264 0.913 0.852
BAY 0.299 0.258 0.841 0.785
COL 0.349 0.318 1.018 0.988
FLA 0.396 0.349 1.019 0.958
CAL 0.490 0.484 1.333 1.380
E 0.630 0.550 1.683 1.585
W 0.664 0.601 1.702 1.819
CTR 0.812 0.702 2.483 2.658
USA 0.834 0.734 3.428 –
EUR 1.185 0. 879 3.888 –

is slower than HC2L for short and medium range query sets be-
cause it only considers vertices in the lowest common ancestor
node to answer queries.

7.1.3 Labelling Size. Table 4 shows that the labelling sizes
produced by STL is significantly smaller than the state-of-the-
art methods. On the largest three datasets, the labelling size
of STL is about 9 times smaller than IncH2H. This is because
STL produces minimal cuts which are very small in practice, and
thus the distance labels store a smaller number of label entries.
We note that the difference in the number of label entries is
not as large as the difference in labelling size (at most factor 4).
The additional increase in labelling size for IncH2H is due to

auxiliary data tracked to facilitate efficient updates. DTDHL uses
the same tree hierarchy as IncH2H but tracks far less additional
data, resulting in smaller labelling size. Compared to HC2L for
which efficient maintenance is hard, STL uses less space, due to a
reduction in cut size caused by the absence of shortcuts, though
partially negated by the absence of tail-pruning.

7.2 Performance Analysis
Figure 8 shows how the average update time of our algorithms
under edgeweight decrease and increase behaves.We can see that
the update time for our algorithm STL-P− and state-of-the-art
algorithms IncH2H+ and IncH2H− is independent of how much
weights decrease or increase, while the update time for STL-P+
increases as weights increase more. The variability of STL-P+
performance can be traced back to line 18 of Algorithm 4: as the
weight increase factor grows, the upper bound computed here
will be tight less frequently, and more time is spent in function
Repair. Except for COL and FLA, our algorithms STL-P+ and
STL-P− outperform IncH2H+ and IncH2H− under both decrease
and increase case. This has several reasons – for one, the number
of labels for our approach is smaller than for IncH2H, as shown
in Table 4, leading to fewer affected labels. Second, storing only
distances within subgraphs reduces the number of labels affected
by changes in 𝐺 even further. Finally, while IncH2H takes steps
to ensure strong theoretical bounds for its update algorithms,
such as tracking the support of nodes, we found that the practical
impact of these is often limited.

We test the scalability of our algorithms STL-P+ and STL-P−
on the largest 3 datasets, CTR, USA and EUR. Following the

487

1 2 3 4 5 6 7 8 9
Weight change

1.0

1.5

2.0

2.5

Up
da

te
 ti

m
e

(m
s) (NY)

1 2 3 4 5 6 7 8 9
Weight change

1.00
1.25
1.50
1.75
2.00
2.25
2.50

(BAY)

1 2 3 4 5 6 7 8 9
Weight change

2.0
2.5
3.0
3.5
4.0
4.5
5.0

(COL)

1 2 3 4 5 6 7 8 9
Weight change

3

4

5

6
(FLA)

1 2 3 4 5 6 7 8 9
Weight change

5.0
7.5

10.0
12.5
15.0
17.5
20.0

(CAL)

1 2 3 4 5 6 7 8 9
Weight change

10
15
20
25
30
35
40
45

Up
da

te
 ti

m
e

(m
s) (E)

1 2 3 4 5 6 7 8 9
Weight change

10
20
30
40
50
60
70

(W)

1 2 3 4 5 6 7 8 9
Weight change

50
100
150
200
250
300

(CTR)

1 2 3 4 5 6 7 8 9
Weight change

50
100
150
200
250
300
350

(USA)

1 2 3 4 5 6 7 8 9
Weight change

20

40

60

80

(EUR)

STL-P +

STL-P
IncH2H +

IncH2H

Figure 8: Update performance for both weight decrease and weight increase cases under varying edge weights.

1 2 3 4 5 6 7 8 9 10
Query Sets

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

Qu
er

y
Ti

m
e

(
s)

(CTR)
STL
HC2L
IncH2H

1 2 3 4 5 6 7 8 9 10
Query Sets

0.5
1.0
1.5
2.0
2.5
3.0
3.5

(USA)

1 2 3 4 5 6 7 8 9 10
Query Sets

1.0
1.5
2.0
2.5
3.0
3.5
4.0

(EUR)

Figure 9: Query performance under varying distances.

500 2k 4k 6k 8k
of updates

0

100

200

300

400

500

600

Up
da

te
 ti

m
e

(s
ec

.)

(CTR)

Reconstruction
STL +

STL

500 2k 4k 6k 8k
of updates

0

200

400

600

800

1000 (USA)

500 2k 4k 6k 8k
of updates

0
200
400
600
800

1000
1200
1400 (EUR)

Figure 10: Update performance compared to reconstruction
time for groups of updates ranging in size from500 to 8,000.

same setting as described in the test input generation, we ran-
domly sample 8,000 updates for each dataset and process them
in groups of sizes ranging from 500 to 8,000, i.e., {5, 10, 15, 20,
25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80} × 102. We first process
each group by applying the weight increases, followed by weight
decreases, and then compare the results with the time required by
STLto construct the labelling for each of these datasets (Table 4).
As shown in Figure 10, even with the largest group (8,000 up-
dates), the update times of STL-P+ and STL-P− remain lower than
the time required to fully reconstruct STL. Overall, STL-P+ and
STL-P− can process a significantly large amount of dynamic up-
dates on a road network, enabling fast query processing without
needing to rebuild the labels from scratch.

8 EXTENSIONS
Directed Road Networks. Our algorithms can be easily extended
to dynamic directed road networks. We may store distances from
both directions in the label of each vertex 𝑣 ∈ 𝑉 (𝐺) when con-
structing STL. This can be achieved by performing searches in
both directions during label construction. Then, our Label Search
and Pareto Search algorithms can maintain STL using two Dijk-
stra’s searches, namely forward and backward search. Specifically,

Label Search algorithms perform such searches w.r.t. each ances-
tor and Pareto Search algorithms conduct them w.r.t. each edge
whose weight is increased or decreased to maintain STL for the
directed version.

Edge/Vertex Insertion/Deletion. In practice, new roads are seldom
built and old roads are rarely deconstructed. Thus, the structure
of road networks is considered to be intact in general. As a result,
structural changes such as edge or vertex insertion and deletion
in road networks are extremely infrequent. Prior work has ad-
dressed such changes [21, 30, 32]. Similarly, our algorithms can
be adapted to handle these changes within the STL framework as
follows. An edge deletion can be handled by increasing theweight
of the deleted edge to∞ and similarly a vertex deletion can be
handled by increasing the weights of its adjacent edges to∞. For
edge insertions, we can identify the affected nodes in the stable
tree hierarchy, re-partition their induced subgraphs, and fix the
affected tree nodes at the lower levels. Afterward, we compute
new labels for these tree nodes using the algorithms in [12].

9 CONCLUSION
In this paper, we tackled the challenge of maintaining distance
labeling to efficiently answer shortest-path queries on dynamic
road networks. We introduced the concepts of a stable tree hierar-
chy and stable tree labeling (STL), which serve as the foundation
for designing efficient dynamic algorithms. Then, we developed
two novel algorithms: the Label Search and Pareto Search al-
gorithms, from different perspectives. Label Search is ancestor-
centric, focusing on efficiently updating labels related to ances-
tors, while Pareto Search is update-centric, optimizing updates
to the labeling by eliminating duplicate search traversals. These
algorithms can significantly reduce the search space involved in
maintaining STL. Our experiments, conducted on 10 large real-
world road networks, demonstrated that the proposed algorithms
substantially outperform existing approaches in terms of both
query processing and update time, showcasing their practical
effectiveness in dynamic settings.

A potential avenue for future work is to adapt STL to other
dynamic graph structures, such as social or communication net-
works. These networks feature distinct characteristics, such as
high clustering coefficients or fluctuating connectivity, which
present new challenges and opportunities for optimizing label
construction and maintenance. This exploration could lead to en-
hancements in handling dynamic graphs across various domains.

488

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.

2011. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks.
In Proceedings of the 10th International Conference on Experimental Algorithms.
230–241.

[2] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
2012. Hierarchical Hub Labelings for Shortest Paths. In Proceedings of the 20th
Annual European Conference on Algorithms. 24–35.

[3] PTV AG. [n.d.]. Western europe dataset. http://www.ptv.de
[4] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. 2014.

Fast shortest-path distance queries on road networks by pruned highway
labeling. In 2014 Proceedings of the sixteenth workshop on algorithm engineering
and experiments (ALENEX). 147–154.

[5] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-
path distance queries on large networks by pruned landmark labeling. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data. 349–360.

[6] Julian Arz, Dennis Luxen, and Peter Sanders. 2013. Transit node routing re-
considered. In Proceedings of the 12th International Symposium of Experimental
Algorithms. 55–66.

[7] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. 2016.
Route planning in transportation networks. Algorithm engineering: Selected
results and surveys (2016), 19–80.

[8] Holger Bast, Stefan Funke, and Domagoj Matijevic. 2006. Transit ultrafast
shortest-path queries with linear-time preprocessing. 9th DIMACS Implemen-
tation Challenge [1] (2006).

[9] Zitong Chen, Ada Wai-Chee Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang.
2021. P2h: Efficient distance querying on road networks by projected vertex
separators. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 313–325.

[10] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. 2009. The short-
est path problem: Ninth DIMACS implementation challenge. Vol. 74. American
Mathematical Soc.

[11] DongKai Fan and Ping Shi. 2010. Improvement of Dijkstra’s algorithm and its
application in route planning. In Proceedings of the international conference on
fuzzy systems and knowledge discovery, Vol. 4. 1901–1904.

[12] Muhammad Farhan, Henning Koehler, Robert Ohms, and Qing Wang. 2024.
Hierarchical Cut Labelling–Scaling Up Distance Queries on Road Networks.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data.

[13] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.
Contraction hierarchies: Faster and simpler hierarchical routing in road net-
works. In International workshop on experimental and efficient algorithms.
319–333.

[14] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter.
2012. Exact routing in large road networks using contraction hierarchies.
Transportation Science 46, 3 (2012), 388–404.

[15] Andrew V Goldberg and Chris Harrelson. 2005. Computing the shortest path:
A search meets graph theory. In SODA, Vol. 5. 156–165.

[16] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[17] Shuai Huang, Yong Wang, Tianyu Zhao, and Guoliang Li. 2021. A learning-
based method for computing shortest path distances on road networks. In
IEEE 37th International Conference on Data Engineering (ICDE). 360–371.

[18] Ruoming Jin, Ning Ruan, Yang Xiang, and Victor Lee. 2012. A highway-centric
labeling approach for answering distance queries on large sparse graphs. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data. 445–456.

[19] Sungwon Jung and Sakti Pramanik. 2002. An efficient path computation model
for hierarchically structured topographical road maps. IEEE Transactions on
Knowledge and Data Engineering 14, 5 (2002), 1029–1046.

[20] Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Matthias Renz, and Tim
Schmidt. 2007. Proximity queries in large traffic networks. In Proceedings
of the 15th annual ACM international symposium on Advances in geographic
information systems. 1–8.

[21] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu.
2018. When hierarchy meets 2-hop-labeling: Efficient shortest distance queries
on road networks. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 709–724.

[22] Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.
2020. Efficient shortest path index maintenance on dynamic road networks
with theoretical guarantees. Proceedings of the VLDB Endowment 13, 5 (2020),
602–615.

[23] Ira Sheldon Pohl. 1969. Bi-Directional and Heuristic Search in Path Problems.
Ph.D. Dissertation. Stanford, CA, USA. AAI7001588.

[24] Peter Sanders and Dominik Schultes. 2005. Highway Hierarchies Hasten Exact
Shortest Path Queries. In Proceedings of the 13th Annual European Conference
on Algorithms.

[25] Peter Sanders and Dominik Schultes. 2006. Engineering highway hierarchies.
In European Symposium on Algorithms. Springer, 804–816.

[26] Robert Endre Tarjan. 1983. Data structures and network algorithms. SIAM.

[27] Victor Junqiu Wei, Raymond Chi-Wing Wong, and Cheng Long. 2020.
Architecture-intact oracle for fastest path and time queries on dynamic spatial
networks. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1841–1856.

[28] Pranali Yawalkar and Sayan Ranu. 2019. Route recommendations on road
networks for arbitrary user preference functions. In IEEE 35th International
Conference on Data Engineering (ICDE). 602–613.

[29] Mengxuan Zhang. 2021. Efficient shortest path query processing in dynamic
road networks. Ph.D. Dissertation.

[30] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou.
2021. Dynamic hub labeling for road networks. In IEEE 37th International
Conference on Data Engineering (ICDE). 336–347.

[31] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2020. Stream pro-
cessing of shortest path query in dynamic road networks. IEEE Transactions
on Knowledge and Data Engineering 34, 5 (2020), 2458–2471.

[32] Yikai Zhang and Jeffrey Xu Yu. 2022. Relative Subboundedness of Contrac-
tion Hierarchy and Hierarchical 2-Hop Index in Dynamic Road Networks.
In Proceedings of the 2022 International Conference on Management of Data.
1992–2005.

[33] Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and
Shuigeng Zhou. 2013. Shortest Path and Distance Queries on Road Networks:
Towards Bridging Theory and Practice. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 857–868.

489

