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ABSTRACT
Large-scale data processing applications often perform long run-
ning computations or analytical queries over days or even weeks.
While these are running, users typically get no proper informa-
tion on the current state and progress of the computation and
the quality of the intermediate result. Consequently, it takes a
long time until a user is able to assess whether a computation
was useful or not. To shorten this feedback loop, in-situ analy-
sis accesses the internal state of the application while it is still
running. Unfortunately, state-of-the-art techniques come with
two problems: They (a) require the application to halt in order to
access a stable state and (b) require extensive code modification.

To solve both problems, we advocate to perform virtual snap-
shotting instead, which allows to create stable snapshots without
halting or modifying the application in any way using a copy-
on-write based approach. While we already show-cased the core
technique as a proof-of-concept in previous work, it remains
open how effectively our technique coined in-situ-CoW actually
operates on different types of applications. To find out, we first
perform an in-depth analysis of memory access patterns of 16
large-scale data processing workloads, including representative
applications from the scientific domain as well as from data man-
agement. Revealing highly different needs of application classes,
we adjust in-situ-CoW to dynamically adapt the snapshotting
granularity to the workload. In an extensive experimental eval-
uation, we compare in-situ-CoW on all applications against (i)
traditional physical snapshotting, (ii) MVCC, as well as (iii) two
oracle policies. In comparison to traditional physical snapshot-
ting, in-situ-CoW reduces the performance overhead by up to
98% (66% on average) for scientific workloads and by up to 64%
(45% on average) for YCSB. In comparison to MVCC, in-situ-CoW
reduces the performance overhead by up to 89% (25% on average)
under write-intensive workloads.

1 INTRODUCTION
Large-scale data processing in the area of big data faces enormous
workloads to execute [22, 24]. For example, workloads from the
scientific context [2, 3, 5, 15, 17–19, 25, 26, 34], such as physical
simulations, process large volumes of data until a final result is
eventually produced. As these computation can easily take hours,
days, or even weeks, it takes equally long until the user is able to
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inspect the result, assess its quality, and potentially restart the
execution with a different parameter set.

To shorten this feedback loop, in-situ processing [7, 36] was
proposed. The core idea is creating a stable snapshot of the in-
termediate state of the data processing application while it is
still running and expose it. This allows to perform various analy-
sis tasks on these snapshots, such as progress monitoring, early
error detection, and the extraction of intermediate results as
an approximation of the final one. Further, apart from analysis,
getting access to the internal state allows to manually create
checkpoints [11, 23] of the state and to persist it to stable storage,
which allows recovering in case of a crash1.

While in-situ processing has the aforementioned advantages,
in its traditional form, it unfortunately has two downsides: (a) To
create a stable snapshot, the running computation must be halted
until the snapshot creation has finished. As for large datasets, the
creation of a snapshot can take a considerable amount of time,
this slows down the overall data processing significantly. If snap-
shots are created frequently to have an up-to-date view on the
processing, this penalty becomes even more severe. (b) To enable
in-situ processing in the first place, the large-scale data process-
ing application must be deeply modified to be able to create
snapshots, i.e., by exposing its state to an in-situ framework. This
modification can be complex, especially for more sophisticated
snapshotting approaches, which snapshot only those portions of
the data that have been modified since the last snapshot. Further,
there is the possibility that the source code is simply not accessi-
ble, rendering the integration of in-situ processing impossible.

1.1 In-situ processing without halting:
in-situ-CoW

To address both (a) and (b), we advocate to combine virtual snap-
shotting with in-situ processing. It consists of two parts: First,
instead of creating physical snapshots, we create only virtual
snapshots which essentially resemble views in virtual memory on
the original state. To ensure that these virtual snapshots remain
stable under modifications of the state (which can happen at any
time since we do not halt the application), we utilize a copy-on-
write (CoW) mechanism [32] based on memory rewiring [28]
which lazily copies only those memory pages that are actually
modified by the application. In contrast to other CoW-based
mechanisms [20, 30], this approach does not require the operat-
ing system (OS) to be changed in any way, nor does it require
root privileges. Second, to avoid modifying the code of the data

1Note that our method creates snapshots in main-memory. However, this snapshot
can be written asynchronously to stable storage to make it usable for crash recovery.
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processing application, we utilize so-called function interposing.
The core principle is to pre-load a library when the binary of
the application is started which then automatically intercepts all
memory allocations the application is performing. This gives us
a handle on that memory, such that we can create snapshots on
it in a minimally invasive fashion without having to modify the
source code of the application in any way.

While we showcased the core technique already in a previous
work [29], we demonstrated the concept only for a very sim-
plified HTAP workload. However, it remains an open question
how well the concept performs for different classes of actual
scientific applications, as they have complex memory access pat-
terns, varying access frequencies, and heterogeneous access types.
As we will see by the study of eleven different representative
data-intensive applications, including the YCSB-benchmark, the
pattern severely impacts the granularity at which CoW should
be performed as well as the frequency at which snapshots should
be created, aka the interval time. Consequently, we propose an
adaptive adjustment of the CoW granularity depending on the
observed access pattern. Further, to reduce the impact of perform-
ing the CoW of a memory page, we propose to copy the page
asynchronously to the continuous execution of the application.
Only if the applications needs to modify a page again while it is
still being copied, it has to halt for moment.

1.2 Contributions and Structure of the Paper
In summary, we make the following contributions:

(1) To evaluate whether our CoW-based approach would op-
erate effectively in practice, we first monitor and analyze ten
representative scientific applications [3, 15, 17, 25, 26] as well as
six workloads of the YSCB benchmark under Redis in terms of
their memory access patterns. We pose and answer the fol-
lowing research questions: (i) Can a CoW-based approach have
a lower memory overhead than physical snapshotting? (ii) Is it
sufficient to perform CoW on the system page size or should
other granularities be considered? (iii) How should the snap-
shotting time interval be set? (iv) Is there a trade-off between
memory overhead and the processing overhead when setting
the CoW granularity and snapshotting time interval? (v) Can we
categorize applications with respect to their access pattern? Our
analysis reveals that the optimal CoW configuration is highly
heterogeneous across applications.

(2) Based on our findings, we extend our original prototype
of in-situ virtual snapshotting from [28, 29] in three ways:
(i) We support arbitrary CoW granularities, as long as they are a
multiple of the system page size. (ii) We allow to adaptively adjust
the granularity at which CoW is performed to fit to the specific
memory access pattern of theworkload. By this, it aims at keeping
both runtime and memory overhead as low as possible. To the
best of our knowledge, this is the first adaptive snapshotting
scheme proposed for large-scale applications. (iii) We perform
the copying asynchronously to the continuous execution of the
application. Only if a conflict occurs, the application has to wait
for a moment.

(3) We perform an extensive experimental evaluation of
the resulting method in-situ-CoW on all 16 workloads against
a set of competitive baselines. We compare against (i) physical
snapshotting, copying the entire state under halting, (ii) MVCC-
based snapshotting and (iii) against two oracle implementations,
which represent the minimum possible performance and memory
overhead. We show that in-situ-CoW can significantly reduce the

Table 1: Workload characteristics (NoMA: Number of Mem-
ory Accesses, WSS: Working Set Size)

Workload NoMA WSS [GB] Application Domain

amg [17] 143M 21.27 Numerical analysis
miniGhost [3] 41M 19.39 Stencil computation

hpl [25] 139M 3.68 Linpack benchmark
lulesh [15] 63M 39.32 Hydrodynamics
milc [5] 62M 2.01 Lattice computation

namd [26] 27M 1.02 Molecular dynamics
nas_ft [2] 102M 77.65 Discrete 3D FFT
snap [18] 173M 25.17 Radiometry
tealeaf [19] 154M 0.68 Thermal conduction

xs_bench [34] 162M 9.46 Neutron transport
YCSB Load 38M 1.3 Database Management

YCSB Workload A 21M 1.3 Database Management
YCSB Workload B 21M 1.3 Database Management
YCSB Workload D 23M 1.3 Database Management
YCSB Workload E 95M 1.3 Database Management
YCSB Workload F 3M 1.3 Database Management

snapshotting overhead over the baselines and the demonstrate
the effectiveness of our extensions.

The paper is structured as follows: In Section 2, we first per-
form a characterization for our 16 data-intensive workloads of
interest. Based on these findings, in Section 3, we present in-situ-
CoW and all integrated extensions. In Section 4, we perform an
extensive experimental evaluation for a large variety of configu-
rations and baselines. In Section 5, we discuss how a potential
analysis workflow could look like. In Section 6, we discuss the
related work, before concluding in Section 7.

2 WORKLOAD CHARACTERIZATION
Whether CoW-based snapshotting can operate effectively in
terms of performance and memory overhead highly depends
on the memory access pattern of the application. We therefore
first measure the number of pages modified in different time
intervals. We then bring our observations into the bigger picture
and categorize our 16 workloads into low overhead, high overhead,
and time interval dependent under CoW.

2.1 Experimental Setup and Workloads
For all experiments, we use a serverwith a single 10-core 2.50 GHz
Xeon Gold processor with 192 GB of main memory. We dedicate
eight cores to the execution of the application and reserve the
other two cores to capture the memory accesses. We use perf [10]
to capture memory access traces with a 100ns granularity.

We selected ten large-scale data intensive applications from
the domain of scientific computing, where we included an applica-
tion from each of the “seven dwarfs of HPC” [1]. Table 1 provides
an overview over the examined workloads. amg [17] solves par-
allel algebraic multigrid for linear systems.miniGhost [3] mimics
a 3D nearest neighbor communications. hpl [25] solves dense
linear systems in double precision. lulesh [15] simulates hydro-
dynamics equations by partitioning the spatial domain. milc [5]
enables simulation of 4D lattice gauge theory. namd [26] simu-
lates biomolecular systems. nas_ft [2] is a 3D fourier transformer,
which uses all-to-all communication. snap [18] is a simulator for
the performance of discrete ordinates neutral particle transport.
tealeaf [19] is a mini application for iterative sparse linear solvers.
xs_bench [34] mimics the Monte Carlo particle transport simula-
tions. All applications manage a large state in main memory on
which we want to enable an in-situ analysis.
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Figure 1: Modified pages ratio normalized to the working
set size for three different time intervals

Additionally, from the data management domain, we evaluate
all workloads of the YCSB benchmark [8] (except workload C
which is read-only) on the in-memory key-value store Redis for
10M entries and 1M operations per workload, which we enhanced
with in-situ-CoW. Note that interestingly, Redis also relies on
virtual snapshotting, however, for creating recovery checkpoints.
In contrast to our method, Redis uses the system call fork()
to create virtual snapshots in form of spawned child processes.
Unfortunately, it suffers from several downsides: It requires ex-
pensive process spawning, all virtual memory of the process is
always snapshotted, processes must be carefully coordinated,
and it supports only page size CoW granularity. Unfortunately,
we could not include an experimental comparison with fork(), as
the virtual snapshotting is deeply buried in the checkpointing
mechanism, which materialized the snapshotted state on disk.
However, we show that in-situ-CoW is to superior to fork()-based
snapshotting, as it allows using a flexible CoW granularity.

2.2 Number of Modified Pages per Time
Interval

Using CoW, for each 4KB page that is modified, a copy of the orig-
inal page is created. Therefore, the memory footprint of an appli-
cation with a single snapshot is the sum of all state memory plus
the memory of all modified, and hence, copied pages. Of course,
apart from the memory access pattern, the time interval at which
snapshots are taken also affects the memory footprint. Using a
longer interval potentially results in more modified pages, and
hence, a higher memory footprint. Therefore, in the following,
we investigate the number of modified pages for different time
intervals to understand for which applications our CoW based
approach would have a lower memory overhead than physically
copying the entire dataset.

Fig. 1 shows the ratio of modified pages normalized over the
working set size (the total number of memory pages accessed dur-
ing the application runtime). We vary the time interval between
snapshot creations and report the average ratio over intervals.
We also show the minimum and maximum values observed over
all intervals in form of error bars. We see that for six out of ten
scientific workloads, the memory overhead is less than 10%, inde-
pendent of the time interval. This makes these applications very
suitable candidates for our approach. Applications such as milc,

amg miniGhost hpl lulesh milc namd nas_ft snap tealeaf xs_bench
0%

25%
50%
75%

100%

No
rm

al
ize

d
Si

ze
 o

f C
oW

s

4KB 32KB 256KB 2MB

(a) Scientific workloads

Load A B D E F
0%

20%

40%

No
rm

al
ize

d
Si

ze
 o

f C
oW

s

(b) YCSB workload on Redis

Figure 2: Size of copied data for four CoW granularities,
normalized to the working set size

namd, and the YCSB workloads are also suitable, if a short inter-
val of 2s is used. In this case, these workloads induce less than
20% of memory overhead. We can also see that the workloads
hpl and tealeaf require at least 40% additional memory even for
the shortest interval, as they modify a large amount of pages in
a short period of time.

Findings (1). In terms of expected memory overhead of CoW, we
can categorize our applications into three groups: 1) low overhead
(< 10% for any interval): amg, miniGhost, lulesh, nas_ft, xs_bench,
2) high overhead (> 40% for any interval): hpl, tealeaf, and 3) time-
interval dependent: milc, namd, and YCSB. This shows that in terms
of memory overhead, a CoW-based would indeed be beneficial for
a subset of the tested applications.

2.3 Impact of the CoW Granularity
In the previous section, we measured the number of 4KB pages
copied. However, there is the possibility to perform CoW using
larger granularities as well. For example, if the granularity is set
to 256KB, writing a single byte triggers the copying of the sur-
rounding 256KB chunk. In terms of memory overhead, choosing
a small granularity (such as 4KB, the size of a memory page) is
better. However, a small granularity causes in many CoW oper-
ations, resulting in processing overhead. On the other hand, a
large granularity reduces the number of CoW operations, but
might result in a higher memory overhead if only a portion of
the chunk is modified. In the following experiment, we there-
fore vary the granularity and observe its impact on the memory
overhead.

Fig. 2 shows the amount of copied data for four different gran-
ularities normalized to the working set size. Values higher than
100% can occur since there might exist 2MB virtual address blocks
for which only a small part of them is accessed by the application.
For such address blocks, the parts not accessed by the application
are not counted towards the working set size, but are still copied
by the CoW approach. In workloads like miniGhost and YCSB-A,
increasing the granularity significantly increases the memory
overhead. On the other hand, in workloads like amg, xs_bench
and YCSB-E, larger granularities still have a low memory over-
head.

Findings (2). The expected memory overhead is highly affected
by the CoW granularity, and hence, different applications will re-
quire different granularity configurations.
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2.4 Number of Performed CoW Operations
After focusing on the memory footprint of CoW operations, let
us now look at the processing overhead, which depends on the
number of CoW operations. Inverse to the number of modified
pages, this number decreases for longer time intervals, since a
page modified multiple times within the same interval will be
copied only once.
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Figure 3: Normalized number of CoWs (4KB granularity for
2/10/20s)

Fig. 3 therefore shows the number of CoW operations for three
different time intervals, normalized to the 2s interval. We can
see that workloads such as hpl, milc, and namd show the highest
reduction in the number of CoW operations when increasing
the interval time. Compared to Fig. 1a, these workloads have the
highest memory overhead. Hence, we can adjust the time interval
to balance the memory and runtime overhead. For example, for
miniGhost, employing longer time intervals reduces the runtime
overhead with a relatively small impact on the memory overhead.
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Figure 4: Normalized number of CoWs in 2s intervals

Fig. 4 shows the normalized number of CoW operations while
varying the CoW granularity. We can observe that the work-
loads nas_ft, snap, and xs_bench have the lowest reduction when
using the largest granularity of 2MB. Interestingly, the same
workloads are also those that have the highest memory overhead
according to Fig. 2a. Thus, these workloads will not benefit from
increasing the granularity any further. In contrast, workloads
such as hpl and tealeaf significantly benefit from increasing the
granularity, since that drastically reduces the number of CoW
operations while having a relatively low memory overhead. Note
that the intermediate CoW granularities 32KB and 256KB also
behave differently. For instance, amg andminiGhost show almost
the same reduction for 32KB granularity. However, when we in-
crease the granularity to 256KB, the number of CoW operations
significantly decreases in amg, but remains almost the same in
miniGhost. The reduction in lulesh for 256KB is between amg
andminiGhost, while having almost the same reduction for 32KB.
Note that we also observed the YCSB workloads to be sensitive to
the CoW granularity. However, we omitted the figures because
of the space limitation.

Findings (3). The observed processing overhead of the tested
applications is highly affected by the CoW granularity (additionally
to the chosen snapshot interval). This confirms again that a static
granularity would not be effective across all workloads.

2.5 Spatial Locality and Temporal Locality
In Fig. 5, we visualize the impact of the CoW granularity and the
time interval in combination to provide an overall view of the
workloads. To do so, we arrange the workloads along two axes,
namely temporal locality and spatial locality. A higher temporal
locality means that the pages are accessed continuously in time
intervals. As such, increasing the interval time is more beneficial
since all modified pages will be copied in a smaller number of
snapshots. A higher spatial locality means that the workload
accesses a small region of the state. Therefore, employing larger
CoW granularities will have more advantages. Based on the ben-
efits of increasing the granularity and interval time, we divide
the workloads into three groups.
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Figure 5: Spatial and temporal locality of workloads

The first group benefits from increasing both parameters and
one can expect a significant opportunity to decrease their over-
heads. The second group has a relatively lower temporal locality
but still has a high spatial locality. This group can benefit from a
larger granularity. The third group exhibits both low temporal
and low spatial locality. Therefore, optimizing both parameters
is expected to have less impact on the overhead reduction.

Findings (4). The examined applications can be partitioned into
three groups with different temporal and spatial locality, based on
their expected improvements when increasing the CoW granularity
and/or interval time.

3 ARCHITECTURE OF IN-SITU-COW
In Section 2, we have seen that a CoW-based snapshotting ap-
proach can indeed pay off for applications with a high spatial and
temporal locality. Also, we have seen that a static approach using
a fixed granularity is not sufficient. Consequently, in the follow-
ing, we extend our static method of [29], which were applied
therein in a prototypical way to create lightweight snapshots of
main memory databases, in three ways: (1) We support arbitrary
CoW granularities, as long as they are a multiple of the page size.
(2) We integrate an adaptive adjustment of the CoW granularity
with respect to the access pattern of the workload. (3) We present
how to perform CoW asynchronously to the application’s exe-
cution to reduce the processing overhead of copying modified
pages. The technical details of the resulting in-situ-CoW will be
presented in the following.

3.1 Implementing CoW
The core principle of in-situ-CoW consists of three parts (Fig. 6):
(1) When the host application performs an allocation request,
we intercept it. This allows us to serve the request with virtual
memory that is backed by physical memory, to which we have a
handle. (2) With the virtual and physical memory of the applica-
tion under our control, we create virtual snapshots. (3) To ensure
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that these snapshots are stable, i.e., they are not changed under
writes of the application, we implement a CoW mechanism. In
the following, we outline the three parts in detail.

3.1.1 InterceptingMemory Allocations. In order to create
virtual snapshots, we require a handle to the physical memory
of the application. Therefore, we employ function interposing
to hijack the allocation process of the application. It works as
follows: If an application calls a function from a dynamically
linked library, the definition of the function will be resolved
at runtime. Via preloading, however, we can intercept this call
and ensure that our own custom definition is called instead. It
allows us to intercept memory allocations and serve them using
a custom allocator.

Memory allocations are served by virtual memory that is
backed by anonymous memory. Since anonymous memory is
not under our control, we cannot use it to create virtual snap-
shots. Instead, our custom allocator serves all requests by virtual
memory that is backed by a so-called main-memory file, which
can be created in a main-memory file system such as tmpfs. The
key benefit of physical memory in form of a main-memory file is
that we can freely map virtual memory to the physical memory
at page granularity, aka memory rewiring [28]. Thus, by resolv-
ing all allocation requests of the host application by file-backed
virtual memory, we essentially create a handle to the physical
memory of the application.

3.1.2 Creating Virtual Snapshots. By having access to
physical memory, we can now create virtual snapshots (Fig. 7a).
Assume we want to snapshot a virtual memory area consisting
of 𝑛 virtual pages 𝑣0, ..., 𝑣𝑛−1, where each virtual page 𝑣𝑖 maps to
a corresponding physical page 𝑝𝑖 of the main-memory file. We
then simply create a new virtual memory area of 𝑛 pages 𝑠𝑖 and
map them to 𝑝𝑖 as well. The virtual pages 𝑠0, ..., 𝑠𝑛−1 represent
our virtual snapshot.

3.1.3 Stable Snapshots via Copy-on-Write (CoW). So
far, our virtual snapshots are not stable since if the application
writes to its memory, the changes become visible through our
snapshots. To ensure the stability, we integrate the copy-on-write
mechanism we showcased in [28]. After creating the virtual snap-
shot, we first mark all virtual pages 𝑣𝑖 of the snapshotted virtual
memory area as write-protected (Fig. 7a). As a consequence, any
write to 𝑣𝑖 by the application ( 1 in Fig. 7b) will result in a seg-
mentation fault. Using a custom segmentation fault handler, we
now catch this segmentation fault ( 2 ), copy the physical page
mapped by 𝑣𝑖 to an unused physical page ( 3 ), and remap the
virtual page 𝑠𝑖 to the copy ( 4 in Fig. 7c). This way, we ensure
that 𝑣𝑖 and the corresponding virtual page in the snapshot 𝑠𝑖
map to different physical pages. We then set the protection of
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Figure 7: General workflow of our CoW

page 𝑣𝑖 to writable ( 5 ) and let the segmentation fault handler
return. Next, the OS will now re-perform the previously failed
write operation to 𝑣𝑖 , which now definitely succeeds. Our snap-
shot still sees the unmodified version and thus remains stable.
Fig. 7c shows the resulting state of this mechanism. Note that the
detection of actual invalid memory accesses still works correctly:
Our custom segmentation fault handler checks for each access
whether it falls in an allocated memory area. If not, it signals to
the OS to terminate the application.

3.2 Supporting Different CoW Granularities
Of course, our method also allows to adjust the CoW granularity
depending on the needs of the application. Precisely, any granu-
larity that is a multiple of the system page size (4KB) is supported,
as the remapping required in the CoW process must operate on
whole pages. Further, we want to emphasize that our method
is independent from the programming language in which the
applications was developed, as interposing happens at the library
call level.

To create virtual snapshots, we need the physical page that
each virtual page is mapped to. This information is maintained
by the OS and is not exposed to the user space. Thus, we maintain
an auxiliary data structure, which keeps track of all mappings.
We employ a B-tree and use a pre-allocated memory to get the
required data structures for adding to the tree. The tree stores the
user-requested mapping options, the virtual address, and the off-
set into the main-memory file. We employ a simple buddy alloca-
tor for our internal allocations. If the OS would provide a means
to access the mapping from virtual to physical addresses, we
would not need the memory-backed file and the virtual to physi-
cal mappings could have been retrieved from the OS. However,
we would still need the B-tree to store the remaining metadata.
Linux already provides an interface to obtain virtual to physical
mappings. However, it is limited to the root user because of the
security concerns. An alternative approach is to extend the OS to
provide interfaces that 1) enable pointing a virtual address to the
same physical address that another virtual address points to, and
2) returns virtual addresses pointing to the same physical page.

3.3 Adaptive CoW Granularity
In the previous section, we identified that the CoW granularity
contains a trade-off: For a small granularity such as 4KB, each
unique access to amemory page triggers a copy.While potentially,
the overhead of unnecessarily copied data is low, many CoW op-
erations must be carried out. For a larger granularity such as 2MB,
potentially, the number of CoW operations decreases. However,
we have the risk of copying more data unnecessarily. To make a
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Table 2: Overheads of different CoW granularities. (SN:
Number of segmentation faults that occur for the first 𝑛
writes, MO: Memory overhead caused by these writes)

CoW granularity 1st Write 2nd Write 3rd Write
SN MO SN MO SN MO

4KB 1 4KB 2 8KB 3 12KB
2MB 1 2MB 1 2MB 1 2MB

Adaptive (4KB/2MB) 1 4KB 2 2MB 2 2MB

concrete example for this trade-off, consider the calculation in
Table 2. Imagine the application performs three write operations
across a memory area of 2MB. For a static granularity of 4KB, this
results in the worst case in three CoW operations copying 12KB
in total where each operation triggers a segmentation fault. For a
static granularity of 2MB, the three write operations trigger only
a single CoW operation and respectively a single segmentation
fault as processing overhead, however, 2MB must be copied in
total. This means 99.5% of the copied data (509 out of 512 memory
pages of size 4KB) is actually preventable overhead.

To reduce the memory overhead while still benefiting from
larger granularities, we propose a variant that uses adaptive
granularities. It works as follows: The user has the option to
configure the method to a certain desired CoW granularity, such
as 2MB, aka the target granularity. However, the first write to
a 2MB area ( 1 in Fig. 8) does not immediately trigger a CoW
of the configured 2MB, but copies only the touched portion of
4KB ( 2 ), aka the initial granularity. Only when the second write
to a different memory page of that 2MB area ( 3 ) happens, we
perform a CoW of the entire 2MB ( 4 ). As the previously copied
4KB memory region is part of the now copied 2MB region, the
4KB copy can be freed. Since the whole 2MB area is copied, all
further write operations ( 5 ) do not trigger a CoW anymore.
This simple heuristic assures that we keep the number of CoW
operations small for hot memory areas while avoiding to cause
memory overhead for rarely modified areas. Note that while this
strategy is rather simple and more complex strategies would be
possible, it works effectively as the first write is a good indicator
for successive writes. Further, our adaptive approach is capable of
employing any two initial and target granularity by just changing
the configuration. Of course, the optimal configuration varies
between different applications. Nevertheless, we tried to present
a set of configurations that work well on average. It allows users
to select a configuration just by comparing the characteristics of
their application with our examined applications.

In the last line of Table 2, we calculate how this adaptive strat-
egy affects the number of segmentation faults and the memory
overhead. On the first access, the adaptive strategy has the same

overhead as the static 4KB granularity and hence a significantly
reduced memory overhead compared to the static 2MB granular-
ity. If the 2MB area receives a second request, then our adaptive
strategy has the same memory overhead as using a static 2MB
granularity, but with one additional segfault overhead. For the
rest of the requests, we perform the same as the static 2MB gran-
ularity, while the number of segfaults for a granularity of 4KB
continuously increases. Therefore, our adaptive method can pro-
vide a mean to balance the memory overhead and the processing
overhead (i.e., the number of CoW operations respectively seg-
mentation faults). Note that we can easily configure our proposed
adaptive method to copy the whole area only on the 𝑛-th request.

3.4 Asynchronous CoW
As we have discussed, using an adaptive granularity reduces the
amount of copied data. However, all of the modified memory
pages within a time interval still need to be physically copied
during the CoW operations. If the application has a large and
write-heavy working set, this copying can still impose a signif-
icant performance overhead, even if adaptive granularities are
used.

To reduce this overhead, we therefore propose to perform the
copying asynchronously to the continuous execution of the appli-
cation. This approach removes the need for halting the execution
each time a CoW operation is performed. It works as follows:

When we create a snapshot, we can create a list of pages
modified after the previous snapshot. Such pages are likely to be
modified again in the next time interval. These pages are also
set to read-only mode after the snapshot is created like the other
pages. We start an additional thread which copies the data pages
in the list into the CoW memory location pro-actively. Once a
data page is copied, it is removed from the list. Note that the
read-only state of the page is not changed to read-write after it is
copied. This is because we still need to be notified whether this
page is modified until the next snapshot. If a page is modified
by the application, the segfault handler is called. It first checks
if the page is in the list. If it is found, segfault handler copies
the page and removes it from the list. Then similar to the other
pages, it changes the state of the page into read-write and allows
the application to continue its execution. Hence, the difference
betweenmodifying a page in the list and outside of it is towhether
segfault handler performs data copy or not. Using this approach,
copying time of a large number of pages is removed from the
critical path of the application’s execution.

4 EXPERIMENTAL EVALUATION
In the following section, we perform an in-depth experimen-
tal evaluation of in-situ-CoW against a set of competitive base-
lines. First, in Section 4.1, we evaluate the processing overhead
of in-situ-CoW for different static granularities in comparison
to physical snapshotting. Then, in Section 4.2, we evaluate the
effect of using adaptive CoW granularities in comparison with
static granularities on the memory overhead. Section 4.3 analyzes
the impact of performing asynchronous CoW operations on the
processing overhead. In Section 4.4, we evaluate in-situ-CoW in
comparison with two oracle baselines to see how far we are away
from the optimum. Section 4.5 revisits the trade-off between CoW
granularity and interval time. Finally, Section 4.6 compares the
behavior of in-situ-CoW against an MVCC implementation.
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Figure 9: Processing overhead for different CoW granularities

4.1 Processing Overhead of in-situ-CoW
We start by evaluating the processing overhead of in-situ-CoW
over not performing any snapshotting at all. Additionally, we
show the processing overhead of copyall, which resembles physi-
cal snapshotting. Fig. 9 shows the results for four different stati-
cally selected CoW granularities and a time interval of 2s. Note
that we show the processing overhead in relation to the time
interval: For example, an overhead of 100% would mean that for
each 2s interval, we need additional 2s to handle all triggered
CoW operations. If the system has available CPU resources, most
of this overhead will be masked. However, throughout the ex-
periments we assumed that no idle core is available and any
processing overhead will directly result in delayed application
computations. To further inspect the overhead, we divide it into
the overhead of handling the segmentation fault (segfault) in-
cluding all connected processing steps and the overhead of per-
forming the actual physical copying (copy).

The results show that for each workload, there exists a configu-
ration of in-situ-CoW which significantly reduces the processing
overhead in comparison to copyall. For most of the workloads, we
can identify a configuration that results in less than 20% process-
ing overhead, which implies that in-situ-CoW can be employed
for data-intensive applications with modest overhead. Fig. 9b
shows that for YCSB on Redis, our method creates a negligible
overhead of less than 5% if a granularity of 256KB is used. Con-
sequently, the fork()-based mechanism used for checkpointing
would not show a smaller overhead, as it operates on 4KB mem-
ory pages. Apart from that, we can also see that for small CoW
granularities, the segfault overhead dominates the copy overhead,
while the copy overhead dominates the segfault overhead for
larger granularities.

Comparing the results of Fig. 9 with Fig. 4 reveals that although
using 2MB granularities significantly reduces the number of CoW
operations, the overhead of copying larger granularities can offset
the reduction of the segfault overhead. In xs_bench and nas_ft,
using 4KB granularities offers the lowest performance overhead.
This is in line with our classification in Fig. 5, where we estimated
that these workloads will not benefit from increasing the CoW

granularity. Our classification for tealeaf and hpl is also accurate,
since they have the highest reduction in processing overhead
when using a lager CoW granularity. In total, CoW granularities
of 32KB or 256KB offer the lowest performance overhead for
most of the workloads.
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Figure 10: Normalized memory overhead for adaptive CoW
granularity compared to fixed CoW granularity

4.2 Adaptive vs Static CoW Granularity
Next, we evaluate the efficiency of the proposed adaptive adjust-
ment of the CoW granularity. We do so in three steps:

4.2.1 Memory Overhead: One-to-one Comparison. We start
by testing the effectiveness when adaptively switching from a
granularity of 4KB to a 32KB, 256KB, and 2MB granularity, re-
spectively. We normalize the memory overhead of each adaptive
variant to the counterpart variant using a static granularity of
the same size to get a one-to-one comparison. For instance, the
results of the variant which adaptively switches from a granular-
ity of 4KB to a granularity of 32KB are normalized to the variant
using a static 32KB granularity. Note that the memory overhead
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includes all data structures needed for maintaining the snapshots
as well as the space to keep the modified pages.

Fig. 10 shows the results. We can see that for six of the ten
scientific workloads, adaptively setting the granularity reduces
the memory overhead by more than 50%, showing the practi-
cal effectiveness of our adaptive variant. Nas_fd has the highest
memory savings with more than 80% reduction in consumed
memory. Setting the adaptive granularity to 32KB offers the high-
est memory savings. This is because as granularities get larger,
the probability of facing a second write operating, and hence,
copying the whole region, increases. miniGhost is the only ex-
ception, where using a granularity of 256KB results in a higher
reduction. Note that an adaptive granularity of 2MB performs
poorly in this workload. This shows that the memory accesses
usually concentrate in areas larger than 32KB, but smaller than
256KB. In tealeaf and hpl, we observe almost no reduction of
memory overhead. These workloads have a high spatial locality,
and hence, rarely have regions that are seldomly accessed. The
YCSB workloads exhibit a overhead reduction between around
20% and 50%. Since accesses follow a Zipfian distribution, there
is a high probability that an accessed region is accessed again
and hence, a large CoW is performed.

4.2.2 Memory Overhead: Comparison with Best Static CoW
Granularity. In the previous section, we have seen that an adap-
tive CoW granularity reduces the memory overhead in compari-
son with the static counterpart of the same granularity. Let us
see in the following how much memory overhead our adaptive
approach has in comparison with the best static configuration.
In Fig. 11a, we compare both against the best configuration in
terms of processing overhead (perf. best case) and in memory
overhead (mem. best case). We present the overheads normalized
to perf. best case, while in Fig. 10 we showed the normalized over-
head, compared to the corresponding static configuration. Since
the adaptive approach is not very effective in YCSB workloads
with a Zipfian distribution, and due to the space limitation, we
omitted the YCSB results. We can see that our adaptive mecha-
nism reduces the memory overhead by up to 78%. In comparison

to mem. best case, which always uses a granularity of 4KB, all
tested adaptive granularities unsurprisingly have a higher mem-
ory overhead. However, the memory overhead of our adaptive
approach can be as low as 1.11× of the mem. best case. Similar
to Fig. 10, a granularity of 32KB also offers the best memory
overhead reduction, where both 32KB and 256KB granularities
reduce the memory overhead for most of the workloads.

4.2.3 Processing Overhead: Comparison with Best Static CoW
Granularity. To put the previous results into perspective, we also
inspect the impact of the processing overhead. Fig. 11b shows the
processing overhead of our adaptive variant in comparison with
the best static configurations. We can see in the results that for all
workloads, either using an adaptive 32KB granularity or a 256KB
granularity shows a processing overhead close to perf. best case.
This indicates that adaptive granularities can indeed reduce the
memory overhead while causing a negligible additional process-
ing overhead. For example, in lulesh, 32KB adaptive granularities
impose only 4% additional processing overhead, compared to
perf. best case. At the same time, it reduces the memory overhead
by more than 57%. Similarly, in amg, 32KB adaptive granularities
add 19% of processing overhead and in return, reduce the mem-
ory overhead by more than 88%. Further, we can see that 256KB
adaptive granularities perform mostly better than the 32KB vari-
ants. In milc and namd, 256KB adaptive granularities reduce the
memory overhead by more than 14% with less than 5% additional
processing overhead, compared to perf. best case. In miniGhost, it
further reduces the processing overhead while simultaneously
reducing the memory overhead.

4.3 Asynchronous CoW
After evaluating our optimization of adaptive CoW granularity,
let us evaluate the optimization of performing CoW operations
asynchronously to the continuous execution of the application.

In Fig. 12, we compare the processing overhead of the best per-
forming static configuration without asynchronous CoW (perf.),
the best performing static configuration with asynchronous CoW
(async.), the best adaptive configuration without asynchronous
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Figure 12: Processing overhead with and without asynchro-
nous CoW

CoW (adaptive), and the best adaptive configuration with asyn-
chronous CoW (adapt. + async.). As we can see in Fig. 12a, the
performance improvement of asynchronous CoW varies between
the scientific workloads. When using a fixed CoW granularity, we
observe up to 45% reduction of processing overhead (26% on aver-
age) when using asynchronous CoW. This performance improve-
ment trend is mostly maintained when we switch from static to
adaptive CoWgranularities, by up to 50% of improvement (23% on
average). This shows that regardless of the CoW granularity and
whether a static or adaptive approach is used, asynchronous CoW
significantly reduces the processing overhead. Further, since this
optimization does not impose any additional memory overhead,
it should be applied to all configurations and workloads.

In YCSB workloads, the async. approach significantly reduces
the performance overhead. In all examined workloads, this over-
head is reduced by more than 60% which shows the effectiveness
of our async. approach. Note that we employed the optimal gran-
ularity for async. (i.e., 256KB). Simply using the async. approach
without our adaptive granularity selection will not yield in such
a performance overhead reduction.

Additionally, we have examined the impact of varying the
number of threads when running an application for the applica-
tion miniGhost. Therein, the performance of async. CoW is only
slightly degraded when increasing the thread count from 8 to 16,
32, and 64 by 2.1%, 4.2%, and 4.3%.

4.4 Comparison against Oracle Baselines
To evaluate how much overhead in-situ-CoW has in compari-
son to the optimum, we introduce two optimal CoW strategies,
where all accesses in the interval are known beforehand. As a
consequence, the CoW strategy can set the optimal granularity
for individual memory regions. Note that the maximum granu-
larity that can be set by the optimal CoW strategies is still 2MB,
as larger ones did not result in further improvements, as we
identified experimentally.

Our first implementation is called Optimal Memory CoW strat-
egy (OM-CoW), as it causes the minimal memory overhead. To
achieve this, the CoW granularity of this mechanism is set to
4KB. Note that if several continuous 4KB pages are accessed in
the same time interval, all of them are copied in a single CoW
operation to minimize the processing overhead.

Our second implementation is calledOptimal Performance CoW
(OP-CoW), as it selects for each 2MBmemory region the optimal

Algorithm 1: OP-CoW: Optimal Performance CoW
Data: all_accessed_pages, proc_overhead

1 foreach 2MB chunk do
2 𝑝_𝑐𝑜𝑠𝑡,𝑚_𝑐𝑜𝑠𝑡 ← find_optimal(chunk.start, 9) /* 29 pages */

3 end
4 Function find_optimal(start, depth):
5 if depth == 0 then
6 if start ∈ all_accessed_pages then
7 return (proc_overhead[1],1);
8 else
9 return (0,0) /* (CPU, Memory) overheads */

10 end
11 end
12 𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ← 𝑝𝑟𝑜𝑐_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 [2𝑑𝑒𝑝𝑡ℎ ];
13 𝑙_𝑐𝑜𝑠𝑡, 𝑙_𝑐𝑜𝑠𝑡_𝑚𝑒𝑚 ← find_optimal(start, depth-1);
14 𝑟_𝑐𝑜𝑠𝑡, 𝑟_𝑐𝑜𝑠𝑡_𝑚𝑒𝑚 ← find_optimal(start+2𝑑𝑒𝑝𝑡ℎ−1 , depth-1);
15 if l_cost+r_cost < curr_overhead then
16 return

(𝑙_𝑐𝑜𝑠𝑡 + 𝑟_𝑐𝑜𝑠𝑡, 𝑙𝑒 𝑓 𝑡_𝑐𝑜𝑠𝑡_𝑚𝑒𝑚 + 𝑟𝑖𝑔ℎ𝑡_𝑐𝑜𝑠𝑡_𝑚𝑒𝑚);
17 else
18 return (𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑, 2𝑑𝑒𝑝𝑡ℎ );
19 end

CoW granularity. It recursively calculates the performance cost of
using two small adjacent region or one larger region containing
both of them as CoW granularity. For the calculation, we require
two inputs: a) Accessed 4KB pages in the time interval which
we obtain from the memory traces. b) The processing cost of
performing a CoW operation for all possible granularities. Algo-
rithm 1 provides the pseudo-code for the generation of OP-CoW.
For each 2MB block, we call find_optimal() and accumulate the
processing and memory overheads. find_optimal() recursively
calculates the cost of using a smaller granularity and decides
whether employing a larger granularity can reduce the process-
ing overhead. Line 5 to line 11 show the exit condition. We check
whether the data page is accessed in this time interval or not.
If it is accessed, then performing CoW on this page requires a
processing overhead for one page and also occupies one memory
page. If not accessed, no overheads are imposed. Line 13 and line
14 split the current granularity into two smaller granularities and
call the same function for both. Line 15 to line 19 decide if the
cost of using the current granularity is lower or splitting it can
reduce the processing overhead.

Additionally, we include a third baseline OP-Traditional,
which shows the performance of using physical snapshotting.
Precisely, OP-Traditional has knowledge of all accesses in the
future and therefore physically copies all 4KB pages that will be
modified until the next snapshot in one go.

Figure 13a shows the results in terms of processing overhead.
Aligning these with the classification of workloads in Fig. 5, we
can see that in-situ-CoW shows only a slight overhead over OP-
CoW for workloads with a high temporal and spatial locality.
For these workloads, it also performs better or as good as OP-
Traditional. However, we can also see that for workloads with
low temporal locality but high spatial locality, as expected, in-
situ-CoW shows overhead over the performance oriented oracle
baselines. Further, in comparison to OM-CoW and the best static
CoW configuration in terms of memory footprint, we can see
that in-situ-CoW has a significantly smaller processing overhead
in nearly all cases.

In Fig. 13b, we shift the focus on the memory overhead of in-
situ-CoW, where we show all results normalized to in-situ-CoW.
The best memory case and OM-CoW both employ a granularity
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Figure 13: Comparison of in-situ-CoW against baselines

of 4KB, and hence, have the same overhead. We can see that un-
fortunately for no workload, in-situ-CoW can reach the memory
overhead of the memory optimal case and of OM-CoW. However,
under several workloads, in-situ-CoW shows a lower memory
overhead than OP-CoW. As performance is ourmain optimization
target, this shows the effectiveness of our approach.

4.5 CoW Granularity vs Interval Time
Finally, we investigate the trade-off between the CoW granularity
and the interval time. The chosen interval time depends primarily
on the use-case, i.e., how often a new snapshot is required by the
user. However, as the cost of creating a snapshot varies across
applications, it must be factored in when setting the interval
time.
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In Fig. 14, we vary the interval time and report the processing
overhead for the miniGhost workload. For the static approaches,
increasing the interval time reduces the processing overhead
under all CoW granularities. However, the amount of reduction

is significantly varies. For instance, the overhead when going
from an interval time from 2s to 20s is reduced by 1.95× for 4KB
granularities, while it is reduced by 7.45× for 2MB granularities.
Thus, for larger CoW granularities, increasing the interval time
has a higher impact on the reduction of processing overhead.

Further, we also measured the overhead for the adaptive ap-
proach. We can see that by increasing the interval time, the
overhead of the adaptive method is reduced at a lower pace. This
is because for longer intervals, there is a higher chance that at
least two pages are accessed in a granule, and hence, the adap-
tive method imposes a slightly higher overhead than the static
counterpart.

4.6 Virtual Snapshotting vs MVCC
Apart from physical snapshotting, multi-version concurrency
control (MVCC), which is implemented by a wide range of mod-
ern DBMSs [6, 14, 21, 37] to coordinate the execution of concur-
rent transactions, is another option to create snapshots. The core
idea is simple: On updates, instead of overwriting the old version
of an entry with the new one, MVCC preserves the old version
in a separate version chain. This allows to execute potentially
long-running queries on a consistent version of the database (aka
a snapshot) while being able to execute modifying transactions
concurrently.

To analyze the performance differences between MVCC and
virtual snapshotting, we perform the following benchmark exe-
cuting four phases: After allocating an integer array of 400MB,
we (1) perform a certain amount of uniformly distributed updates.
Then, (2) we take a snapshot. After that, (3) we perform another
batch of updates, which will not be reflected by the snapshot.
Finally, (4) we iterate over snapshot entries and sum them up.

We run MVCC, which orders versions from newest (in-place)
to oldest (deepest in the version chain), with dynamically allo-
cated entries and with pre-allocated entries (each entry consists
of the integer value, an 8B timestamp, and a pointer to the next
entry). While taking an MVCC snapshot requires only of keep-
ing a timestamp, accessing an entry of the snapshot requires
the traversal of the corresponding version chain from newest
to oldest until the first version is found that can be seen by the
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Figure 15: Comparing virtual snapshotting with MVCC for 1% of entries being updated.

snapshot. For virtual snapshotting, we test the previously used
four different CoW granularities and consider both the best case,
where the virtual snapshot consists of a single linear mapping,
as well as the worst case, where all pages of the snapshot are
mapped in a criss-cross fashion.

Figure 15 shows the results for 1% of the entries being updated.
We vary the range from which these 1% entries are picked, where
we test 1%, representing very high skew, and 10% as well as
50% representing lower skew. Further, we vary the number of
times each entry is updated, from only once over 10 times to
20 times. We observe that the performance of MVCC depends
on the amount of updates much more than in-situ-CoW. While
for only one update per selected entry, MVCC is competitive to
in-situ-CoW, for multiple updates per entry, the performance of
MVCC deteriorates due to the build up of longer version chains.
This makes especially the analysis of the snapshot expensive,
which is cheap and independent of the number of updates for
in-situ-CoW. In summary, virtual snapshotting offers the a more
workload-robust performance – while not requiring to modify
the applications in any way.

4.7 Lessons Learned
Based on the presented experimental results, let us summarize
the most important results and lessons learned:
(1) Our 16 different applications/workloads have different
requirements for a CoW-based snapshotting mechanism.
However, it is (a) possible to categorize them in terms of locality
of the access pattern, and (b) in-situ-CoW can be configured to
work well for a large number of workloads.
(2) Our in-situ-CoW shows a significantly lower process-
ing overhead than both physical snapshotting and MVCC.
AgainstMVCC, in-situ-CoW shows a significantly smaller cost for
using the snapshot, as no reconstruction is required whatsoever.
In summary, for fourteen out of our 16 workloads, the overhead
of in-situ-CoW over not creating snapshots snapshotting is less
than 30%.
(3) There is no single CoW granularity that works best
for all workloads. However, the granularities 32KB and 256KB
have the smallest processing overhead for fourteen out of 16
workloads, showing that CoW using the system page granularity
is not optimal.
(4) It pays off to use an adaptive CoW granularity. The mem-
ory overhead over the counterpart configuration was reduced
to 50% for six out of 16 workloads. Over the best static CoW
granularity, the adaptive strategy reduces the overhead by up
to 78%, where its memory overhead is only 11% higher than the
static configuration with the lowest memory overhead. In terms
of processing overhead, when using target granularities of 32KB

and 256KB, the adaptive strategy performs comparable to the
static configuration with the lower processing overhead.
(5) It pays off to performCoWasynchronously. For the scien-
tific workloads, copying asynchronously improves the processing
overhead by up to 50%. For the YCSB workload, it even improves
by up to 60%. Further, asynchronous copying is only negligibly
impacted by the number of used threads of the host application:
When doubling the number of threads, the performance degrades
by less than 4%.
(6) Our in-situ-CoW gets close to the performance-optimal
oracle baseline in terms of processing-overhead, if the spa-
tial and temporal locality of the workload is high. In terms of
memory-overhead, the memory-optimal oracle baseline cannot
be surpassed.
(7) CoW granularity and snapshotting time interval trade
off performance overhead. The larger the CoW granularity, the
higher is the reduction in processing overhead when increasing
the time interval.

5 ANALYSIS WORKFLOW
After discussing and evaluating how virtual snapshots can be
created efficiently, let us now discuss how these snapshots could
actually be used for in-situ analysis. Note that using our in-situ-
CoWmethod, this in-situ analysis could be performed on DBMSs,
which do not provide an internal snapshotting mechanism, as
well as on HPC applications.

5.1 In-situ Frameworks
To perform the actual in-situ analysis, there exist various frame-
works [4, 12, 13, 31, 33, 35]. For instance, ADIOS [13] provides an
API that allows host applications to expose their current state to
it. A module called Flexpath [9] then creates a physical snapshot
of the state and transfers it to analysis jobs. Fig. 16a visualizes
the principle. While this approach is simple, the downside is that
the amount of required memory is doubled and the application
must be halted during the copying.

Note that it is also possible to transfer only the modified parts
of the state to ADIOS, as shown in Fig. 16b. However, to enable
this, the host application should be heavily adapted to partition
the data in order to create clusters of modified data. Further,
the application needs to mark the modified parts explicitly. This
becomes cumbersome to infeasible in complex scientific applica-
tions, especially if data is also modified by third-party libraries.

By integrating in-situ-CoW into ADIOS, which is left as future
work, these limitations could be fully resolved. Additionally, our
approach enables the asynchronous copying of the modified data
to the in-situ module, while the application an continues to run.
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Figure 16: Data flow between processing and analysis jobs

5.2 Interpreting Snapshots
After a snapshot has been transferred to the in-situ framework,
it must be interpreted before any analysis can happen. This step
is independent from whether the snapshot has been created tra-
ditionally or by using in-situ-CoW. The interpretation must be
provided in form of type information, which is used by the frame-
work to cast the raw memory snapshot into a a well-formatted
layout. For HPC applications, the produced state is often struc-
tured using some standard format such as NetCDF or HDF5,
which eases and generalizes this step. If no standard format is
used, the analysis job has to provide the type information. We
want to emphasize that providing this type information (by hav-
ing internal knowledge about the state management) is required
for all alternative approaches as well. However, by using in-situ-
CoW, we at least avoid themodification of the host application for
creating snapshots, which might be complex or even infeasible.

5.3 Analyzing Snapshots
After the snapshot has been interpreted, the actual analysis jobs
can be executed. In scientific environments, where applications
are performing long-running computations, these jobs typically
fall into the categories of either (a) progress monitoring (how
long does it still take to finish computation?), (b) error tracking
(is the computation still behaving as intended?), or (c) extracting
intermediate results, such as an approximation of the final result.
Apart from that, in-situ analysis jobs could be used to support
lifecycle monitoring providing information on the health or load
of the system for applications that natively do not support it (sim-
ilar to RedisInsight or Oracle AWR, but without deep integration
into the host system).

5.4 Managing Snapshots
Note that in-situ-CoW allows multiple analysis jobs to create
and process multiple virtual snapshots simultaneously. From the
perspective of the analysis job, its virtual snapshot is completely
independent from other existing virtual snapshots, although they
might share physical pages. Consequently, there is no coordina-
tion required between jobs required.

As soon as a virtual snapshot is not of use anymore, it can be
deleted. When garbage-collecting a snapshot, we ensure to only
free those pages that are not shared with any newer snapshot.
This is the case for all pages that have not been modified by the
application after taking the snapshot.

6 RELATED WORK
Apart from the obvious related work of [28] and [29], there exists
other related work in the field worth discussing.

Regarding virtual snapshotting, Redis was not the first system
to implement fork()-based snapshotting. The HyPer database
system [16] introduced the technique of processing spawning to
create consistent snapshots for running OLAP queries in the child
processes, while modification OLTP transactions were executed
in the main process. However, due to the previously mentioned
downsides, the technique was later swapped with a traditional
MVCC implementation. To overcome the limitations of fork(),
in [30], a new system call was developed to essentially create
virtual memory snapshots just like fork() but within the process.
While this solves the aforementioned problem, it requires heavy
OS changes. SwingDB [20] follows a similar approach but directly
modifies the virtual memory subsystem of the Linux kernel.

In the database world, MVCC has become the de-facto stan-
dard of concurrency control [6, 14, 21, 27, 37]. However, it has
downsides in comparison to our approach: (a) It must be deeply
integrated in the engine. For example, our tested applications
do not perform any multi-versioning. Hence, using it to create
snapshots requires rewriting these applications. In contrast, our
approach is designed to be as minimally invasive to the applica-
tion logic as possible. (b) In MVCC, a snapshot must be carefully
constructed from the individual versions by traversing version
chains, which is a costly process we can avoid.

Saving the state of the application during runtime also has
other use-cases. For instance, checkpointing is used in long-
running scientific jobs to reduce the cost of failures. The prob-
ability of failure increases in long runs. Checkpoint-restart is
therefore used in such scientific jobs to save the state in time
intervals so that it can restart from the saved checkpoints [11].
Checkpointing requires halting the execution across all nodes,
saving the state, and then resuming. In the in-situ analysis, the
state is analyzed immediately, and hence, can be kept in the main
memory. On contrary, the state in the checkpoint-restart needs
to be saved on a storage device.

7 CONCLUSION
In this work, we performed an extensive experimental study on
the usefulness of in-situ based virtual snapshotting on 16 rep-
resentative applications and workloads from the HPC and data
management domain. As basis, we used our method in-situ-CoW,
an in-situ virtual snapshotting mechanism that does neither halt
the host application during snapshot creation nor does it require
a deep modification of it. We extended in-situ-CoW to support
arbitrary CoW granularities, adaptive switching of CoW gran-
ularities, as well as asynchronous copying. In comparison to
traditional physical snapshotting, in-situ-CoW reduces the per-
formance overhead by up to 98% (66% on average) for scientific
workloads and by up to 64% (45% on average) for YCSB. In compar-
ison to MVCC, in-situ-CoW reduces the performance overhead
by up to 89% (25% on average) under write-intensive workloads.
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