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ABSTRACT
Log-structured merge (LSM) trees are widely used because they
offer high ingestion throughput via appending incoming data in
a memory buffer, which, when filled up, is flushed to storage as a
sorted run. To reduce space amplification and facilitate queries,
LSM-trees periodically merge data on storage to form larger
but fewer sorted runs, with a process termed compaction. In
commercial LSM-based systems like RocksDB, sorted runs are
often stored as a set of small files, allowing partial compaction (i.e.,
of a subset of a sorted run), reducing the worst-case compaction
latency without increasing the amortized compaction cost. Since
a sorted run consists of multiple files, the decision of which file
to compact (file-picking policy) significantly impacts the system’s
write cost, quantified by Write Amplification (WA). Thus, finding
the optimal file-picking policy remains an open research question.

In this paper, we focus on the four different file-picking policies
offered by RocksDB (MinOverlappingRatio, RoundRobin, Oldest-
LargestSeqFirst, and OldestSmallestSeqFirst). While some heuris-
tics to guide which compaction policies to use are given in the lit-
erature and the documentation of RocksDB, we highlight that an
up-to-date, in-depth, and comprehensive analysis and guidelines
for the partial compaction policies in RocksDB is needed, as ear-
lier guidelines are now obsolete in the presence of new optimiza-
tions/implementations of RocksDB. Further, we investigate the
headroom for improvement by comparing each policy with the
optimal WA, obtained by enumerating all possible picking deci-
sions. From our comprehensive experimental results, we distill 10
key observations, which rectify obsolete heuristics/observations
and also provide valuable insights for LSM-based systems that
employ partial compactions.

1 INTRODUCTION
LSM-trees are everywhere. Log-structured Merge-trees (LSM-
trees) [27, 31] offer a high ingestion rate and low query latency
with bounded space amplification and are thus widely adopted
in industry, including RocksDB [20] at Facebook, LevelDB [22]
and BigTable [9] at Google, Accumulo [4], AsterixDB [3], Cas-
sandra [5], HBase [6], IoTDB [39], ScyllaDB [36] at Apache,
WiredTiger [43] at MongoDB, X-Engine [24] at Alibaba, and Dy-
namo [15] at Amazon. LSM-trees are also used as the underlying
storage engines of relational database systems (e.g., RocksDB in
TiDB [23], MyRocks [19] and Pebble [11] in CockroachDB [10]).
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Variants of LSM-trees supporting spatial and graph data have
also been developed [29, 37].

In LSM-trees, incoming writes are batched into a memory
buffer, which is sorted and flushed to disk whenever it fills up.
On-disk data are organized as sorted runs in multiple levels where
the capacity of each level grows by a constant size ratio. When a
level is saturated, a compaction is triggered to merge it with the
overlapping sorted data from the next level, thus amortizing the
cost of having a fully sorted last level (where most data resides)
and supporting fast reads.
Compactions in LSM-trees lead to Write Amplification
(WA). To propagate data entries to the last level, they are re-
peatedly read and written via iterative compactions, leading to
Write Amplification (WA). Formally, WA is defined as the ratio
between the bytes written to storage and the bytes ingested to the
database [7]. As such,WA is directly related to the amount of data
written to disk, and thus WA reflects the overall write cost and
device endurance. Specifically, higher WA leads to higher write
effort and shorter device endurance. We highlight that different
compaction strategies have substantially different WA [12, 13].
Considering an LSM-tree with a size ratio𝑇 , when comparing the
two fundamental compaction approaches, leveling has𝑇× higher
WA than tiering, while offering𝑇× lower read amplification (RA)
and thus faster read queries.

Note that a full compaction (i.e., one that involves an entire
level) would take a large amount of time, especially when tar-
geting the deeper levels of the LSM-tree. This results in large
latency spikes during compaction as well as temporary storage
amplification since older data are kept in their original sorted
runs until the compaction finishes. To address this, industry-level
LSM-tree key-value storage engines like LevelDB, RocksDB, and
Pebble typically employ partial compactions to amortize the cost
of a large compaction into several small compactions. These sys-
tems partition each sorted run into smaller non-overlapping files
so that a single file can be picked for merging at compaction
time [34]. The key decision of partial compaction is which file to
pick, a question that is understudied despite having substantial
implications in systems performance and overall behavior and is
the focus of this study.

In this work, we focus on RocksDB because it has both prac-
tical and research value for the following reasons. First, it is
one of the most popular open-source LSM engines and has the
widest adoption in industry [21] and thus our observations ben-
efit all users of RocksDB, which include several organizations
and all applications/systems built on top of it. Second, the par-
tial compaction policies supported by RocksDB are a superset of
those employed by other LSM engines. Specifically, LevelDB only
supports RoundRobin and Pebble only supports MinOverlappin-
gRatio, while RocksDB offers more flexible file-picking policies
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other than the above two. Note that both LevelDB and Pebble
are based on older versions of RocksDB, which leads to higher
WA. As a result, the new RocksDB design is the key motivation
for revisiting existing guidelines.
Challenge 1: The WA difference between existing file pick-
ing policies is not fully investigated. Although the amortized
WA for the partial compaction remains asymptotically the same
as the full compaction, the actual WA varies a lot when selecting
different files to compact for specific workloads. Earlier stud-
ies [27, 34] mostly focus on the difference between partial and full
compactions and do not investigate all the available file-picking
policies. Further, the impact of the workload (e.g., update distribu-
tion) and the underlying hardware (e.g., which storage device) on
WA remains unclear, leaving LSM users without clear guidelines
on which picking policy to choose for certain workloads.
Challenge 2: New file-picking policies and optimizations
warrant a new study. Notably, the RoundRobin partial com-
paction policy [18], short as RR, has been re-implemented in
RocksDB to ensure each key in a level can be uniformly com-
pacted [26], which yields a substantial WA reduction for update-
intensive workloads, as we will show in this paper. In addition,
RocksDB refines the existing file splitting mechanism [17] in a
compaction to reduce WA based on the key boundaries at the
grandparent level. That is, in a compaction from level 𝑖 to 𝑖 + 1,
level 𝑖 + 1 is the parent level, and if level 𝑖 + 2 has files that
overlap with this compaction in the key space, level 𝑖 + 2 is the
grandparent level. The new splitting mechanism produces files
in the parent level (unless it is the deepest level) that overlap
less data in the grandparent level. This optimization reduces the
size of future compactions involving those files, and may affect
the benefit of existing file-picking policies. Previous analysis of
the impact of compaction on WA [34] assumed both a different
set of file-picking policies and a rudimentary form of file split-
ting (which was the only one supported at the time), thus a new
refreshed study is warranted.
Challenge 3: The WA improvement headroom between
existing policies and an ideal one is still unclear. While
modeling the impact of compaction and, specifically file-picking
policies is very hard, we can experimentally find the optimal com-
paction and file-picking policies. Specifically, by replaying a spe-
cific ingestion workload and enumerating all possible decisions,
we can obtain the minimum WA for this workload. However,
due to the exponential search space, there is no earlier work that
quantified the minimum WA and the improvement headroom.
Benchmarking, Analyzing, and Optimizing WA of Differ-
ent Partial Compaction Policies in RocksDB. To answer
these questions, we conduct a detailed experimental study to
identify the impact of varying file-picking policies on WA. We
experiment using RocksDB (v8.8.1) that supports the up-to-date
RoundRobin policy and incorporates a new file splitting mecha-
nism to reduce overlapping ratio with deeper levels. In addition,
we also implement a brute-force search algorithm to find the
best file-picking policy throughout all compactions for any given
workload. While the brute-force approach can only be used as
an offline study due to the exponential search space, we can still
quantify the difference between the optimal strategy and other
file-picking policies for partial compaction. Specifically, we com-
pare the optimal file-picking decisions with MinOverlappingRaio,
and we are able to explain the instability issue of MinOverlap-
pingRatio using observations drawn from the comparison result.

level 0

memory tableimmutable table

level 2

......

...

level 1 ......

incoming writes
flush

......

3 37

1 17 21 40

2 9 ...12 20 ...21 30 ...35 42...

Figure 1: Classical LSM-tree architecture.

To validate our observation, we further refine MinOverlappin-
gRatio and develop RefinedMOR that reduces the average WA
by 2% and offers higher stability. Overall, we conduct extensive
experimentation to derive insights for partial compaction useful
for RocksDB and other LSM-based systems.
Contributions.We summarize our contributions as follows.
• We identify that prior tuning guidelines and observations need
to be updated considering new implementations/optimizations
in RocksDB. To address this, we benchmark MinOverlappin-
gRatio, RoundRobin, OldestLargestSeqFirst, and OldestSmallest-
SeqFirst under different ingestion workloads.
• To investigate the headroom for the optimal WA, we design a
brute-force search algorithm, which enumerates all possible
file picks in each compaction to find the minimum WA for a
given workload. Since the search space is exponentially large,
we prune it with an incremental approach that allows for
efficiently finding the minimum WA for small workloads. We
summarize our findings by distilling 10 observations.
• Given the offline algorithm that finds the best files to be com-
pacted for specific workloads, we perform an apples-to-apples
comparison between the most frequently usedMinOverlappin-
gRatio policy and the optimal one. This allows us to explain
why MinOverlappingRatio may have unstable WA and lead to
larger WA compared to the optimal one.
• We further validate our observation on the MinOverlappin-
gRatio policy by refining it as RefinedMOR with applying our
observations, and we experimentally show that RefinedMOR
reduces the average WA by 2.2% and the quartile deviation by
75.1%, compared to MinOverlappingRatio in 40GB workloads.
• Our artifacts1 that include the benchmark and the baseline
system with the optimal searching strategy and RefinedMOR,
are publicly available for exploration and reproducibility.

2 BACKGROUND
In this section, we review the LSM-tree background and intro-
duce existing partial compaction policies in RocksDB. We also
elaborate on the most recent design and implementation of com-
pactions in RocksDB to explain why prior guidelines in the sys-
tem’s documentation and research literature need to be refreshed.

LSM-tree Basics. In LSM-trees, each insert, update, and delete
is treated as a new key-value entry (the value of each delete is
a tombstone [33] marker). All these incoming entries are first
buffered in a memory table, and when the memory table reaches
a predefined capacity, it is sealed as an immutable memory table
and is added to the flush queue. Note that updates and deletes
may trigger in-place changes if older entries with the same key
exist. When flushing an immutable memory table on disk, all
the key-value pairs in this table are sorted and attached with
1https://github.com/BU-DiSC/Benchmark-Analyze-Optimize-Partial-Compactio
n-in-RocksDB-Codebase
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Figure 2: Examples of four partial compaction policies (a) RR, (b) MOR, (c) OLSF, (d) OSSF in RocksDB. key* denotes a
duplicate key, and a red key indicates that an older version is discarded during compaction. S-seq (resp. L-seq) represents
the smallest (resp. largest) sequence number in a file (all the keys are tagged with a sequence number during flushing).
When there are multiple compactions, we use c1 , c2 to represent the first and the second compaction, and so forth.

a monotonically increasing sequence number. Data on disk is
organized into multiple levels where the capacity of each level
grows exponentially with a constant size ratio (noted by 𝑇 ).

In a leveling LSM-tree, where each level forms a single sorted
run, newly flushed data from the memory buffer may have to be
merged with existing data in level 0 (abbreviated as L0). Similarly,
when level 𝑖 reaches a predefined capacity, all the data in level
𝑖 are merged with existing data in level 𝑖 + 1 to form a larger
sorted run in level 𝑖 + 1, and older entries with the same key
are discarded. This process is termed compaction. For ease of
notation, compactions triggered at level 𝑖 will be noted as L<i>
compactions (e.g., L0 compactions). In contrast, a tiering LSM-tree
allows up to 𝑇 − 1 sorted runs per level, which triggers fewer
compactions, since incoming sorted runs from level 𝑖 are simply
appended in level 𝑖 + 1 without compaction. This leads to having
more sorted runs per level and, thus, a higher read cost since
every sorted run requires its own binary search.
Navigating the Read vs. Write Trade-Off. Overall, in leveling
LSM-trees, the incoming entries are written in each level𝑂 (𝑇 /2)
times on average, and the overall WA can reach𝑂 (𝑇 ·𝐿/2), where
𝐿 is the number of levels. On the other hand, in tiering LSM-trees,
WA is 𝑂 (𝐿) since each sorted run will only be merged once per
level. By selecting between tiering vs. leveling and tuning the size
ratio, we can navigate the read/write trade-off of the LSM-tree
design space [12, 30, 34]. In addition to this, practical LSM-tree
systems also support hybrid compaction strategies. For example,
in RocksDB’s default setting, the shallowest level on disk (L0)
follows a tiering design that allows up to four sorted runs, while
all other levels follow the leveling strategy, also termed 1-leveling
[34]. Figure 1 shows an example of a classical leveling LSM-tree
with three levels.
File-based Partial Compaction. Classical leveling and tiering
LSM-trees employ full compaction, in which all data in a level
has to be involved in one compaction. When deeper (i.e., larger)
levels are compacted, the compaction takes a substantially longer
time to complete, and there could also be a temporarily high
spike for storage space occupation since old data that is serving
concurrent queries cannot be removed until the compaction and
the in-flight queries finish. If a crash interrupts such a long-
running compaction, it will restart post-recovery.

To alleviate the latency spike, the space occupation spike, and
crash-recovery inefficiency, leveling LSM-trees usually store a

sorted run as multiple SST (Sorted String Table) files with a pre-
defined size, which enables a file-based partial compaction [16].
By this decomposition, each compaction in a leveling LSM-tree
just needs to pick one SST file in level 𝑖 (if level 𝑖 fills up) to merge
with SST files in level 𝑖 + 1 that have overlapping key ranges. In
literature, when a compaction in level 𝑖 is triggered (i.e., we need
to pick a file in level 𝑖 to compact), level 𝑖 + 1 is often referred
as the parent level, and level 𝑖 + 2 is referred as the grandpar-
ent level for every compaction compacting data from level 𝑖 to
level 𝑖 + 1. As such, a full compaction between two levels is frag-
mented into several small compactions where each compaction
only touches a few files. Since the partial compaction strategy
effectively amortizes the compaction cost without harming the
query performance, it is widely used in both academic LSM-tree
prototypes (e.g. Spooky [14], and FGKV [38], MirrorKV [41]) and
industry LSM-tree systems (e.g., LevelDB, RocksDB, and Pebble).
File-Picking Policies in RocksDB. File-picking (a.k.a. partial
compaction) policies control which SST file of a level to compact.
We detail the four key file-picking policies below.

(a) RoundRobin (RR) picks a file in a level in a round-robin man-
ner in the key space. We introduce the classical design and
discuss later a newer implementation in RocksDB. For each
level, RR maintains a cursor that represents the largest key,
which was lastly compacted in this level. Initially, this cursor
is empty, in which case we always pick the first file in RR.
After compacting the first file, the cursor is moved to the
largest key involved in the last compaction. In Figure 2(a),
we see that since the initial cursor is empty when L1 fills
up for the first time, the first file at L1 is picked to compact.
After compacting the first file, the cursor moves to key 4, the
largest key in the last compaction. When L1 fills up again, RR
will choose the first file (from left to right) with a maximum
key larger than the cursor (i.e., the first file that contains keys
1, 5, and 6 in the example).

(b) MinOverlappingRatio (MOR) picks the file that has the min-
imum overlapping ratio. The overlapping ratio of a file in
level 𝑖 is defined as the fraction between the total bytes of
files in level 𝑖 + 1 that overlap with this file and the size of
that file. For example, Figure 2(b) shows that when L1 first
fills up, the overlapping ratio for the first and the second file
is, respectively, 2.0 and 1.0. For the first file, the key range
is 1 to 4, which overlaps with two files at L2, and thus, the
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ratio is 2.0 (each file has the same size in this example). Simi-
larly, since the second file at L1 only overlaps with one file
at L2, the overlapping ratio is 1.0. As a result, the second
file is compacted because it locally minimizes the number
of bytes written. MOR is also called LO+1 (picking the least
overlapping file with the next level) [34].

(c) OldestLargestSeqFirst (OLSF ) picks the file of which the
latest key-value pair is the oldest. As the largest sequence
number (abbreviated as L-seq) of a file indicates the most
recently inserted entry in this file, OLSF essentially picks the
file that has minimum L-seq. For example, in Figure 2(c), L1
has two files of which the L-seq of the first and the second
file is respectively 40 and 50. As the L-seq of the second file
is smaller (i.e., 40 < 50), the second file is picked to compact
under OLSF policy. OLSF is also termed as the coldest picking
policy.

(d) OldestSmallestSeqFirst (OSSF ) picks the file of which the
smallest sequence number (abbreviated as S-seq) is the oldest
among all other files in the same level. In the example of
Figure 2(d), the S-seq of two files at L1 is 20 and 30, and since
20 < 30, the first file is picked to compact to the next level.
OSSF is also called the oldest file-picking policy.

Tombstone-based File-Picking Policies. In RocksDB, there
is another partial compaction policy, CompensatedSize, which
favors larger files compensated by the number of deletes (i.e.,
tombstones) in this file. Other tombstone-based policies (e.g.,
Lethe [33]) also exist in academic LSM prototypes. In the presence
of tombstones, compactions are not necessarily triggered by level
capacity. With new privacy protection laws (e.g. GDPR [1] and
CCPA [2]) being enacted, LSM-trees require a Time-To-Live (TTL)
parameter to specify the longest time a tombstone (a deleted
item) that can exist in the database. With this constraint, each
tombstone is associated with a TTL, and once the tombstone
has expired with respect to the TTL, several compactions are
enforced to compact it into the last level (where the tombstones
can be safely discarded). TTL-based compaction policies are not
part of the production RocksDB, and since they would increase
the complexity of the compaction process and introduce a trade-
off among space amplification, WA, and privacy, we focus on the
existing approaches.
Newly Implemented RoundRobin. Figure 2(a) demonstrates a
classic RR implementation in LevelDB. Another version of RR [35]
picks the file using the file rank instead of the key cursor. Specif-
ically, the first file is picked in the first compaction in this level,
the second file is picked in the second one, and so on so forth.
However, these two implementations actually fail to compact the
key space in a round-robin manner. In Figure 2 (a), even though
the round-robin cursor is moved to 4 after the first compaction,
the file being picked in the next compaction has the minimum
key of 1, causing key 1 to be included in two consecutive com-
pactions. As shown by prior work [26], ensuring each key is
uniformly compacted can yield lower WA. To uniformly compact
keys within a level, RocksDB re-implements RR via a splitting
mechanism [18] which enforces that every compaction that out-
puts in level 𝑖 has to split the file based on the existing cursor of
level 𝑖 . In the new implementation, after a compaction from level
𝑖 finishes, the cursor in level 𝑖 moves to the smallest key of the
successive file of the picked file in the last compaction, and the
next compaction from level 𝑖 will pick the first file (from left to
right) that is larger than or equal to the cursor. By skipping the
cursor past the gap between the last picked file and its successor,
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Figure 3: The latest version of RoundRobin in RocksDB.

new keys arriving into that gap in level 𝑖 will not be compacted
immediately. For example, as shown in Figure 3, the first L1 com-
paction moves the cursor to key 6, and the next L0 compaction
splits the file at key 6 to ensure that in the next L1 compaction,
the file starting with key 6 can be chosen and thus keys at L1 can
be uniformly compacted in a round-robin manner.

Since the scope of a compaction is at the granularity of files, an
existing file in the output level must be included if its key-range
overlaps the picked file from the input level. A given compaction
can include at most two output-level files that contain a mix of
keys that overlap and do not overlap the picked file. Rewriting
keys not overlapping with the selected file also contributes to
additional WA. To mitigate this, the newest version of RR allows
multiple consecutive files to be selected together, as long as the
overall bytes involved in this compaction do not exceed a user-
defined threshold. This input-level expansion reduces the total
amount of data that is unnecessarily rewritten at the output level.
Selecting multiple files in RR can thus reduce WA at the same
level by slightly increasing the compaction latency (still much
smaller than the full compaction since the number of bytes in
a compaction is bounded). When two or more files are selected,
the cursor still changes into the smallest key of the successive
file of the last picked file.
Splitting Files at Boundaries in Grandparent Levels Dur-
ing Compactions. During compactions, RocksDB merges all
the input key-value pairs and discards obsolete ones to generate
new files. In RocksDB, newly generated files are not restricted
to be exactly as large as the user-specified target file size (noted
by 𝑓 𝑠). Instead, they can vary to align new files with the key
boundaries in a grandparent level for smaller write amplification
in future compactions to the grandparent level. This optimization
does not apply to files generated at the deepest level as there
is no grandparent level. Thus, the file size at the deepest level
should be exactly the same as the target one. The splitting mech-
anism works as follows. Suppose we are populating a buffer that
temporarily contains all the key-value pairs of the next file to
be generated. There are three conditions when RocksDB stops
appending new entries:
• Case 1: when the buffer size reaches the user-defined maxi-
mum compaction bytes or 2 · 𝑓 𝑠 . In this case, newly generated
files never cross any grandparent boundaries.
• Case 2: when the next key crosses a grandparent boundary
and the buffer size reaches a threshold (less than the target
file size). The threshold is given by ((𝑓 𝑠 + 99)/100) · (50 +
𝑚𝑖𝑛(𝑛 · 5, 40)) where 𝑛 is the number of accumulated crossed
boundaries, as shown in Figure 4(a). This condition allows
the newly generated files to overlap with fewer files at the
grandparent level.
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Figure 4: (a) An example of a new entry crossing the bound-
ary in the grandparent level. When a new key 21 is being
added to the buffer, and it is larger than the largest key of
the second file in the grandparent level, the buffer will be
split here. (b) An example of case 3. Without this condition,
the merged file resembles case 1○, overlapping with two L2
files, whereas applying it results in case 2○ with only one
L2 file overlap, reducing future L1 compaction WA.

• Case 3:when the next key crosses more than two grandparent
boundaries and the current buffer is larger than 𝑓 𝑠/8. Splitting
the file before the next key avoids producing files that overlap a
skippable file in the grandparent level, as shown in Figure 4(b).

3 BENCHMARKING FILE-PICKING POLICIES
In this section, we first benchmark existing picking policies in
RocksDB under different ingestion workloads (see §3.1). Then, we
quantify the optimal WA using a smaller workload to find the im-
provement headroom. By [R], we refer to a rectified observation
of prior work, while [N] marks a new observation.
Environment. All experiments are executed on a Rocky Linux
server with 375GB main memory and two Intel Xeon Gold 6230
2.1GHz processors (each having 20 cores with virtualization en-
abled and 28160K of L3 cache). By default, we use a 350GBOptane
P4510 P4800X SSD with direct I/O disabled as our disk storage.
RocksDB Configuration. By default, the write buffer size and
the target file size are both set to be 64MB, and the size ratio 𝑇
is set as 4 (which means that max_bytes_for_level_base, the
capacity of L1, is 256MB). We use vector as the default buffer
implementation. Although other implementations like skiplist
or hash-skiplist allow in-place updates, which can facilitate
future queries [25], vector only appends writes without building
an index for reads or de-duplication. Our workloads are write-
only, so we are stressing the ingesting and flushing part of the
system. Note that different buffer implementations have little
impact over WA since a buffer flush always eliminates duplicates.
Further, we turn off compression and dynamic compaction to
magnify the impact of different file-picking policies on WA.
Experimental Setup. For each workload (characterized by the
number of ingestions, the key and value size, the proportion
of updates, and the update distribution), we execute the experi-
ment for ten runs as follows: in each run, we randomly generate
the workload with the same characteristics and run the inges-
tion experiment to collect WA. Specifically, WA is calculated as
the fraction between the overall written bytes from background
RocksDB threads (for flushing and compactions), and the size of
all key-value pairs passed through Put() calls. For recovery pur-
poses, a key-value pair passed in the Put() function is appended
into the Write-Ahead-Log (WAL) before returning an Ok status.
We exclude the bytes written to WAL when calculating WA.

Using the WA data we collected over ten runs for the same
type of workload, we report five statistic measures of WA in most
experiments: min, max, average, the first quartile Q1, and the
third quartile Q3. An illustrative example of displaying these five
metrics using a box plot can be found in Figure 6(a). While we
mainly use the average WA to compare different picking policies,
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Figure 5: (a) the average WA and (b) the maximum WA for
a specific update proportion in ten runs.

min and max can also reflect the best and the worst WA for one
type of workload, and the difference between Q3 and Q1 can be
used to quantify the quartile deviation, i.e., (Q3 − Q1)/2.

One could question whether measuring WA as discussed with
ten different instances of a workload could lead to different mini-
mum WA. Our experiments show that the optimal WA remains
stable even if we run the experiments using ten randomly gener-
ated workloads as long as the workload properties are fixed.

In addition, in our experiments, we usually have an LSM-tree
with three or more levels. All the data in L1 or deeper, which
is also the majority of unique key-value pairs, must have been
written at least twice: to L0 and L1. As such, for illustration pur-
poses, we set ymin as 2 in many figures. For different workloads
that lead to different WA, we move the min and max plotted WA
accordingly and resize the figure to maintain the same scale.

3.1 Benchmarking Existing Policies
Varying the Proportion of Updates. We keep the workload
constant at 5𝑀 operations, each associated with a 1KB entry, and
then adjust the percentage of update operations from 0% to 90%.
Updates are generated following a uniform distribution.

Observation 1 [R]: OSSF does NOT have the lowest
WA (neither the average nor the maximum) for
random updates. This is revising the statement “If
your updates are random across the key space, write
amplification is slightly better with [OSSF]”.

While all four curves are very close to each other in Figure 5,
we can still see that the purple curves with diamond markers
(OSSF ) lie above either the blue or the red curve (MOR or RR,
respectively) in terms of both the average and maximum WA.
Specifically, for workloads with 50% updates, the average WA
of OSSF is larger than RR and MOR by 2.67% and 2.63%, and
the maximum WA (i.e., the worst-case WA) becomes 0.90% and
2.81% larger. Moreover, subsequent experiments that modify the
update distribution and workload scale consistently show the
same pattern. As shown in Figures 6 and 7, OSSF (represented by
the purple box) consistently fails to achieve the lowest average
(indicated by the crossing mark in a box) or the lowest maximum
(upper boundary of the box).

Observation 2 [N]: File-picking policies haveminor
impact on WA for update-intensive workloads.

Figure 5 also shows that when the update fraction is large (espe-
cially when the update proportion is larger than 60%), all four
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Figure 6: WA of four file-picking policies for workloads with different update distributions. (a) normal distribution with
𝜇 = 0.5, 𝜎 = 0.5, (b) normal distribution with 𝜇 = 0.5, 𝜎 = 1, (c) normal distribution with 𝜇 = 0.5, 𝜎 = 2, (d) Zipfian distribution
with 𝛼 = 0.8, (e) Zipfian distribution with 𝛼 = 1.0, (f) Zipfian distribution with 𝛼 = 1.2.

file-picking policies have lower and similar WA. While we only
plot the mean and maximum, the other three statistic measures
of WA (e.g., min, Q1, and Q3) also have very similar values. This
is because, with increasing updates, entries with duplicate keys
can be updated in buffer flushes and L0 compactions. Specifically,
an L0 compaction for update-intensive workloads writes fewer
entries than the ones it received by discarding duplicates, while
L0 compactions in insert-intensive workloads write more data to
disk because there are fewer duplicates to eliminate. Furthermore,
update-intensive workloads generate fewer L1 compactions, lead-
ing to a lower WA. As more entries can be updated during buffer
flushes and L0 compactions, more entries are absorbed in L1
before L1 capacity is reached. Taking MOR as an example, the
average number of L1 compactions for workloads with 90% and
10% updates is 25 and 35, respectively. In other words, the number
of L1 compactions increases by 40% with fewer updates, thereby
explaining why the average WA of 10%-update workloads is 40%
higher than that of 90%-update workloads.
Varying the Update Distribution. For a mixed workload with
inserts and updates, inserts are unique by default, and thus, only
updates can involve duplicate keys. Note that earlier work [34] ex-
amines the impact of a PrefixZipf distribution for unique inserts,
where the prefix of inserted keys follows a Zipfian distribution
and all inserted keys remain unique. We observed similar results
to previous work (i.e., the file-picking policy has minimal impact
on PrefixZipf inserts), so we omit them here and focus instead on
the update distribution. Since file-picking policies differ little for
update-intensive workloads, we select workloads with light and
medium update fractions (10%, 30%, 50%) to verify the impact
of a skewed update distribution on WA. Specifically, we exam-
ine two distributions: the normal distribution, where larger 𝜎
indicates lower skew, and the Zipfian distribution, where larger
𝛼 indicates higher skew, as shown in Figure 6. Before we delve
into the differences across the four picking policies, we highlight
a general pattern: the average WA decreases with a higher skew.

Specifically, a smaller 𝜎 from Figure 6(c) to Figure 6(a) and a
larger 𝛼 from Figure 6(d) to Figure 6(f) both reduce the average
WA. The rationale behind this pattern is similar to increasing
the update proportion – more ingestions can be absorbed in
flushes and L0 compactions before triggering L1 compactions.
In the case of MOR, for workloads comprising 50% updates with
𝛼 = 0.8 in a Zipfian distribution, 32 L1 compactions are triggered.
However, when 𝛼 = 1.2, there are only 22 L1 compactions on
average, around two-thirds when compared with the number of
compactions for 𝛼 = 0.8.

Observation 3 [R]: OLSF does NOT have signifi-
cantly lower WA than RR and MOR for skewed
updates. This is revising the statement “Try [OLSF]
if you only update some hot keys in small ranges”.

While RocksDB suggests thatOLSF should be preferred if some keys
in small ranges are frequently updated, we do not observe OLSF
dominating RR andMOR in Figure 6(a), Figure 6(b), or Figure 6(c).
In these figures, updates follow a normal distribution, where keys
in the center of the key domain (𝜇 = 0.5) are frequently updated,
using our recently developed key-value workload generator [47].
In Figure 6(a), themost skewed normal distribution that we tested,
the reduction in percentage in terms of the averageWA of RR and
MOR over OLSF is 5.3% and 7.6% for 10%-update workloads, 6.9%
and 7.1% for 30%-update workloads, 6.7% and 5.3% for 50%-update
workloads. Further, for the Zipfian distribution where frequently
updated keys are not concentrated in small ranges but randomly
dispersed in the key space, when the update distribution becomes
more skewed (i.e., 𝛼 increases from 0.8 to 1.2) from Figure 6(d)
to Figure 6(f), the WA reduction of RR and MOR over OLSF is up
to 13% and 8.7% among tested workloads.
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Figure 7: WA of four file-picking policies at different scales. (a) 20𝑀 ingestion of 512-byte entry size, (b) 40𝑀 ingestion of
512-byte entry size, (c) 80𝑀 ingestion with 512-byte entry size, (d) 10𝑀 operations with 1KB entry size, (e) 20𝑀 ingestion
with 1KB entry size, (f) 40𝑀 ingestion with 1KB entry size. The y-min and y-max change across different columns.

Observation 4 [R]: RR leads to a lower average WA
than MOR when updates exhibit a higher skew.
This is revising the statement “Try [RR] if you only
update some hot keys in small ranges”.

If we only compare RR and MOR when varying the update dis-
tribution, we see an interesting trend: the average WA of RR
decreases faster thanMOR when the update distribution becomes
more skewed, as shown in Figure 6. For instance, in the normal
distribution, when 𝜎 changes from 2 to 0.5, the average WA of
RR decreases by 5.99% and 8.39% for 30%-update and 50%-update
workloads, while the averageWA ofMOR only decreases by 2.93%
and 7.95%, as we can see by comparing Figure 6(a) with Figure 6(c).
A similar pattern can be captured when we compare Figure 6(d)
and Figure 6(f) for the Zipfian distribution. The average WA of
RR is smaller than the one of MOR when the update distribution
exhibits a higher skew. We credit this benefit of RR to the fact
that frequently updated keys stay longer in L1. In the presence of
update skew, frequently updated keys are inevitably re-written
multiple times in L1 because every flushed buffer contains the
duplicate key. Every L0 compaction discards obsolete entries and
writes new entries with the same key. More specifically, each L0
compaction generates a file containing the latest version of the
frequently updated key. Ideally, this key stays in L1 for as long
as possible to be overwritten by future L0 compactions. If this
key is compacted to L2, it is written – along with its value – at
least one more time before it can be replaced by newer versions.
Since RR waits for the cursor to iterate over the whole key space,
MOR has a higher probability of compacting the most frequently
updated key to deeper levels than RR, which leads to a higher
WA when updates have higher skew.
Scalability. In this experiment, we scale up the workloads from
10GB to 40GB by increasing the number of operations and the
entry size. We use uniform updates and measure the WA under

three update proportions (0%, 25%, and 50%). The experimental
results are summarized in Figure 7, where in the upper row, we
vary the number of operations from 20𝑀 to 80𝑀 with 512-byte
entries, and in the bottom row, the number of operations from
10𝑀 to 40𝑀 with 1KB entries. As mentioned earlier, the majority
of unique key-value pairs are written more times as the LSM-tree
becomes taller. Thus, regardless of the policy, WA naturally in-
creases for larger workloads since they lead to taller LSM-trees,
as shown in Figure 7. In addition, when comparing Figure 7(a)
with Figure 7(d), or comparing Figure 7(b) with Figure 7(e), we
observe that larger entry size typically has lower write amplifi-
cation if they have the same workload size. Since the above two
observations on workload scale and entry size are mentioned in
earlier study [34], we do not list them as new observations here.

Observation 5 [N]: MOR scales better than other
policies by exhibiting lower averageWAandhigher
stability for uniform update distribution.

Among all tested workloads in Figure 7, MOR always has the
lowest average WA among the existing file-picking policies. For
example, in 40GB workloads with 1KB entry size and 25% up-
dates, the average WA of MOR is 5.97, while the average WA of
OSSF, RR, and OLSF is 6.18, 6.41, and 6.81, respectively. While we
observe that the average WA of four policies follows a specific
order (OLSF > RR > OSSF > MOR) for all 40GB workloads, this
order does not necessarily hold for 10GB and 20GB workloads
(except that MOR always has the lowest WA). For example, in
10GB workloads with 100% inserts, for both 512-byte and 1KB
entry size, we get RR > OLSF > OSSF > MOR. We also see that
MOR has higher stability with smaller quartile deviation and
smaller min-max distance. For example, in Figure 7(f), the quar-
tile deviation of MOR is 0.052, 0.062, and 0.020, which are the
smallest deviations among four policies under three workloads.
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Figure 8: WA of 5GB workloads with different update pro-
portions on two storage devices (i.e., an Optane SSD and
a SATA SSD). (a) 90% insert and 10% update, (b) 70% insert
and 30% update, (c) 50% insert and 50% update.

As RR, OLSF, and OSSf all have high instability in most tested
workloads, we refrain from making definitive observations about
their order with respect to WA.
Varying Storage Devices. We also examine the impact of stor-
age devices on WA when we vary the update proportion. We use
two different storage devices, an Optane P4800X SSD and a SATA
S4610 SSD (the Optane SSD is 17× faster than the SATA SSD).

Observation 6 [N]: Slower SSDs have lowerWA due
to compaction stall in L0, which leads to larger
space amplification and higher query latency.

Figure 8 unveils that the WA when using the SATA SSD is much
smaller than that on the Optane SSD, by up to 16.59%. We at-
tribute this WA difference to the compaction stall in slower SSDs.
Specifically, since the L0 compaction mostly overlaps with the
ongoing L1 compaction, the L0 compaction has to wait until
the ongoing one is completed. Since RocksDB keeps digesting
upcoming ingestion, L0 files accumulate. This is similar to the
experiment with insert-intensive workloads where the L1 com-
pactions may take a long time to complete. For example, when
running the 30%-update workload, there are on average 10.5 files
in L0 compactions for the slower SSD, and 8.5 files for the Optane
SSD. While accumulating more L0 files can reduce WA, this does
not directly reflect the execution time because we are using dif-
ferent storage devices. Figure 9 shows the execution time of each
workload using two devices, where SATA SSD substantially in-
creases the latency compared to Optane SSD. Additionally, more
files in L0 also lead to more duplicates and higher space consump-
tion. Further, since files in L0 may overlap, point queries have to
probe every file until the desired key is found. While we aim to
benchmark and reduce WA in this paper, downgrading the SSD
device does not pay off due to excessive space and read costs.
Varying Target File Size and Size Ratio. Now we vary the
target file size (noted by 𝑓 𝑠) from 16MB to 128MB with two size
ratios 𝑇 = 4, 10. Note that 𝑓 𝑠 only affects the output file size in
compaction, which means that the file size in L0 remains the
same as the buffer size, 64MB. We run 5GB workloads with 0%
and 50% updates to examine the impact of 𝑓 𝑠 and 𝑇 on WA. In
addition, as the number of levels, 𝐿, also affects WA, we ensure
that 𝐿 is the same for different 𝑇 . Specifically, when ingesting
5GB with either 0% or 50% updates, our LSM trees have 4 levels.

Observation 7 [N]: The target file size does not have
significant impact over the average WA.
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Figure 9: Running time of two policies on different work-
loads with an Optane SSD and a SATA SSD. (a) RR, (b) MOR.

When we compare the average WA in Figure 10, we do not ob-
serve a significant change when 𝑓 𝑠 varies between 16MB and
128MB for all the file-picking policies. For example, when we
set 𝑇 = 10, the difference in the average WA for MOR between
𝑓 𝑠 = 16MB and 𝑓 𝑠 = 128MB is no more than 3% for workloads
with 0% and 50% updates. However, in the extreme case that the
𝑓 𝑠 is unlimited, every level forms a file, which downgrades into
full-level compaction. Taking Figure 10(a) as an example. With
𝑓 𝑠 = 5GB, partial compaction behaves very similar to full com-
paction, although they are exactly the same due to the splitting
mechanism in Figure 4. In this case, the average WA of RR and
MOR is, respectively, 11.72%, 12.85% larger than the ones with
𝑓 𝑠 = 128𝑀𝐵. As for the size ratio 𝑇 , we see that the average WA
also increases for all policies with larger 𝑇 . For example, fixing
𝑓 𝑠 as 32MB, the average WA of MOR with 𝑇 = 4 is 7.41%, 4.99%
smaller than the ones with 𝑇 = 10 for 100% inserts and 50% in-
serts. This observation is consistent with the existing write cost
model 𝑂 (𝑇 · 𝐿/2) and an earlier experiment study [34].

3.2 Exploring Optimal WA
This section explores the optimization space of existing file-
picking policies by comparing them with the optimal WA, which
is obtained by enumerating all possible file-picking decisions in
all compactions with some pruning to reduce the search space.
We highlight that the enumeration space is exponential to the
number of compactions. For example, for a 5GB workload, the
optimal WA cannot be fully enumerated within 4 hours. Thus,
we restrict the workload scale and re-configure some knobs to
adapt to a smaller workload.
Setup for Small Workloads. The enumeration method repeat-
edly runs the same workload to find the optimal compaction
strategy. To accelerate the process, we choose a relatively small
workload: 2𝑀 operations with 50% insert and 50% update. Each
operation is associated with a pair of an 8-byte key and a 56-byte
value (i.e., 64-byte entry). For the LSM-tree setting, we set the
write buffer, the target file size to 8MB, and the size ratio between
levels to 4. In this setup, the workload typically triggers 5 L1 com-
pactions. Just like earlier experiments, we randomly generate ten
workloads with the same workload characteristics. We then run
our algorithm to search for the minimum WA for each of them
to examine its stability.
Searching the Optimal WA. The naïve approach to finding the
optimal WA is to enumerate all possible cases by replaying the
workload an exponential number of times. We propose a multi-
step searching framework to reduce the search space. Specifically,
at each iteration, we note the minimum bytes we found so far
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Figure 10: WA of different target file sizes and different size ratio on two 5GB workloads. (a) 100% insert with𝑇 = 4, (b) 100%
insert with 𝑇 = 10, (c) 50% insert, 50% update with 𝑇 = 4, (d) 50% insert, 50% update with 𝑇 = 10.

Table 1: Each row represents the optimal WA searched in
20 workloads of the same update proportion.

Update proportion Min Q1 Mean Q3 Max
0% 3.582 3.583 3.583 3.584 3.584
20% 3.335 3.336 3.336 3.336 3.337
40% 3.026 3.027 3.027 3.028 3.029

as 𝑏𝑦𝑡𝑒𝑠𝑚𝑖𝑛 , which can be initialized as the minimum number of
written bytes among all four existing picking policies. During
each trial in the enumeration, we add up the number of written
bytes after we start executing this workload in this trial and the
bytes left in the workload to ingest, and if the result is greater
than 𝑏𝑦𝑡𝑒𝑠𝑚𝑖𝑛 , we stop this trial because future compactions will
necessarily lead to a larger WA. Note that this multi-step search-
ing only works for vector implementation in the write buffer
since there are no in-place updates in the buffer. When we find
fewer written bytes to execute the workload, we update 𝑏𝑦𝑡𝑒𝑠𝑚𝑖𝑛

and continue searching until all possibilities are enumerated. Fur-
ther, we see that RocksDB triggers a trivial move when a file does
not overlap with any file in the next level, which also avoids
re-writing data. The original searching framework, noted by skip
strategy, does not pick any file when a trivial move is triggered.
We also design an alternative non-skip searching strategy that
disables trivial moves and tries to enumerate all possible files to
compact or move when a level is full.

Observation 8 [N]: Trivial move should always be
prioritized over compactions since non-skip and
skip searching find virtually the same WA.

Although the non-skip strategy has larger search space and po-
tentially leads to lower WA, we observe little difference between
the skip and the non-skip strategy. Specifically, the largest differ-
ence among our tested workloads for the same measure is just
0.07%. As the two strategies find virtually the same WA, we omit
the detailed comparison between them and only show the WA
of skip in Table 1. This is consistent with the current strategy
for trivial moves in RocksDB: for any file picking policy, trivial
moves are always prioritized over compactions. In the following
experiments for optimal WA, we use the skip strategy by default.
Comparing the Optimal WAwith Existing Policies.We now
use a slightly larger workload – 2.5𝑀 operations – to examine
the headroom of existing policies by comparing them with the
optimal WA obtained by the skip strategy. To quantify the im-
provement headroom for existing policies, we now compare them
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Figure 11: WA of four file-picking policies and the optimal
one for workloads with different update proportions.

with the optimal WA by varying the update fraction from 0% to
50% in 6 different workloads, as shown in Figure 11.

Observation 9 [N]: An optimal policy withminimal
WA offers higher stability than existing policies.

Figure 11 shows that the optimal WA is also the most stable
compared to all other existing policies in all tested workloads.
Specifically, in the worst case, the max WA is only 0.06% larger
than the min WA for the optimal WA. The consistency of the
optimal WA confirms the reliability of our experimental setup,
that is, even if we use 20 different workloads, the WA collected
from these 20 workloads is still comparable as long as these 20
workloads are randomly generated using the sameworkload char-
acteristics. Now, we focus on the headroom for WA improvement
of existing policies. In fact, we can see that the min WA of RR,
MOR is already very close to the optimal one. For example, with
40% updates, the optimal WA is only 0.09%, 4.31% smaller than
the min WA of RR and MOR, which reflects the improvement
headroom for RR and MOR. In terms of minimum WA, there is
not a significant headroom between existing policies and the
optimal one. However, the instability of RR and MOR moves the
average WA farther than the optimal one. For example, for 0%-
update workloads, the maxWA is up to 6.06% larger than the min
WA for MOR in Figure 11. Although RR remains stable in small
workloads, RR becomes more unstable for larger workloads, as
we see in Figure 7. The above observations suggest that future
research on file-picking policies should focus on investigating
and alleviating the instability of RR and MOR.

4 A REFINED MinOverlappingRatio
To investigate the instability of MOR, we study MOR with a
smaller workload and compare it with the optimal strategy. Based
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on the observed difference, we further refine MOR with minor
changes and examine its performance.
MOR has unstableWA.We scale down the workload so that we
can better trace the compaction history and analyze the source
of instability of MOR. We run two 100%-insert workloads: one
has 8𝑀 8-byte entries and the other has 2𝑀 64-byte entries. As
shown in Figure 12, WA can be quite different when we run the
same workload ten times. On the other hand, we observe that
for small workloads, there is only a limited number of possible
WAs in 50 runs. For example, there are only four possible WAs in
Figure 12(a) and five possible WAs in Figure 12(b). The minimum
WA in MOR among all possible WAs is nearly the same as the
optimal one. However, as MOR strictly selects the minimum
overlapping ratio and sometimes the overlapping ratio of the
best file to compact is only slightly larger than the minimum one
(i.e., < 5%), MOR can lead to unstable WA for the same workload.
Explanation with Traces. By comparing the compaction his-
tory between MOR and the optimal one, we are able to explain
the instability issue ofMOR using a real example traced in the log
after we run the 100%-inserts workload in Figure 12, as shown in
Figure 13. When we are executing 100%-insert workload, MOR
and the optimal one behave very similarly until the LSM-tree
state changes into Figure 13(a), where there are four files in L1
that have the same overlapping ratio. To be exact, the overlapping
ratios of these files actually differ by less than 1%, which we treat
as the same. Since we randomly generate ten workloads using
the same workload characteristics of 100% unique inserts and
MOR strictly selects the file that has the minimum overlapping
ratio, these four files in L1 have a very similar probability of
being selected. Although the decision of which file to compact
in L1 does not make a large difference in terms of the WA for
the current compaction, this decision impacts the long-term WA,
which explains why MOR may eventually lead to substantially
different WA. In fact, according to the traced log of the optimal
policy, the last file is always picked to compact in the example of
Figure 13. Let us examine the traces:

Observation 10 [N]: Picking different files that have
similar WA (overlapping ratio) in the current com-
paction can lead to substantially different finalWA.

• When the first file in L1 is picked, the structure after this
compaction is shown in Figure 13(b). When an L0 compaction
is triggered, the number of entries within key range 1∼10 from
L0 is not sufficient to compose a 64MB file, more entries in
key range 10∼20 are used. Based on the splitting condition
mentioned in Figure 4(a), the first new file in L1 will have the
key range of 1∼20, and the next two new files have the same
key range as before. Note that these two new files are larger
than 64MB due to the aforementioned file splittingmechanism,
which allows files to exceed the target file size (𝑓 𝑠) as long as
their key ranges do not cross the grandparent boundaries. In
this scenario, even though the aggregated number of bytes
within ranges 21∼30 and 31∼40 both exceed 64MB, these two
ranges only produce two separate files. The remaining keys
between 41∼55 form a small file, as shown in Figure 13(c).
• When the last file in L1 is picked, the structure after this com-
paction is shown in Figure 13(d). Following similar analysis
above, we can obtain Figure 13(e): the number of entries for
key range 1∼10, 11∼20, 21∼30 is large enough so three files
with the same key range are generated that are larger than

(a)
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Figure 12: WA ofMOR in 50 runs for two workloads: (a) 8𝑀
inserts of 8-byte entries, (b) 2𝑀 inserts of 64-byte entries.
The number outside each sector represents the measured
WA, and the number inside each sector represents the rela-
tive frequency of the associated WA in 50 runs.

64MB, and the rest of the keys form two files of key ranges
30∼50, and 51∼55.

Although the WA in LSM-tree states (c) and (e) are the same, files
with a smaller overlapping ratio that lead to smaller long-term
WA in (c) are fewer than (e). Similar analysis can be applied for
state (c) and (e). For example, in state (c), if we pick the file with
key range 20∼30, we do not have files with a small overlapping
ratio for the next L1 compaction because L0 compactions have
already merged the file with key range 31∼40. In contrast, if
we compact the key range 31∼40, we can still compact the key
range 21∼30 after the compaction L0, which has an even smaller
overlapping ratio.
RefiningMOR.Weobserve that compacting a file leaves a hole in
the key space, which may force future compactions that output
to this level to use more entries in the file following the one
previously compacted. As such, the optimal policy tries to keep
the files with a small overlapping ratio as much as possible when
picking a file to compact. In the example of Figure 13(a), the
optimal order to compact files (identified by key range) in L1 is
31∼40, 21∼30, 11∼20, and 1∼10. This suggests that, if there are
several files that have similar overlapping ratios to the minimum
one, we should treat all of them as candidates and pick the last
file in this level (if it exists in the candidates) or a file of which the
successive one has the largest overlapping ratio. This prevents
future compactions from the upper level eliminating existing
small overlapping ratios at this level. As such, we adjust 𝑀𝑂𝑅
using a threshold 𝑡ℎ (0 < 𝑡ℎ < 1) as follows. We select all the files
of which the overlapping ratio is no larger than the minimum
one by 𝑡ℎ, and we re-rank them based on a newly defined ratio.
Specifically, with 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗] .𝑟 representing the overlapping ratio
of the 𝑗𝑡ℎ file in this level, we use 𝑡ℎ · 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗] .𝑟 − 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗 + 1] .𝑟
to replace 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗] .𝑟 , as shown in Algorithm 1. The adjusted
algorithm is termed RefinedMOR.

Algorithm 1: RefinedMOR(𝑓 𝑖𝑙𝑒𝑠, 𝑡ℎ)
1 𝑓 ← MOR(𝑓 𝑖𝑙𝑒𝑠)
2 for 𝑗 ← 0 to 𝑓 𝑖𝑙𝑒𝑠 .𝑠𝑖𝑧𝑒 () − 1 do
3 if 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗] .𝑟 < 𝑓 .𝑟 · (1 + 𝑡ℎ) then
4 if 𝑗 == 𝑓 𝑖𝑙𝑒𝑠 .𝑠𝑖𝑧𝑒 () − 1 then
5 return 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗]
6 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗] .𝑟 ← 𝑡ℎ · 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗] .𝑟 − 𝑓 𝑖𝑙𝑒𝑠 [ 𝑗 + 1] .𝑟
7 returnMOR(𝑓 𝑖𝑙𝑒𝑠)

While RocksDB does not provide an interface for custom selection
strategies, we implement RefinedMOR by modifying MOR [42].
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Figure 13: A traced example in RocksDB that explains the instability ofMOR. We start with state (a). In this state, files at L2
have similar key ranges to L1 because files at L2 are initially trivial moved from L1 without triggering a compaction. When
L1 becomes full again, we need to pick a file to compact, given that four files at L1 have nearly the same overlapping ratio.
We now emulate two cases – picking the first or the last file – which respectively results into state (b) and (d).
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Figure 14: WA of four file-picking policies and RefinedMOR on different workloads. (a) 5GB data of 5𝑀 1KB entries, and
normal update distribution with 𝜎 = 0.5, (b) 20GB workload of 40𝑀 512-byte entries, (c) 40GB data of 40𝑀 1KB entries.

RefinedMOR outperforms MOR. We now evaluate the WA of
RefinedMOR with 𝑡ℎ = 0.05. First, we re-use the workloads pre-
sented in Figure 12 to conduct a comparative analysis with MOR.
For RefinedMOR, the measured WA is always 7.31 and 3.59 for
2𝑀 64-byte inserts and 8𝑀 8-byte inserts in 50 runs. Compared
toMOR in Figure 12, RefinedMOR not only achieves the minimum
WA of MOR but also demonstrates significantly higher stability.
We further expand our comparison of RefinedMOR against other
file-picking policies using larger workloads, as illustrated in Fig-
ure 14. In Figure 14(a), we test a 5GB workload where updates
follow a normal distribution. Despite that RR still outperforms
MOR for skew updates, as previously mentioned, RefinedMOR
exhibits both lower and more stable than MOR. In particular, Re-
finedMOR decreases the average WA ofMOR by 0.84%, 1.83%, and
1.07% for workloads with 10%, 30%, and 50% updates, respectively.
This superiority of RefinedMOR overMOR is also evident in larger
workloads. In the experiment with 20GB and 40GB workloads
with uniform updates, RefinedMOR exhibits the smallest average
WA among all five policies. For instance, in the 40GB workload,
comparing the average WA of RefinedMOR with that of MOR, it
is 0.55%, 0.33%, and 0.60% lower for 0%, 25%, and 50% updates, re-
spectively. It’s worth noting that, before RefinedMOR is included
for comparison,MOR already has the smallestWA among the four
existing file-picking policies in these workloads. Furthermore,
we observe that RefinedMOR demonstrates greater stability, as in-
dicated by its smaller quartile deviation. The difference between

Q1 and Q3 of RefinedMOR is consistently the smallest among
all the existing picking policies for every examined workload.
Specifically, for 40GB workloads with 50% updates, the quartile
deviation for RR, MOR, OLSF, OSSF, and RefinedMOR is 0.052,
0.020, 0.071, 0.046, and 0.012, respectively. Synthesizing the ex-
perimental findings concerning RefinedMOR, it becomes evident
that even a slight refinement of MOR using our observations can
simultaneously reduce WA and improve stability. As RefinedMOR
is merely a rudimentary version that uses our observation, we
encourage further research on a more refined MOR.
Instability of Other Policies. In addition to MOR, we also ob-
serve that RR, OLSF, and OSSF have a large deviation, attributed
to the new splitting mechanisms presented in Figure 3 and Fig-
ure 4. Specifically, RR may generate a very small file due to a
RR cursor (Fig. 3). For example, when testing a 40GB workload
with 𝑓 𝑠 =64MB, files with size as small as 98KB are generated
in L1 due to the cursor in L2, which increases the number of
required L1 compactions to cover the whole key domain. For
both OLSF and OSSF, we see that the smallest sequence number
can be dispersed in any newly generated file during compaction,
and thus, when workloads with the same characteristics are gen-
erated, different files can be picked from a similar LSM-tree state.
Note that the current level that triggers a compaction can also
be a grandparent level for compactions from shallower levels,
which interplays with the grandparent splitting mechanism in
Figure 4 In such cases, the grandparent splitting mechanism may
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significantly affect how files are partitioned as long as different
files are picked, which further magnifies the difference on WA.
Thus, OLSF and OSSF that rely on sequence numbers also suf-
fer from instability. Specifically, for a 10GB workload with 100%
inserts, when the grandparent splitting mechanism is off, the
quartile deviation of OLSF (OSSF ) decreases by 24% (6.6%) while
WA increases by 11.3% (12.5%). Overall, although the new split
mechanisms reduce WA for all file-picking policies, this comes
with the cost of higher WA deviation.

5 RELATEDWORK
Compaction Analysis and Benchmark. An earlier LSM-based
survey [28] has pointed out that the partial compaction scheme
allows a smart file-picking policy, which could potentially have
a smaller WA by avoiding re-writing cold keys for skewed up-
dates. However, no quantitative study shows the WA reduction
percentage for different picking policies in that survey. Another
experimental study [34] compares several existing partial com-
paction policies and other full-level compaction strategies, but
its observations do not reveal the difference across several file-
picking policies in the partial compaction scheme. Besides, the
version of RocksDB used in the existing experimental study has
not implemented the current RR and a complete splitting mecha-
nism, which may render existing experimental results obsolete.
While another mathematical WA estimation mechanism [26]
claims that RR has marginally lower WA thanMOR, we still need
an up-to-date and thorough evaluation to compare different file-
picking policies. This paper fills this research gap with extensive
experiments and further explores the potential headroom for
improving existing file-picking policies.
Compaction Granularity. In addition to partial compaction,
there are also other compaction granularities (e.g., level, sorted
run, block, or even a mixed version). For example, a Block Com-
paction [40] scheme is proposed to delay each file-based partial
compaction and trigger a compaction across several data blocks,
reducing WA and alleviating cache invalidation. Similarly, LDC
(Lower-level Driven Compaction) [8] also allows data slices that
are bounded by selected key ranges to be involved in a com-
paction. To accelerate each partial compaction, NVLSM [45] ex-
ploits the byte-addressability of NVM for finer slicing granularity.
Besides, multiple compaction granularities [14, 38] can co-exist
to leverage the trade-off between space amplification and WA
in LSM-trees. This study still applies as long as there is partial
compaction, and thus, file-picking policies.
Compaction Scheduling.Multiple compactions can be pipelined
and parallelized to exploit the SSD concurrency [46]. A more ad-
vanced compaction scheduler, like Compaction-as-a-service [44],
can manage all the compactions across several LSM-tree in-
stances. When all the compactions are scheduled properly and
executed instantly, the file-picking policy is orthogonal to the
compaction scheduler. However, delayed compactions [32] could
also lead to a trade-off between space amplification and write
amplification. Similar observations have been captured earlier in
this paper (i.e., files are accumulated in L0 on a slower SSD).

6 CONCLUSIONS
In this paper, we present an experimental study on the impact
of partial compaction policies on Write Amplification (WA) in
RocksDB. We present 10 observations, which enrich and rectify
conclusions and guidelines in existing studies. Further, we find
the optimal WA by multi-step searching and compare the optimal

file-picking decisions withMOR. We present an in-depth analysis
to explain why MOR can be unstable, and we show that Refined-
MOR, a simple refinement of MOR based on our observations,
can reduce both the average WA and the quartile deviation.
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