
Communication-Efficient Distributed Deep Learning via
Federated Dynamic Averaging

Michail Theologitis
Technical University of Crete

Chania, Greece
mtheologitis@tuc.gr

Georgios Frangias
Technical University of Crete

Chania, Greece
gfrangias@tuc.gr

Georgios Anestis
Technical University of Crete

Chania, Greece
ganestis@tuc.gr

Vasilis Samoladas
Technical University of Crete

Chania, Greece
vsamoladas@tuc.gr

Antonios Deligiannakis
Technical University of Crete

Chania, Greece
adeli@softnet.tuc.gr

ABSTRACT
Driven by the ever-growing volume and decentralized nature of
data, coupled with the need to harness this data and generate
knowledge from it, has led to the extensive use of distributed
deep learning (DDL) techniques for training. These techniques
rely on local training that is performed at the distributed nodes
based on locally collected data, followed by a periodic synchro-
nization process that combines these models to create a global
model. However, frequent synchronization of DL models, en-
compassing millions to many billions of parameters, creates a
communication bottleneck, severely hindering scalability. Worse
yet, DDL algorithms typically waste valuable bandwidth, and
make themselves less practical in bandwidth-constrained feder-
ated settings, by relying on overly simplistic, periodic, and rigid
synchronization schedules. These drawbacks also have a direct
impact on the time required for the training process, necessi-
tating excessive time for data communication. To address these
shortcomings, we propose Federated Dynamic Averaging (FDA),
a communication-efficient DDL strategy that dynamically trig-
gers synchronization based on the value of the model variance.
In essence, the costly synchronization step is triggered only if
the local models, which are initialized from a common global
model after each synchronization, have significantly diverged.
This decision is facilitated by the communication of a small local
state from each distributed node/worker. Through extensive ex-
periments across a wide range of learning tasks we demonstrate
that FDA reduces communication cost by orders of magnitude,
compared to both traditional and cutting-edge communication-
efficient algorithms. Additionally, we show that FDA maintains
robust performance across diverse data heterogeneity settings.

1 INTRODUCTION
The big data era has been marked by an unprecedented scale
of training datasets [41, 67]. These datasets are not only grow-
ing in size, but are often physically distributed and cannot be
easily centralized due to business considerations, privacy con-
cerns, bandwidth limitations (especially in federated settings,
such as drones collecting and collaboratively building a global
model/view of an area), and data sovereignty laws [9, 23, 64].
Such constraints complicate the use of Deep Learning (DL) tech-
niques in the aforementioned scenarios.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Distributed Deep Learning (DDL) has emerged as an alterna-
tive paradigm to the traditional centralized approach [6, 69],
offering efficient learning over large-scale data across multi-
ple worker-nodes, enhancing the speed of training DL models
and paving the way for more scalable and resilient DL applica-
tions [10, 28, 35, 55, 68]. Most DDL methods are iterative, where,
in each iteration, some amount of local training is followed by
synchronization of the local models with the global one. The pre-
dominant method, based on the bulk synchronous parallel (BSP)
approach [56], is to average the local model updates and then
apply the average update to each local model [69]. Less synchro-
nized variants have also been proposed, to ameliorate the effect
of straggler workers [14, 37] but compromise convergence speed
and model quality.

A significant challenge inherent in the traditional techniques,
especially in federated DL settings, where models are huge and
worker interconnections are slow, is the communication bot-
tleneck, restricting system scalability [53, 60]. Specifically, the
communication bottleneck arises from the frequent exchange
(synchronization) of model parameters, often in the range of
billions, across distributed workers. The synchronization pro-
cess entails substantial data volume transfer and generally dom-
inates the overall training time, leading to a low computation-
to-communication ratio [14, 46]. Addressing this challenge to
expedite DDL algorithms has been a focal point of research for
many years; speeding-up SGD is arguably among the most im-
pactful and transformative problems in machine learning [58].

Themost direct method to alleviate the communication burden
is to reduce the frequency of communication rounds. Local-SGD
is the prime example of this approach. It allows workers to per-
form 𝜏 local update steps on their models before aggregating
them, as opposed to averaging the updates in every step [17, 66].
Although Local-SGD is effective in reducing communication
while maintaining comparable model quality [58], determining
the optimal value of 𝜏 presents a critical challenge, with only a
handful of studies offering theoretical insights into its influence
on convergence [50, 58, 66].

To further reduce communication costs of Local-SGD, more
sophisticated communication strategies introduce varying se-
quences of local update steps {𝜏0, ..., 𝜏𝑅}, instead of a fixed 𝜏 .
In [57], in order to minimize convergence error with respect to
wall-time, the authors proposed a decreasing sequence of local
update steps. Conversely, the focus in [17] was on reducing the
number of communication rounds for a fixed number of model
updates and an increasing sequence emerged. These contrasting
approaches underscore the multifaceted nature of communica-
tion strategies in distributed deep learning, highlighting not only

Series ISSN: 2367-2005 411 10.48786/edbt.2025.33

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.33

the absence of a one-size-fits-all solution but also the growing
need for dynamic, context-aware strategies that can continuously
adapt to the specific intricacies of the learning task.
Main Idea and Contributions. Our work addresses critical
efficiency challenges in DDL, particularly in communication-
constrained environments, such as the ones encountered in Fed-
erated Learning (FL) applications [23]. We introduce Federated
Dynamic Averaging (FDA), a novel, adaptive distributed deep
learning strategy that massively improves communication effi-
ciency over previous work.

FDA utilizes a novel 2-action, conditional synchronization pro-
tocol, designed to avoid the need to decide or guess the proper
values of local update steps, or to synchronize after each train-
ing step, but rather only performs the costly synchronization
process when needed. Our FDA algorithm dynamically triggers
synchronization based on the value of model variance across
worker-nodes. In a nutshell, the costly synchronization step is
only triggered if the local models have diverged significantly,
which implies that the global model may no longer be accurate.

As Figure 1 demonstrates, at the start, workers enter the lo-
cal training step with the same global model (Figure 1.A). Then,
local training commences and each distributed worker-node com-
putes its local state, which encapsulates helpful information for
estimating the model variance (Figure 1.B). This is followed by
the transmission (Figure 1.C) of these small-size local states, an
operation that is bandwidth- and time-efficient because of their
small size. During transmission, the local states are aggregated
and their average is made available to all workers—an operation
known as AllReduce. This operation does not require (or pro-
hibit) the use of a central node. Based on the aggregated state,
the workers can estimate (Figure 1.D) whether the variance of
the local models may have exceeded a threshold. If this is not the
case, the costly synchronization step (Figure 1.E) is avoided and
local training continues. What is important is how to properly
pick these local states computed at, and then transmitted by, the
local workers. To address this problem, we propose two variants
of our FDA algorithm. Our contributions can be summarized as
follows:

• We propose FDA, an algorithm that dynamically decides to
synchronize local workers when model variance across workers
exceeds a threshold. This strategy drastically reduces com-
munication, while preserving cohesive progress towards the
shared training objective.
• We propose two variants of FDA, which differ in the amount of
information preserved in the local states that are transmitted
by each worker and aggregated for subsequent estimation of
model variance. These two variants, termed SketchFDA and
LinearFDA, offer a different balance between communication
efficiency and approximation accuracy.
• We evaluate and compare FDA with other DDL algorithms
through a comprehensive suite of experiments with diverse
datasets, models, and tasks. Our experiments demonstrate that
FDA outperforms traditional and contemporary FL algorithms
by 1-2 orders of magnitude in communication savings, while
maintaining equivalent model performance. Furthermore, it
effectively balances the competing demands of communication
and computation, providing greatly improved trade-offs.
• We demonstrate FDA’s robustness in various challenging Non-
IID settings, common in real-world Federated Learning applica-
tions. While state-of-the-art methods typically require substan-
tially more resources to converge under Non-IID conditions,

Nodes start
training step

Local training step /
compute local state

Estimate if synchronization is
needed. If not go to Step (B)

Aggregate
local state

using
AllReduce

Synchronize
models using
AllReduce.

Go to Step (A)

(A) (B) (C) (D) (E)

Figure 1: FDA. The local training step is followed by the
computation of a local state by all worker-nodes. Then,
the (small in size) local states are aggregated. Based on the
aggregated result, all workers estimate if synchronization
is required. In most cases, the expensive synchronization
step of the models is avoided and local training continues

FDA maintains consistent and comparable performance across
both IID and Non-IID settings.

Outline. The remainder of this paper is organized as follows:
Section 2 reviews related work. Section 3 introduces our DDL
technique, Federated Dynamic Averaging (FDA), and its two vari-
ants. Section 4 details the experimental setup, and discusses the
insights and conclusions drawn from our empirical investigation.
Lastly, Section 5 contains concluding remarks.

2 RELATEDWORK
Problem formulation. Consider distributed training of deep
neural networks over multiple workers [11, 31]. In this setting,
each worker represents a data owner (equivalently, a local model
owner) and has access to its own set of training dataD𝑘 . Workers
can utilize any available hardware they possess (e.g., GPUs, CPUs)
to perform learning steps. The collective goal is to find a common
model w ∈ R𝑑 by minimizing the overall training loss. This
scenario can be effectively modeled as a distributed optimization
problem, formulated as follows:

minimize
w∈R𝑑

𝐹 (w) ≜ 1
𝐾

𝐾∑︁
𝑘=1

𝐹𝑘 (w) (1)

where𝐾 is the number of workers and 𝐹𝑘 (w) ≜ E𝜁𝑘∼D𝑘
[ℓ (w; 𝜁𝑘)]

is the local objective function for worker 𝑘 . Function ℓ (w; 𝜁𝑘)
represents the loss for data sample 𝜁𝑘 given model w.
Solution direction. As noted in the seminal work [23], research
in FL should focus primarily on synchronous solutions. This al-
lows different lines of research (e.g., compression, privacy, etc.) to
be developed independently and then combined seamlessly. Our
work, along with most communication-efficient FL strategies, ad-
heres to this synchronous paradigm. However, such approaches
may be less effective in environments where each communica-
tion operation incurs significant overhead regardless of the size
of the data being transmitted (e.g., high-latency). In these scenar-
ios, asynchronous mechanisms become necessary, though they

412

typically fall outside the primary focus of contemporary FL re-
search. That said, FDA can be modified to work asynchronously
(as explained in Section 3.3).
Communication efficient Local-SGD. The work in [31] de-
composes each round into two phases. In the first phase, each
worker runs Local-SGD with 𝜏 = 𝐼1, while the second phase
runs 𝐼2 steps with 𝜏 = 1; [31] proposes to exponentially decay 𝐼1
every𝑀 rounds. In the heterogeneous setting, the work in [40],
by analysing the convergence rate, proposes an increasing se-
quence of local update steps for strongly-convex local objectives
and fixed local update steps for other types of local objectives.
The study in [65] dynamically increases batch sizes to reduce
communication rounds, maintaining the same convergence rate
as SSP-SGD. However, the large-batch approach leads to poor
generalization [20], a challenge addressed by the post-local SGD
method [32], which divides training into two phases: BSP-SGD
followed by Local-SGD with a fixed number of steps. In the
Lazily Aggregated Algorithm (LAG) [5], a different approach was
taken, using only new gradients from some selected workers and
reusing the outdated gradients from the rest, which essentially
skips communication rounds.

Federated Averaging (FedAvg) [36] is another representative
of communication efficient Local-SGD algorithms, which is a
pivotal method in Federated Learning (FL) [23]. In the FL setting
with edge computing systems, the work in [59] tries to find the
optimal synchronization period 𝜏 subject to local computation
and aggregation constraints. Recently [38], in the FL setting with
the assumption of strongly-convex objectives, by analysing the
balance between fast convergence and higher-round completion
rate, a decaying local update step scheme emerged.

Unlike previous approaches that rely on predetermined syn-
chronization schedules (fixed, decaying, or otherwise), our work
introduces a dynamic synchronization strategy. FDA adapts con-
tinuously during the training process, basing synchronization
decisions on a real-time metric: the model variance across work-
ers.
Accelerating convergence. An indirect, yet highly effective
way to mitigate the communication burden in DDL, is to speed
up convergence. Consequently, recent works have built upon
communication efficient Local-SGD methods by deploying ac-
celerated versions of SGD to the distributed setting. Specifically,
FedAdam [42] extends Adam [26] and FedAvgM [21] extends SGD
with momentum (SGD-M) [51]. Recently, Mime [24] provides
a framework to adapt arbitrary centralized optimization algo-
rithms to the FL setting. However, these methods still suffer from
the model divergence problem, particularly in heterogeneous
settings. When solving (1), the disparity between each worker’s
optimal solution w∗

𝑘
for their objective 𝐹𝑘 , and the global opti-

mum w∗ for 𝐹 , can potentially cause worker models to diverge
(drift) towards their disparate minima [25, 42, 63]. The result is
slow and unstable convergence with significant communication
overhead. To address this problem, the SCAFFOLD algorithm [25]
used control-variates (in the same spirit to SVRG), with signif-
icant speed-up. FedProx [45] re-parameterized FedAvg [36] by
adding 𝐿2 regularization in the workers’ objectives to be near the
global model. Lastly, FedDyn [2] improved upon these ideas with
a dynamic regularizer making sure that if local models converge
to a consensus, this consensus point aligns with the stationary
point of the global objective function.

While these approaches primarily focus on enhancing the op-
timization process and typically employ fixed synchronization

intervals (e.g., every local epoch), our work addresses a comple-
mentary aspect: determining the optimal timing for synchroniza-
tion. FDA’s dynamic synchronization strategy is orthogonal to
these optimization techniques and can be integrated with them
by simply adjusting the synchronization decision.
Compression. To reduce communication overhead in DDL, sig-
nificant efforts have been directed towards minimizing message
sizes. Key strategies include sparsification, where only crucial
components of information are transmitted, as explored in [3],
and quantization techniques, which involve transmitting only
quantized gradients, as detailed in [47]. These techniques can be
combined with Local-SGD methods to enhance communication-
efficiency further. An example is Qsparse-local-SGD [4], which
integrates aggressive sparsification and quantization with Local-
SGD, achieving substantial communication savings. Crucially,
FDA is fully compatible with any technique that reduces the
cost of synchronization (e.g. model compression). Our approach
simply adjusts the timing of the synchronization decision with-
out altering the data being synchronized. This ensures that any
compression technique effective in traditional methods (BSP,
Local-SGD, etc.) will be equally effective when deployed with
FDA. Therefore, the communication savings demonstrated in the
relevant literature [61] can be safely expected to carry over to
our approach as well.

Additionally, sketching emerges as another fundamental tool
in large-scale machine learning. It effectively compresses high-
dimensional problems into lower dimensions to save runtime and
memory, typically utilizing hash-based probabilistic data struc-
tures. For instance, [49] use Count Sketches to compress auxil-
iary variables in optimization algorithms, significantly freeing
up memory. Similarly, FetchSGD [43] employs Count Sketches to
compress model updates and leverages their linearity for efficient
merging. In contrast to these applications, our approach utilizes
sketches not for compression but to estimate local state informa-
tion, and based on this to decide whether a synchronization is
required—an orthogonal application to traditional use cases. A
comprehensive survey of compression techniques in DDL can be
found in [61].

3 FEDERATED DYNAMIC AVERAGING
We now present our algorithms, based on our notion of Federated
Dynamic Averaging (FDA). Our algorithms deviate from prior
work in these two key ways:
(1) The decision on when to synchronize.
(2) The actual synchronization process.

To the best of our knowledge, this is the first Distributed Deep
Learning algorithm that dynamically decides when to synchro-
nize based on the current collective state of the training progress—
whether it is advancing well or poorly.
Notation.At each time step 𝑡 , eachworker𝑘 independentlymain-
tains its own vector of model parameters1, denoted asw(𝑘)𝑡 ∈ R𝑑 .
Let w𝑡 represent the 𝐾 × 𝑑 tensor of all local model vectors, and
w𝑡 be the average model vector (this notation applies to all vector
quantities):

w𝑡 =
[
w(1)𝑡 , . . . ,w(𝐾)𝑡

]
, w𝑡 =

1
𝐾

𝐾∑︁
𝑘=1

w(𝑘)𝑡

1The terms “model” and "model parameters" are used interchangeably, as is common
in the literature.

413

Table 1: Notation

Symbol Meaning
⟨· , ·⟩ Dot product
𝑡 Time step index
𝐾 Number of workers
𝑑 Model dimension
D𝑘 Training data of worker 𝑘
B (𝑘)𝑡 A batch sampled from D𝑘
w(𝑘)𝑡 ∈ R𝑑 Model of worker 𝑘
w𝑡 = [w(1)𝑡 , . . . ,w(𝐾)𝑡] Tensor of local models
w𝑡 = 1

𝐾

∑𝐾
𝑘=1w

(𝑘)
𝑡 Average model (global model)

w𝑡0 Model after most recent sync.
w𝑡−1 Model after 2nd most recent sync.
u(𝑘)𝑡 = w(𝑘)𝑡 −w𝑡0 Local model drift
u𝑡 = 1

𝐾

∑𝐾
𝑘=1 u

(𝑘)
𝑡 Average model drift (global drift)

Var (w𝑡) Model variance
Θ Model variance threshold
S(𝑘)𝑡 State of worker 𝑘
S𝑡 = 1

𝐾

∑𝐾
𝑘=1 S

(𝑘)
𝑡 Average state

𝐻 (·) Function for variance estimation
sk(·) : R𝑑 → R𝑙×𝑚 AMS sketch operator (§3.1)
M2 (·) : R𝑙×𝑚 → R 𝐿2 norm squared estimate (§3.1)
𝜖 Error of sketch estimate (§3.1)
(1 − 𝛿) Confidence of approximation (§3.1)
𝑙 = O(log 1/𝛿) #Rows of sketch matrix (§3.1)
𝑚 = O(1/𝜖2) #Columns of sketch matrix (§3.1)
𝜉 =

w𝑡0−w𝑡−1
∥w𝑡0−w𝑡−1 ∥2 Heuristic vec. for LinearFDA (§3.2)

Furthermore, letOptimize(w,B) be the updated model [16] com-
puted by some optimization algorithm (e.g., SGD, Adam) using
the model w, and the batch B of training data. It incorporates
the learning rate, loss function and relevant gradients. During
step 𝑡 , each worker 𝑘 first applies the update:

w(𝑘)𝑡 = Optimize(w(𝑘)𝑡−1 , B
(𝑘)
𝑡)

Moreover, operation AllReduce(w(𝑘)𝑡) computes and returns
the average model vector [30]:

w𝑡 = AllReduce(w(𝑘)𝑡)

Workers synchronize by executing AllReduce(w(𝑘)𝑡), thereby
setting w(𝑘)𝑡 := w𝑡 . If synchronization is not performed at step 𝑡 ,
each worker continues training with its locally updated model. A
comprehensive list of the notation used throughout this section
is provided in Table 1.
Model Variance and FDA. The model variance quantifies the
dispersion or spread of worker models around the average model:

Var (w𝑡) = 1
𝐾

𝐾∑︁
𝑘=1

w(𝑘)𝑡 −w𝑡
2
2

(2)

This measure provides insight into how closely aligned the work-
ers’ models are at any given time. High variance indicates that the
models are widely spread out, essentially drifting apart, leading to
a lack of cohesion in the aggregated model. Conversely, a moder-
ate or low variance suggests that the workers’ models are closely
aligned, working collectively towards the shared objective.

The FDA algorithm (Algorithm 1) is based on the premise that,
as long as the variance is below a threshold Θ, synchronization
is not needed. Thus, we introduce the Round Invariant (RI):

Var (w𝑡) ≤ Θ (3)

To preserve the RI, our FDA algorithm maintains (Lines 4-6 of
Algorithm 1) at each worker 𝑘 a local (low-dimensional) state-
vector S(𝑘)𝑡 , which is computed based onw(𝑘)𝑡 . These state vectors
are vital for the subsequent estimation of the model variance,
and underpin the two variants of the FDA algorithm (provided in
Sections 3.1 and 3.2, respectively). Our estimation techniques be-
gin by performing AllReduce on the states S(𝑘)𝑡 , consolidating
them into the average state S𝑡 (Line 7). Importantly, this commu-
nication step requires significantly less bandwidth and resources
than transmitting the full models w(𝑘)𝑡 .

For each FDA variant, we also define a (different) function
𝐻 (S𝑡) that overestimates the variance, i.e., it ensures that as
long as 𝐻 (S𝑡) ≤ Θ then the variance is bounded by Θ. This
guarantee is probabilistic for the Sketch-based variant of FDA,
and deterministic for its Linear counterpart. Consequently, if
𝐻 (S𝑡) > Θ then synchronization is performed (Lines 8-9) — the
RI invariant cannot be guaranteed. After synchronization, the
model variance is zero.
Efficiently Monitoring the RI. Estimating model variance effi-
ciently is at the heart of FDA. To this end, we first introduce the
local model drift, u(𝑘)𝑡 , and average drift, u𝑡 , defined as follows:

u(𝑘)𝑡 = w(𝑘)𝑡 −w𝑡0 , u𝑡 =
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

Here, w𝑡0 denotes the model vector after the most recent syn-
chronization. Subsequently, the model variance can be written
as:

Var (w𝑡) =
(
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2

)
− ∥u𝑡 ∥22 (4)

Proof. Adding an offset (−w𝑡0) to each w(𝑘)𝑡 does not alter
the variance, therefore:

Var (w𝑡) = Var
(
w𝑡 −w𝑡0

)
= Var (u𝑡) = 1

𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡 − u𝑡
2
2

=
1
𝐾

𝐾∑︁
𝑘=1

(u(𝑘)𝑡

2
2
− 2

〈
u(𝑘)𝑡 , u𝑡

〉
+ ∥u𝑡 ∥22

)

=

(
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2

)
− 2

(
1
𝐾

𝐾∑︁
𝑘=1

〈
u(𝑘)𝑡 , u𝑡

〉)
+

(
1
𝐾

𝐾∑︁
𝑘=1
∥u𝑡 ∥22

)

=

(
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2

)
− 2

〈(
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

)
, u𝑡

〉
+ ∥u𝑡 ∥22

=

(
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2

)
− 2 ⟨u𝑡 , u𝑡 ⟩ + ∥u𝑡 ∥22

=

(
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2

)
− 2 ∥u𝑡 ∥22 + ∥u𝑡 ∥22

=

(
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2

)
− ∥u𝑡 ∥22

□

414

Algorithm 1 Federated Dynamic Averaging - FDA
Require: 𝐾 : The number of workers indexed by 𝑘
Require: Θ: The model variance threshold
Require: 𝑏: The local mini-batch size

1: Initialize w(𝑘)0 = w0 ∈ R𝑑
2: for each step 𝑡 = 1, 2, . . . do
3: for each worker 𝑘 = 1, . . . , 𝐾 in parallel do
4: B (𝑘)𝑡 ← (sample a batch of size 𝑏 from D𝑘)
5: w(𝑘)𝑡 ← Optimize(w(𝑘)𝑡−1 , B

(𝑘)
𝑡)

6: Update S(𝑘)𝑡

7: S𝑡 ← AllReduce(S(𝑘)𝑡)
8: if 𝐻 (S𝑡) > Θ then
9: w(𝑘)𝑡 ← AllReduce(w(𝑘)𝑡) ⊲ In-place

Conceptually, following Eq (4), to precisely monitor the vari-
ance, we need to calculate two quantities: (1) 1

𝐾

∑𝐾
𝑘=1 ∥u

(𝑘)
𝑡 ∥22,

and (2) ∥u𝑡 ∥22. The first quantity requires an AllReduce opera-
tion on the squared norm of the worker drifts, which involves
minimal overhead since these values are scalar. In contrast, the
second quantity necessitates an AllReduce operation on the
worker drifts themselves, which are of model dimension, thus in-
curring a high communication cost. In fact, this operation is equiv-
alent to synchronization, which is exactly what we aim to avoid
in the first place. Thus, it becomes evident that communication-
efficient model variance estimation hinges on estimating ∥u𝑡 ∥22
efficiently.

Upcoming sections will detail two techniques for communi-
cation efficient variance estimation (which primarily involves
estimating ∥u𝑡 ∥22): SketchFDA and LinearFDA. To present them
uniformly, we introduce the local state S(𝑘)𝑡 , a tensor which con-
tains: (1) the scalar value ∥u(𝑘)𝑡 ∥22 for precisely calculating the first
quantity, and (2) a low-dimensional summary of u(𝑘)𝑡 , different for
each technique, for estimating the second quantity. For each tech-
nique we define an estimation function 𝐻 (·) that calculates the
current variance estimate from average state S𝑡 = 1

𝐾

∑𝐾
𝑘=1 S

(𝑘)
𝑡

(obtained via AllReduce).

3.1 SketchFDA: Sketch-based Estimation
An optimal estimator for ∥u𝑡 ∥22 can be obtained through the
utilization and properties of AMS sketches, as detailed in [8]. An
AMS sketch of a vector v ∈ R𝑑 is an 𝑙 ×𝑚 real matrix:

sk (v) = [
𝜓1 𝜓2 . . . 𝜓𝑙

]⊤ ∈ R𝑙×𝑚 , 𝑙 ·𝑚 ≪ 𝑑

An estimate for squared-norm ∥v∥22 is provided by the formula

M2 (sk(v)) = median
{∥𝜓𝑖 ∥22 , 𝑖 = 1, . . . , 𝑙

}
The quality of estimation depends on the size of the sketch.
For chosen 𝜖, 𝛿 > 0, where sketch dimensions are given by
𝑙 = O (log 1/𝛿) and𝑚 = O (

1/𝜖2) , we have the following proba-
bilistic guarantee: with confidence at least 1 − 𝛿 ,

M2 (sk(v)) ∈ (1 ± 𝜖) ∥v∥22
Notably, observe that the accuracy (𝜖) and confidence (1−𝛿) only
depend on the size of the sketch and not on the dimensionality
of vector v.

Two crucial properties of the AMS sketch are that (a) it is a
linear transformation, i.e., for 𝛼1, 𝛼2 ∈ R and v1, v2 ∈ R𝑑 ,

sk(𝛼1v1 + 𝛼2v2) = 𝛼1 sk(v1) + 𝛼2 sk(v2)
and (b) can be computed efficiently in time 𝑂 (𝑙 · 𝑑).

In the SketchFDA approach, the salient idea is to employ AMS
sketches sk(u(𝑘)𝑡) ∈ R𝑙×𝑚 as a low-dimensional representation
of the local drifts u(𝑘)𝑡 .

Theorem 3.1. Let 𝑙 = O(log 1
𝛿) and 𝑚 = O(1

𝜖2
). Define the

local state as

S(𝑘)𝑡 =

(u(𝑘)𝑡

2
2
, sk

(
u(𝑘)𝑡

))
∈ R × R𝑙×𝑚

and the approximation function as

𝐻
(
S𝑡

)
=

1
𝐾

∑︁
𝑘

u(𝑘)𝑡

2
2
− 1
1 + 𝜖M2

(
1
𝐾

𝐾∑︁
𝑘=1

sk
(
u(𝑘)𝑡

))
.

Then, the condition 𝐻 (S𝑡) ≤ Θ impliesVar (w𝑡) ≤ Θ with proba-
bility at least (1 − 𝛿).

Proof.

𝐻
(
S𝑡

)
=

1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
− 1
1 + 𝜖M2

(
1
𝐾

𝐾∑︁
𝑖=1

sk
(
u(𝑘)𝑡

))

(lin.)
=

1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
− 1
1 + 𝜖M2

(
sk

(
1
𝐾

𝐾∑︁
𝑖=1

u(𝑘)𝑡

))

=
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
− 1
1 + 𝜖M2 (sk (u𝑡))

(𝜖-err.)
≥ 1

𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
− ∥u𝑡 ∥22 with prob. at least (1 − 𝛿)

= Var (w𝑡)
We proved that𝐻 (S𝑡) ≥ Var (w𝑡) with probability at least (1−𝛿),
i.e., we overestimate the model variance with probability at least
(1 − 𝛿), completing the proof. □

In Section 3.3, we discuss the empirical basis for choosing the
values of 𝑙 and𝑚, and how they practically impact the quality of
the sketch approximation.

3.2 LinearFDA: Linear Approximation
Although AMS sketches provide good estimates for variance,
their dimension is in the several hundreds, and the communi-
cation cost of AllReduce on sketches, performed at each step,
may be non-negligible. Therefore, we also introduce a low-cost,
ad-hoc estimation variant.

In this approach, instead of an AMS sketch, each local state
contains the scalar value ⟨𝜉 , u(𝑘)𝑡 ⟩ ∈ R, where 𝜉 ∈ R𝑑 is a unit
vector, known to all workers.

Theorem 3.2. Define the local state as

S(𝑘)𝑡 =

(u(𝑘)𝑡

2
2
,
〈
𝜉 , u(𝑘)𝑡

〉)
∈ R × R , ∥𝜉 ∥2 = 1

and the approximation function as

𝐻
(
S𝑡

)
=

1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
−

����� 1𝐾
𝐾∑︁
𝑖=1

〈
𝜉 , u(𝑘)𝑡

〉�����
2

Then, the condition 𝐻 (S𝑡) ≤ Θ impliesVar (w𝑡) ≤ Θ.

415

Proof.

𝐻
(
S𝑡

)
=

1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
−

����� 1𝐾
𝐾∑︁
𝑖=1

〈
𝜉 , u(𝑘)𝑡

〉�����
2

=
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
−

�����
〈
𝜉 ,

1
𝐾

𝐾∑︁
𝑖=1

u(𝑘)𝑡

〉�����
2

=
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
− |⟨𝜉 , u𝑡 ⟩|2

≥ 1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
− ∥𝜉 ∥22 ∥u𝑡 ∥22

=
1
𝐾

𝐾∑︁
𝑘=1

u(𝑘)𝑡

2
2
− ∥u𝑡 ∥22

= Var (w𝑡)

We proved that 𝐻 (S𝑡) ≥ Var (w𝑡), i.e., we always overestimate
the model variance, completing the proof. □

An arbitrary choice of 𝜉 (e.g., a random vector) is likely to
estimate ∥u𝑡 ∥22 poorly; if 𝜉 is uncorrelated to u𝑡 , then |⟨𝜉 , u𝑡 ⟩|2
will likely be close to zero. A heuristic choice that might be
correlated to u𝑡 is the (normalized) value of u𝑡0 , the global drift
vector right at the time of last synchronization. All nodes can
compute it independently without extra communication, if they
take the difference of the models of the last two synchronizations:

𝜉 =
u𝑡0u𝑡02 =

w𝑡0 −w𝑡−1w𝑡0 −w𝑡−12
3.3 Discussion
FDA: Intuition. The main intuition for FDA is summarized in
making the decision to synchronize dynamic, based on model
variance during training. This metric is designed to capture the
collective state of the training process. In what follows, we pro-
vide intuition on why this is the case. It is important to remember
that the global model w𝑡 and, by extension, the global drift u𝑡 ,
are ultimately what we care about and evaluate.

Model variance, as defined in Equation (4), is the difference
between the average of the squared local drifts 1

𝐾

∑ ∥u(𝑘)𝑡 ∥22 and
the squared global drift ∥u𝑡 ∥22. The first term reflects how far the
individual worker models have moved–essentially, how much
each worker has learned. The second term indicates how much
of this learning is retained in the global model after aggregation.

The interplay between these two quantities is crucial. For
example, when the local drifts are high but the global drift is
low, the variance increases, signaling the need for synchroniza-
tion. This scenario suggests that while individual workers have
made significant progress (as indicated by high local drifts), this
progress is not being effectively captured in the global model
(indicated by the low global drift). In other words, the worker
models have moved significantly, but the global model has re-
mained relatively stationary in this high-dimensional space. This
misalignment indicates that training is no longer progressing
optimally, as the workers are moving towards disparate and con-
flicting local minima, making it crucial to synchronize and realign
them. Conversely, when both the local and global drifts are either
low or high, synchronization is not necessary, and the variance
naturally remains low.

(

()

),

,

Local StateLocal Drift

LɪɴᴇᴀʀFDA

SᴋᴇᴛᴄʜFDA

Figure 2: SketchFDA & LinearFDA: Local State structure.

Neither the average of the local drifts nor the global drift alone
provides a complete picture of the collective training progress.
Relying solely on one or the other would lead to suboptimal
synchronization decisions and likely prove ineffective. In FDA,
it is the relationship between these quantities, as captured by
the model variance, that offers valuable insights and guides the
crucial decision of when to synchronize.
SketchFDA vs. LinearFDA: Both methods send the squared
norm of the drift ∥u(𝑘)𝑡 ∥22, but differ in the additional accompa-
nying lower-dimensional representation they transmit (Figure
2):
(1) SketchFDA: An AMS sketch of the local drift.
(2) LinearFDA: The dot product of a vector and the local drift.

The key difference between these two variants lies in the fidelity
of approximation of the model variance. While both methods
conservatively overestimate the variance, SketchFDA provides a
provably accurate estimation, which is expected to lead to fewer
synchronizations. LinearFDA requires less computational effort
and bandwidth to create and communicate the local states, but
may overestimate variance by too much, causing unnecessary
synchronizations.
SketchFDA: Choice of 𝑙 and𝑚. We empirically measured the
approximation achieved with sketch dimensions of 𝑙 = 5 rows
and𝑚 = 250 columns (as defined in Section 3.1): these settings
yield an error bound of 𝜖 ≈ 6% and a probabilistic confidence
of (1 − 𝛿) ≈ 95%. Based on our experiments, we have adopted
these values in our experiments and recommend them. Using
these values, the byte-size of a sketch is 𝑙 ·𝑚 · 4 bytes = 5 kB,
significantly smaller than the size of all our models. Sketches of
smaller size could be used, albeit weakening the approximation of
the variance. However, given that LinearFDA similarly weakens
approximation and avoids using AMS sketches, in the interest of
space we do not explore varying AMS sketch sizes in this paper.
FDA: Asynchronous Operation. As mentioned in Section 2,
FDA can be readily modified to operate asynchronously. In this
setup, one worker-node acts as a coordinator, aggregating local
states and determining whether synchronization is needed each
time a local state is received. This decision is based on the most
recent local states from all workers. It is important to note that,
since local states are small in size, asynchronous operation is
unlikely to alleviate bandwidth issues. The primary advantage
is that it allows training to continue even in the presence of
stragglers. Asynchronous operation might also be beneficial in
rare cases where the overhead of initializing communication
dominates the actual transmission time.

416

4 EXPERIMENTS
4.1 Setup
Table 2 provides a comprehensive overview of our experiments.
For each experiment, we detail the Neural Network (NN) archi-
tecture, its parameter count (𝑑), and the dataset used for training.
The table also specifies key hyper-parameters: the batch size
(𝑏), the number of workers (𝐾), and the FDA-specific variance
threshold (Θ). Additionally, we indicate the chosen optimizer (as
detailed in Section 3) and the training algorithms employed for
each configuration.
Platform.We employ TensorFlow [1], integrated with Keras [7],
as the platform for conducting our experiments. We used Ten-
sorFlow to implement our FDA variants and all competitive al-
gorithms. All relevant code, figures, and data of this study are
available in https://github.com/miketheologitis/FedL-Sync-FDA.
Hardware & Infrastructure.We conducted our experiments
on the ARIS High performance computing (HPC) environment2,
utilizing a cluster of 44 GPU-accelerated worker-nodes. Each
worker is equipped with two NVIDIA Tesla K40m GPUs and
interconnected via an InfiniBand FDR14 network, providing up to
56 GB/s of bandwidth. Crucially, our evaluation remains agnostic
to the underlying infrastructure of the specific workers.
Datasets & Models. The core experiments involve training Con-
volutional Neural Networks (CNNs) of varying sizes and com-
plexities on two datasets: MNIST [12] and CIFAR-10 [27]. For
the MNIST dataset, we employ LeNet-5 [29], composed of ap-
proximately 62 thousand parameters, and a modified version of
VGG16 [48], denoted as VGG16*, consisting of 2.6 million param-
eters. VGG16* was specifically adapted for the MNIST dataset,
a less demanding learning problem compared to ImageNet [44],
for which VGG16 was designed. In VGG16*, we omitted the 512-
channel convolutional blocks and downscaled the final two fully
connected (FC) layers from 4096 to 512 units each. Both models
use Glorot uniform initialization [15]. For CIFAR-10, we utilize
DenseNet121 and DenseNet201 [22], as implemented in Keras [7],
with the addition of dropout regularization layers at rate 0.2 and
weight decay of 10−4, as prescribed in [22]. The DenseNet121 and
DenseNet201 models have 6.9 million and 18 million parameters,
respectively, and are both initialized with He normal [19].

Lastly, we explore a transfer learning scenario on the dataset
CIFAR-100 [27], a choice reflecting the DL community’s grow-
ing preference of using pre-trained models in such downstream
tasks [18]. For example, a pre-trained visual transformer (ViT) on
ImageNet, transferred to classify CIFAR-100, is currently on par
with the state-of-the-art results for this task [13]. We adopt this
exact transfer learning scenario, leveraging the more powerful
ConvNeXtLarge model, pre-trained on ImageNet, with 198 mil-
lion parameters [7, 33]. Following the feature extraction step [16],
the testing accuracy on CIFAR-100 stands at 60%. Subsequently,
we employ and evaluate our FDA algorithms in the arduous
fine-tuning stage, where the entirety of the model is trained [39].
Algorithms. We consider five distributed deep learning algo-
rithms: LinearFDA, SketchFDA, Synchronous 3, FedAdam [42],
and FedAvgM [21]; the first three are standard in all experi-
ments. Depending on the local optimizer, Adam [26] or SGD
with Nesterov momentum (SGD-NM) [52], we also include their

2https://www.hpc.grnet.gr/en/hardware-2/
3The name was derived from the Bulk Synchronous Parallel approach; can be
understood as a special case of the FDA Algorithm 1 where Θ is set to zero.

communication-efficient federated counterparts FedAdam or Fe-
dAvgM, respectively.
Evaluation Methodology. Comparing DDL algorithms is not
straightforward. For example, comparing DDL algorithms based
on the average cost of a training epoch can be misleading, as it
does not consider the effects on the trained model’s quality. To
achieve a comprehensive performance assessment of FDA, we
define a training run as the process of executing the DDL algo-
rithm under evaluation, on (a) a specific DL model and training
dataset, and (b) until a final epoch in which the trained model
achieves a specific testing accuracy (termed as Accuracy Target in
figures). Based on this definition, we focus on two performance
metrics:

(1) Communication cost, which is the total data (in bytes)
transmitted by all workers. Notably, communication cost
is unaffected by the training data volume since only model
updates (when synchronizing) and local states (at each step),
but not training data, are transmitted. Thus, the communi-
cation cost mainly depends on the complexity (number of
parameters) of the used model. Translating the communica-
tion cost to wall-clock time (i.e., the total time required for
the computation and communication of the DDL) depends
on the network infrastructure connecting the workers and
on the overhead of establishing and initializing communi-
cation. Its impact is larger in FL scenarios, where workers
often use slower Wi-Fi connections.

(2) Computation cost, which is the number of mini-batch
steps (termed as In-Parallel Learning Steps in figures) per-
formed by each worker. Translating this cost to wall-clock
time is determined by the mini-batch size and the computa-
tional resources of the worker-nodes. Its impact is larger
for workers with lower computational resources.

Hyper-Parameters & Optimizers. Hyper-parameters unique
to each training dataset and model are detailed in Table 2; Θ is
pertinent to FDA algorithms and not applicable to others. Notably,
a guideline for setting the parameter Θ is provided in Section 4.3.
For experiments involving FedAvgM and FedAdam, we use 𝐸 = 1
local epochs, following [42]. For experiments with LeNet-5 and
VGG16*, local optimization employs Adam, using the default set-
tings as per [26]. In these cases, FedAdam also adheres to the
default settings for both local and server optimization [7, 42].
For DenseNet121 and DenseNet201, local optimization is per-
formed using SGD with Nesterov momentum (SGD-NM), setting
the momentum parameter at 0.9 and learning rate at 0.1 [22].
For FedAvgM, local optimization is conducted with default set-
tings [7, 21], while server optimization employs SGD with mo-
mentum, setting the momentum parameter and learning rate to
0.9 and 0.316, respectively [42]. Lastly, for the transfer learning
experiments, local optimization leverages AdamW [34], with the
hyper-parameters used for fine-tuning ConvNeXtLarge in the
original study [33].
Data Distribution. In all experiments, the training dataset is
divided into approximately equal parts among the workers. To
assess the impact of data heterogeneity, we explore three scenar-
ios:

(1) IID — Independent and identically distributed.
(2) Non-IID: 𝑋% — A portion 𝑋% of the dataset is sorted by

label and sequentially allocated to workers, with the re-
mainder distributed in an IID fashion.

417

Table 2: Summary of Experiments

Hyper-Parameters Training
NN d Dataset Θ b K Optimizer Algorithms

LeNet-5 62K MNIST {0.5, 1, 1.5, 2, 3, 5, 7} 32 { 5, 10, . . . , 60 } Adam FDA, Synchronous, FedAdam
VGG16* 2.6M MNIST {20, 25, 30, 50, 75, 90, 100} 32 { 5, 10, . . . , 60 } Adam FDA, Synchronous, FedAdam

DenseNet121 6.9M CIFAR-10 {200, 250, 275, 300, 325, 350, 400} 32 { 5, 10, . . . , 30 } SGD-NM FDA, Synchronous, FedAvgM
DenseNet201 18M CIFAR-10 {350, 500, 600, 700, 800, 850, 900} 32 { 5, 10, . . . , 30 } SGD-NM FDA, Synchronous, FedAvgM
(fine-tuning)

ConvNeXtLarge 198M CIFAR-100 {25, 50, 100, 150} 32 { 3, 5 } AdamW FDA, Synchronous

10 1 100 101 102

Communication (GB)

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s IID, Accuracy Target: 0.985

LinearFDA
SketchFDA
FedAdam
Synchronous

10 1 100 101 102

Communication (GB)

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s Non-IID: Label "0", Accuracy Target: 0.985

LinearFDA
SketchFDA
FedAdam
Synchronous

10 1 100 101 102

Communication (GB)

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s Non-IID: 60%, Accuracy Target: 0.985

LinearFDA
SketchFDA
FedAdam
Synchronous

Figure 3: LeNet-5 on MNIST. At Non-IID: Label "0", the sam-
ples of Label "0" are assigned to few workers. At Non-IID:
60%, 60% of the dataset is sorted and allocated to workers,
causing some workers to receive many samples from the
same label

(3) Non-IID: Label 𝑌 — All samples from label 𝑌 are assigned
to a few workers, while the rest are distributed in an IID
manner.

4.2 Main Findings
The main findings of our experimental analyses are:

(1) LinearFDA and SketchFDA outperform the Synchro-
nous, FedAdam and FedAvgM techniques (their use de-
pends on the local optimizer choice) by 1-2 orders of mag-
nitude in communication, while maintaining equivalent
model performance.

(2) LinearFDA and SketchFDA also significantly outperform
the FedAdam and FedAvgM techniques in terms of compu-
tation.

(3) The performance of LinearFDA and SketchFDA is com-
parable in most experiments. SketchFDA provides a more
accurate estimator of the variance and leads to fewer syn-
chronizations than LinearFDA, but has a larger commu-
nication overhead for its local state (a sketch, compared
to two numbers). SketchFDA significantly outperforms
LinearFDA at the transfer learning scenario.

(4) The FDA variants remain robust at various data heterogene-
ity settings, maintaining comparable performance to the
IID case.

4.3 Results
Due to the extensive set of unique experiments (over 1000), as
detailed in Table 2, we leverage Kernel Density Estimation (KDE)
plots [62] to visualize the bivariate distribution of computation
and communication costs incurred by each strategy for attain-
ing the Accuracy Target. These KDE plots provide a high-level
overview of the cost trade-off for training accurate models. The
varying levels of opacity in the filled areas of the KDE plots rep-
resent the density of the underlying data points: higher opacity
indicates areas with a greater concentration of data, whereas
lower opacity signifies less dense areas.

As an illustrative example, Figure 3 depicts the strategies’ bi-
variate distribution for the LeNet-5 model trained onMNIST with
different data heterogeneity setups. In these plots, the SketchFDA
distribution is generated from experiments across all hyper-
parameter combinations (Θ and 𝐾 in Table 2) that attained the
Accuracy Target of 0.985. The observed high variance in the
method’s distribution stems from the varying 𝐾 and Θ values. In
subsequent subsections, we elucidate how these hyper-parameters
influence the communication and computation costs.
FDA balances Communication vs. Computation. DDL algo-
rithms face a fundamental challenge: balancing the competing
demands of computation and communication. Frequent commu-
nication accelerates convergence and potentially improves model
performance, but incurs higher network overhead, an overhead
that may be prohibitive when workers communicate through
lower speed connections. Conversely, reducing communication
saves bandwidth but risks hindering, or even stalling, conver-
gence. Traditional DDL approaches, like Synchronous, require
synchronizing model parameters after every learning step, lead-
ing to significant communication overhead but facilitating faster
convergence (lower computation cost). This is evident in Fig-
ures 3, 4, 5, and 6 (where Synchronous appears in the bottom
right — low computation, very high communication). Conversely,
Federated Optimization (FedOpt) methods [42] are designed to
be communication-efficient, reducing communication between

418

100 101 102 103

Communication (GB)

103

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s IID, Accuracy Target: 0.994
LinearFDA
SketchFDA
FedAdam
Synchronous

101 102 103

Communication (GB)

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s IID, Accuracy Target: 0.995
LinearFDA
SketchFDA
FedAdam
Synchronous

100 101 102 103

Communication (GB)

103

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s Non-IID: Label "0", Accuracy Target: 0.994
LinearFDA
SketchFDA
FedAdam
Synchronous

101 102 103

Communication (GB)

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s Non-IID: Label "0", Accuracy Target: 0.995
LinearFDA
SketchFDA
FedAdam
Synchronous

101 102 103

Communication (GB)

103

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s Non-IID: Label "8", Accuracy Target: 0.994
LinearFDA
SketchFDA
FedAdam
Synchronous

101 102 103

Communication (GB)

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s Non-IID: Label "8", Accuracy Target: 0.995

LinearFDA
SketchFDA
FedAdam
Synchronous

Figure 4: VGG16* on MNIST

101 102 103

Communication (GB)

103

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s IID, Accuracy Target: 0.78

LinearFDA
SketchFDA
FedAvgM
Synchronous

101 102 103 104

Communication (GB)

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s IID, Accuracy Target: 0.81

LinearFDA
SketchFDA
FedAvgM
Synchronous

Figure 5: DenseNet121 on CIFAR-10

101 102 103 104

Communication (GB)

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s IID, Accuracy Target: 0.78

LinearFDA
SketchFDA
FedAvgM
Synchronous

102 103 104

Communication (GB)

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s IID, Accuracy Target: 0.8

LinearFDA
SketchFDA
FedAvgM
Synchronous

Figure 6: DenseNet201 on CIFAR-10

devices (workers) at the expense of increased local computation.
Indeed, as shown in Figures 3-6, FedAvgM and FedAdam re-
duce communication by orders of magnitude but at the price of a
corresponding increase in computation. Our two proposed FDA
strategies achieve the best of both worlds: the low computation

cost of traditional methods and the communication efficiency of
FedOpt approaches, as seen in Figures 3, 4, 5, and 6. In fact, they
significantly outperform FedAvgM and FedAdam in their ele-
ment, that is, communication-efficiency. Across all experiments,

419

0 50 100 150 200 250
Epoch

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

DenseNet121 , IID , K = 15 , = 300.0

LinearFDA
SketchFDA
FedAvgM
Synchronous

0 20 40 60 80 100 120 140
Epoch

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

DenseNet201 , IID , K = 15 , = 500.0

LinearFDA
SketchFDA
FedAvgM
Synchronous

Figure 7: Training accuracy progression with a test ac-
curacy target (horizontal line) of 0.8 (top), and 0.78 (bot-
tom). Dashed and doted lines indicate when LinearFDA
and SketchFDA attain the target accuracy, respectively.
A smaller final gap between training and target accuracy
indicates less overfitting, i.e., better generalization capabil-
ities of the trained model

the FDA methods’ distributions lie in the desired bottom left
quadrant — low computation, very low communication.
FDA counters diminishing returns. The phenomenon of di-
minishing returns states that as a DL model nears its learning
limits for a given dataset and architecture, each additional incre-
ment in accuracy may necessitate a disproportionate increase
in training time, tuning, and resources [16, 54]. We first clearly
notice this with VGG16* on MNIST in Figure 4 for all three data
heterogeneity settings. For a 0.001 increase in accuracy (effec-
tively 10 misclassified testing images), FedAdam needs approxi-
mately 2-7× more communication and 3-7× more computation,
respectively. This can be seen by comparing the figures at the left
column of Figure 4 with the corresponding ones in the right col-
umn. Similarly, Synchronous requires comparable increases in
computation and approximately half an order of magnitude more
in communication. On the other hand, the FDA methods suffer a
slight (if any) increase in computation and communication for
this accuracy enhancement. For DenseNet121 and DenseNet201
on CIFAR-10 (Figures 5, and 6), FedAvgM and Synchronous
require half an order of magnitude more computation and com-
munication to achieve the final marginal accuracy gains (0.78
to 0.81 for DenseNet121, and 0.78 to 0.8 for DenseNet201). In
contrast, the FDA methods have almost no increase in communi-
cation and comparable increase in computation.
FDA is resilient to data heterogeneity. In DDL, data hetero-
geneity is a prevalent challenge, reflecting the complexity of
real-world applications where the IID assumption often does
not hold. The ability of DDL algorithms to maintain consistent
performance in the face of non-IID data is a critical metric for
their effectiveness and adaptability. Our empirical investigation

10 1

100

101

Co
m

m
un

ica
tio

n
(G

B)

IID, = 2

5 10 15 20 25 30 35 40 45 50 55 60
K - Number of Workers

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s

LinearFDA
SketchFDA
FedAdam
Synchronous

0.5
1.0
1.5

Co
m

m
un

ica
tio

n
(G

B)

IID, K = 30
LinearFDA
SketchFDA

1 2 3 4 5 6 7
 - Variance Threshold

2

3

4

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s

×103

Figure 8: LeNet-5 on MNIST: Varying the Number of Work-
ers and Θ — Accuracy Target: 0.98

reveals the FDA methods’ noteworthy resilience in such hetero-
geneous environments. For LeNet-5 on MNIST, as illustrated in
Figure 3, the computation and communication costs required to
attain a test accuracy of 0.985 show negligible differences across
the IID and the two Non-IID settings (Label "0", 60%). Similarly,
for VGG16* on MNIST, Figure 4 demonstrates that achieving a
test accuracy of 0.995 incurs comparable computation and com-
munication costs across the IID and the two Non-IID settings
(Label "0", Label "8"); while overall costs are aligned, the distri-
butions of the computation costs exhibit greater variability, yet
remain closely consistent with the IID scenario.
FDA has a lower generalization gap. The factors determining
how well a DL algorithm performs are its ability to: (1) make the
training accuracy high, and (2) make the gap between training
and test accuracy small. These two factors correspond to the two
central challenges in DL: underfitting and overfitting [16]. For
DenseNet121 on CIFAR-10, with a test accuracy target of 0.8,
as illustrated in Figure 7, Synchronous and FedAvgM exhibit
overfitting, with a noticeable discrepancy between training and
test accuracy. In stark contrast, the FDA methods have an almost
zero accuracy gap. Please note that LinearFDA and SketchFDA
reach the test accuracy target of 0.8much earlier (at epochs 86 and
91, respectively). Turning our focus to DenseNet201 on CIFAR-10,
with a test accuracy target of 0.78, Synchronous again tends
towards overfitting, while FedAvgM shows a slight improvement
but still does not match the FDA methods, which continue to
exhibit exceptional generalization capabilities, evidenced by a
minimal training-test accuracy gap, as shown at Figure 7. Notably,
given the necessity to fix hyper-parameters Θ and 𝐾 for the
training accuracy plots, we selected two representative examples.
The patterns of performance we highlighted are consistent across
most of the conducted tests.

420

101

102

103

Co
m

m
un

ica
tio

n
(G

B)

IID, = 50

5 10 15 20 25 30 35 40 45 50 55 60
K - Number of Workers

103

104

105

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s

LinearFDA
SketchFDA
FedAdam
Synchronous

10

20

30

Co
m

m
un

ica
tio

n
(G

B)

IID, K = 30
LinearFDA
SketchFDA

20 30 40 50 60 70 80 90 100
 - Variance Threshold

2

3

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s
×103

Figure 9: VGG16* on MNIST: Varying the Number of Work-
ers and Θ — Accuracy Target: 0.994

102

103

104

Co
m

m
un

ica
tio

n
(G

B)

IID, = 300

5 10 15 20 25 30
K - Number of Workers

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s

LinearFDA
SketchFDA
FedAvgM
Synchronous

60

80

Co
m

m
un

ica
tio

n
(G

B)

IID, K = 15
LinearFDA
SketchFDA

200 225 250 275 300 325 350 375 400
 - Variance Threshold

0.8

1.0

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s

×104

Figure 10: DenseNet121 on CIFAR-10: Varying the Number
of Workers and Θ — Accuracy Target: 0.8

Dependence on𝐾 . In distributed computing, scaling up typically
results in proportional speed improvements. In DDL, however,
scalability is less predictable due to the nuanced interplay of
computation and communication costs with convergence, com-
plicating the expected linear speedup [66]. This unpredictability
is starkly illustrated with LeNet-5 and VGG16* on the MNIST
dataset across all data heterogeneity settings and all strategies.

102

103

104

Co
m

m
un

ica
tio

n
(G

B)

IID, = 600

5 10 15 20 25 30
K - Number of Workers

104

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s

LinearFDA
SketchFDA
FedAvgM
Synchronous

100

200

Co
m

m
un

ica
tio

n
(G

B)

IID, K = 15
LinearFDA
SketchFDA

400 500 600 700 800 900
 - Variance Threshold

1.0

1.2

In
-P

ar
al

le
l L

ea
rn

in
g

St
ep

s

×104

Figure 11: DenseNet201 on CIFAR-10: Varying the Number
of Workers and Θ — Accuracy Target: 0.78

Figures 8, and 9 (top) demonstrate that increasing the number of
workers does not decrease computation – except for FedAdam
which begins with significantly high computation – but rather ex-
acerbates communication. These findings are troubling, as they
reveal scaling up only hampers training speed and wastes re-
sources. However, for more complex learning tasks like training
DenseNet-121 and DenseNet-201 on CIFAR-10 (top part of Fig-
ures 10, 11), the expected behavior starts to emerge. Especially for
DenseNet-121, scaling up (𝐾 increase) leads to a decrease in com-
putation cost for all strategies. Communication cost, however,
increases with 𝐾 for all methods except Synchronous, which
maintains constant communication irrespective of worker count,
but at the expense of orders of magnitude higher communica-
tion overhead. Notably, while our findings might, in some cases,
suggest potential speed benefits of not scaling up (smaller 𝐾),
DDL is increasingly conducted within federated settings, where
there is no other choice but to utilize the high number of workers.
Our FDA variants consistently outperform FedAdam, FedAvgM,
and Synchronous in communication efficiency, as demonstrated
across all experiments in Figures 8-11. Specifically, they require
up to 30 times less communication than FedAdam, 4 times less
than FedAvgM, and up to 2.5 orders of magnitude less than Syn-
chronous.

FDA: Dependence on Θ. The variance threshold Θ can be seen
as a lever in balancing communication and computation; essen-
tially, it calibrates the trade-off between these two costs. A higher
Θ allows for greater model divergence before synchronization,
reducing communication at the cost of potentially increased com-
putation to achieve convergence. This impact of Θ is consistently
observed across both FDA strategies, and all learning tasks, and
data heterogeneity settings (Figures 8-11). Interestingly, for more
complexmodels like DenseNet121 andDenseNet201 onCIFAR-10,

421

25 50 75 100 125 150

1

2

3

4

5

Co
m

m
un

ica
tio

n
(G

B)

×102 IID, K = 3
LinearFDA
SketchFDA

25 50 75 100 125 150

1

2

3

4

5

6

7
×102 IID, K = 5

LinearFDA
SketchFDA

 - Variance Threshold

Figure 13: ConvNeXtLarge onCIFAR-100 (transfer learning
from ImageNet) — Deployment of FDA during the fine-
tuning stage with Accuracy Target of 0.76

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
d - Number of Parameters ×106

0

200

400

600

800

*

B 3.89 10 5 d

HPC 2.74 10 5 d

FL 4.91 10 5 d

FL
Balanced
ARIS-HPC

Figure 12: Empirical Estimation of the Variance Threshold

increasing the variance threshold (Θ) does not lead to a signifi-
cant rise in computation cost, as illustrated in Figures 10 and 11.
It suggests that the FDA methods, by strategically timing syn-
chronizations (monitoring the variance), substantially reduce the
number of necessary synchronizations without a proportional
increase in computation for the same model performance; this is
particularly promising for complex DDL tasks.
FDA: Choice of Θ. The experimental results suggest that select-
ing any Θ within a specific order of magnitude (e.g., between 102
and 103 for DenseNet201) ensures convergence, as demonstrated
in Figures 8, 9, 10, and 11. Therefore, identifying this range be-
comes crucial. To this end, we conducted extensive exploratory
testing to estimate the Θ ranges for each learning task which
are predominantly influenced by the number of parameters 𝑑
of the DNN. Within this context, Θ values outside the desirable
range exhibit notable effects: below this range, the training pro-
cess mimics Synchronous or Local-SGD approaches with small
𝜏 , while exceeding it leads to non-convergence. Subsequently,
having identified the optimal ranges for Θ, we selected diverse
values within them for our experimental evaluation (Table 2),
thereby investigating different computation and communication
trade-offs. For instance, in the ARIS-HPC environment with an
InfiniBand connection (up to 56 Gb/s), experiments show that
training wall-time (the total time required for the computation
and the communication of the DDL) is predominantly influenced
by the computation cost, rendering communication concerns neg-
ligible. In such contexts, lower Θ values are favored due to their
computational efficiency. On the contrary, in FL settings, where
communication typically poses the greater challenge, opting for
higher Θ values proves advantageous; reduction in communi-
cation achieved with higher Θ values will translate in a large
reduction in total wall-time.

To assist researchers in selecting the variance threshold, Fig-
ure 12 presents empirical estimations for Θ across three distinct
learning settings:
(1) FL, assuming a common channel of 0.5Gbps, where

Θ𝐹𝐿 = 4.91 · 10−5 · 𝑑
(2) Balanced communication-computation equilibrium, where

Θ𝐵 = 3.89 · 10−5 · 𝑑
(3) Our HPC environment at the ARIS supercomputer, where

Θ𝐻𝑃𝐶 = 2.74 · 10−5 · 𝑑
FDA: Linear vs. Sketch. In ourmain body of experiments, across
most learning tasks and data heterogeneity settings, the two pro-
posed FDA methods exhibit comparable performance, as illus-
trated in Figures 3, 4, 5, and 6. This suggests that the precision
of the variance approximation is not critical. However, in all ex-
periments within the more intricate transfer learning scenario,
LinearFDA requires approximately 1.5 times more communi-
cation than SketchFDA to fine-tune the deep ConvNeXtLarge
model to equivalent performance levels (Figure 13). In light of
these findings, we conclude the following: for straightforward
and less demanding tasks, LinearFDA is the recommended op-
tion due to its simplicity and lower complexity per local state
computation. On the other hand, for intricate learning tasks and
deeper models, SketchFDA becomes the preferred choice, if
communication-efficiency is paramount.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced Federated Dynamic Averaging (FDA),
an innovative, adaptive and communication-efficient algorithm
for distributed deep learning. Essentially, FDA makes informed,
dynamic decisions on when to synchronize the local models
based on approximations of the model variance. Through ex-
tensive experiments across diverse datasets and learning tasks,
we demonstrated that FDA significantly reduces communication
overhead (often by orders of magnitude) without a corresponding
increase in computation or compromise in model performance—
contrary to the typical trade-offs encountered in the literature.
Furthermore, we showed that FDA is robust to data heterogene-
ity and inherently mitigates over-fitting. Our results push the
limits of modern communication-efficient distributed deep learn-
ing, paving the way for more scalable, dynamic, and broadly
applicable strategies.

An interesting direction for future work is whether the value
of Θ can be dynamically adjusted in order to achieve (or not
to exceed) a target average bandwidth consumption. Since the
expected behavior is that the communication cost decreases when
Θ increases, such an approach seems feasible (i.e., increasing Θ
when the bandwidth consumption is higher than what is desired),
especially by using statistics. We plan to look into this extension
in the future.

ACKNOWLEDGMENTS
Wewish to thank the anonymous reviewers and themeta-reviewer
for their insightful comments and suggestions. This work was
supported by the EU project CREXDATA under Horizon Europe
agreement No. 101092749. Moreover, this work was supported
by computational time granted from the National Infrastructures
for Research and Technology S.A. (GRNET S.A.) in the National
HPC facility - ARIS - under project ID pa230902-fda1.

422

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: a system for
large-scale machine learning. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (OSDI’16). USENIX Association,
USA, 265–283.

[2] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul
Whatmough, and Venkatesh Saligrama. 2021. Federated Learning Based on
Dynamic Regularization. In International Conference on Learning Representa-
tions.

[3] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication for Dis-
tributed Gradient Descent. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Martha Palmer, Rebecca Hwa, and Se-
bastian Riedel (Eds.). Association for Computational Linguistics, Copenhagen,
Denmark, 440–445.

[4] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. 2019. Qsparse-
local-SGD: distributed SGD with quantization, sparsification, and local compu-
tations. Curran Associates Inc., Red Hook, NY, USA.

[5] Tianyi Chen, Georgios B. Giannakis, Tao Sun, and Wotao Yin. 2018. LAG:
lazily aggregated gradient for communication-efficient distributed learning.
In Proceedings of the 32nd International Conference on Neural Information
Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, USA,
5055–5065.

[6] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanara-
man. 2014. Project Adam: Building an Efficient and Scalable Deep Learning
Training System. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). USENIX Association, Broomfield, CO, 571–582.

[7] François Chollet et al. 2015. Keras.
[8] Graham Cormode and Minos Garofalakis. 2005. Sketching Streams through

the Net: Distributed Approximate Query Tracking. In Proceedings of the 31st In-
ternational Conference on Very Large Data Bases (VLDB ’05). VLDB Endowment,
13–24.

[9] Graham Cormode, Igor L. Markov, and Harish Srinivas. 2024. Private and
Efficient Federated Numerical Aggregation. In Proceedings 27th International
Conference on Extending Database Technology, EDBT 2024, Paestum, Italy, March
25 - March 28, Letizia Tanca, Qiong Luo 0001, Giuseppe Polese, Loredana
Caruccio, Xavier Oriol, and Donatella Firmani (Eds.). 734–742.

[10] Angjela Davitkova, Damjan Gjurovski, and SebastianMichel 0001. 2024. Learn-
ing over Sets for Databases. In Proceedings 27th International Conference on
Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March
28, Letizia Tanca, Qiong Luo 0001, Giuseppe Polese, Loredana Caruccio, Xavier
Oriol, and Donatella Firmani (Eds.). OpenProceedings.org, 68–80.

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le,
and Andrew Ng. 2012. Large Scale Distributed Deep Networks. In Advances in
Neural Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and
K.Q. Weinberger (Eds.), Vol. 25. Curran Associates, Inc.

[12] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In
9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

[14] Fangcheng Fu, XupengMiao, Jiawei Jiang, Huanran Xue, and Bin Cui. 2022. To-
wards communication-efficient vertical federated learning training via cache-
enabled local updates. 15, 10 (jun 2022), 2111–2120.

[15] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (Proceedings
of Machine Learning Research), Yee Whye Teh and Mike Titterington (Eds.),
Vol. 9. PMLR, Chia Laguna Resort, Sardinia, Italy, 249–256.

[16] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press, Cambridge, MA, USA.

[17] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and
Viveck R. Cadambe. 2019. Local SGD with Periodic Averaging: Tighter Analy-
sis and Adaptive Synchronization. In Neural Information Processing Systems.

[18] XuHan, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song,
Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021.
Pre-trained models: Past, present and future. AI Open 2 (2021), 225–250.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving
Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification. In 2015 IEEE International Conference on Computer Vision (ICCV).
1026–1034.

[20] Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, general-
ize better: closing the generalization gap in large batch training of neural
networks. In Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY,

USA, 1729–1739.
[21] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the

Effects of Non-Identical Data Distribution for Federated Visual Classification.
CoRR (2019).

[22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. 2017. Densely
Connected Convolutional Networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos,
CA, USA, 2261–2269.

[23] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim
El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón,
Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara
Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova,
Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal,
Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel
Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebas-
tian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han
Yu, and Sen Zhao. 2021. Advances and Open Problems in Federated Learning.
Foundations and Trends in Machine Learning 14, 1–2 (jun 2021), 1–210.

[24] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri,
Sashank J. Reddi, Sebastian U Stich, and Ananda Theertha Suresh. 2021. Mime:
Mimicking Centralized Stochastic Algorithms in Federated Learning.

[25] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Se-
bastian Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic
Controlled Averaging for Federated Learning. In Proceedings of the 37th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning
Research), Hal Daumé III and Aarti Singh (Eds.), Vol. 119. PMLR, 5132–5143.

[26] Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations (ICLR). San
Diego, CA, USA.

[27] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.
University of Toronto (05 2012).

[28] Eugenie Yujing Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao
Cao, and Rachel Pottinger. 2023. Workload-Aware Query Recommendation
Using Deep Learning. In Proceedings 26th International Conference on Extending
Database Technology, EDBT 2023, Ioannina, Greece, March 28-31, 2023, Julia
Stoyanovich, Jens Teubner, NikosMamoulis, Evaggelia Pitoura, and JanMühlig
(Eds.). OpenProceedings.org, 53–65.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[30] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith
Chintala. 2020. PyTorch distributed: experiences on accelerating data parallel
training. Proc. VLDB Endow. 13, 12 (aug 2020), 3005–3018.

[31] Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang.
2021. Communication-Efficient Local Decentralized SGD Methods.
arXiv:stat.ML/1910.09126

[32] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. 2020. Don’t
Use Large Mini-batches, Use Local SGD. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

[33] Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. 2022. A ConvNet
for the 2020s. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 11966–
11976.

[34] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regulariza-
tion. In International Conference on Learning Representations.

[35] Kaihao Ma, Xiao Yan, Zhenkun Cai, Yuzhen Huang, Yidi Wu, and James Cheng.
2023. FEC: Efficient Deep Recommendation Model Training with Flexible
Embedding Communication. Proc. ACM Manag. Data 1, 2, Article 165 (jun
2023), 21 pages.

[36] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research),
Aarti Singh and Jerry Zhu (Eds.), Vol. 54. PMLR, 1273–1282.

[37] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao
Ma, and Bin Cui. 2021. Heterogeneity-Aware Distributed Machine Learning
Training via Partial Reduce. In Proceedings of the 2021 International Conference
on Management of Data (SIGMOD ’21). Association for Computing Machinery,
New York, NY, USA, 2262–2270.

[38] Jed Mills, Jia Hu, and Geyong Min. 2023. Faster Federated Learning With
Decaying Number of Local SGD Steps. IEEE Trans. Parallel Distrib. Syst. 34, 7
(jul 2023), 2198–2207.

[39] Supun Nakandala and Arun Kumar. 2022. Nautilus: An Optimized System
for Deep Transfer Learning over Evolving Training Datasets. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22).
Association for Computing Machinery, New York, NY, USA, 506–520. https:
//doi.org/10.1145/3514221.3517846

[40] Tiancheng Qin, S. Rasoul Etesami, and César A. Uribe. 2023. The role of local
steps in local SGD. Optimization Methods and Software (Aug. 2023), 1–27.

423

[41] Hafiz Tayyab Rauf, André Freitas, and Norman W. Paton. 2024. Deep Clus-
tering for Data Cleaning and Integration. In Proceedings 27th International
Conference on Extending Database Technology, EDBT 2024, Paestum, Italy, March
25 - March 28, Letizia Tanca, Qiong Luo 0001, Giuseppe Polese, Loredana Caruc-
cio, Xavier Oriol, and Donatella Firmani (Eds.). OpenProceedings.org, 636–649.
https://doi.org/10.48786/edbt.2024.55

[42] Sashank Reddi, Zachary Burr Charles, Manzil Zaheer, Zachary Garrett, Keith
Rush, Jakub Konečný, Sanjiv Kumar, and Brendan McMahan (Eds.). 2021.
Adaptive Federated Optimization.

[43] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica,
Vladimir Braverman, Joseph Gonzalez, and Raman Arora. 2020. FetchSGD:
communication-efficient federated learning with sketching. In Proceedings of
the 37th International Conference on Machine Learning (ICML’20). JMLR.org,
Article 764, 13 pages.

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision 115, 3 (01 Dec 2015),
211–252.

[45] Anit Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and
Virginia Smith. 2018. On the Convergence of Federated Optimization in
Heterogeneous Networks. (12 2018).

[46] Shaohuai Shi, Zhenheng Tang, Xiaowen Chu, Chengjian Liu, Wei Wang, and
Bo Li. 2021. A Quantitative Survey of Communication Optimizations in
Distributed Deep Learning. IEEE Network 35, 3 (2021), 230–237.

[47] Nir Shlezinger, Mingzhe Chen, Yonina Eldar, H. Vincent Poor, and Shuguang
Cui. 2021. UVeQFed: Universal Vector Quantization for Federated Learning.
IEEE Transactions on Signal Processing 69 (01 2021), 500–514.

[48] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[49] Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and Anshumali Shrivastava.
2019. Compressing Gradient Optimizers via Count-Sketches. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.),
Vol. 97. PMLR, 5946–5955.

[50] Sebastian U. Stich. 2019. Local SGD Converges Fast and Communicates Little.
In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

[51] Ilya Sutskever, JamesMartens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In Proceedings of
the 30th International Conference on Machine Learning (Proceedings of Machine
Learning Research), Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28.
PMLR, Atlanta, Georgia, USA, 1139–1147.

[52] Ilya Sutskever, JamesMartens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In Proceedings of
the 30th International Conference on Machine Learning (Proceedings of Machine
Learning Research), Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28.
PMLR, Atlanta, Georgia, USA, 1139–1147.

[53] Zhenheng Tang, Shaohuai Shi, Bo Li, and Xiaowen Chu. 2023. GossipFL: A
Decentralized Federated Learning Framework With Sparsified and Adaptive
Communication. IEEE Transactions on Parallel and Distributed Systems 34, 3
(2023), 909–922.

[54] Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso.
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is

Becoming Unsustainable. IEEE Spectrum 58, 10 (2021), 50–55.
[55] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun Kim,

and Woo-Yeon Lee. 2023. FastFlow: Accelerating Deep Learning Model Train-
ing with Smart Offloading of Input Data Pipeline. 16, 5 (jan 2023), 1086–1099.

[56] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (aug 1990), 103–111.

[57] Jianyu Wang and Gauri Joshi. [n.d.]. Adaptive Communication Strategies to
Achieve the Best Error-Runtime Trade-off in Local-update SGD. Systems and
Machine Learning (SysML) Conference ([n. d.]).

[58] Jianyu Wang and Gauri Joshi. 2021. Cooperative SGD: A Unified Framework
for the Design and Analysis of Local-Update SGD Algorithms. Journal of
Machine Learning Research 22, 213 (2021), 1–50.

[59] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian
Makaya, Ting He, and Kevin Chan. 2019. Adaptive Federated Learning in
Resource Constrained Edge Computing Systems. IEEE Journal on Selected
Areas in Communications 37, 6 (2019), 1205–1221.

[60] WeiWang, Meihui Zhang, Gang Chen, H. V. Jagadish, Beng Chin Ooi, and Kian-
Lee Tan. 2016. Database Meets Deep Learning: Challenges and Opportunities.
45, 2 (sep 2016), 17–22.

[61] Zeqin Wang, Ming Wen, Yuedong Xu, Yipeng Zhou, Jessie Hui Wang, and
Liang Zhang. 2023. Communication compression techniques in distributed
deep learning: A survey. Journal of Systems Architecture 142 (2023), 102927.

[62] Michael L. Waskom. 2021. seaborn: statistical data visualization. Journal of
Open Source Software 6, 60 (2021), 3021.

[63] Phillip Wenig and Thorsten Papenbrock. 2022. DataGossip: A Data Exchange
Extension for Distributed Machine Learning Algorithms. In Proceedings of the
25th International Conference on Extending Database Technology, EDBT 2022,
Edinburgh, UK, March 29 - April 1, 2022, Julia Stoyanovich, Jens Teubner, Paolo
Guagliardo, Milos Nikolic, Andreas Pieris, Jan Mühlig, Fatma Özcan, Sebastian
Schelter, H. V. Jagadish, and Meihui Zhang 0001 (Eds.).

[64] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi.
2020. Privacy preserving vertical federated learning for tree-based models.
Proc. VLDB Endow. 13, 12 (jul 2020), 2090–2103.

[65] Hao Yu and Rong Jin. 2019. On the Computation and Communication Com-
plexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex
Optimization. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceedings
of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov
(Eds.), Vol. 97. PMLR, 7174–7183.

[66] Hao Yu, Sen Yang, and Shenghuo Zhu. 2019. Parallel restarted SGD with faster
convergence and less communication: demystifying why model averaging
works for deep learning. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence and Thirty-First Innovative Applications of Artificial
Intelligence Conference and Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence (AAAI’19/IAAI’19/EAAI’19). AAAI Press, Article 698,
8 pages.

[67] Yuhao Zhang, Frank McQuillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna,
Orhan Kislal, Domino Valdano, and Arun Kumar. 2021. Distributed deep
learning on data systems: a comparative analysis of approaches. Proc. VLDB
Endow. 14, 10 (jun 2021), 1769–1782.

[68] Lixi Zhou, Jiaqing Chen, Amitabh Das, Hong Min, Lei Yu, Ming Zhao, and Jia
Zou. 2022. Serving deep learning models with deduplication from relational
databases. Proc. VLDB Endow. 15, 10 (jun 2022), 2230–2243.

[69] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. 2010. Paral-
lelized Stochastic Gradient Descent. In Advances in Neural Information Process-
ing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta
(Eds.), Vol. 23. Curran Associates, Inc.

424

