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ABSTRACT
This study focuses on a vehicle routing problem variant involving

multiple depots and split deliveries with discrete deliveries and

small integer vehicle capacities and demands. This can be inter-

preted as the batching of items (𝑘 batches per vehicle), and the

problem is referred to as 𝑘-MD-DSDVRP. An Integer Programming

(IP) formulation is proposed, as well as cuts to reduce symmetries.

In addition, we discuss the existence of an optimal solution without

split cycles and establish bounds for the ratio between the optimal

values of 𝑘-MD-DSDVRP and MD-DSDVRP. Furthermore, a refor-

mulation of 𝑘-MD-DSDVRP as an MDCVRP is presented, followed

by a solution approach through RCSP-based map decomposition.

Experiments using instances of MDSDVRP and SDVRP from the

literature were conducted to evaluate the proposed method, with

an analysis of the impact of using batches and a comparison of

bounds of 𝑘-MD-DSDVRP and MDSDVRP.

KEYWORDS
Vehicle routing, multi-depot, split delivery, logistics, column gener-

ation.

1 INTRODUCTION
In this study, we focus on a vehicle routing problem that involves

multiple depots and split deliveries. Split deliveries refer to a situ-

ation where a customer’s demand can be delivered by more than

one vehicle. Hence, “delivery” in this context refers to providing a

part of a customer’s demand supplied by a vehicle to a customer.

Compared to the MDSDVRP [11] (a standard definition in the lit-

erature for this problem), we assume that the vehicle capacity is a

small integer 𝑘 and that customer demands are at most 𝑘 + 1. These
additional assumptions can be interpreted as grouping items into

“batches.” This variant is referred to here as 𝑘-MD-DSDVRP.

Motivations for investigating the 𝑘-MD-DSDVRP are listed be-

low. Further discussion on the benefits of batching items can be

found in [8].

• A MDSDVRP solution can have many tiny deliveries, which

can be inconvenient for customers, causing interruptions to

receive an insignificant portion of a demand.

• Fractional delivery can also be inconvenient to measure and

control its amount on the fly. Using “batches” simplifies the

process since supplies rely on integer values.
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• From a logistics point of view, it is definitely interesting to

simplify the preparation of deliveries through batches with

many items.

• In a theoretical perspective, an algorithm for 𝑘-MD-DSDVRP

can provide upper bounds for MD-DSDVRP. This is shown

in Section 4.3.

• When 𝑘 is small, it is possible to efficiently model the 𝑘-MD-

DSDVRP as an MDCVRP [12] by creating 𝑘 replicas of each

client. Thus, allowing the use of successful algorithms for

the MDCVRP available in the literature.

Contributions. This study brings the following contributions: (i)

an IP formulation for the MD-DSDVRP with cuts to reduce symme-

tries; (ii) a discussion of the existence of optimal solution without

split cycles and the relation between the number of splits and the

number of routes; (iii) a transformation of instances and solutions

between 𝑘-MD-DSDVRP and MD-DSDVRP, allowing to establish

bounds for the ratio between the optimal values of these problems;

(iv) a 𝑘-MD-DSDVRP model as an MDCVRP, with and a solution

approach through RCSP-based map decomposition; (v) numerical

experiments to evaluate the RCSP-based map decomposition and

the inclusion of cuts to remove split cycles, using instances of MDS-

DVRP and SDVRP available in the literature.

The remaining of the manuscript is as follows. Section 2 presents

an overview of the CVRP variants closely related to this study. Then,

Section 3 defines the 𝑘-MD-DSDVRP and describes a proposed IP

formulation. Section 4 discusses some properties of optimal 𝑘-MD-

DSDVRP solutions and a comparison with optimal MD-DSDVRP

solutions. Section 5 details an RCSP-based map decomposition

approach for solving the 𝑘-MD-DSDVRP. Finally, in Section 6, nu-

merical experiments and remarks are presented.

2 LITERATURE REVIEW
The goal of this Section is to provide entry points for articles defin-

ing closely related problems. The well-known Capacitated Vehicle
Routing Problem (CVRP) is defined on an undirected and complete

graph 𝐺 = (𝑉 , 𝐸) with a set of vertices 𝑉 = {0, 1, . . . , 𝑛}, where 0
represents the depot, the others vertices represent clients, and 𝐸 is

the set of edges. An unlimited number of homogeneous vehicles

is available, each with a capacity 𝑄 > 0. A demand 0 < 𝑞𝑖 ≤ 𝑄

is associated with each customer i in 𝑉 \ {0}. Each customer is

visited exactly once, and their demand is fully supplied. Each edge

𝑒 ∈ 𝐸 has an associated cost 𝑐𝑒 ≥ 0, satisfying the triangular in-

equality. The goal is to build a set of minimum-cost routes for the

vehicles that meet all customers’ demands and respect the vehicles’

capacities.

The Split Delivery Vehicle Routing Problem (SDVRP) was formally

defined by Dror and Trudeau [6, 7]. Unlike the CVRP, the SDVRP

allows fractions of a customer’s demand to be delivered by different
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vehicles, such that the sum of the fractions equals the total demand

of the customer. In the problems mentioned in this article, we

only consider the case in which customer demands are at most

the vehicle’s capacity, even though some works in the literature

investigate the more general case without this constraint.

Gulczynski et al. [10] investigated the SDVRP variant with the

additional constraint that each delivery to a customer has a size of at

least a certain fraction of its demand and called this problem the Split
Delivery Vehicle Routing Problem with Minimum Delivery Amounts
(SDVRP-MDA). The motivation is to avoid too small deliveries,

which generate the inconvenience of managing the receipt of a

quantity with little impact on the total expected delivery.

The Multi-Depot Split Delivery Vehicle Routing Problem (MDS-

DVRP) is a generalization of the SDVRP that allows more than

one depot, as defined in [11]. Therefore, the set of vertices 𝑉 is

partitioned into a set of depots 𝐷 ⊂ 𝑉 and a set of customers

𝐶 = 𝑉 \𝐷 . In this case, we must decide the routes and which depot

each vehicle will depart from. It is also necessary to ensure that each

vehicle returns to the depot from which it left. When we add the

restriction that exactly one route passes through each customer, we

have the so-called Capacitated Multi-Depot Vehicle Routing Problem
(MDCVRP) [12].

Discrete Split Delivery Vehicle Routing Problem (DSDVRP), pro-

posed by Nakao and Nagamochi [14], considers demands and de-

livery sizes restricted to positive integers. To clarify the difference,

we call this variant of theMulti-Depot Discrete Split Delivery Vehicle
Routing Problem (MD-DSDVRP).

The use of integer demands and small integer vehicle capacity

was investigated by Archetti et al. [2] for the SDVRP. They showed

that the problem can be solved in polynomial time using a matching

algorithm when the vehicle capacity is 2 and is NP-hard when the

vehicle capacity is 3. Furthermore, they showed that in the case of

vehicle capacity 3, the optimal value of CVRP (without allowing

split deliveries) is at most 3/2 of the optimal value of SDVRP.

3 k-MD-DSDVRP
This study investigates the Multi-Depot Discrete Split Delivery Vehi-
cle Routing with Small Vehicle Capacity 𝑘 (𝑘-MD-DSDVRP). Given

a small positive integer 𝑘 , the 𝑘-MD-DSDVRP is a variant of MD-

DSDVRP, where vehicle capacity and demands are at most 𝑘 and

𝑘+1, respectively. As the deliveries are integers, the vehicle capacity
and customer demands are also considered integers. We denote by

𝑘-DSDVRP the problem 𝑘-MD-DSDVRP with a single depot.

Vehicle capacity, demands, and delivery sizes are integers in 𝑘-

MD-DSDVRP. Thus, 𝑘 is a “batch” where several items are grouped

into a single one. In this way, the 𝑘-MD-DSDVRP can be inter-

preted as a “discretization” of the MDSDVRP when the batches are

constructed respecting the vehicles’ capacities and the customers’

demands.

3.1 IP formulation
An IP formulation for the MD-DSDVRP was proposed by [16],

inspired by the formulation of the split deliveries found in [4], and

using the so-called MTZ subtour elimination constraints of [13].

Here, a multiflow formulation is proposed, where subtour elimi-

nation constraints found in [5] are used. The problem is defined in

a complete directed graph 𝐺 = (𝑉 ,𝐴) with a cost 𝑐𝑖 𝑗 ≥ 0 assigned

to each edge (𝑖, 𝑗) ∈ 𝐴. This cost function satisfies the triangular

inequality. 𝐺 has a set of vertices 𝑉 = 𝐷 ∪ 𝐶 divided into two

disjoint sets : 𝐷 (depots) and 𝐶 (customers). Each customer 𝑖 ∈ 𝐶
has a non-negative integer demand 𝑞𝑖 . Moreover, there is a set of

homogeneous vehicles 𝑅 with capacity 𝑄 = 𝑘 to deliver all cus-

tomer demands. Note that the expression

∑
𝑖∈𝐶 ⌈𝑞𝑖/𝑘⌉ is an upper

bound on the number of vehicles. The objective is to minimize the

total travel cost while fulfilling all customer demands, respecting

vehicle capacities, and returning each vehicle to its initial depot.

Additionally, the solution must determine the depot of each vehicle.

Equations (1a)–(1i) present an IP formulation for MD-DSDVRP.

The binary variable 𝑥𝑟
𝑖 𝑗

is equal to 1 if and only if vehicle 𝑟 ∈ 𝑅
uses arc (𝑖, 𝑗) ∈ 𝐴. On the other hand, the integer variable 𝑦𝑟

𝑖
represents the amount that vehicle 𝑟 ∈ 𝑅 delivers to customer 𝑖 ∈ 𝐶 .
The objective is to minimize the total costs of the selected arcs, as

shown in Equation (1a). Equation (1b) establishes that all vehicles

entering a node must also leave it (flow conservation). Equations

(1c) and (1d) ensure that each vehicle’s route passes through exactly

one depot and that there is no cycle on this route containing only

customers. The delivery of the entire demand for each customer

is guaranteed by Equation (1e). Equation (1f) only allows a vehicle

to deliver to a customer if its route passes through it. Finally, the

vehicle capacities are guarantee by Equation (1g).

min

∑︁
(𝑖, 𝑗 ) ∈𝐴

∑︁
𝑟 ∈𝑅

𝑐𝑖 𝑗 · 𝑥𝑟𝑖 𝑗 (1a)∑︁
𝑖:(𝑖,𝑣) ∈𝐴

𝑥𝑟𝑖 𝑗 −
∑︁

𝑗 :(𝑣,𝑗 ) ∈𝐴
𝑥𝑟𝑗𝑖 = 0 ∀𝑣 ∈ 𝑉 , ∀𝑟 ∈ 𝑅 (1b)∑︁

𝑑∈𝐷

∑︁
𝑗 :(𝑑,𝑗 ) ∈𝐴

𝑥𝑟
𝑑 𝑗

= 1 ∀𝑟 ∈ 𝑅 (1c)∑︁
(𝑖,𝑗 ) ∈𝐴
𝑖,𝑗 ∈𝑆

𝑥𝑟𝑖 𝑗 ≤ |𝑆 | − 1 ∀𝑆 ⊆ 𝐶, 𝑟 ∈ 𝑅 (1d)

∑︁
𝑟 ∈𝑅

𝑦𝑟𝑖 = 𝑞𝑖 ∀𝑖 ∈ 𝐶 (1e)

𝑞 𝑗 ·
∑︁

𝑖:(𝑖, 𝑗 ) ∈𝐴
𝑥𝑟𝑖 𝑗 ≥ 𝑦

𝑟
𝑗 ∀𝑗 ∈ 𝐶, ∀𝑟 ∈ 𝑅 (1f)∑︁

𝑖∈𝐶
𝑦𝑟𝑖 ≤ 𝑄 ∀𝑟 ∈ 𝑅 (1g)

𝑦𝑟𝑖 ∈ {0, 1, 2, . . . , 𝑞𝑖 } ∀𝑖 ∈ 𝐶,∀𝑟 ∈ 𝑅 (1h)

𝑥𝑟𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑟 ∈ 𝑅 (1i)

3.1.1 Reduction of symmetries. All permutations of the vehicles

produce equivalent solutions, thus generating many symmetries.

However, it is possible to reduce this problem by ensuring that the

order of vehicle indexes corresponds to the order of depot indexes.

More precisely, if vehicle 𝑟 passes through depot 𝑑 and vehicle 𝑟 ′

passes through depot 𝑑′, with 𝑑 < 𝑑′, then 𝑟 < 𝑟 ′. The constraint
is provided in Equation (2).∑︁
𝑗∈𝐶

𝑥𝑟
′

𝑑 𝑗
+
∑︁
𝑗∈𝐶

𝑥𝑟
𝑑 ′ 𝑗 ≤ 1,

∀(𝑑, 𝑑′) ∈ 𝐷2
: 𝑑 < 𝑑′,

∀(𝑟, 𝑟 ′) ∈ 𝑅2 : 𝑟 < 𝑟 ′ . (2)
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4 OPTIMAL SOLUTIONS PROPERTIES
In this section, some properties of optimal𝑘-MD-DSDVRP solutions

are derived from existing studies. For the sake of clarity, split cycle
is formally defined in Definition 1. First, we show that there is an

optimal solution for the 𝑘-MD-DSDVRP without a split cycle and
define the relation between the number of splits and the number of

routes. Dror and Trudeau [7] proved this property for the problem

with one depot and fractional deliveries, while Gouveia et al. [9]

extended it for multiple depots. The difference from here is that the

𝑘-MD-DSDVRP deals with integer deliveries and multiple depots.

In the following, a transformation from MD-DSDVRP instances

to 𝑘-MD- DSDVRP instances and transformations between solu-

tions of these problems are presented, together with the optimal

values correspondence obtained through these transformations.

This allows the use of MD-DSDVRP instances from the literature

by grouping the items into batches.

4.1 Existence of split cycles
Definition 1. Let 𝑅 be a set of routes, and a support graph 𝐻 =

(𝑉 , 𝐸) be an undirected graph where 𝑉 is the set of customers and

an edge 𝑒 = (𝑢, 𝑣) belongs to 𝐸 iff there exists a route 𝑟 in 𝑅 such

that 𝑟 passes through 𝑢 and 𝑣 . If 𝐶 is a cycle of 𝐺 , the nodes of 𝐶

form a split cycle of 𝑅.

Property 2 (Dror and Trudeau, 1990 [7]). If the edge costs
satisfy the triangular inequality, then an optimal solution without
split cycles exists for every feasible SDVRP instance.

The authors in [7] proved this property for the SDVRP, and

Gouveia et al. [9] have extended that for the MD-SDVRP. We claim

that this property also applies to𝑘-MD-DSDVRP since the exchange

argument in the demonstration of [7] can also be extended for

discrete deliveries. Note that the limit of 𝑘 on the vehicle capacity

is a characteristic of 𝑘-MD-DSDVRP inputs, not of its solutions.

Property 3. If the edge costs satisfy the triangular inequality,
then an optimal solution without split cycles exists for every feasible
𝑘-MD-DSDVRP instance.

The existence of an optimal solution without split cycles does not

apply to all CVRP variants. Indeed, Gulczynski et al. [10] showed

that SDVRP-MDA instances exist for which all optimal solutions

have a split cycle.

4.2 Number of splits and number of routes
The relation between the number of splits and the number of routes

(employed vehicles) results from the existence of optimal solution

without split cycles. This result can be applied to define cuts to

remove solutions with split cycles, see Section 5.2.1.

Definition 4. The number of deliveries 𝑛𝑖 of customer 𝑖 is the
number of routes that deliver a positive amount to 𝑖 . The number of
splits for customer 𝑖 is defined as 𝑛𝑖 − 1, and the number of splits of
a solution is the sum of the number of splits among all customers.

Property 5 (Archetti et al., 2006 [3]). If the edge costs satisfy
the triangular inequality, then there is an optimal SDVRP solution
where the number of splits is smaller than the number of routes.

Indeed, Property 5 could be generalized to all sets of routes

without a split cycle.

Property 6. If the number of splits is at least the number of routes
for some set of routes 𝑆 , then 𝑆 has a split cycle.

Proof. Let 𝐺 (𝑆 ∪𝐶, 𝐸) be a bipartite undirected graph where

𝐶 is the set of customers with at least two deliveries in 𝑆 , and we

have an edge (𝑟, 𝑐) ∈ 𝐸 if and only if the route 𝑟 ∈ 𝑆 delivers

to customer 𝑐 ∈ 𝐶 . By contrapositive, assume that 𝑆 does not

have a split cycle, and therefore 𝐺 is acyclic. Thus, the number of

edges |𝐸 | is less than the number of vertices |𝑆 | + |𝐶 |. Since the

number of splits 𝑚 in 𝑆 is equal to |𝐸 | − |𝐶 |, we conclude that

𝑚 = |𝐸 | − |𝐶 | < ( |𝑆 | + |𝐶 |) − |𝐶 | = |𝑆 |. □

4.3 MD-DSDVRP and 𝑘-MD-DSDVRP
In Section 4.3.1, a transformation from MD-DSDVRP instances

to 𝑘-MD-DSDVRP instances are provided. Then, in Sections 4.3.2

and 4.3.3, the transformations between the resulting solutions are

given. These transformations allow us to establish Theorem 7,

which allows a correspondance between optimal values for the

MD-DSDVRP and 𝑘-MD-DSDVRP.

4.3.1 From MD-DSDVRP instances to 𝑘-MD-DSDVRP instances.
Let 𝐼 be an instance of MD-DSDVRP with vehicle capacity 𝑄 and

demand 𝑞𝑖 for each customer 𝑖 . For transforming 𝐼 into a 𝑘-MD-

DSDVRP instance 𝐼 ′, items of 𝐼 are grouped into batches of 𝐵 =

⌊𝑄/𝑘⌋ items. Thus, the vehicle capacity of 𝐼 ′ becomes 𝑄 ′ = 𝑘 ,

and each customer’s demand 𝑞𝑖 becomes 𝑞′
𝑖
= ⌈𝑞𝑖/𝐵⌉. Note that

this transformation may produce some demands greater than the

vehicle’s capacity 𝑘 (but not exceeding 𝑘 + 1), requiring at least two

deliveries to these customers. For example, when 𝑘 = 3, 𝑄 = 4 and

𝑞𝑖 = 4, in instance 𝐼 ′ the batch size is 𝐵 = 1 and customer 𝑖 has

demand 𝑞′
𝑖
= 4, which is greater than the vehicle capacity 𝑄 ′ = 3.

4.3.2 From 𝑘-MD-DSDVRP solutions to MD-DSDVRP solutions.
For every feasible solution 𝑆 ′ for 𝑘-MD-DSDVRP, 𝑞′

𝑖
batches are

delivered to each customer 𝑖 . These 𝑞′
𝑖
batches can transport up to

𝐵 ·𝑞′
𝑖
≥ 𝑞𝑖 items, enough to satisfy the demand 𝑞𝑖 of each customer

𝑖 . As the sum of deliveries of each vehicle in 𝑆 ′ is at most 𝑘 , the total

number of items transported by each vehicle is at most 𝑘 · 𝐵 ≤ 𝑄 .
Therefore, the routes used in 𝑆 ′ are feasible for MD-DSDVRP.

4.3.3 From MD-DSDVRP solutions to 𝑘-MD-DSDVRP solutions.
The solution transformation preserves MD-DSDVRP routes, in

spite of an increase on the number of vehicles. If 𝑦 𝑗𝑟 denotes the

amount delivered to customer 𝑗 by route 𝑟 of MD-DSDVRP, then

this delivery can be made using ⌈𝑦 𝑗𝑟 /𝐵⌉ batches in 𝑘-MD-DSDVRP.

Thus, the total number of batches required to make the deliveries

of route 𝑟 is 𝑦′𝑟 =
∑

𝑗∈𝐶 ⌈𝑦 𝑗𝑟 /𝐵⌉. As each vehicle in 𝑘-MD-DSDVRP

delivers at most 𝑘 batches, ⌈𝑦′𝑟 /𝑘⌉ vehicles in 𝑘-MD-DSDVRP are

required to deliver the demands of each route 𝑟 .

4.3.4 Comparing optimal values. When comparing the optimal

value of two problems, say 𝑃1 and 𝑃2, we denote by 𝑧 (𝑃) the optimal

value of the problem 𝑃 , and the comparison 𝑧 (𝑃1) ≤ 𝑧 (𝑃2) indicates
that the optimal value of 𝑃1 is less than or equal to the optimal

value of 𝑃2 whenever both problems have the same instance after

the required adjustments.
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Theorem 7. Applying the instance and solution transformations
described in sections 4.3.1, 4.3.2 and 4.3.3, we have that

𝑧 (MD-DSDVRP) ≤ 𝑧 (𝑘-MD-DSDVRP) ≤⌈
min{𝑄,𝑛}

𝑘

⌉
· 𝑧 (MD-DSDVRP),

(3)

where 𝑄 is the vehicle capacity of the MD-DSDVRP instance, and 𝑛
is the number of customers. Besides, these bounds are tight.

Proof. The first inequality arises from the fact that the opti-

mal 𝑘-MD-DSDVRP solution can be transformed into a feasible

solution for the corresponding MD-DSDVRP instance without ad-

ditional cost, as discussed in Section 4.3.2. The second inequality

arises from a worst case for the transformation described in Sec-

tion 4.3.3 whenMD-DSDVRP demands are unitary, and each vehicle

delivers to min{𝑄,𝑛} customers. In this case, as the vehicles in 𝑘-

MD-DSDVRP can deliver batches to a maximum of 𝑘 vehicles, we

need ⌈min{𝑄,𝑛}/𝑘⌉ vehicles for each route in the solution of MD-

DSDVRP. According to the triangular inequality and the solution’s

optimality, the cost of delivering to a subset of customers on route

𝑟 is not greater than the cost of 𝑟 . Therefore, the solution for 𝑘-

MD-DSDVRP can cost at most ⌈min{𝑄,𝑛}/𝑘⌉ times the cost of the

optimal solution for MD-DSDVRP.

To show that the bounds are tight, consider an instance of MD-

DSDVRP where all edges between a client and the single depot has

cost one, and the cost of edges between customers is a tiny value 𝜖 .

Therefore, the cost of any possible route converges to 2, remaining

to count the number of routes to determine the cost of the solution.

A tight example for the first inequality occurs when𝑄 is a multiple

of 𝑘 , and all customers have demand 𝑄 . In this case, an optimal

solution for both MD-DSDVRP and 𝑘-MD-DSDVRP consists of

making exclusive deliveries to all customers; that is, each route

delivers to only one customer. Note that when 𝑄 is a multiple

of 𝑘 , it is not possible to have a customer with demand greater

than the vehicle’s capacity in the transformation in Section 4.3.1.

On the other hand, if the vehicle capacity in MD-DSDVRP is the

number of customers and each customer has demand equal to

one, then a single vehicle would be able to make all deliveries

in MD-DSDVRP. However, it would require ⌈𝑛/𝑘⌉ = ⌈𝑄/𝑘⌉ =

⌈min{𝑄,𝑛}/𝑘⌉ vehicles to carry out these deliveries in the 𝑘-MD-

DSDVRP, from which we conclude that this is a tight example for

the second inequality. □

5 RCSP-BASED MAP DECOMPOSITION
This section describes an RCSP-basedmap decomposition for𝑘-MD-

DSDVRP, that is, a column generation where the pricing problem

is the Resource Constrained Shortest Path (RCSP), and sets of arcs in

RCSP are mapped to integer variables of an IP model so that in the

final solution each variable has value equals to the number of used

mapped arcs in the RCSP solution.

The RCSP is defined over a directed graph𝐺 (𝑉 ,𝐴) where 𝑉 is

the set of nodes, and 𝐴 is the set of arcs. The set 𝑉 contains two

special nodes, 𝑠 and 𝑑 , representing the source and destination

nodes, respectively. Each arc 𝑎 ∈ 𝐴 has a cost and a consumption.

The cost of a path 𝑝 is the sum of the costs of its arcs, and the

consumption of 𝑝 is the sum of the consumption of its arcs. Each

node 𝑣 ∈ 𝑉 has a lower and upper bound for the available resource

when the path enters the 𝑣 . The cost of a set of paths is the sum of

the costs of its paths. The objective of RCSP is to find a set with 𝐾

paths from 𝑠 to 𝑑 of minimum cost such that each path starts with

𝑄 units of resource, and the available resource of each path passing

through a node 𝑣 ∈ 𝑉 respects the lower and upper bounds of 𝑣 .

In the following, we define the input graphs for the pricing

problem (RCSP) and then present a formulation for the 𝑘-MD-

DSDVRP using the variables mapped on the arcs of these graphs.

For clarity, the notation of Section 3.1 is adopted in the following

sections.

5.1 RCSP Graphs
Let 𝐺𝑑 = (𝑉𝑑 , 𝐴𝑑 ) be a directed graph for each depot 𝑑 ∈ 𝐷 . For
each customer 𝑖 ∈ 𝐶 , we create a set 𝑉𝑑

𝑖
= {𝑣𝑑

𝑖,1
, 𝑣𝑑
𝑖,2
, . . . , 𝑣𝑑

𝑖,𝑞𝑖
}

containing 𝑞𝑖 replicas of customer 𝑖 . Recall that 𝑞𝑖 denotes the

(integer) demand of customer 𝑖 . Then, we set 𝑉𝑑 = 𝐷 ∪⋃
𝑖∈𝐶 𝑉

𝑑
𝑖
,

where 𝐷 is the set of depots. The source and destination nodes are

the depot 𝑑 ∈ 𝐷 .
To reduce symmetries, two replicas of the same customer are

connected by an arc if and only if they have consecutive indexes.

That is, for each replica 𝑣𝑑
𝑖,𝑗
, with 𝑗 < 𝑞𝑖 , the only arc going from 𝑣𝑑

𝑖,𝑗

to another replica of 𝑖 is the arc (𝑣𝑑
𝑖,𝑗
, 𝑣𝑑
𝑖,𝑗+1). All other possible arcs

between nodes of𝑉𝑑
are included in 𝐴𝑑 . The cost between replicas

of the same client is zero, and each arc starting from a replica of

client 𝑖 to a replica of a different client 𝑗 has a cost equal to 𝑐𝑖, 𝑗 (cost

of the arc between customers 𝑖 and 𝑗 in the input graph). Similarly,

the cost of an arc between a depot and a replica of client 𝑖 is equal

to the cost of the corresponding arc between this depot and client 𝑖

in the input graph. Thus, when a route reaches a given customer,

the number of consecutive replicas of this customer served by the

route does not affect the route’s cost.

A single resource is consumed on each route, representing the

use of vehicle capacity. There is a unitary resource consumption

whenever the route enters a node other than the depot, as each

replica represents a unit of demand delivered to the customer. There

is no resource consumption in the depot. We set zero and𝑄 at each

node as the accumulated resource consumption limits.

A constraint is added to the IP model to ensure that each client

has exactly one delivery. This can be done through the map decom-

position described in Section 5.2. Figure 1 provides an example of

an 𝑘-MD-DSDVRP instance, and an RCSP optimal solution consid-

ering the additional constraint of exactly one route passing through

each node. In Figure 1-(a), the 𝑘-MD-DSDVRP input graph has two

depots represented by squares (nodes 1 and 2) and three customers

represented by circles (nodes 3, 4, and 5). Each 𝑞𝑖 represents the de-

mand of customer 𝑖 . Edge costs are the Euclidean distances between

nodes, and the vehicle capacity𝑄 is 5. An optimal solution with two

routes is provided in Figure 1-(b). Assuming additional constraint

of exactly one route passing through each node. Each customer 𝑖 is

represented by a dotted circle and is transformed into 𝑞𝑖 replicas.

Only arcs between consecutive replicas are allowed among replicas

of the same customer, all with zero cost. The costs of the remaining

arcs come from the input graph. The arcs returning to a depot have

a consumption zero, and all the remaining arcs have a consumption

one.
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(a) 𝑘-MD-DSDVRP input graph.

(b) An optimal solution.

Figure 1: Example of 𝑘-MD-DSDVRP input graph and corre-
sponding map decomposition optimal solution.

Complexity of transformation. Each client 𝑖 ∈ 𝐶 has 𝑞𝑖 replicas

in each graph𝐺𝑑
, 𝑑 ∈ 𝐷 . Therefore, the resulting total number of

nodes is |𝐷 | · ∑𝑖∈𝐶 𝑞𝑖 . Among the replicas of the same customer,

there are arcs only between consecutive replicas, but all possible

arcs between replicas of different customers are created. Thus, the

total number of arcs is |𝐷 | · (∑𝑖∈𝐶 (𝑞𝑖 − 1) +∑
𝑖∈𝐶 𝑞𝑖

∑
𝑗∈𝐶 : 𝑖≠𝑗 𝑞 𝑗 ).

As 𝑞𝑖 ≤ 𝑘 + 1 for all 𝑖 ∈ 𝐶 , we have that the total number of nodes

is at most (𝑘 + 1) · |𝐷 | · |𝐶 |, and the total number of arcs is at most

|𝐷 | · |𝐶 | · (𝑘 + (𝑘 + 1)2 · ( |𝐶 | − 1)) ∈ Θ(𝑘2 · |𝐷 | · |𝐶 |2).

5.2 Formulation and mapping of variables
Let𝐶′

be the set of replicas, and let𝐺 ′ (𝐶′ ∪𝐷, 𝐸′) be an undirected

graph where the vertices are all replicas and depots, and an edge

{𝑢, 𝑣} ∈ 𝐸′ if and only if (𝑢, 𝑣) ∈ 𝐴𝑑 or (𝑣,𝑢) ∈ 𝐴𝑑 for any of the

graphs 𝐺𝑑 (𝑉𝑑 , 𝐴𝑑 ), 𝑑 ∈ 𝐷 . In Equations (4a)–(4c), a formulation

of 𝑘-MD-DSDVRP is given, where the decision variables 𝑥𝑒 , 𝑒 ∈
𝐸′, are mapped into arcs of the RCSP graphs 𝐺𝑑

, 𝑑 ∈ 𝐷 . That is,
𝑥{𝑢,𝑣} represents the number of routes passing through {𝑢, 𝑣} in
the RCSP solution, taking into account all graphs 𝐺𝑑

, 𝑑 ∈ 𝐷 . Thus,
the formulation minimizes the sum of the costs of the edges used,

subject to the condition that exactly one route passes through each

replica. Let 𝛿 (𝑣) be the set of edges in 𝐸′ incident to the replica

𝑣 ∈ 𝐶′
, and thus, Constraint (4b) indicates that exactly two edges

in 𝛿 (𝑣) are used for each replica 𝑣 ∈ 𝐶′
. Note that this constraint

affects all graphs𝐺𝑑
, 𝑑 ∈ 𝐷 , so that each replica 𝑣 ∈ 𝐶′

is served by

route in exactly one of these graphs. As 𝑘-MD-DSDVRP does not

restrict the number of vehicles, the number of vehicles considered

in the RCSP of each graph 𝐺𝑑
, 𝑑 ∈ 𝐷 , may range from zero to the

number of replicas.

min

∑︁
𝑒∈𝐸′

𝑐𝑒 · 𝑥𝑒 (4a)∑︁
𝑒∈𝛿 (𝑣)

𝑥𝑒 = 2 ∀𝑣 ∈ 𝐶′
(4b)

𝑥𝑒 ∈ {0, 1, 2, . . .} ∀𝑒 ∈ 𝐸′ (4c)

Table 1: VRPSolver’s non-default parameter values.

parameter value

RCSPhardTimeThresholdInPricing 25

RCSPmaxNumOfLabelsInEnumeration 500000

RCSPmaxNumOfEnumeratedSolutions 5000000

RCSPrankOneCutsMemoryType 0

CutTailingOffThreshold 0.015

StrongBranchingPhaseOneCandidatesNumber 100

StrongBranchingPhaseOneTreeSizeEstimRatio 0.2

StrongBranchingPhaseTwoCandidatesNumber 3

StrongBranchingPhaseTwoTreeSizeEstimRatio 0.02

GlobalTimeLimit 3600

5.2.1 Valid inequality: split cycle removal. Equation (5) excludes

solutions where the number of splits is greater than or equal to

the number of routes. Then, by Property 6, only solutions with a

split cycle are excluded. Besides, by Property 3, at least one optimal

solution is preserved.

Let 𝐸𝑟 be the set of all edges {𝑢, 𝑣} ∈ 𝐸′ such that 𝑢 and 𝑣 are

replicas of the same customer. The number of unused edges in 𝐸𝑟
(i.e., with 𝑥𝑒 = 0) provides the number of splits in the solution,

as each unused edge implies an additional route delivering to the

customer. Thus, the number of splits can be obtained through the

expression

∑
𝑒∈𝐸𝑟 (1−𝑥𝑒 ). For example, Figure 1b depicts a solution

with one split and one unused arc between the replicas of customer

4. If 𝐸𝑑 is the set of arcs incident on any deposit, then the number of

routes in the solution can be obtained by the expression

∑
𝑒∈𝐸𝑑 𝑥𝑒/2,

as each route leaves and enters a single deposit just once.

2 ·
∑︁
𝑒∈𝐸𝑟

(1 − 𝑥𝑒 ) ≤
∑︁
𝑒∈𝐸𝑑

𝑥𝑒 − 2 (5)

6 COMPUTATIONAL EXPERIMENTS
The experiments were conducted on an Ubuntu 16.04.7 LTS virtual

machine with 8 Xeon 2.13GHz cores and 4MB cache, along with

24GB RAM. The VRPSolver 0.4.1 [15] was used for the implementa-

tion, with non-default parameters listed in Table 1, and IBM ILOG

CPLEX 12.10 as the employed solver. Each replica node of graph

𝐺𝑑
, 𝑑 ∈ 𝐷 is defined as a vertex packing set and added a capacity

cut separator with a limit of𝑄 . We also assigned branching priority

to the 𝑥 variables.

The RCSP-based map decomposition method presented in Sec-

tion 5 is tested using two instance sets available in the literature for

MDSDVRP and SDVRP. The goal is to evaluate its effectiveness for

𝑘 ∈ {3, 4, 5}. In addition, the impact of adding the cuts suggested in

Section 5.2.1 to eliminate split cycles is analyzed.

Instances. Using the procedure described in Section 4.3.1, we

adapted 42 instances from [9] to 𝑘-MD-DSDVRP and 89 instances

from [1] to 𝑘-DSDVRP. None of the transformed instances had a

demand that exceeded the vehicle’s capacity.

6.1 Results
The results of the experiment are presented in Table 2, where the

column “problem” is the instance type (𝑘-DSDVRP for instances
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Table 2: Summary of results.

problem SCR solved gap gap_MDSD time

3-DSDVRP N 97.7% 0.00% 54.6% 323

3-DSDVRP Y 96.6% 0.00% 55.1% 288

3-MD-DSDVRP N 81.0% 0.00% 16.2% 828

3-MD-DSDVRP Y 81.0% 0.00% 16.2% 850

4-DSDVRP N 86.4% 0.01% 43.3% 768

4-DSDVRP Y 85.2% 0.00% 43.5% 771

4-MD-DSDVRP N 54.8% 0.02% 14.8% 2187

4-MD-DSDVRP Y 54.8% 0.04% 14.8% 2189

5-DSDVRP N 72.1% 0.03% 39.3% 1351

5-DSDVRP Y 70.9% 0.01% 39.4% 1345

5-MD-DSDVRP N 32.5% 0.03% 12.0% 2667

5-MD-DSDVRP Y 28.2% 0.07% 11.2% 2806

adapted from SDVRP and 𝑘-MD-DSDVRP for instances adapted

from MDSDVRP), column “SCR” indicates the inclusion of split

cycle removal constraints (with value ‘Y’ for yes and ‘N’ for no),

column “solved” is the proportion of solved instances, column “gap”

is the mean relative difference between the best lower and upper

bounds, column “gap_MDSD” is the mean relative difference be-

tween the best upper bound and the best reported lower bound

for the MDSDVRP, and column “time” is the mean execution time

in seconds. A time limit of 1 hour was set for each instance. The

following observations can be made:

• The number of solved instances drops quickly for 𝑘-MD-

DSDVRP as 𝑘 increases. However, it drops more slowly for 𝑘-

DSDVRP. This suggests that the search for feasible solutions

becomes more difficult as the number of depots increases.

• In all cases where a feasible solution was found, the gap was

very small (below 0.1%). This indicates that the solutions

produced are very close to being optimal.

• When the quality of the solutions was compared with the

lower bounds provided by [9] for MDSDVRP, the 𝑘-MD-

DSDVRP solution value was, on average, about 14.3% above.

This indicates that integer deliveries and the batching of

items into few batches per vehicle (3, 4 or 5) did not strongly

affect the quality of the solution. However, this average dif-

ference was greater for 𝑘-DSDVRP, reaching 54.6% for 𝑘 = 3,

but this difference decreases whenever 𝑘 increases.

• The execution time increases with the number of depots and

the value of 𝑘 , as they reflect the number of graphs and the

number of replicas per customer, respectively.

• The inclusion of split cycle constraints worsened the average

of all metrics, with a relative difference of around 30% for

the gap, and less than 2% for the other metrics.

7 CONCLUDING REMARKS
This study investigates the 𝑘-MD-DSDVRP, which is convenient

for daily logistics by organizing deliveries in batches. Properties

are derived for this problem, and a formulation and an RCSP-based

map decomposition are proposed. The experimental results show

that the proposed map decomposition finds a near-optimal feasible

solution for more than 80% of the instances for 𝑘 = 3, but this

percentage drops as 𝑘 increases. It is also possible to conclude that

the effect of grouping into batches and discrete deliveries is small

(average gap of 14.3%) for instances with multiple deposits.

Several avenues of research are opened, such as investigating

the impact of parameter 𝑘 on the effectiveness of the dynamic pro-

gramming method proposed in [8] for DSDVRP and the approach

presented in [9] for MDSDVRP. Moreover, alternative solution

transformations may provide tighter bounds than Theorem 7 for

the ratio of 𝑧 (𝑘-MD-DSDVRP) and 𝑧 (MDSDVRP). It is also worth

investigating whether the demonstration of [2] for the NP-hardness

of 3-SDVRP can be adapted to multi-depot and integer deliveries.
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