
A Framework to Evaluate Early Time-Series Classification
Algorithms

Charilaos Akasiadis
Institute of Informatics &

Telecommunications, NCSR
‘Demokritos’

Agia Paraskevi, Greece
cakasiadis@iit.demokritos.gr

Evgenios Kladis
Institute of Informatics &

Telecommunications, NCSR
‘Demokritos’

Agia Paraskevi, Greece
eukladis@iit.demokritos.gr

Petro-Foti Kamberi
Institute of Informatics &

Telecommunications, NCSR
‘Demokritos’

Agia Paraskevi, Greece
pkamberi@iit.demokritos.gr

Evangelos Michelioudakis
Institute of Informatics &

Telecommunications, NCSR
‘Demokritos’

Agia Paraskevi, Greece
vagmcs@iit.demokritos.gr

Elias Alevizos
Institute of Informatics &

Telecommunications, NCSR
‘Demokritos’

Agia Paraskevi, Greece
alevizos.elias@iit.demokritos.gr

Alexander Artikis
Department of Maritime Studies,

University of Piraeus
Piraeus, Greece

Institute of Informatics &
Telecommunications, NCSR

‘Demokritos’
Agia Paraskevi, Greece

a.artikis@iit.demokritos.gr

ABSTRACT
Early Time-Series Classification (ETSC) is the task of predicting
the class of incoming time-series by observing as few measure-
ments as possible. Such methods can be employed to obtain clas-
sification forecasts in many time-critical applications. However,
available techniques are not equally suitable for every problem,
since differentiations in the data characteristics can impact per-
formance in terms of earliness, accuracy, F1-score, or training
time. We evaluate five existing ETSC algorithms on publicly
available data, as well as on two newly introduced datasets orig-
inating from the life sciences and maritime domains. Existing
ETSC algorithms are also compared against a method that se-
lectively truncates time-series and incorporates state-of-the-art
algorithms for full time-series classification. Our main goal is
to provide a framework for the evaluation and comparison of
ETSC algorithms and to obtain intuition on how such approaches
perform on real-life applications. The presented framework can
serve as a benchmark for new related approaches.

1 INTRODUCTION
The integration of sensors and data transmitters on many phys-
ical objects has facilitated the production of time-series data
in high volumes [45]. For instance, the integrated sensory and
telecommunication devices on ships generate constant informa-
tion streams, reporting trajectories in the form of time-series data
[13]. Such information is utilized by machine learning techniques
[11] to solve numerous problems. Full time-series classification
(TSC) methods in particular, are applied on numerous fields, e.g.
quality assurance via spectrograms [17], power consumption
analysis [26], and medical applications [22]. Such methods train
models using labeled time-series to classify unlabelled ones, usu-
ally of equal length.

A slightly different domain, that of Early Time-Series Classifi-
cation (ETSC), aims at classifying time-series as soon as possible,

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

i.e. before the full series is observed. Thus, the training instances
consist of labeled time-series, while the testing data are incom-
plete instances with unknown labels. ETSC algorithms aim to
maximize the trade-off between predictive accuracy and earliness.
The objective is to find the earliest time-point of a time-series
at which a reliable prediction can be made, rendering ETSC de-
sirable in a wide range of application domains. For instance, in
the life sciences, simulation frameworks analyze how cellular
structures respond to treatments, e.g., in the face of new ex-
perimental drugs [3]. Such simulations require vast amounts of
computational resources, and produce gigabytes of data in every
run. Simulations of treatments that do not generate significant
cell response could be detected at an early stage and terminated,
thus freeing valuable computational resources that otherwise
would have been spent in vain. In the maritime domain, popular
naval routes around the globe require continuous monitoring in
order to avoid undesirable events, such as vessel collisions, ille-
gal actions, etc. [33]. By utilizing available maritime time-series
data, such events can be predicted to assist with traffic regulation
and respective decision-making. See, e,g., [5, 41] for a further
discussion on the applicability of ETSC algorithms on real-world
applications.

Although several ETSC methods have been proposed, there
is a lack of an experimental evaluation and comparison frame-
work tailored to this domain. Existing reviews for full time-series
classification focus on comparing algorithms that do not gener-
ate early predictions. Representative approaches may be found
in [1, 4, 8, 12], and [36]. Moreover, ETSCmethods are mostly eval-
uated and compared against only a few alternative algorithms,
and this is mainly performed using datasets from the UCR reposi-
tory,1 which was originally created for evaluating full time-series
classification approaches. A recent review of existing ETSC ap-
proaches is presented in [14] featuring, however, a theoretical
comparison and not an empirical one. In general, benchmarking
frameworks are considered valuable for facilitating objective com-
parisons as they enable a better understanding of how different
approaches work on a variety of application domains [21, 23, 25].

1http://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Experiments & Analyses Paper

Series ISSN: 2367-2005 623 10.48786/edbt.2024.54

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.54

In this paper, we present a framework for the empirical com-
parison of ETSC algorithms on a curated set of appropriate
datasets from relevant applications. We use this framework to
provide insights about algorithms’ strengths and weaknesses.
It includes five existing algorithms i.e., ECEC [27], ECONOMY-
K [2], ECTS [43], EDSC [44], and TEASER [39], and offers them
for use via a publicly available and extensible repository written
in Python.2 The algorithms are evaluated on 12 ETSC-relevant
datasets, and the results are reported in terms of metrics that
are widely used in the ETSC domain. Two of the datasets are
new, originating from the drug treatment discovery and the mar-
itime domains, while the remaining datasets are a subset of the
well-known UEA & UCR repository.3 They all constitute cases
on which ETSC can be considered valuable.

Furthermore, we propose STRUT, a method for ETSC that per-
forms selective truncation of the time-series and incorporates
state-of-the-art classification algorithms for full time-series. The
method exhaustively explores each training dataset to discover
the earliest time-point to generate an accurate prediction. Dif-
ferent algorithms designed for full time-series classification are
incorporated, in particular MiniROCKET [7], MLSTM [24], and
WEASEL [37], which are iteratively trained on data streams with
gradually truncated prefices. After a first pass, STRUT recog-
nizes the time-step where the best predictive performance can
be achieved and chooses that when generating early class label
predictions during testing. Although incorporating algorithms
that were originally designed to analyze time-series in their full
length, STRUT is introduced as a baseline to compare ETSC per-
formance. It puts full time-series classification algorithms to the
test with a straightforward mechanism for deciding when to
produce a classification.

Our contributions are summarized as follows:
• We present an open-source framework for evaluating
ETSC algorithms, which contains a wide spectrum ofmeth-
ods and appropriate datasets. Two of the included datasets
are novel, from the fields of large-scale simulations of drug
treatments for cancer and maritime situational awareness.

• We propose a method for ETSC that relies on state-of-the-
art algorithms for full time-series classification.

• We empirically compare the aforementioned ETSC algo-
rithms on a diverse set of datasets.

• The framework is easily extensible in order to incorporate
additional algorithms and datasets.

The rest of the paper is organized as follows. In Section 2
we present a running example that is used to explain algorithm
functionality, and the metrics we used for algorithm evaluation.
Section 3 includes descriptions of the existing algorithms that
we consider in our framework. Section 4 describes the method
that incorporates full time-series classification algorithms for
ETSC. Section 5 presents an overview of the datasets used. In
Section 6 we present our empirical evaluation, and in Section 7
we conclude.

2 EXAMPLE AND EVALUATION METRICS
2.1 Running Example
In order to aid the presentation of the algorithms throughout
the paper, we use a running example from the life sciences do-
main. This multivariate time-series stem from simulations of

2https://github.com/xarakas/ETSC
3https://www.timeseriesclassification.com

Figure 1: Examples of interesting (left) and not interesting
(right) simulation outcomes.

tumor cells during the administration of drug treatments [3, 34].
The values of each time-point indicate the effect of drug treat-
ment configurations over time and they include three different
counts for the number of Alive, Necrotic and Apoptotic tumor
cells. Intuitively, if a drug configuration is successful, then the
number of Alive cells should decrease with time, while the num-
ber of Necrotic that indicates the cells destroyed by the drug
effects should increase. Figure 1 illustrates examples from differ-
ent classes. Although apoptotic cells are not considered when
generating class labels, there is no indication that their number is
irrelevant during the class label prediction process. For example,
we can observe different evolutions of apoptotic cells between
the two cases of Fig. 1. For this reason we chose to include this
variable in the dataset.

Time-point 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

Alive cells 1137 1229 1213 1091 896 744 681
Necrotic cells 0 0 11 42 84 99 103
Apoptotic cells 0 1 17 118 282 432 509
Table 1: Prefix of a tumor drug treatment simulation.

Table 1 shows a prefix of such a simulation’s outcome. In this
example, the Alive tumor cells decrease after the third time-point,
while the Necrotic cells are increasing, indicating that the drug
is in effect. The Apoptotic cell count captures natural cell death,
regardless of the drug effect. Each of the multivariate time-series
is labeled as interesting or non-interesting, based on whether the
drug treatment has been effective or not. The time-series in this
example has been classified as interesting, since the tumor shrinks
as a result of applying a drug treatment, i.e. the evolution of the
number of the different cells indicates a successful treatment.

2.2 Evaluation Metrics
To benchmark ETSC algorithms, we rely on well-known metrics,
i.e. accuracy [27, 28, 39, 42, 43] and F1-score [44] for the predictive
performance, earliness [27, 28, 39, 42, 43], the harmonic mean of
accuracy and earliness [39], and training and testing times [42].

In particular the accuracy is defined as the ratio of all correct
predictions (true positives (TP) and true negatives (TN)) divided
by the total number of the predictions obtained for a particular
dataset (adding also the false positives (FP) and false negatives
(FN)), i.e.:

Accuracy =
TP + TN

TP + FP + TN + FN
The F1-score is defined per class 𝑐 , and we report the average

value among the different classes:

F1-score =
∑
𝑐

TP𝑐

TP𝑐 + 1
2 · (FP𝑐 + FN𝑐)

/|𝐶 |

624

where |𝐶 | is the total number of distinct class labels in the dataset.
Earliness is defined as the ratio of the time-points that are

required for an algorithm to consume, in order to generate a
prediction before an event occurs (i.e. a class label is assigned to
the time-series). That is, given a time-series instance consisting
of 𝐿 time-points, and assuming that the algorithm requires only
the 𝑙 first time-points (𝑙 ≤ 𝐿), then the earliness measure is given
by Earliness = 𝑙/𝐿. To evaluate ETSC algorithms over a dataset
we calculate the average earliness for the test data time-series
instances. Lower earliness values are better, since the maximum
value of 1 means that the algorithm was not able to generate
a reliable prediction earlier, before the last time-point of the
instance was observed.

The harmonic mean between accuracy and earliness, indicates
the balance between prediction quality and time (number of time-
points) saved. Since these two metrics have reversed objectives,
we use the value of 1 - earliness in the calculation of the harmonic
mean in order to align them:

HarmonicMean = 2 · Accuracy · (1 − Earliness)
Accuracy + (1 − Earliness)

When the harmonic mean is zero, the algorithm in question either
achieves the lowest accuracy score, or needs to observe the full
time-series for generating a decision on the instance’s class label.
As the harmonic mean increases, the algorithm can correctly
predict class labels with less observations in the input.

Finally, we measure the training times in minutes and test
times in seconds. Training times are mainly affected by the size
of the dataset and the complexity of the algorithm’s calculation.
We also include a theoretical time complexity analysis for each
algorithm.

3 ALGORITHMS OF THE BENCHMARKING
FRAMEWORK

Various ETSC algorithms have been proposed in the literature [15,
19, 28, 29, 40, 46]. Not every algorithm has a publicly available
implementation and, moreover, most require a domain-specific
customization. According to [14] algorithms can be categorized
into four different groups, based on their internal functionality:
Prefix-based algorithms seek for the minimum prefix length at
which a classifier can generate accurate predictions. Shapelet-
based approaches aim to extract the most characteristic subseries
for each particular class, and then use them to match incom-
ing and incomplete time-series. Model-based methods estimate
conditional probabilities using mathematical models, i.e. given a
time-series prefix, calculate the probability of it belonging to a
particular class. For algorithms that do not fall into these three
groups, a fourth one termed Miscellaneous is defined, including
e.g. deep learning or reinforcement learning techniques.

We have selected five algorithms representative of each cate-
gory in the taxonomy presented in [14]: ECONOMY-K [2] (model-
based), ECTS [43] (prefix-based), EDSC [44] (shapelet-based),
ECEC [27] (model-based), and TEASER [39] (prefix-based). This
selection was based on the following criteria: (a) there was an
open-source implementation of the algorithm, and (b) the algo-
rithm did not depend on domain-specific customisation or a large
number of parameters. The only exception is EDSC, which we
chose to implement ourselves, since it is a widely used algorithm.
We also include three full time-series classification algorithms,
i.e. MiniROCKET [7], MLSTM [24], and WEASEL [37], which
can be incorporated by our STRUT method that we present in

Sec. 4. Table 2 summarizes the evaluated algorithms and their
characteristics.

Algorithm Mo
del
-ba
sed

Pre
fix
-ba
sed

Sh
ap
ele
t-b
ase
d

Mi
sce
lla
ne
ou
s

Un
iva
ria
te

Mu
ltiv
ari
ate

Ea
rly
TS
C

Fu
ll T
SC

La
ng
ua
ge

ECEC ✓ ✓ ✓ Java
ECONOMY-K ✓ ✓ ✓ Python
ECTS ✓ ✓ ✓ Python
EDSC ✓ ✓ ✓ C++
MiniROCKET ✓ ✓ ✓ Python
MLSTM ✓ ✓ ✓ Python
WEASEL ✓ ✓ ✓ ✓ Python
TEASER ✓ ✓ ✓ Java

Table 2: Characteristics of evaluated algorithms.

3.1 ECONOMY-K Algorithm
Dachraoui et al. [2] introduce ECONOMY-K which is based on a
decision function that searches for the future time-point index
at which a reliable classification can be achieved. It supports
univariate time-series. Note that for all algorithms supporting
only univariate datasets, in case of multivariate input we train
a number of classifiers respective to the number of variables in
parallel, and apply a simple voting method to obtain the class
label predictions. Thus, in the running example, apart from the
‘Alive’ cells that is depicted as input stream, we also have the
two other variables (‘Necrotic’ and ‘Apoptotic’) that are fed to
separate classifiers.

1137 1229 1213 1091 896 744 681 ...

X1:7
1 X1:7

2cluster1
X1:7

3X1:7
4

X1:7
5

cluster2

Memb. Prob. = 0.4Memb. Prob. = 0.6

Figure 2: Illustration of ECONOMY-K’s cluster assignment.

According to ECONOMY-K, the full length training time-series
are divided into 𝑘 clusters using 𝑘-Means. For each time-point,
a base classifier ℎ𝑡 is trained (e.g., XGBoost). For each cluster
𝑘 and time-point 𝑡 , the classifiers ℎ𝑡 are utilized to construct a
confusion matrix that is used to compute the probability of a
prediction being correct. When incomplete time-series 𝑋 1:𝑡 are
given to the decision function, a cluster membership probability
is assigned. For example, Figure 2 shows that during the training
step there are five time-series 𝑋 1:7 that share a similar prefix,
i.e. {1137, 1229, 1213, 1091, 896, 744, 681}, which is passed in the
input of ECONOMY-K. The highest membership probability be-
longs to 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1; therefore we select the classifier trained for
the particular prefix length and cluster. The ultimate goal is to
find the future time-point index 𝜏 out of the remaining ones that
are expected to arrive as input, where the algorithm can gener-
ate a prediction with the best confidence. This is performed by
considering a cost function 𝑓𝜏 (𝑋 1:𝑡).

625

In our example the future time-point position 𝜏 at which a
prediction could be safely generated would either be 0, or 1 if the
most appropriate time-point was the one expected to arrive next.
Suppose that the cost function 𝑓𝜏 (𝑋 1:𝑡) for each 𝜏 takes values
{0.5, 1.2}. Theminimumvalue is that of 𝑓0, therefore the best time-
point to make a prediction would be the current one. If the lowest
cost was for 𝜏 = 1, then the algorithm would require more data.
The efficient implementations of clustering and classification
methods can enable ECONOMY-K to train very fast, even for very
large datasets.

3.2 ECTS Algorithm
The Early Classification of Time-Series (ECTS) [43] algorithm is
based on the 1-Nearest Neighbor (1-NN) method. ECTS stores
all the nearest neighbor sets, for all time-series in the training
set and for each prefix length. Next, judging by the structure of
these sets, it computes the Reverse Nearest Neighbors (RNN).

For example, Figure 3 shows a directed graph on the left, with
five time-series as nodes, which are prefixes of a given size. The
“in-degree” of each node of the graph signifies howmany RNNs it
has. For instance,𝑋 1:7

5 has two inward edges; therefore two nodes
consider it as their nearest neighbor, and thus 𝑋 1:7

5 has the RNN
set {𝑋 1:7

4 , 𝑋 1:7
3 }. On the other hand, 𝑋 1:7

4 has zero inward edges,
so its RNN set is empty. For each possible prefix, this procedure
is repeated to come up with all RNN sets. The time-point from
which the RNN set of a time-series remains the same until the end
of the time-series, indicates that prefixes up to this time-point
can be discerned from different class instances. This prefix length
is called the Minimum Prediction Length (MPL). Intuitively, MPL
signifies fromwhich time-point onward the time-series belonging
to the same class are quite similar. For example Figure 3 depicts
the NN and RNN sets for 5 different time-series. The MPL (NN)
of𝑋 1:7

2 means that𝑋 1:7
2 can act as a predictor for new time-series,

using only the first 7 time-points of the time-series.

X1:7
1

MPL(NN):2
MPL(Clustering):2

X1:7
2

MPL(NN):7
MPL(Clustering):3

X1:7
3

MPL(NN):6
MPL(Clustering):4

X1:7
4

MPL(NN):4
MPL(Clustering):4

X1:7
5

MPL(NN):4
MPL(Clustering):4

X1:7
1

X1:7
2

X1:7
3

X1:7
4

X1:7
5

Figure 3: Reverse nearest neigbors (left) and clustering
based on RNN and NN (right), as considered by ECTS.

In order to minimize the MPL and avoid needlessly late predic-
tions, ECTS incorporates agglomerative hierarchical clustering.
For every cluster, an MPL is assigned to it. The calculation of MPL
is based on the RNN consistency, as well as on the 1-NN consis-
tency. The RNN sets of the cluster for each prefix are calculated
by applying relational division [10] on the union of the RNNs of
the member time-series and the time-series of the cluster.

Now, the 1-NN consistency dictates that the nearest neighbor
of each time-series in the cluster also belongs in that cluster for
time-points up to the maximum length. The 1-NN and RNN are
calculated for each prefix. The time-point from which both 1-NN

and RNN sets are consistent up to the full time-series length, is
the MPL of the cluster. During a cluster merging, time-series are
assigned to the smallest MPL among the cluster they belong to,
and their own MPL. The result of the clustering phase is shown
in Figure 3, where the MPL (Clustering) values are much lower
for 𝑋 1:7

2 and 𝑋 1:7
3 , indicating the capability for earlier predictions.

According to the testing phase, for each prefix, new incoming
time-series are matched to their nearest neighbor. If the observed
length of the time-series up to the current time-point is larger
than the MPL of its nearest neighbor, a prediction can be gen-
erated. Similarly to the previous algorithms, ECTS operates on
univariate time-series.

3.3 EDSC Algorithm
Early Distinctive Shapelet Classification (EDSC) [44] is one of
the first methods proposed for ETSC. Shapelets are composed of
subseries that are in some sense maximally representative of a
class and are defined as triplets of the form (subseries, threshold,
class). To compute the thresholds, EDSC finds all time-series
that belong to different classes than class, and measures their
minimum distance from the subseries. Then, the Chebyshev’s
Inequality utilizes the mean and variance of the distances and a
user-defined tolerance 𝑘 to calculate the threshold. That is, given
a shapelet, each time-series excerpt with distance greater than the
threshold signifies that the time-series belongs to a different class.
The shapelets are finally ranked according to their “distinctive”
capability and the best ones form the classification basis.

Consider the time-series of the Alive cells of the running exam-
ple, as presented in Table 1. Let the shapelets length be 3. Figure 4
visualizes this example with three of the possible subseries. Let
one subseries be 𝑠𝑏1 = {1137, 1229, 1213}, originating from a
time-series of class one. The minimum distance of a shapelet
to a time-series is computed by aligning the shapelet against
all subseries, and finding the minimum among their distances.
Suppose that the minimum distance to 𝑠𝑏1 is stored in a list, the
mean of which is 330 and the variance 109. Given 𝑘 = 3, we
calculate the threshold 𝛿 = max{mean−𝑘 · var, 0} = 3 according
to the Chebyshev’s Inequality. This indicates that time-series
with distance less than 𝛿 from 𝑠𝑏1 belong to the same class.

After this step, the shapelet 𝑠1 = (𝑠𝑏1, 𝛿, class) is created. The
same procedure is repeated for the remaining subseries. Then, for
each shapelet in the shapelet’s list, a utility score is calculated and
the top-𝑘 are selected for classifying the whole training dataset.
Assume that for the three shapelets 𝑠1, 𝑠2, 𝑠3 of Figure 4, the list
of utilities is {1.3, 3.67, 0.83}. The subseries of each shapelet are
marked with ovals of different color. We first try to classify the
whole training dataset using only 𝑠2, since it has the highest
utility. If we cannot correctly classify all instances, then we add
the second most “valuable” shapelet, 𝑠1, to the set. Supposing that
𝑠1, 𝑠2 are informative enough, then we can claim that we have

1137 1229 1213 1091 896 744 681 661 . . .

s1

s2 s3

s1

s2

Feature Extraction

Feature Selection

Figure 4: Illustration of EDSC.

626

succeeded in classifying the rest of the dataset, so the shapelet
selection process is complete and the remaining shapelets are
rejected, in this example 𝑠3. When the minimum distance of a
new, incoming time-series from a shapelet is less than 𝛿 , then
the shapelet’s class is returned. This procedure is carried out for
all possible prefixes of the incoming data, until the algorithm
generates a prediction.

EDSC supports only univariate time-series classification. More-
over, as the size of the dataset increases, so does the required
time to extract and calculate shapelets. EDSC is one of the most
widely used baselines for the comparison of ETSC algorithms.

3.4 WEASEL Algorithm
The full time-series classification algorithm4 that we based on
word extraction (WEASEL [37]) is incorporated by two existing
ETSC approaches that we include in our analysis, as well as by
our proposed method that we describe in Section 4. It is a slid-
ing window approach, that transforms time-series into feature
vectors, which are subsequently analyzed by a machine learning
classifier. First, WEASEL extracts windows of varying lengths
from the data at the input. The Fourier transform is then used
to approximate each window, and the coefficients that best dis-
tinguish time-series from different classes are retained. The goal
dimensionality, i.e. the number of Fourier values that the algo-
rithm should operate upon, is learned via cross-validation. Next,
WEASEL discretizes the remaining Fourier coefficients into a
word through information gain binning, which also selects dis-
cretization boundaries to optimally discriminate the time-series
classes. Ultimately, the method constructs a bag of patterns by uti-
lizing the words (unigrams) and adjacent words (bigrams). Once
WEASEL constructs this feature vector that can be considered
to be highly discriminative, a fast linear-time logistic regression
classifier is applied to obtain class label predictions. There is also a
similar multivariate alternative, i.e. WEASEL+MUSE [38], which
considers more features, e.g. the derivatives of the neighbour-
ing time-points in each dimension, and also applies a weighing
mechanism on the features to focus on the ones that are more
important for each case.

3.5 ECEC Algorithm
The Effective Confidence-based Early Classification (ECEC) [27]
algorithm supports univariate time-series. It truncates the input
into 𝑁 overlapping prefixes, starting from size equal to the length
of the time-series divided by 𝑁 , up to its full length, and trains
𝑁 WEASEL classifiers ℎ𝑡 . Figure 5 illustrates this process for a
univariate time-series. In the example, the time-series is passed
to WEASEL, which subsequently extracts subseries (e.g. {1137,
1229, 1213}), transforms them to symbols forming words (𝑤1,𝑤2,
. . .) and counts their instantiations (e.g., suppose {2,1,7}).

On the set of 𝑁 base classifiers, ECEC conducts a cross valida-
tion to obtain the probabilistic predictions for each fold. Based
on these probabilities, for each classifier ℎ𝑡 , ECEC measures the
performance according to the probability of a true label being
𝑦, with the predicted label being 𝑦. A core component of this
algorithm is the confidence𝐶𝑡 (ℎ𝑡 (𝑋)), which indicates the antic-
ipated reliability of a prediction for each prefix of size 𝑘 . For each
time-series and each prefix, ECEC calculates the confidence of
the prediction made from the corresponding classifier ℎ𝑡 during
cross validation and populates a list. Then, this list is sorted, and

4Although a full TSC algorithm, we chose to present WEASEL here, as it is
incorporated by the two ETSC algorithms that we describe later in this section.

1137 1229 1213 1091 896 744 681 ...

w1

w2 w3

w1 2

w2 1

w3 7

WEASEL

Word
Frequency

Probabilistic Classifier

Confidence c

θ ≤ c

Prediction

No

Yes

Figure 5: Illustration of ECEC.

the mean of adjacent values constitute threshold candidates (𝜃𝑖).
For each 𝜃𝑖 and each time-series, the algorithm compares the
confidence of each classifier’s predictions at each time-point to
𝜃𝑖 . If a prediction is confident enough, ECEC stores it along with
the time-point and the confidence value. Once all time-series for
all prefixes are evaluated for 𝜃𝑖 , ECEC checks the performance of
the given threshold. The time-points and the predictions stored
during the previous step are then used to calculate the accuracy
and earliness for each threshold, according to the evaluation cost
function CF (𝜃) value: CF (𝜃) = 𝛼 (1−Accuracy)+ (1−𝛼)Earliness,
𝑎 is a parameter that allows users to tune the trade-off between
accuracy and earliness. The 𝜃𝑖 that minimizes this cost, is marked
as the global best 𝜃 .

Figure 5 shows an example of the WEASEL classifier used
by ECEC. Assuming that the number of prefixes 𝑁 = 4 and
the length of the time-series is 10, the minimum prefix during
training is ⌈ 104 ⌉, i.e. {1137, 1229, 1213}. The prefixes are passed
to WEASEL, which in turn outputs the corresponding words
and frequencies. Subsequently, the confidence of a prediction
is calculated as 𝑐 = 𝐶𝑡 (ℎ𝑡 (𝑋 1:𝑡

test)). Suppose that the confidence
𝑐 is 0.45 and the confidence threshold 𝜃 is 0.5. In this case, the
prediction is rejected and more time-points must be observed
in order to form the next prefix. After the next 3 time-points
are observed, a new prediction is generated and the confidence
is recalculated and compared to 𝜃 . If, 𝑐 ≥ 𝜃 the prediction is
accepted, otherwise more data is required.

3.6 TEASER Algorithm
The Two-tier Early and Accurate Series classifiER (TEASER) [39]
method is also based on WEASEL. After the transformation of
input time-series to words, the frequencies of the words are for-
warded to a logistic regression classifier. The training dataset
is z-normalized and truncated into 𝑆 overlapping prefixes. The
first prefix is of size equal to the length of the time-series divided
by 𝑆 , and the last one is the full time-series. For each prefix, a
WEASEL-logistic regression pipeline is trained and then used
to obtain probabilistic predictions. These predictions are passed
on to a One-Class SVM, uniquely trained for each prefix length
using only the correctly classified data by the pipeline. If the
One-Class SVM accepts the prediction, i.e. it is marked as be-
longing to the correct class, then the last criterion to generate
the final output is the consistency of the particular decision for
𝑣 consecutive prefixes. The parameter 𝑣 is selected during the
training phase by performing a grid search over the set of values
{1, . . . , 5}. For each candidate value, the method tries to classify
all the training time-series, and the one that leads to the high-
est harmonic mean of earliness and accuracy is finally selected.

627

1137 1229 1213 1091 896 744 681 ...

w1

w2 w3

w1 2

w2 1

w3 7

WEASEL

Word
Frequency

Probabilistic Classifier

OneClass SVM

v ≤ consistency

Prediction

Yes

Yes

No

No

Figure 6: Illustration of TEASER.

Figure 6 shows a schematic view of the procedure followed by
TEASER. Again, assume that the first examined prefix is of size 3
and that the prediction made is accepted by the One-Class SVM.
Given that 𝑣 = 2, the consistency check can only accept equal
predictions that had been made for two consecutive prefixes.
Thus, the current prediction will not be accepted, since in our
case it was obtained by using only one prefix. TEASER will wait
for the next 2 time-points. If TEASER does not manage to find an
acceptable prediction by the time the final prefix arrives, then
the prediction using the whole time-series is generated without
passing through the One-Class SVM or any other consistency
check.

TEASER uses a pre-defined number of overlapping prefixes that
reduces the number of possible subseries that need to be exam-
ined, thus boosting the method’s performance. On the other hand,
bad choices of 𝑆 can lead to suboptimal results. Also, TEASER
supports only univariate data and relies on z-normalization. Z-
normalization is performed by calculating the mean and standard
deviation using all time-points of a time-series. This is unrealistic
for online operation, since algorithms can only operate on data
seen so far.

4 SELECTIVE TRUNCATION OF
TIME-SERIES

We propose the ‘Selective Truncation of Time-Series’ (STRUT)
as a baseline method to compare the predictive performance of
full time-series classification algorithms in ETSC settings. STRUT
determines the best time-point where time-series classification
performance is superior to the performance of the classification
at any other time-point of the time-series, following a repeated
truncation approach and applying full TSC algorithms. We incor-
porate three existing ones, MiniROCKET [7], WEASEL [38], and
MLSTM [24], all supporting multivariate datasets.

MiniROCKET transforms time-series using convolutional ker-
nels and utilizes the transformed features to train a linear classi-
fier [7]. Each input time-series is convolved using 10,000 convolu-
tional kernels and only one feature, called Proportion of Positive
Values, which is equivalent to computing the empirical cumu-
lative distribution function. Subsequently, dilation is applied in
order to “spread” a kernel over the input, as well as zero padding.
The time complexity of the method is linear to the number of
kernels/features, the dataset size, and time-series length.

The Multivariate Long Short Term Memory Fully Convolu-
tional Network (MLSTM) consists of two sub-models that are
assigned the same input [24]. The first sub-model comprises
three Convolutional Neural Network layers. The outputs of each
of the first two layers are batch normalized [20] and are then
passed on to an activation function, i.e., a Rectified Linear Unit

(ReLU). In order to maximize the efficiency of the model for mul-
tivariate time-series, the activated output is also passed into a
Squeeze-and-Excite block [18]. The second sub-model consists of
a masking layer whose output is passed on to an attention-based
LSTM. The output of the two sub-models is concatenated and
passed through a dense layer with as many neurons as the classes,
and via a softmax activation function it generates probabilistic
predictions. The complexity is linear to the dataset’s size and to
the number of epochs during training.

The key idea of the STRUT method is to determine the time-
point at which the performance of the early classification reaches
its optimal level, in other words, is superior to the performance
observed when consuming different prefix lengths of the time-
series. The term performance corresponds to a user-defined met-
ric (i.e accuracy, F1-score, or the harmonic mean of earliness and
accuracy). Figure 7 displays an overview of our approach.

The full-time series examples in the training dataset are it-
eratively truncated to obtain prefices of gradually increasing
lengths. In each iteration, the truncated examples along with
the corresponding class labels are provided to a full time-series
classification algorithm, which fits on the training data, and then
is tested on a validation dataset, which is respectively truncated
to the particular prefix length. Finally, the prefix length for which
the algorithm achieved the best score, indicates the time-point at
which the algorithm will predict the class label during the testing
phase.

t = 2
1137

0
0

1229
0
1

t = 3
1137

0
0

1229
0
1

1213
11
17...

t = N
1137

0
0

1229
0
1

1213
11
17

1091
42
118

896
84
282

744
99
432

681
103
509

Time-series
classification

algorithm

Time-series
classification

algorithm

Time-series
classification

algorithm

Performance scores
of each t classifier Select t

with best
performance

Figure 7: STRUT method overview.

The end-user specifies the desired full TSC algorithm to be
used, as well as the performance metric to be optimized. The
time-point at which the truncated time-series are shown pro-
duce the best results is when the final prediction is generated.
WEASEL and WEASEL+MUSE, which we use in univariate and
multivariate cases respectively, are modified to remove a default
normalization step. This step would transform the input data
so that its distribution would have a mean of 0 and standard
deviation 1. In a streaming setting, however, it cannot always be
assumed that we know in advance the range of input values.

Aiming to lower the total execution time required to perform
the exhaustive approach that STRUT follows, especially in the
case of time-series of considerably large length, we follow an
iterative binary search process to determine the minimum 𝑡 ,
skipping this way a substantial number of iterations.

5 DATASETS & FRAMEWORK
EXTENSIBILITY

We have employed a subset of the publicly available UEA &
UCR Time-series Classification Repository [6], as well as two
new datasets that we introduce, from the life sciences and mar-
itime domains. The selected datasets include both univariate
and multivariate cases, and are all available via our source-code
repository.2 Recall that, for the algorithms that cannot operate

628

on multivariate cases—i.e., ECEC, TEASER, ECTS, ECONOMY-K,
and EDSC—different algorithm instances were trained for each
variable, and a simple voting over the individual class label pre-
dictions was applied to obtain the final one. Detailed descriptions
of each dataset may be found online.5

5.1 UEA & UCR repository
We selected 10 out of 178 UEA & UCR datasets for our evalua-
tion, according to the following criteria: (a) data should have a
temporal dimension (e.g., image shapes are not acceptable), (b)
data should not be normalized, and (c) the time horizon should be
more than a few seconds. Note that several datasets from the UEA
& UCR repository have missing values or time-series of varying
length, whereas ECTS and ECONOMY-K implementations do not
support such cases. To address this, we fill in the missing values
with the mean of the last value before the data gap and the first
one after it.

5.2 Biological dataset: Cancer cell
simulations

This dataset originates from the life sciences domain, in particular
drug discovery. As we explained earlier in Section 2.1, to explore
potentially helpful cancer treatments, researchers conduct large-
scale model exploration with simulations of how tumor cells
respond to drug administration [3, 34]. Each simulation is con-
figured with a particular drug treatment configuration, and its
course can be summarized by three time-evolving variables, for
alive, necrotic and apoptotic cells. Each experiment differs from
the others based on a set of configurable parameters related to
the treatment, i.e. the frequency of drug administration, its du-
ration, and the drug concentration. These values remain fixed
during each simulation. The time-series are labeled as interesting
or non-interesting, based on whether the treatment was found to
be effective or not, i.e. managing to constrain tumor cell growth,
according to a classification rule that was defined by domain
experts. The dataset consists of 644 time-series, each having 48
time-points. The measurements were obtained using a parallel
version of the PhysiBoSSv2.0 simulator.6

Performing large numbers of simulations to sufficiently ex-
plore the space of drug treatment configurations requires signifi-
cant computational resources. However, when particular simu-
lations turn up to be non-interesting, the respective resources
spent may be considered as wasted. Thus, obtaining a prediction
for the outcome of the simulation at its early stages can be quite
helpful, by utilizing it to decide which simulations to terminate
before they are completed, and subsequently free up resources
that could otherwise be used to explore more interesting areas
of the drug treatment space.

In this dataset, classes are imbalanced. The interesting time-
series constitute 20% of the dataset, while the remaining 80%
accounts for non-interesting cases. Also, many interesting and
non-interesting instances tend to be very similar during the early
stages of the simulation, until the drug treatment takes effect,
which is usually after the first 30% of the time-points of each
experiment. Consequently, it is difficult to obtain accurate predic-
tions earlier. For these reasons, this is a challenging benchmark
for ETSC.

5https://github.com/xarakas/ETSC/blob/master/supplementary.pdf
6https://github.com/xarakas/spheroid-tnf-v2-emews

Figure 8: Maritime dataset: Green instances indicate that
the vessel is located inside the port of Brest at the end of
the 30 minute time interval, while the red ones indicate
that the vessel is cruising outside the port.

5.3 Maritime dataset: Vessel position signals
The maritime dataset contains position signals from nine vessels
that cruised around the port of Brest, France. In this domain, it is
important to detect events of interest ahead of time, so that any
reaction can be performed in a proactive manner. Examples of
such events include congestions, vessel collisions, illegal activity,
etc.

The dataset that we incorporate originates from real world
information and is derived from [32, 35]. Each point in a time-
series includes the following attributes: the timestamp, ship’s ID,
longitude, latitude, speed, heading, and course over ground of a
vessel at a given time-point. Originally, the dataset was unlabelled
and divided into nine time-series, one per vessel, expressing the
trajectories of the vessel, with over 12,000 time-points, and a
frequency of one measurement per minute. We labelled the time-
series depending on whether the vessel in question ended inside
the Brest port. To achieve this, we divided the time-series to
30 minute overlapping intervals, and checked if during the last
time-points of these intervals the vessel’s position lied inside the
Brest port polygon. Examples of positive (i.e. the vessel reached
the port) and negative (not located inside the port) trajectories
are given in Figure 8.

In total, 80,591 time-series instances were formed, each one
having 30 time-points, corresponding to 30 minutes. Apart from
being multivariate (7 variables) and imbalanced (65,124 negative
and 15,467 positive examples), the dataset includes the largest
number of examples in our dataset list, making it a challenging
application.

5.4 Dataset Categorization
We group the selected datasets according to characteristics that
might impact algorithm performance. The eight groups that we
consider are shown in Table 3 as columns. We measured the
dataset size in terms of length and height, where the length
refers to the maximum time-series horizon in the dataset (num-
ber of time-points per time-series) and the height corresponds
to the number of time-series instances (number of time-series
examples). Datasets with length > 1,300 are considered as ‘Wide’
and with height > 1,000 as ‘Large’. We also computed the coef-
ficient of variation (CoV) for each dataset (standard deviation

629

over time-points and instances divided by their average) and the
class imbalance ratio (CIR), in order to detect ‘Unstable’ (CoV
> 1.08) and ‘Imbalanced’ (CIR > 1.73) datasets respectively. The
CIR is calculated by dividing the number of instances of the most
populated class with that of the least populated one. The number
of classes indicates another group of datasets that include more
than two (‘Multiclass’). The thresholds for height and length
were set empirically. For the class imbalance ratio and the coef-
ficient of variance we used the median of the dataset values as
the threshold. Finally, datasets not belonging to any of the above
groups are marked as ‘Common’, and we also add two groups for
‘Univariate’ and ‘Multivariate’ cases, to capture possible effects of
the voting method which was not foreseen by the original algo-
rithms. Note that some categories are not mutually exclusive, e.g.
the HouseTwenty dataset belongs to the ‘Wide’, the ‘Unstable’,
and the ‘Univariate’ categories.

Dataset Name W
id
e

La
rg
e

Un
st
ab
le

Im
ba
la
nc
ed

M
ul
tic

la
ss

Co
m
m
on

Un
iv
ar
ia
te

M
ul
tiv

ar
ia
te

BasicMotions ✓ ✓ ✓
Biological ✓ ✓
DodgerLoopDay ✓ ✓
DodgerLoopGame ✓ ✓
DodgerLoopWeekend ✓ ✓
HouseTwenty ✓ ✓ ✓
LSST ✓ ✓ ✓ ✓ ✓
Maritime ✓ ✓ ✓ ✓
PickupGestureWiimoteZ ✓ ✓
PLAID ✓ ✓ ✓ ✓ ✓ ✓
PowerCons ✓ ✓
SharePriceIncrease ✓ ✓ ✓ ✓

Table 3: Dataset characteristics.

5.5 Framework Extensibility
The proposed benchmarking framework can be extended to in-
clude new algorithms and datasets. To add a new algorithm, one
needs to create a Python interface that implements the abstract
class EarlyClassifier, and provide the algorithm functionality
for train and predict methods in a separate .py script placed
inside the etsc/algorithms folder. Then, the file cli.py must
be extended (a) to import the new algorithm implementation
and (b) to define input parameters and other execution options.
Note that algorithms can be implemented in any language, as
long as a Python wrapper is provided. For enriching the datasets
list, measurements must be in .csv file format, where each row
constitutes a time-series example of a single variable, and the
first value of each row, the class label. Files of type .arff are
also supported.

6 EMPIRICAL COMPARISON
6.1 Experimental setup
In our empirical evaluation we use the metrics defined in Sec. 2.2.
In particular, we employ accuracy and 𝐹1-score to measure the
quality of the predictions, the earliness score, and the harmonic
mean between earliness and accuracy. Moreover, we present the

training times for each algorithm and an assessment regarding
online performance, which is dictated by testing times.

We compare ECEC, ECONOMY-K, ECTS, EDSC, TEASER, and
the three variants of the STRUT faster approximation variant, i.e.
S-MINI (MiniROCKET), S-MLSTM, and S-WEASEL. Most imple-
mentations were readily available in Python or Java, except for
EDSC and STRUT that we had to implement ourselves in C++ and
Python respectively. We must note that different programming
languages and algorithm implementations might affect training
and testing times, however we do not assess such implementation
aspects. The experiments were run on a computer operating in
Linux, equipped with an Intel Xeon E5-2630 2.60GHz (24-cores)
and 256 GB RAM. For all datasets we performed a stratified ran-
dom sampling 5-fold cross-validation.

Since most of the algorithms we incorporate don’t support
multivariate input and not all our dataset are univariate, a voting
method is applied, similar to the one employed in [36]. According
to it, each univariate classifier is trained and tested separately for
each variable of the input time-series. Upon collecting the output
predictions (one per variable), the most popular one among the
voters is chosen, nevertheless assigned with the worst earliness
among them. In the case of equal votes, we select the first class
label. In cases where the different variables are not independent,
the employed voting scheme may be suboptimal. However, the
voting scheme did not forbid univariate algorithms achieve higher
accuracy than multivariate algorithms on multivariate datasets -
the details are presented in the section that follows.

Algorithm Parameter values
ECEC 𝑁 = 20, a= 0.8
ECONOMY-K 𝑘 = {1, 2, 3}, 𝜆=100, cost = 0.001
ECTS support = 0
EDSC CHE, 𝑘 = 3, minLen = 5, maxLen = 𝐿/2

TEASER
𝑆 : 20 for UCR

S:10 for the Biological and Maritime
Table 4: Parameter values of ETSC algorithms.

Regarding the configuration parameters that each algorithm re-
quires, the best performing values were selected after exploratory
smaller scale experiments. In particular, for TEASER the number
of prefixes/classifiers 𝑆 was set to 10 for the biological and mar-
itime datasets, whereas for the UCR & UEA datasets it was set to
20. For ECEC, the number of prefixes𝑁 was set to 20. The original
TEASER approach applies z-normalization internally according to
the original algorithm design, however, as already discussed, this
might not always be suitable for an online setting in the ETSC do-
main. Thus, we decided to test a variant of this algorithm without
the normalization step. The 𝑣 parameter for TEASER’s consis-
tency check is optimized on a per-dataset basis. For ECONOMY-K
(abbreviated as ECO-K for the rest of this paper) we experimented
on {1, 2, 3} clusters for each dataset. Table 4 summarizes all the
parameter values used in our empirical comparison. Finally, for
S-MLSTM, due to the increased time required for training, the
designated truncation time-point was determined by evaluating
at {0.05, 0.2, 0.4, 0.6, 0.8, 1} times each dataset’s length, fixing this
way the number of iterations regardless of the dataset’s length.
Also, the number of LSTM cells was calculated by using a grid
search among {8, 64, 128}, choosing the one yielding the best
score.

630

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(i) Wide

0.0

0.2

0.4

0.6

0.8

1.0

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(ii) Large

Accuracy
F1-Score

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(iii) Unstable

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(iv) Imbalanced

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(v) Multiclass

0.0

0.2

0.4

0.6

0.8

1.0

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(vi) Common
ECEC

ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(vii) Univariate

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(viii) Multivariate

Figure 9: Accuracy and F1-Score. EDSC did not produce results for ‘Wide’ datasets within 48 hours.

When an algorithm required more than 48 hours for training
we terminated the experiment. The source code, datasets and
execution instructions are publicly available.2 Thus, our empirical
comparison is reproducible. In the following section, we report the
experimental results per dataset type, i.e. the average scores of the
algorithms for all datasets in the respective category, while the
results per dataset can be found in the supplementary material.5

6.2 Experimental results
6.2.1 Predictive Accuracy. Figure 9 presents the accuracy and

F1-score values for each dataset category. In terms of accuracy,
ECEC is shown to be the best for all categories, apart from ‘Mul-
ticlass’ for which it ranks second. S-MINI is very competitive,
ranking first for ‘Multiclass’ datasets, and second for ‘Wide’, ‘Uni-
variate’ and ‘Unstable’ cases (after ECEC). This is mainly the result
of the confidence thresholds that ECEC employs, which effec-
tively favor its predictive performance against other algorithms,
and, for the case of S-MINI, the MiniROCKET full time-series
classification algorithm that has been shown to be very accurate
in a variety of datasets and settings. TEASER has a stable perfor-
mance and its accuracy results are not shown to be significantly
impacted by dataset characteristics, apart from ‘Large’ cases for
which it achieves slightly better than 0.6 on average, nevertheless
ranking second, followed by ECO-K, S-MINI and S-MLSTM. This
higher ranking is the result of TEASER’s consistency check. EDSC
and S-WEASEL do not perform well, with EDSC outperforming
S-WEASEL in ‘Common’, ‘Imbalanced’, and ‘Large’ datasets. ECTS
lies in the middle ranks.

For some dataset categories the algorithms’ F1-score is greatly
impacted. For the ‘Common’, and ‘Wide’, accuracy is pretty close
to the F1-score achieved values, whereas for the rest the differ-
ences are noticeable. The main reason for this is class imbalance,
which can render accuracy inappropriate as an evaluation met-
ric [16]. Also, since imbalanced datasets are also categorized as
‘Large’, ‘Multiclass’ and ‘Unstable’, performance drop is observed
for these cases as well. ECEC, TEASER and S-MLSTM are shown
to be the most impacted algorithms in terms of F1-score as a
result of class imbalance. This is expected, since the absence of

adequate samples of the minority class results to looser thresh-
olds for ECEC, poorly fitted classifiers for TEASER, and demands
more complex and sophisticated cost functions for training the
S-MLSTM. Moreover, the univariate algorithms ECEC, ECO-K,
ECTS, and TEASER that utilize the voting scheme achieve higher
accuracy on multivariate cases than the multivariate S-MINI al-
gorithm.

6.2.2 Earliness. In terms of earliness, we show algorithm per-
formance in Figure 10 (lower values are better). Here we can see
that S-MLSTM generates earlier predictions for most dataset cate-
gories apart from the ‘Wide’ case, where ECO-K and TEASER are
shown to be better. We can also observe that although S-MLSTM
mainly captures the class differences, the time-series truncation
process may ‘hide’ important features during training making
this more prominent in datasets with more time-points per exam-
ple. On the contrary, the earliness cost function of ECO-K and the
One-Class SVM of TEASER are shown to be valuable components
for such cases. S-WEASEL ranks second for ‘Common’ and ‘Uni-
variate’ cases, and is also better than TEASER for ‘Multiclass’ and
‘Multivariate’, illustrating however that the One-Class SVM and
validation component that TEASER incorporates do not always
help.

6.2.3 Harmonic Mean. We now discuss the algorithms’ per-
formance in terms of harmonic mean between accuracy and earli-
ness (cf. Sec. 2.2). Figure 11 shows a plot of the results. S-MLSTM
achieves the highest scores for most dataset categories, apart
from the ‘Wide’ case, for which it ranks fourth, and for ‘Unstable’
and ‘Common’ that comes second. This is mainly due to lower
and highly varying accuracy scores for the PLAID dataset and
the worse Earliness score in the case of HouseTwenty. Other than
that, S-MLSTM results demonstrate the strength of neural net-
works in performing early and accurately. In the ‘Wide’ category,
ECEC is shown to be the most competitive, followed by TEASER,
S-MINI, and S-MLSTM. Considering that S-WEASEL, a full time-
series classification algorithm that TEASER incorporates as an
underlying module, performs consistently worse than TEASER,
makes apparent that the One-Class SVM of TEASER helps to

631

0.00 0.25 0.50 0.75 1.00
(i) Wide

ECEC

ECO-K

ECTS

EDSC

S-MINI

S-MLSTM

S-WEASEL

TEASER

0.00 0.25 0.50 0.75 1.00
(ii) Large

0.00 0.25 0.50 0.75 1.00
(iii) Unstable

0.00 0.25 0.50 0.75 1.00
(iv) Imbalanced

0.00 0.25 0.50 0.75 1.00
(v) Multiclass

ECEC

ECO-K

ECTS

EDSC

S-MINI

S-MLSTM

S-WEASEL

TEASER

0.00 0.25 0.50 0.75 1.00
(vi) Common

0.00 0.25 0.50 0.75 1.00
(vii) Univariate

0.00 0.25 0.50 0.75 1.00
(viii) Multivariate

Figure 10: Earliness (lower values are better, EDSC did not produce results for ‘Wide’ datasets within 48 hours).

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(i) Wide

0.0

0.2

0.4

0.6

0.8

1.0

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(ii) Large

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(iii) Unstable

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(iv) Imbalanced

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(v) Multiclass

0.0

0.2

0.4

0.6

0.8

1.0

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(vi) Common

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(vii) Univariate

ECEC
ECO-K
ECTS
EDSC

S-M
IN

I
S-M

LS
TM

S-W
EASE

L
TE

ASE
R

(viii) Multivariate

Figure 11: Harmonic Mean of earliness and accuracy. EDSC did not produce results for ‘Wide’ datasets within 48 hours.

boost the overall performance. There is though an exception
for the ‘Common’ datasets where TEASER and S-WEASEL are
pretty close, while TEASER is more accurate, S-WEASEL performs
better in terms of earliness. S-MINI seems to typically be more
performing than S-WEASEL, for all datasets.

ECEC is shown to be the method that is mostly impacted by
dataset characteristics, achieving the best score in the ‘Unstable’,
the second best in ‘Imbalanced’ and ‘Multivariate’ cases, reaching
top-3 in ‘Large’, and ‘Multiclass’, but ending up to be the worst
for the ‘Common’ datasets. The significant harmonic mean drop
is not due to accuracy, since ECEC ranks on top positions for
most datasets for this metric, but it is due to bad earliness scores,

especially for the DodgerLoop{Game, Day} and PowerCons cases
where it surpasses a value of 0.5. The reason for this is the high
similarity between the instances of the different classes in the
early time points. Consequently, this fact leads ECEC to train
strict thresholds, thus not allowing their surpassing early enough.
On the other hand, EDSC, ECTS and ECO-K rank in the last
positions in most categories, excluding ‘Common’ for ECO-K,
where ECEC ranks last.

6.2.4 Training Times. We now compare the training times of
the evaluated algorithms, i.e. the total time in minutes that an al-
gorithm requires to fit a model, summing up individual iterations
e.g. for the case of STRUT variants. Figure 12 shows a plot of our

632

0 200 400 600
(i) Wide

ECEC

ECO-K

ECTS

EDSC

S-MINI

S-MLSTM

S-WEASEL

TEASER

0 200 400
(ii) Large

0 100 200 300
(iii) Unstable

0 100 200 300
(iv) Imbalanced

0 100 200
(v) Multiclass

ECEC

ECO-K

ECTS

EDSC

S-MINI

S-MLSTM

S-WEASEL

TEASER

0 5 10 15
(vi) Common

0 50 100 150
(vii) Univariate

0 200 400
(viii) Multivariate

Figure 12: Training times in minutes (lower values are better, EDSC did not produce results for ‘Wide’ datasets within 48
hours).

Algorithm Complexity

ECEC
O(𝑁 · 𝐿3 · # of classifiers·

of classes· # of variables)

ECO-K
O(𝐿 · 𝑙𝑜𝑔𝑁 + 2 · 𝑁 · 𝐿 + # of classes·
of typical groups · 𝑁 · # of variables)

ECTS O(𝑁 3 · 𝐿 · # of variables)
EDSC O(𝑁 2 · 𝐿3 · # of variables)
S-MINI O(𝑁 · 𝐿 · 𝑙𝑜𝑔(𝐿) · # of kernels)
S-MLSTM O(𝑁 · # of epochs · 𝐿)
S-WEASEL O(𝑁 · 𝐿2 · 𝑙𝑜𝑔(𝐿) · # of variables)
TEASER O(𝐿/𝑆 · 𝐿2 · # of variables)

Table 5: Worst-case complexity. 𝑁 denotes dataset height
and 𝐿, time-series length. For the univariate algorithms
that incorporate voting, we multiply with the no. of vari-
ables.

experimental results and Table 5 describes the algorithm com-
plexities. S-WEASEL has the lowest training times for all dataset
categories, whereas ECO-K comes second apart from ‘Multiclass’,
‘Wide’ and ‘Univariate’, where the second best is S-MINI. Note
that S-WEASEL’s worst-case complexity is worse than, e.g., that
of S-MINI (see Table 5), but in our experiments the worst case
was not encountered. The remaining algorithms behave as ex-
pected, i.e. ECEC suffers in the ‘Wide’ cases, though in terms of
harmonic mean was the best for this dataset category, as a result
of the cubic superscript on 𝐿; ECO-K is quite time-effective; the
dataset’s size (𝑁) indeed impacts ECTS and EDSC training times;
TEASER is time-efficient for datasets with large 𝑁 and consider-
ing also its harmonic mean performance would be a good choice
for ‘Wide’, ‘Multiclass’, ‘Common’ and ‘Univariate’ datasets; and
the STRUT variants can scale for all dataset categories. Specifi-
cally, S-MLSTM, although being the most competitive in terms of
harmonic mean, it ranks second or third worse with respect to

training times, nevertheless managing to train on all 12 datasets.
TEASER lies in the fourth position in most datasets, except for
‘Unstable’, for which it is the third fastest.

6.2.5 Testing Times. In order for an algorithm to operate in
real-time, the generation of class label predictions must take place
earlier than the arrival of new observations. To that end, Figure 13
presents the algorithms’ testing times in seconds, divided by the
frequency of observations in each dataset. Hatches indicate cases
for which algorithms did not train. For ECEC and TEASER that
analyze prefixes with length of more than one time-point, we
divide by the frequency multiplied by the user defined prefix
length. Values lower than one (blue) indicate that the algorithm
is able to generate a prediction before the next time-point (or
batch of time-points) arrives in the input. We can see that for
datasets with higher frequency of observations (less than 1 sec-
ond, such as BasicMotions, PickupGestureWiimoteZ, and PLAID),
ETSC algorithms are not able to generate predictions in a timely
manner, apart from EDSC that can generate predictions very fast,
with an average of 0.003 seconds across all datasets and ECEC
and S-WEASEL for the PickupGestureWiimoteZ dataset. Recall
however, that in the case of PLAID, EDSC did not manage to train
within a reasonable timeframe. In the HouseTwenty case, where
observations arrive with a frequency of 8 seconds, all evaluated
algorithms that managed to train apart from ECTS are suitable
for online operation. Finally, ECEC cannot handle the Maritime
dataset, as the algorithm’s testing time is negatively impacted by
the increased dataset height.

6.3 Results Overview
Towards general recommendations for the use ETSC algorithms,
we summarize here the results of our evaluation.

For datasets with lengthy instances, the most early and accu-
rate predictions are achieved by ECEC, though paying the price
of increased training times. For applications that time is an issue,

633

ECEC

ECO-K
ECTS

EDSC

S-M
IN

I

S-M
LSTM

S-W
EASEL

TEASER

PLAID (0.0003 sec)

PickupGestureWiimoteZ (0.01 sec)

BasicMotions (0.1 sec)

HouseTwenty (8 sec)

Biological (150 sec)

DodgerLoopDay (300 sec)

DodgerLoopGame (300 sec)

DodgerLoopWeekend (300 sec)

PowerCons (600 sec)

Maritime (1800 sec)

SharePriceIncrease (86400 sec)

LSST (172800 sec)
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 13: Heatmap of online algorithm performance. Val-
ues lower than 1 indicate feasible cases. Hatches indicate
inability to train. Parentheses next to dataset names in-
clude the frequency of measurements for each case.

TEASER would be the best alternative. If the number of exam-
ples in the dataset increases, S-MLSTM competes with ECEC and
TEASER in terms of harmonic mean, but is slower in training
than both.

For cases where the measurements have high variance, ECEC
and S-MLSTM achieve the best harmonic mean scores, with ECEC
having higher accuracy, but S-MLSTM lower earliness scores.
These two algorithms achieve the best harmonic mean scores
also for cases of high class imbalance, though paying attention
to their F1-score for this category we can see that it is quite
impacted.

In cases multiple classes exist, the best choice would be S-
MLSTM with the lowest earliness score, followed this time by
S-MINI, which achieves high accuracywith quite reduced training
times.

For common datasets, S-MINI would be the most appropriate
algorithm in terms of harmonic mean, with very low earliness
scores and training times, though worse accuracy than ECEC,
ECO-K, and ECTS. These three, however, suffer from high earli-
ness scores.

For univariate datasets, S-MLSTM and S-MINI are shown to
balance best the trade-off between accuracy and earliness. For
applications with many variables S-MLSTM is the most competi-
tive in terms of earliness, though with worse predictive accuracy
than ECEC, which has the best accuracy for both univariate and
multivariate categories. Also, S-MLSTM trains faster than ECEC,
but slower than S-MINI for univariate cases. ECEC is the fastest
among the three for multivariate datasets.

We now summarize the lessons learned from our study. First,
not every algorithm is directly available for benchmarking, i.e.
open-source and with sufficient configuration descriptions that
allow for the reproduction of published empirical analyses. Sec-
ond, we can confirm the published results, i.e. that ECEC, ECO-K
and TEASER outperform EDSC and ECTS. TEASER’s performance,
is quite close to the original paper with only 5% difference in
mean accuracy and earliness, which is due to the normalization
step that we skip.

Third, we have observed that implementation heterogeneity
can induce compatibility issues and may require the development
of additional modules for conversions; e.g., the Python libraries
sklearn (used by ECTS) and sktime (used by S-MINI) require

different input formats than pyts (used byWEASEL). Java imple-
mentations seem to exhibit better task parallelization, but some
algorithms (e.g. STRUT and its variants) are more easily imple-
mented in Python due to the existence of specialized libraries.

Overall, the use of ETSC algorithms can introduce tangible
benefits in several applications: In resource-hungry biological
simulations for drug treatment exploration, there is a need to de-
termine as early as possible whether a simulation exhibits a case
in which drug treatment is effective [3]. Our results have shown
that ETSC allows the early identification of 65% of simulations
that are not deemed interesting from a biological perspective, and
thus helps save significant amounts of computational resources.
In the maritime domain, port authorities need to determine as
early as possible whether a vessel will reach a port in order to
manage port traffic and operations [30]. Our evaluation has il-
lustrated that the early classification of vessel trajectories is a
challenging problem for ETSC algorithms and there is room for
improvement in terms of scalability.

7 SUMMARY AND FUTUREWORK
In this work we introduced an open-source framework for evalu-
ating ETSC algorithms. We empirically evaluated five state-of-
the-art early-time-series classification algorithms on benchmark
datasets, as well as three variants of a new ETSC algorithm. More-
over, we employed two datasets from the domains of cancer cell
simulations and maritime situational awareness. We summarized
the functionality of each algorithm using a simple running ex-
ample in order to illustrate their operation. We divided the incor-
porated datasets to eight categories and observed that the shape
of the dataset and the presence of multiple variables per time-
series induce fluctuations in performance. The repository that
we developed for the presented empirical comparison includes
implementations of all algorithms, as well as all the datasets,
and is publicly available allowing for experiment reproducibil-
ity. The repository may be extended with new implementations
and datasets, thus facilitating further research. In the near fu-
ture, more ETSC algorithms will be added, such as T-SMOTE [47],
SDRE [9], andMOO-ETSC [29]. Moreover, we plan to incorporate
to our framework hyper parameter tuning techniques as in [31],
for optimizing the configurations and analyze the performance
of alternative voting schemes for applying univariate algorithms
on multivariate datasets. Moreover, we aim to re-implement all
algorithms in the same language, as e.g. in [25].

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the European Union’s Horizon Europe Programme under the
CREXDATA Project, grant agreement n◦ 101092749. We would
also like to acknowledge the effort of making the UEA & UCR
datasets openly available.

REFERENCES
[1] A. Abanda, U. Mori, and J. A. Lozano. 2019. A review on distance based

time series classification. Data Mining and Knowledge Discovery 33, 2 (2019),
378–412.

[2] Y. Achenchabe, A. Bondu, A. Cornuéjols, and A. Dachraoui. 2021. Early
classification of time series: Cost-based optimization criterion and algorithms.
Machine Learning 110, 6 (2021), 1481–1504.

[3] C. Akasiadis, M. Ponce-de Leon, A. Montagud, E. Michelioudakis, A. At-
sidakou, E. Alevizos, A. Artikis, A. Valencia, and G. Paliouras. 2022. Par-
allel model exploration for tumor treatment simulations. Computational
Intelligence 38, 4 (2022), 1379–1401. https://doi.org/10.1111/coin.12515
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12515

[4] A. J. Bagnall, J. Lines, A. Bostrom, J. Large, and E. J. Keogh. 2017. The great
time series classification bake off: a review and experimental evaluation of

634

recent algorithmic advances. Data Mining and Knowledge Discovery 31, 3
(2017), 606–660.

[5] A. Bondu, Y. Achenchabe, A. Bifet, F. Clérot, A. Cornuéjols, J. Gama, G. Hébrail,
V. Lemaire, and P.-F. Marteau. 2022. Open challenges for machine learning
based early decision-making research. ACM SIGKDD Explorations Newsletter
24, 2 (2022), 12–31.

[6] H. A. Dau, A. J. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A.
Ratanamahatana, and E. J. Keogh. 2019. The UCR time series archive. IEEE
CAA J. Autom. Sinica 6, 6 (2019), 1293–1305.

[7] A. Dempster, D. F. Schmidt, and G. I. Webb. 2021. Minirocket: A very fast
(almost) deterministic transform for time series classification. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
248–257.

[8] B. Dhariyal, T. L. Nguyen, S. Gsponer, and G. Ifrim. 2020. An Examination
of the State-of-the-Art for Multivariate Time Series Classification. In 20th
International Conference on Data Mining Workshops. IEEE, New York, 243–
250.

[9] A. F. Ebihara, T. Miyagawa, K. Sakurai, and H. Imaoka. 2023. Toward As-
ymptotic Optimality: Sequential Unsupervised Regression of Density Ratio
for Early Classification. In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1–5.

[10] R. Elmasri and S. B. Navathe. 2015. Fundamentals of Database Systems (7th
ed.). Pearson, New Jersey.

[11] P. Esling and C. Agon. 2012. Time-series data mining. ACMComputing Surveys
(CSUR) 45, 1 (2012), 1–34.

[12] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. 2019. Deep
learning for time series classification: a review. Data Mining and Knowledge
Discovery 33, 4 (2019), 917–963.

[13] G. Fikioris, K. Patroumpas, A. Artikis, G. Paliouras, andM. Pitsikalis. 2020. Fine-
tuned compressed representations of vessel trajectories. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management.
2429–2436.

[14] A. Gupta, H. P. Gupta, B. Biswas, and T. Dutta. 2020. Approaches and Appli-
cations of Early Classification of Time Series: A Review. IEEE Transactions on
Artificial Intelligence 1, 1 (2020), 47–61.

[15] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, and L. Wang. 2015. Early classification
on multivariate time series. Neurocomputing 149 (2015), 777–787.

[16] H. He and E. A. Garcia. 2009. Learning from imbalanced data. IEEE Transactions
on knowledge and data engineering 21, 9 (2009), 1263–1284.

[17] J. K. Holand, E. K. Kemsley, and R. H. Wilson. 1998. Use of Fourier transform
infrared spectroscopy and partial least squares regression for the detection of
adulteration of strawberry purées. Journal of the Science of Food and Agriculture
76, 2 (1998), 263–269.

[18] J. Hu, L. Shen, and G. Sun. 2018. Squeeze-and-Excitation Networks. In 2018
IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer
Society, Washington DC, 7132–7141.

[19] H.-S. Huang, C.-L. Liu, and V. S. Tseng. 2018. Multivariate Time Series Early
Classification Using Multi-Domain Deep Neural Network. In 5th IEEE Interna-
tional Conference on Data Science and Advanced Analytics. IEEE, New York,
90–98.

[20] S. Ioffe and C. Szegedy. 2015. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In Proc. of the 32nd Int. Conf. on
Machine Learning (Proceedings of Machine Learning Research, Vol. 37), Francis
Bach and David Blei (Eds.). PMLR, Lille, France, 448–456.

[21] A. A. Ismail, M. Gunady, Corrada B. H., and S. Feizi. 2020. Benchmarking
deep learning interpretability in time series predictions. Advances in neural
information processing systems 33 (2020), 6441–6452.

[22] S. H. Jambukia, V. K. Dabhi, and H. B. Prajapati. 2015. Classification of ECG
signals using machine learning techniques: A survey. In 2015 International
Conference on Advances in Computer Engineering and Applications. 714–721.

[23] A. Javed, B. S. Lee, and D. M. Rizzo. 2020. A benchmark study on time series
clustering. Machine Learning with Applications 1 (2020), 100001.

[24] F. Karim, S. Majumdar, H. Darabi, and S. Harford. 2019. Multivariate LSTM-
FCNs for time series classification. Neural Networks 116 (2019), 237–245.

[25] M. Khayati, A. Lerner, Z. Tymchenko, and P. Cudré-Mauroux. 2020. Mind the
gap: an experimental evaluation of imputation of missing values techniques
in time series. In Proceedings of the VLDB Endowment, Vol. 13. 768–782.

[26] J. Lines, A. J. Bagnall, P. Caiger-Smith, and S. Anderson. 2011. Classification of
Household Devices by Electricity Usage Profiles. In 12th International Confer-
ence on Intelligent Data Engineering and Automated Learning (LNCS, Vol. 6936).

Springer, Switzerland, 403–412.
[27] J. Lv, X. Hu, L. Li, and P.-P. Li. 2019. An Effective Confidence-Based Early

Classification of Time Series. IEEE Access 7 (2019), 96113–96124.
[28] U. Mori, A. Mendiburu, E. J. Keogh, and J. A. Lozano. 2017. Reliable early

classification of time series based on discriminating the classes over time.
Data Mining and Knowledge Discovery 31, 1 (2017), 233–263.

[29] U.Mori, A. Mendiburu, I.M.Miranda, and J.A. Lozano. 2019. Early classification
of time series using multi-objective optimization techniques. Information
Sciences 492 (2019), 204–218. https://doi.org/10.1016/j.ins.2019.04.024

[30] E. Ntoulias, E. Alevizos, A. Artikis, C. Akasiadis, and A. Koumparos. 2022.
Online fleet monitoring with scalable event recognition and forecasting. GeoIn-
formatica 26, 4 (2022), 613–644.

[31] G. Ottervanger, M. Baratchi, and H. H. Hoos. 2021. MultiETSC: automated ma-
chine learning for early time series classification. Data Mining and Knowledge
Discovery (2021), 1–53.

[32] K. Patroumpas, D. Spirelis, E. Chondrodima, H. Georgiou, P. Petrou, P.
Tampakis, S. Sideridis, N. Pelekis, and Y. Theodoridis. 2018. Final dataset
of Trajectory Synopses over AIS kinematic messages in Brest area (ver. 0.8).
https://doi.org/10.5281/zenodo.2563256

[33] M. Pitsikalis, A. Artikis, R. Dreo, C. Ray, E. Camossi, and A. Jousselme. 2019.
Composite Event Recognition for Maritime Monitoring. In the 13th ACM
International Conference on Distributed and Event-based Systems, DEBS 2019,
Darmstadt, Germany, June 24-28. ACM, 163–174.

[34] M. Ponce-de Leon, A. Montagud, C. Akasiadis, J. Schreiber, T. Ntiniakou,
and A. Valencia. 2022. Optimizing dosage-specific treatments in a multi-
scale model of a tumor growth. Frontiers in Molecular Biosciences 9 (2022).
https://doi.org/10.3389/fmolb.2022.836794

[35] C. Ray, R. Dreo, E. Camossi, and A. L. Jousselme. 2018. Heterogeneous Inte-
grated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance,
10.5281/zenodo.1167595.

[36] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. J. Bagnall. 2021. The
great multivariate time series classification bake off: a review and experimen-
tal evaluation of recent algorithmic advances. Data Mining and Knowledge
Discovery 35, 2 (2021), 401–449.

[37] P. Schäfer and U. Leser. 2017. Fast and accurate time series classification with
WEASEL. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. 637–646.

[38] P. Schäfer and U. Leser. 2017. Multivariate time series classification with
WEASEL+ MUSE. arXiv preprint arXiv:1711.11343 (2017).

[39] P. Schäfer and U. Leser. 2020. TEASER: early and accurate time series classifi-
cation. Data mining and knowledge discovery 34, 5 (2020), 1336–1362.

[40] S. Shekhar, D. Eswaran, B. Hooi, J. Elmer, C. Faloutsos, and L. Akoglu. 2023.
Benefit-aware early prediction of health outcomes on multivariate EEG time
series. Journal of Biomedical Informatics 139 (2023), 104296. https://doi.org/
10.1016/j.jbi.2023.104296

[41] R. Wu, A. Der, and E. Keogh. 2021. When is Early Classification of Time Series
Meaningful. IEEE Transactions on Knowledge and Data Engineering (2021).

[42] Z. Xing, J. Pei, and P. S. Yu. 2009. Early prediction on time series: A nearest
neighbor approach. In 21𝑠𝑡 Joint Conference on Artificial Intelligence. Citeseer.

[43] Z. Xing, J. Pei, and P. S. Yu. 2012. Early classification on time series. Knowledge
and information systems 31, 1 (2012), 105–127.

[44] Z. Xing, J. Pei, P. S. Yu, and K. Wang. 2011. Extracting interpretable features for
early classification on time series. In Proceedings of the 2011 SIAM international
conference on data mining. SIAM, 247–258.

[45] X. Xu, S. Huang, Y. Chen, K. Browny, I. Halilovicy, and W. Lu. 2014. TSAaaS:
Time series analytics as a service on IoT. In 2014 IEEE International Conference
on Web Services. IEEE, 249–256.

[46] L. Yao, Y. Li, Y. Li, H. Zhang, M. Huai, J. Gao, and A. Zhang. 2019. DTEC:
Distance transformation based early time series classification. In Proceedings
of the 2019 SIAM International Conference on Data Mining. SIAM, 486–494.

[47] P. Zhao, C. Luo, B. Qiao, L. Wang, S. Rajmohan, Q. Lin, and D. Zhang. 2022.
T-SMOTE: temporal-oriented synthetic minority oversampling technique for
imbalanced time series classification. In Proceedings of International Joint
Conference on Artificial Intelligence.

Received 3 October 2023; revised 8 January 2024; accepted 1 February
2024

635

